
Temario Métodos Matemáticos 
 
Variable Compleja 
Funciones elementales de variable compleja. 
Potencias y raíces de números complejos. 
Función exponencial y funciones 
trigonométricas. 
Funciones hiperbólicas. 
Logaritmos. 
Potencias y raíces complejas. 
Teorema del residuo. 
Valor principal de una integral. 
 
Álgebra Lineal 
Espacios vectoriales. 
Solución de sistemas de ecuaciones lineales. 
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Rectas y planos. 
Álgebra matricial. 
Combinaciones lineales, funciones lineales y 
operadores lineales. 
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ecuaciones lineales. 
Ecuaciones de eigenvalores. 
Matrices especiales. 
 
Ecuaciones Diferenciales 
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primer orden. 
Ecuaciones lineales de segundo orden 
homogéneas. 

Ecuaciones lineales de segundo orden no 
homogéneas. 
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Solución de ecuaciones diferenciales por 
transformada de Laplace y de Fourier. 
Convolución y correlación, teorema de 
Parseval. 
 
Funciones Generalizadas 
Función gamma y función factorial. 
Función Beta. 
Función error. 
Fórmula de Stirling. 
Función delta de Dirac. 
Funciones de Green. 
 
 
Funciones Especiales 
Método de Frobenius. 
Ecuación de Bessel y su solución. 
Relaciones de recurrencia. 
Ecuación de Legendre. 
Fórmula de Rodríguez. 
Función generatriz para los polinomios de 
Legendre. 
Conjunto completo de funciones ortogonales. 
Funciones de Hermite. 
Funciones de Laguerre y operador escalera. 
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Variable Compleja 
 
Capitulo 14,  
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Evaluar, aplicando el teorema del residuo: 

 
 
Evaluar la interal sobre el contorno 
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Mostrar que la funciones son linealmente independientes 
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transforms (Chapter 7, Section 12), or a Laplace transform and the corresponding
Bromwich integral. In each case two functions have the property that each is given
by an integral involving the other. This is what an integral transform means, and
there are other integral transforms which you may discover in tables or computer.

PROBLEMS, SECTION 7
The values of the following integrals are known and can be found in integral tables or by
computer. Your goal in evaluating them is to learn about contour integration by applying
the methods discussed in the examples above. Then check your answers by computer.

1.

Z 2π

0

dθ
13 + 5 sin θ

2.

Z 2π

0

dθ
5 − 3 cos θ

3.

Z 2π

0

dθ
5 − 4 sin θ

4.

Z 2π

0

sin2 θ dθ
5 + 3 cos θ

5.

Z π

0

dθ
1 − 2r cos θ + r2

(0 ≤ r < 1) 6.

Z π

0

dθ
(2 + cos θ)2

7.

Z 2π

0

cos 2θ dθ
5 + 4 cos θ

8.

Z π

0

sin2 θ dθ
13 − 12 cos θ

9.

Z 2π

0

dθ
1 + sin θ cos α

(α = const.) 10.

Z ∞

−∞

dx
x2 + 4x + 5

11.

Z ∞

0

dx
(4x2 + 1)3

12.

Z ∞

0

x2 dx
x4 + 16

13.

Z ∞

0

x2 dx
(x2 + 4)(x2 + 9)

14.

Z ∞

−∞

sin x dx
x2 + 4x + 5

15.

Z ∞

0

cos 2x dx
9x2 + 4

16.

Z ∞

0

x sin x dx
9x2 + 4

17.

Z ∞

−∞

x sin x dx
x2 + 4x + 5

18.

Z ∞

0

cos πx dx
1 + x2 + x4

19.

Z ∞

0

cos 2x dx
(4x2 + 9)2

20.

Z ∞

0

cos x dx
(1 + 9x2)2

21. In Example 4 we stated a rule for evaluating a contour integral when the contour
passes through simple poles. We proved that the result was correct for

PV

Z

Γ

eiz

z
dz

around the contour Γ shown here.

(a) By following the same method (integrating around C′ of Figure 7.3 and letting
r → 0) show that the result is correct if we replace eiz by any f(z) which is analytic
at z = 0.

(b) Repeat the proof in (a) for

PV

Z

Γ

f(z)
(z − a)

dz, a real

(that is, a pole on the x axis), with f(z) analytic at z = a.
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Using the rule of Example 4 (also see problem 21), evaluate the following integrals. Find
principal values if necessary.

22.

Z ∞

−∞

dx
(x − 1)(x2 + 1)

23.

Z ∞

−∞

dx
(x2 + 4)(2 − x)

24.

Z ∞

−∞

x sin πx
1 − x2

dx 25.

Z ∞

0

x sin x
9x2 − π2

dx

26.

Z ∞

−∞

x dx
(x − 1)4 − 1

27.

Z ∞

0

cos πx
1 − 4x2

dx

28.

Z ∞

0

dx
1 − x4

29.

Z ∞

0

sin ax
x

dx

30. (a) By the method of Example 2 evaluate

Z ∞

0

dx
1 + x4

.

(b) Evaluate the same integral by using tables or computer to get the indefinite
integral; unless you are very careful you may get zero. Explain why.

(c) Make the change of variables u = x4 in the integral in (a) and evaluate the u
integral using (7.5).

31. Use the method of Problem 30(c) to evaluate

Z ∞

0

dx
1 + x6

.

32. Use the method of Problem 30(c) and the contour and method of Example 5 to

evaluate

Z ∞

0

dx
(1 + x4)2

.

