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PREFACE TO THE SECOND EDITION

The book is a self-contained introduction into elementary probability theory and
stochastic  processes with special emphasis on their applications in science, engineer-
ing, finance, computer science and operations research. It provides theoretical founda-
tions for modeling time-dependent random phenomena in these areas and illustrates
their application through the analysis of numerous, practically relevant examples. As
a non-measure theoretic text, the material is presented in a comprehensible, applica-
tion-oriented way. Its study only assumes a mathematical maturity which students of
applied sciences acquire during their undergraduate studies in mathematics. The study
of stochastic processes and its fundament, probability theory, as of any other mathe-
matically based science, requires less routine effort, but more creative work on  one's
own. Therefore, numerous exercises have been added to enable readers to assess to
which extent they have grasped the subject. Solutions to many of the exercises can
be downloaded from the website of the Publishers or the exercises are given together
with their solutions. A complete solutions manual is available to instructors from the
Publishers. To make the book attractive to theoretically interested readers as well,
some important proofs and challenging examples and exercises have been included.
'Starred' exercises belong to this category. The chapters are organized in such a way
that reading a chapter usually requires knowledge of some of the previous ones. The
book has been developed in part as a course text for undergraduates and for
self-study by non-statisticians. Some sections may also serve as a basis for pre-
paring senior undergraduate courses.
The text is a thoroughly revised and supplemented version of the first edition so that
it is to a large extent a new book: The part on probability theory has been completely
rewritten and more than doubled. Several new sections have been included in the part
about stochastic processes as well: Time series analysis, random walks, branching
processes, and spectral analysis of stationary stochastic processes. Theoretically more
challenging sections have been deleted and mainly replaced with a comprehensive
numerical discussion of examples. All in all, the volume of the book has increased by
about a third.
This book does not extensively deal with data analysis aspects in probability and sto-
chastic processes. But sometimes connections between probabilistic concepts and the
corresponding statistical approaches are established to facilitate the understanding.
The author has no doubt the book will help students to pass their exams and practi-
cians to apply stochastic modeling in their own fields of expertise.

The author is thankful for the constructive feedback from many readers of the first
edition. Helpful comments to the second edition are very welcome as well and should
be directed to: Frank.Beichelt@wits.ac.za.

Johannesburg, March 2016                                                                       Frank Beichelt
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SYMBOLS AND ABBREVIATIONS

� � z   symbols after an example, a theorem, a definition
     for all t being element of the domain of definition of f f (t) ≡ c f (t) = c

  convolution of two functions  f  and gf ∗ g
  n th convolution power of  f f ∗(n)

  Laplace transform of a function  f f (s), L{f, s}
o(x)   Landau order symbol

  Kronecker symbolδi j

Probability Theory
X,  Y,  Z   random variables
E(X),  Var(X)   mean (expected) value of X, variance of X

  probability density function, (cumulative probability) distributionfX(x), FX(x)
  function of X
  conditional distribution function, density of Y given FY(y x), fY(y x) X = x

,   residual lifetime of a system of age t, distribution function of Xt Ft(x) Xt
  conditional mean value of Y given E(Y x) X = x

λ(x),  Λ(x)   failure rate, integrated failure rate (hazard function)
  normally distributed random variable (normal distribution) with N(μ, σ2)
  mean value µ and variance σ2

  probability density function, distribution function of a standard ϕ(x), Φ(x)
  normal random variable N(0, 1)
  joint probability density function of  fX(x1, x2, ... , xn) X = (X1, X2, ... , Xn)
 joint distribution function of  FX(x1, x2, ... , xn) X = (X1, X2, ... , Xn)

Cov(X, Y), ρ(X, Y) covariance, correlation coefficient between X and Y
M(z)   z-transform (moment generating function) of a discrete random

  variable or of its probability distribution, respectively

Stochastic Processes
 continuous-time, discrete-time stochastic process with{X(t), t ∈ T}, {Xt, t ∈ T}

  parameter space T
Z   state space of a stochastic process

  probability density, distribution function of X(t)ft(x), Ft(x)
ft1,t2,...,tn (x1, x2, ... , xn), Ft1,t2,...,tn (x1, x2, ... , xn)

  joint density, distribution function of  (X(t1), X(t2), ... , X(tn))
m(t)   trend function of a stochastic process
C(s,t)   covariance function of a stochastic process
C(τ)   covariance function of a stationary stochastic process



   compound random variable, compound stochastic processC(t), {C(t), t ≥ 0}
ρ(s,t)   correlation function of a stochastic process

  random point process{T1, T2, ...}
  sequence of interarrival times, renewal process{Y1, Y2, ...}

N   integer-valued random variable, discrete stopping time
  (random) counting process {N(t), t ≥ 0}
  increment of a counting process in (s, t]N(s, t)
  renewal function of an ordinary, delayed renewal processsH(t), H1(t)

 A(t)   forward recurrence time, point availability 
  backward recurrence timeB(t)
   risk reserve, risk reserve processR(t), {R(t), t ≥ 0}

 A,   stationary (long-run) availability, point availabilityA(t)
  one-step, n-step transition probabilities of a homogeneous, pij, pij

(n)

  discrete-time Markov chain
  transition probabilities; conditional, unconditional transition rates pi j(t); qi j , qi
  of a homogeneous, continuous-time Markov chain
  stationary state distribution of a homogeneous Markov chain{πi ; i ∈ Z}
  extinction probability, vacant probability (sections 8.5,  9.7)π0
  birth, death ratesλj , μj

λ, μ, ρ   arrival rate, service rate, traffic intensity λ/μ (in queueing models)
  mean sojourn time of a semi-Markov process in state iμi

µ   drift parameter of a Brownian motion process with drift
W   waiting time in a queueing system
L   lifetime, cycle length, queue length, continuous stopping time
L(x)   first-passage time with regard to level x
L(a,b)   first-passage time with regard to level min(a, b)

  Brownian motion (process){B(t), t ≥ 0}
   variance parameter, volatilityσ2, σ σ2 = Var(B(1))
  seasonal component of a time series (section 6.4), standardized {S(t), t ≥ 0}
  Brownian motion (chapter 11).
  Brownian bridge{B(t), 0 ≤ t ≤ 1}
  Brownian motion with drift{D(t), t ≥ 0}
  absolute maximum of the Brownian motion (with drift) in M(t) [0, t]
  absolute maximum of the Brownian motion (with drift) in M [0, ∞)
  Ornstein-Uhlenbeck process, integrated Brownian motion process{U(t), t ≥ 0}