Evaluate the following integrals by the method of Example 5.

33.

Z ∞

0

√
x dx

1 + x2
34.

Z ∞

0

√
x dx

(1 + x)2

35.

Z ∞

0

x1/3 dx
(1 + x)(2 + x)

36.

Z ∞

0

lnx
x3/4(1 + x)

dx

37.

(a) Show that Z ∞

−∞

epx

1 + ex
dx =

π
sin πp

for 0 < p < 1. Hint: Find
R

epz dz/(1 + ez) around the rectangular contour
shown. Show that the integrals along the vertical sides tend to zero as A → ∞.
Note that the integral along the upper side is a multiple of the integral along
the x axis.

(b) Make the change of variable y = ex in the x integral of part (a), and using
(6.5) of Chapter 11, show that this integral is the beta function, B(p, 1 − p).
Then using (7.1) of Chapter 11, show that Γ(p)Γ(1 − p) = π/ sin πp.
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49. z4 − 4z3 + 11z2 − 14z + 10 = 0 50. z4 + z3 + 4z2 + 2z + 3 = 0

51. Use (7.8) to evaluate
I

C

f ′(z)
f(z)

dz, where f(z) =
z3(z + 1)2 sin z
(z2 + 1)2(z − 3)

,

around the circle |z| = 2; around |z| = 1
2 .

52. Use (7.8) to evaluate

I
z3 dz

1 + 2z4
around |z| = 1.

53. Use (7.8) to evaluate

I
z3 + 4z

z4 + 8z2 + 16
dz around the circle |z − 2i| = 2.

54. Use (7.8) to evaluate I

C

sec2(z/4) dz
1 − tan(z/4)

,

where C is the rectangle formed by the lines y = ± 1, x = ± 5
2π.

Find the inverse Laplace transform of the following functions by using (7.16).

55.
p3

p4 + 4
Hint: Use (6.2). 56.

1
p4 − 1

57.
p + 1

p(p2 + 1)
58.

p3

p4 − 16
59.

3p2

p3 + 8

60.
1

p2(p + 1)
61.

p5

p6 − 64
62.

(p − 1)2

p(p + 1)2

63.
p

p4 − 1 64.
p2

(p2 − 1)(p2 − 4)
65.

p
(p + 1)(p2 + 4)

66. In equation (7.18), let u(x) be an even function and v(x) be an odd function.

(a) If f(x) = u(x)+iv(x), show that these conditions are equivalent to the equation
f∗(x) = f(−x).

(b) Show that

πu(a) = PV

Z ∞

0

2xv(x)
x2 − a2

dx, πv(a) = −PV

Z ∞

0

2au(x)
x2 − a2

dx.

These are the Kramers-Kronig relations. Hint: To find u(a), write the integral for u(a)
in (7.18) as an integral from −∞ to 0 plus an integral from 0 to ∞. Then in the −∞ to

0 integral, replace x by −x to get an integral from 0 to ∞, and use v(−x) = −v(x). Add

the two 0 to ∞ integrals and simplify. Similarly find v(a).

8. THE POINT AT INFINITY; RESIDUES AT INFINITY
It is often useful to think of the complex plane as corresponding to the surface of
a sphere in the following way. In Figure 8.1, the sphere is tangent to the plane at
the origin O. Let O be the south pole of the sphere, and N be the north pole of
the sphere. If a line through N intersects the sphere at P and the plane at Q, we
say that the point P on the sphere and the point Q on the plane are correspond-
ing points. Then we have a one-to-one correspondence between points on the sphere
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2 .
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In Problems 5 to 8, find the residues of the given function at all poles. Take z = reiθ,
0 ≤ θ < 2π.

5.
z1/3

1 + z2
6.

√
z

1 + 8z3
7.

ln z
1 + z2

8.
ln z

(2z − 1)2

In Problems 9 to 10, use Laurent series to find the residues of the given functions at the
origin.

9.
sin z2

z7
10.

ln(1 − z)

sin2 z

11. Find the Laurent series of f(z) = ez/(1 − z) for |z| < 1 and |z| > 1. Hints:
For |z| < 1, multiply two power series; you should find f(z) =

P∞
n=0 anzn with

an =
Pn

k=0 1/k!. For |z| > 1, use (4.3) where C is a circle |z| = a with a > 1.
Evaluate the integrals by finding residues at 1 and 0. You should find f(z) =P∞

n=0 anzn +
P∞

n=1 bnz−n where all bn = −e and an = −e +
Pn

k=0 1/k!.

12. Let f(z) be the branch of
√

z2 − 1 which is positive for large positive real values
of z. Expand the square root in powers of 1/z to obtain the Laurent series of f(z)
about ∞. Thus by Problem 8.1 find the residue of f(z) at ∞. Check your result by
using equation (8.2).

In Problems 13 and 14, find the residues at the given points.

13. (a)
cos z

(2z −π)4
at

π
2 (b)

2z2 + 3z
z − 1

at ∞

(c)
z3

1 + 32z5
at z = −1

2
(d) csc(2z − 3) at z = 3

2

14. (a)
ln(1 + 2z)

z2
at 0 (b)

1
z

sin(2z + 5) at ∞

(c)
z3

4z4 + 1
at 1

2 (1 + i) (d)
z sin 2z

(z + π)2
at −π

In Problem 15 to 20, evaluate the integrals by contour integration.

15.

Z π

0

cos θ dθ
5 − 4 cos θ

16.

Z 2π

0

sin θ dθ
5 + 3 sin θ

17.

Z ∞

0

cos x dx
(4x2 + 1)(x2 + 9)

18.

Z ∞

0

x sin(πx/2)
x4 + 4

dx

19. PV

Z ∞

−∞

sin x dx
(3x −π)(x2 + π2)

20. PV

Z ∞

−∞

cos x dx
x(1 −x)(x2 + 1)

Verify the formulas in Problem 21 to 27 by contour integration or as indicated. Assume
a > 0, m > 0.

21.

Z 2π

0

dθ
a + b sin θ

=

Z 2π

0

dθ
a + b cos θ

=
2π√

a2 − b2
, |b| < a

22.

Z 2π

0

dθ
(a + b sin θ)2

=

Z 2π

0

dθ
(a + b cos θ)2

=
2πa

(a2 − b2)3/2
, |b| < a

Hint: You can do this directly by contour integration, but it is easier to differentiate
Problem 21 with respect to a.

23.

Z 2π

0

sin θ dθ
a + b sin θ

=

Z 2π

0

cos θ dθ
a + b cos θ

=
2π
b

„
1 − a√

a2 − b2

«
, |b| < a
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15.

Z π

0

cos θ dθ
5 − 4 cos θ

16.

Z 2π

0

sin θ dθ
5 + 3 sin θ

17.

Z ∞

0

cos x dx
(4x2 + 1)(x2 + 9)

18.

Z ∞

0

x sin(πx/2)
x4 + 4

dx

19. PV

Z ∞

−∞

sin x dx
(3x −π)(x2 + π2)

20. PV

Z ∞

−∞

cos x dx
x(1 −x)(x2 + 1)

Verify the formulas in Problem 21 to 27 by contour integration or as indicated. Assume
a > 0, m > 0.

21.

Z 2π

0

dθ
a + b sin θ

=

Z 2π

0

dθ
a + b cos θ

=
2π√

a2 − b2
, |b| < a

22.

Z 2π

0

dθ
(a + b sin θ)2

=

Z 2π

0

dθ
(a + b cos θ)2

=
2πa

(a2 − b2)3/2
, |b| < a

Hint: You can do this directly by contour integration, but it is easier to differentiate
Problem 21 with respect to a.

23.

Z 2π

0

sin θ dθ
a + b sin θ

=

Z 2π

0

cos θ dθ
a + b cos θ

=
2π
b

„
1 − a√

a2 − b2

«
, |b| < a
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3. (0, 1, 1), (−1, 5, 3), (1, 0, 2), (2,−15, 1)

4. (3, 5,−1), (1, 4, 2), (−1, 0, 5), (6, 14, 5)

5. Show that any vector V in a plane can be written as a linear combination of two
non-parallel vectors A and B in the plane; that is, find a and b so that V = aA+bB.
Hint: Find the cross products A × V and B × V; what are A × A and B × B?
Take components perpendicular to the plane to show that

a =
(B × V) · n
(B × A) · n

where n is normal to the plane, and a similar formula for b.

6. Use Problem 5 to write V = 3i + 5j as a linear combination of A = 2i + j and
B = 3i − 2j. Show that the formulas in Problem 5, written as a quotient of 2 by 2
determinants, are just the Cramer’s rule solution of simultaneous equations for a
and b.

7. As in Problem 6, write V = 4i − 5j in terms of the basis vectors i − 4j and 5i + 2j.

In Problems 8 to 15, use (8.5) to show that the given functions are linearly independent.

8. sin x, cos x 9. eix, sin x

10. x, ex, xex 11. sin x, cos x, x sin x, x cos x

12. 1, x2, x4, x6 13. sin x, sin 2x

14. eix, e−ix 15. ex, eix, cosh x

16. (a) Prove that if the Wronskian (8.5) is not identically zero, then the functions f1,
f2, . . . , fn are linearly independent. Note that this is equivalent to proving
that if the functions are linearly dependent, then W is identically zero. Hints:
Suppose (8.3) were true; you want to find the k’s. Differentiate (8.3) repeatedly
until you have a set of n equations for the n unknown k’s. Then use (8.9).

(b) In part (a) you proved that if W ̸≡ 0, then the functions are linearly inde-
pendent. You might think that if W ≡ 0, the functions would be linearly
dependent. This is not necessarily true; if W ≡ 0, the functions might be
either dependent or independent. For example, consider the functions x3 and
|x3| on the interval (−1, 1). Show that W ≡ 0, but the functions are not
linearly dependent on (−1, 1). (Sketch them.) On the other hand, they are
linearly dependent (in fact identical) on (0, 1).

In Problems 17 to 20, solve the sets of homogeneous equations by row reducing the matrix.

17.

8
<

:

x − 2y + 3z = 0
x + 4y − 6z = 0

2x + 2y − 3z = 0
18.

8
<

:

2x + 3z = 0
4x + 2y + 5z = 0
x − y + 2z = 0

19.

8
>><

>>:

3x + y + 3z + 6w = 0
4x − 7y − 3z + 5w = 0
x + 3y + 4z − 3w = 0

3x + 2z + 7w = 0

20.

8
>><

>>:

2x − 3y + 5z = 0
x + 2y − z = 0
x − 5y + 6z = 0

4x + y + 3z = 0

21. Find a condition for four points in space to lie in a plane. Your answer should be
in the form a determinant which must be equal to zero. Hint: The equation of a
plane is of the form ax+ by + cz = d, where a, b, c, d are constants. The four points
(x1, y1, z1), (x2, y2, z2), etc., are all to satisfy this equation. When can you find a,
b, c, d not all zero?
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Encontrar los valores de l para los cuales las siguientes ecuaciones tienen las soluciones no 
triviales, resolver las ecuciones para cada l. 

 
 
Pagina 141 ej.3,13 
Enontrar las siguientes matrices: transpuesta, inversa, compleja conjugada y transpuesta 
conjugada de A 

 
 
Mostrar que la siguiente matriz es una matriz unitaria 

  
 
Pagina 159 ej.15, 20 
Enontrar eugenvalores y eugenvectores de las matrices: 

  

 
 
Ecuaciones Diferenciales 
Capitulo 8,  
Pagina 398 ej. 6,7 
Para cada ecuación diferencial separar las variables y encontrar la  solución que satisface a 
las sigientes condiciones de frontera 

 
 
Pagina 403 ej. 3, 5 
 
Encontrar la solución general para las ecuaciones diferenciales 
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22. Find a condition for three lines in a plane to intersect in one point. Hint: See
Problem 21. Write the equation of a line as ax+ by = c. Assume that no two of the
lines are parallel.

Using (8.9), find the values of λ such that the following equations have nontrivial solutions,
and for each λ, solve the equations. (See Example 4.)

23.

(
(4 − λ)x − 2y = 0

−2x + (7 − λ)y = 0
24.

(
(6 − λ)x + 3y = 0

3x − (2 + λ)y = 0

25.

8
><

>:

−(1 + λ)x + y + 3z = 0,

x + (2 − λ)y = 0,

3x + (2 − λ)z = 0.

For each of the following, write the solution in vector form [see (8.11) and (8.13)].

26.

8
>><

>>:

2x − 3y + 5z = 3
x + 2y − z = 5
x − 5y + 6z = −2

4x + y + 3z = 13

27.

8
<

:

x − y + 2z = 3
−2x + 2y − z = 0

4x − 4y + 5z = 6

28.

8
<

:

2x + y − 5z = 7
x − 2y = 1

3x − 5y − z = 4

9. SPECIAL MATRICES AND FORMULAS
In this section we want to discuss various terms used in work with matrices, and
prove some important formulas. First we list for reference needed definitions and
facts about matrices.

There are several special matrices which are related to a given matrix A. We
outline in (9.1) what these matrices are called, what notations are used for them,
and how we get them from A.

(9.1) Name of Matrix Notations for it How to get it from A

Transpose of A, or
A transpose

AT or Ã or A′ or At Interchange rows and
columns in A.

Complex conjugate
of A

Ā or A∗ Take the complex
conjugate of each
element.

Transpose conjugate,
Hermitian conjugate,
adjoint (Problem 9),
Hermitian adjoint.

A† (A dagger) Take the complex
conjugate of each
element and transpose.

Inverse of A A− 1 See Formula (6.13).

There is another set of names for special types of matrices. In (9.2), we list
these and their definitions for reference.
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3. Given the following matrix, find the transpose, the inverse, the complex conjugate,
and the transpose conjugate of A. Verify that AA−1 = A−1A = the unit matrix.

A =

0

@
1 0 5i

−2i 2 0
1 1 + i 0

1

A ,

4. Repeat Problem 3 given

A =

0

@
0 2i −1

−i 2 0
3 0 0

1

A .

5. Show that the product AAT is a symmetric matrix.

6. Give numerical examples of: a symmetric matrix; a skew-symmetric matrix; a real
matrix; a pure imaginary matrix.

7. Write each of the items in the second column of (9.2) in index notation.

8. (a) Prove that (AB)† = B†A†. Hint: See (9.10).

(b) Verify (9.11), that is, show that (9.10) applies to a product of any number of
matrices. Hint: Use (9.10) and (9.8).

9. In (9.1) we have defined the adjoint of a matrix as the transpose conjugate. This is
the usual definition except in algebra where the adjoint is defined as the transposed
matrix of cofactors [see (6.13)]. Show that the two definitions are the same for a
unitary matrix with determinant = +1.

10. Show that if a matrix is orthogonal and its determinant is +1, then each element
of the matrix is equal to its own cofactor. Hint: Use (6.13) and the definition of an
orthogonal matrix.

11. Show that a real Hermitian matrix is symmetric. Show that a real unitary matrix is
orthogonal. Note: Thus we see that Hermitian is the complex analogue of symmetric,
and unitary is the complex analogue of orthogonal. (See Section 11.)

12. Show that the definition of a Hermitian matrix (A = A†) can be written aij = āji

(that is, the diagonal elements are real and the other elements have the property
that a12 = ā21, etc.). Construct an example of a Hermitian matrix.

13. Show that the following matrix is a unitary matrix.
0

BB@
(1 + i

√
3)/4

√
3

2
√

2
(1 + i)

−
√

3

2
√

2
(1 + i) (

√
3 + i)/4

1

CCA

14. Use (9.11) and (9.12) to simplify (ABTC)T, (C−1MC)−1, (AH)−1(AHA−1)3(HA−1)−1.

15. (a) Show that the Pauli spin matrices (Problem 6.6) are Hermitian.

(b) Show that the Pauli spin matrices satisfy the Jacobi identity
ˆ
A, [B, C]

˜
+ˆ

B, [C, A]
˜
+
ˆ
C, [A, B]

˜
= 0 where [A, B] is the commutator of A, B [see (6.3)].

(c) Generalize (b) to prove the Jacobi identity for any (conformable) matrices A,
B, C. Also see Chapter 6, Problem 3.14.

16. Let Cij = (−1)i+jMij be the cofactor of element aij in the determinant A. Show
that the statement of Laplace’s development and the statement of Problem 3.8 can
be combined in the equations

X

j

aijCkj = δik · det A, or
X

i

aijCik = δjk · detA.
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(that is, the diagonal elements are real and the other elements have the property
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B, C. Also see Chapter 6, Problem 3.14.

16. Let Cij = (−1)i+jMij be the cofactor of element aij in the determinant A. Show
that the statement of Laplace’s development and the statement of Problem 3.8 can
be combined in the equations

X

j

aijCkj = δik · det A, or
X

i

aijCik = δjk · detA.
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7. Generalize Problem 6 to three dimensions; to n dimensions.

8. Show that under the transformation (11.1), all points (x, y) on a given straight line
through the origin go into points (X, Y ) on another straight line through the origin.
Hint: Solve (11.1) for x and y in terms of X and Y and substitute into the equation
y = mx to get an equation Y = kX, where k is a constant. Further hint: If R = Mr,
then r = M−1R.

9. Show that det(C−1MC) = detM. Hints: See (6.6). What is the product of det(C−1)
and det C? Thus show that the product of the eigenvalues of M is equal to detM.

10. Show that Tr(C−1MC) = Tr M. Hint: See (9.13). Thus show that the sum of the
eigenvalues of M is equal to Tr M.

11. Find the inverse of the transformation x′ = 2x− 3y, y′ = x + y, that is, find x, y in
terms of x′, y′. (Hint: Use matrices.) Is the transformation orthogonal?

Find the eigenvalues and eigenvectors of the following matrices. Do some problems by
hand to be sure you understand what the process means. Then check your results by
computer.

12.

„
1 3
2 2

«
13.

„
2 2
2 −1

«
14.

„
3 −2

−2 0

«

15.

0

@
2 3 0
3 2 0
0 0 1

1

A 16.

0

@
2 0 2
0 2 0
2 0 −1

1

A 17.

0

@
5 0 2
0 3 0
2 0 5

1

A

18.

0

@
−1 1 3

1 2 0
3 0 2

1

A 19.

0

@
1 2 2
2 3 0
2 0 3

1

A 20.

0

@
−1 2 1

2 3 0
1 0 3

1

A

21.

0

@
1 1 1
1 −1 1
1 1 −1

1

A 22.

0

@
−3 2 2

2 1 3
2 3 1

1

A 23.

0

@
13 4 −2
4 13 −2

−2 −2 10

1

A

24.

0

@
3 2 4
2 0 2
4 2 3

1

A 25.

0

@
1 1 −1
1 1 1

−1 1 −1

1

A 26.

0

@
2 1 1
1 2 1
1 1 2

1

A

Let each of the following matrices M describe a deformation of the (x, y) plane. For
each given M find: the eigenvalues and eigenvectors of the transformation, the matrix C
which diagonalizes M and specifies the rotation to new axes (x′, y′) along the eigenvectors,
and the matrix D which gives the deformation relative to the new axes. Describe the
deformation relative to the new axes.

27.

„
2 −1

−1 2

«
28.

„
5 2
2 2

«
29.

„
3 4
4 9

«

30.

„
3 1
1 3

«
31.

„
3 2
2 3

«
32.

„
6 −2

−2 3

«

33. Find the eigenvalues and eigenvectors of the real symmetric matrix

M =

„
A H
H B

«
.

Show that the eigenvalues are real and the eigenvectors are perpendicular.
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PROBLEMS, SECTION 2
For each of the following differential equations, separate variables and find a solution
containing one arbitrary constant. Then find the value of the constant to give a particular
solution satisfying the given boundary condition. Computer plot a slope field and some of
the solution curves.

1. xy′ = y, y = 3 when x = 2.

2. x
p

1 − y2 dx + y
√

1 − x2 dy = 0, y = 1
2 when x = 1

2 .

3. y′ sin x = y ln y, y = e when x = π/3.

4. (1 + y2) dx + xy dy = 0, y = 0 when x = 5.

5. xy′ − xy = y, y = 1 when x = 1.

6. y′ =
2xy2 + x
x2y − y

, y = 0 when x =
√

2.

7. y dy + (xy2 − 8x) dx = 0, y = 3 when x = 1.

8. y′ + 2xy2 = 0, y = 1 when x = 2.

9. (1 + y)y′ = y, y = 1 when x = 1.

10. y′ − xy = x, y = 1 when x = 0.

11. 2y′ = 3(y − 2)1/3, y = 3 when x = 1.

12. (x + xy)y′ + y = 0, y = 1 when x = 1.

In Problems 13 to 15, find a solution (or solutions) of the differential equation not ob-
tainable by specializing the constant in your solution of the original problem. Hint: See
Example 3.

13. Problem 2. 14. Problem 8. 15. Problem 11.

16. By separation of variables, find a solution of the equation y′ =
√

y containing one
arbitrary constant. Find a particular solution satisfying y = 0 when x = 0. Show
that y ≡ 0 is a solution of the differential equation which cannot be obtained by
specializing the arbitrary constant in your solution above. Computer plot a slope
field and some of the solution curves. Show that there are an infinite number of
solution curves passing through any point on the x axis, but just one through any
point for which y > 0. Hint: See Example 3. Problems 17 and 18 are physical
problems leading to this differential equation.

17. The speed of a particle on the x axis, x ≥ 0, is always numerically equal to the
square root of its displacement x. If x = 0 when t = 0, find x as a function of t.
Show that the given conditions are satisfied if the particle remains at the origin for
any arbitrary length of time t0 and then moves away; find x for t > t0 for this case.

18. Let the rate of growth dN/dt of a colony of bacteria be proportional to the square
root of the number present at any time. If there are no bacteria present at t = 0,
how many are there at a later time? Observe here that the routine separation of
variables solution gives an unreasonable answer, and the correct answer, N ≡ 0, is
not obtainable from the routine solution. (You have to think, not just follow rules!)
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The rate at which radon is being created is the rate at which radium is decaying,
namely λ1N1 or λ1N0e−λ1t. But the radon is also decaying at the rate λ2N2 . Hence,
we have

dN2

dt
= λ1N1 − λ2N2 , or

dN2

dt
+ λ2N2 = λ1N1 = λ1N0e

−λ1t.

This equation is of the form (3.1), and we solve it as follows:

(3.10)

I =
∫

λ2 dt = λ2 t,

N2e
λ2t =

∫
λ1N0e

−λ1teλ2t dt + c

= λ1N0

∫
e(λ2−λ1)t dt + c =

λ1N0

λ2 − λ1
e(λ2−λ1)t + c,

if λ1 ̸= λ2 . (For the case λ1 = λ2 , see Problem 19.) Since N2 = 0 at t = 0 (we
assumed pure Ra at t = 0), we must have

0 =
λ1N0

λ2 − λ1
+ c or c = − λ1N0

λ2 − λ1
.

Substituting this value of c into (3.10) and solving for N2 , we get

N2 =
λ1N0

λ2 − λ1
(e−λ1t − e−λ2t).

PROBLEMS, SECTION 3
Using (3.9), find the general solution of each of the following differential equations. Com-
pare a computer solution and, if necessary, reconcile it with yours. Hint : See comments
just after (3.9), and Example 1.

1. y′ + y = ex 2. x2y′ + 3xy = 1

3. dy + (2xy − xe−x2
) dx = 0 4. 2xy′ + y = 2x5/2

5. y′ cos x + y = cos2 x 6. y′ + y/
p

x2 + 1 = 1/(x +
p

x2 + 1 )

7. (1 + ex)y′ + 2exy = (1 + ex)ex 8. (x ln x)y′ + y = ln x

9. (1 − x2)y′ = xy + 2x
p

1 − x2 10. y′ + y tanh x = 2ex

11. y′ + y cos x = sin 2x 12.
dx
dy

= cos y − x tan y

13. dx + (x − ey) dy = 0 14.
dy
dx

=
3y

3y2/3 − x

Hint : For Problems 12 to 14, solve for x in terms of y.
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Homogeneous Equations A homogeneous function of x and y of degree n means
a function which can be written as xnf(y/x). For example, x3−xy2 = x3[1−(y/x)2]
is a homogeneous function of degree 3. (Also see Problem 21.) An equation of the
form

(4.11) P (x, y) dx + Q(x, y) dy = 0 ,

where P and Q are homogeneous functions of the same degree is called homogeneous.
(The term homogeneous is also used in another sense; see Section 5.) If we divide
two homogeneous functions of the same degree, the xn factors cancel and we have
a function of y/x. Thus, from (4.11) we can write

(4.12) y′ =
dy

dx
= −P (x, y)

Q(x, y)
= f

(y

x

)
,

and we can say that a differential equation is homogeneous if it can be written as
y′ = a function of y/x. This suggests that we solve homogeneous equations by
making the change of variables v = y/x, or

(4.13) y = xv.

This substitution does, in fact, give us a separable equation in x and v (see Prob-
lem 22). We solve it to find a relation between v and x and then put back v = y/x
to find the solution of (4.11).

Also see Problem 23 for another way to solve homogeneous equations.

Change of Variables We have solved both Bernoulli equations and homoge-
neous equations by making changes of variables. Other equations may yield to this
method also. If a differential equation contains some combination of the variables
x, y (especially if this combination appears more than once), we try replacing this
combination by a new variable. See Problems 11, 15, and 16 for examples.

PROBLEMS, SECTION 4
Use the methods of this section to solve the following differential equations. Compare
computer solutions and reconcile differences.

1. y′ + y = xy2/3 2. y′ +
1
x

y = 2x3/2y1/2

3. 3xy2y′ + 3y3 = 1 4. (2xe3y + ex) dx + (3x2e3y − y2) dy = 0

5. (x − y) dy + (y + x + 1) dx = 0

6. (cos x cos y + sin2 x) dx − (sin x sin y + cos2 y) dy = 0

7. x2 dy + (y2 − xy) dx = 0 8. y dy = (−x +
p

x2 + y2 ) dx

9. xy dx + (y2 − x2) dy = 0 10. (y2 − xy) dx + (x2 + xy)dy = 0

11. y′ = cos(x + y) Hint: Let u = x + y; then u′ = 1 + y′.

12. y′ =
y
x
− tan

y
x 13. yy′ − 2y2 cot x = sin x cos x
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Underdamped or Oscillatory Motion In this case b2 < ω2 so
√

b2 −ω2 is
imaginary. Let β =

√
ω2 − b2; then

√
b2 −ω2 = iβ and the roots (5.29) of the

auxiliary equation are −b ± iβ. The general solution in the form (5.17) is then

(5.32) y = e−bt(A sin βt + B cosβt)

This result is more in accord with what we know actually happens to the mass
m; because of the factor e−bt, the oscillations in this case decrease in amplitude
as time goes on. Also note that the frequency of the damped vibrations, namely
β =

√
ω2 − b2, is less than the frequency ω of the undamped vibrations.

Although we have stated a rather special physical problem, the mathematics we
have just discussed applies to a great variety of problems. First, there are many
kinds of mechanical vibrations besides a mass attached to a spring. Think of a
tuning fork, a pendulum, the needle on the scale of a measuring device, and as
more involved examples, the vibrations of complicated structures such as bridges
or airplanes, and the vibrations of atoms in a crystal lattice. In such problems, we
need to solve differential equations similar to the ones we have discussed. Differential
equations of the same form arise in electricity. Consider equations (1.2) and (1.3)
when V = 0. Remembering that I = dq/dt, we can write (1.2) as

(5.33) L
d2q

dt2
+ R

dq

dt
+

1
C

q = 0

and (1.3) as

(5.34) L
d2I

dt2
+ R

dI

dt
+

1
C

I = 0.

Both these equations are of the form (5.27) which we have solved. Thus there is an
analogy between a series circuit and the motion of a mass m described by (5.26);
L corresponds to m, R to the “friction” constant l, and 1/C to the spring constant k.

PROBLEMS, SECTION 5
Solve the following differential equations by the methods discussed above and compare
computer solutions.

1. y′′ + y′ − 2y = 0 2. y′′ − 4y′ + 4y = 0

3. y′′ + 9y = 0 4. y′′ + 2y′ + 2y = 0

5. (D2 − 2D + 1)y = 0 6. (D2 + 16)y = 0

7. (D2 − 5D + 6)y = 0 8. D(D + 5)y = 0

9. (D2 − 4D + 13)y = 0 10. y′′ − 2y′ = 0

11. 4y′′ + 12y′ + 9 = 0 12. (2D2 + D − 1)y = 0

Recall from Chapter 3, equation (8.5), that a set of functions is linearly independent if
their Wronskian is not identically zero. Calculate the Wronskian of each of the following
sets to show that in each case they are linearly independent. For each set, write the
differential equation of which they are solutions. Also note that each set of functions is a
set of basis functions for a linear vector space (see Chapter 3, Section 14, Example 2) and
that the general solution of the differential equation gives all vectors of the vector space.
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analogy between a series circuit and the motion of a mass m described by (5.26);
L corresponds to m, R to the “friction” constant l, and 1/C to the spring constant k.

PROBLEMS, SECTION 5
Solve the following differential equations by the methods discussed above and compare
computer solutions.

1. y′′ + y′ − 2y = 0 2. y′′ − 4y′ + 4y = 0

3. y′′ + 9y = 0 4. y′′ + 2y′ + 2y = 0

5. (D2 − 2D + 1)y = 0 6. (D2 + 16)y = 0

7. (D2 − 5D + 6)y = 0 8. D(D + 5)y = 0

9. (D2 − 4D + 13)y = 0 10. y′′ − 2y′ = 0

11. 4y′′ + 12y′ + 9 = 0 12. (2D2 + D − 1)y = 0

Recall from Chapter 3, equation (8.5), that a set of functions is linearly independent if
their Wronskian is not identically zero. Calculate the Wronskian of each of the following
sets to show that in each case they are linearly independent. For each set, write the
differential equation of which they are solutions. Also note that each set of functions is a
set of basis functions for a linear vector space (see Chapter 3, Section 14, Example 2) and
that the general solution of the differential equation gives all vectors of the vector space.
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Example 7. To illustrate using (6.24), let’s find a particular solution of

(6.25) (D − 1)(D + 2)y = y′′ + y′ − 2y = 18xex.

In the notation of (6.24) we have a = 1, b = −2, c = 1; also Pn(x) = 18x = P1(x)
is a polynomial of degree 1. Then Q1 is a polynomial of degree 1, namely Ax + B.
Since c = a ̸= b, we see by (6.24) that the form to assume for a particular solution
of (6.25) is

yp = xex(Ax + B) = ex(Ax2 + Bx).

We substitute this into (6.25) and find A and B so that we have an identity.

yp
′ = ex(Ax2 + Bx + 2Ax + B),

yp
′′ = ex(Ax2 + Bx + 4Ax + 2B + 2A)

yp
′′ + yp

′ − 2yp = ex(6Ax + 3B + 2A) ≡ 18xex

To make this an identity, we must have

6A = 18, 3B + 2A = 0, or A = 3, B = −2, so

(6.26) yp = (3x2 − 2x)ex.

A computer solution may add to this a constant times ex, but this is an unnecessary
complication since ex is a term in the complementary function.

If the right-hand side of a differential equation is a polynomial, then c = 0 in
(6.24), and we assume for yp a polynomial as indicated in (6.24).

Example 8. To solve

(6.27) (D − 1)(D + 2)y = y′′ + y′ − 2y = x2 − x

we assume yp = Ax2 + Bx + C, and find the particular solution

(6.28) yp = − 1
2 (x2 + 1).

A computer solution gives the same result.

PROBLEMS, SECTION 6
Find the general solution of the following differential equations (complementary function
+ particular solution). Find the particular solution by inspection or by (6.18), (6.23),
or (6.24). Also find a computer solution and reconcile differences if necessary, noticing
especially whether the particular solution is in simplest form [see (6.26) and the discussion
after (6.15)].

1. y′′ − 4y = 10 2. (D − 2)2y = 16

3. y′′ + y′ − 2y = e2x 4. (D + 1)(D − 3)y = 24e−3x

5. (D2 + 1)y = 2ex 6. y′′ + 6y′ + 9y = 12e−x

7. y′′ − y′ − 2y = 3e2x 8. y′′ − 16y = 40e4x
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9. (D2 + 2D + 1)y = 2e−x 10. (D − 3)2y = 6e3x

11. y′′ + 2y′ + 10y = 100 cos 4x Hint: First solve y′′ + 2y′ + 10y = 100e4ix.

12. (D2 + 4D + 12)y = 80 sin 2x 13. (D2 − 2D + 1)y = 2 cos x

14. y′′ + 8y′ + 25y = 120 sin 5x 15. 5y′′ + 12y′ + 20y = 120 sin 2x

16. (D2 + 9)y = 30 sin 3x 17. y′′ + 16y = 16 cos 4x

18. (D2 +2D+17)y = 60e−4x sin 5x Hint: First solve (D2 +2D+17)y = 60e(−4+5i)x.

19. (4D2 + 4D + 5)y = 40e−3x/2 sin 2x 20. y′′ + 4y′ + 8y = 30e−x/2 cos 5x/2

21. 5y′′ + 6y′ + 2y = x2 + 6x 22. 2y′′ + y′ = 2x

23. y′′ + y = 2xex 24. y′′ − 6y′ + 9y = 12xe3x

25. (D − 3)(D + 1)y = 16x2 e−x 26. (D2 + 1)y = 8x sin x

27. Verify that (6.4) is a particular solution of (6.2). Verify that another particular
solution of (6.2) is

yp = 1
10 sin 2x − e−x.

Observe that we obtain the same general solution (6.7) whichever particular solution
we use [since (A − 1) is just as good an arbitrary constant as A]. Show in general
that the difference between two particular solutions of (a2D2 + a1D + a0 )y = f(x)
is always a solution of the homogeneous equation (a2D

2 + a1D + a0 )y = 0, and thus
show that the general solution is the same for all choices of a particular solution.

28. Solve (6.16) by the method used in solving (6.11), for the following three cases, to
obtain the result (6.18).

(a) c is not equal to either a or b;

(b) a ̸= b, c = a;

(c) a = b = c.

29. Consider the differential equation (D − a)(D − b)y = Pn(x), where Pn(x) is a poly-
nomial of degree n. Show that a particular solution of this equation is given by
(6.24) with c = 0; that is, yp is

8
><

>:

a polynomial Qn(x) of degree n if a and b are both different from zero;

xQn(x) if a ̸= 0, but b = 0;

x2Qn(x) if a = b = 0.

Hint: To show that Qn(x) =
P

anxn is a solution of the differential equation for
a given Pn =

P
bnxn, you have only to show that the coefficients an can be found

so that (D − a)(D − b)Qn(x) ≡ Pn(x). Equate coefficients of xn, xn−1, · · · , to see
that this is always possible if a ̸= b. For b = 0, the differential equation becomes
(D − a)Dy = Pn; what is Dy if y = xQn? Similarly, consider D2 y if y = x2Qn.

30. (a) Show that

(D − a)ecx = (c − a)ecx;

(D2 + 5D − 3)ecx = (c2 + 5c − 3)ecx;

L(D)ecx = L(c)ecx, where L(D) is any polynomial in D;

(D − c)xecx = ecx;

(D − c)2x2ecx = 2ecx.
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MC-PFA: Métodos Matemáticos

MC-PFA: Métodos Matemáticos

1. Sea dN/dt la razón de crecimiento de una colonia de bacterias, proporcional a la raíz del número de

bacterias presente en cualquier momento. Si no hay bacterias presentes ent = 0, cuántas habrá en un tiempo

posterior? Ojo, hay que pensarle un poco.

2. Consider a light beam traveling downward into the ocean. As the beam progresses, it is partially absorbed

and its intensity decreases. The rate at which the intensity is decreasing with depth at any point is proportional

to the intensity at that depth. The proportionality constant µ is called the linear absorption coecient. Show

that if the intensity at the surface is I 0 , the intensity at a distance s below the surface is I = I 0e−µs . The

linear absorption coecient for water is of the order of 10−2 f t−1 (the exact value depending on the wavelength

of the light and the impurities in the water). For this value of µ, nd the intensity as a fraction of the surface

intensity at a depth of 1 ft, 50 ft, 500 ft, 1 mile. When the intensity of a light beam has been reduced to half

its surface intensity ( I = I 0/2), the distance the light has penetrated into the absorbing substance is called the

half-value thickness of the substance. Find the half-value thickness in terms ofµ . Find the half-value thickness

for water for the value of µ given above.

3. Resolver xydx + (y2 − x2)dy = 0

4. Resolver (D4 + 4)y = 0

5. The gravitational force on a particle of mass m inside the earth at a distance r from the center ( r < the

radius of the earth R) is F = −mgr/R Show that a particle placed in an evacuated tube through the center of

the earth would execute simple harmonic motion. Find the period of this motion.

6. Considere la ecuación: d2Y
dt2 + 2bdY

dt + ω2Y = F e iω0t. Resuelvala.Verique que la amplitud tiene una

resonancia en ω0 = ω. Considere que el lado derecho es ahora Ksen(ω0t) + Gcos(ω0t). La solución presenta

resonancias? Si es así, en el mismo valor deω0?
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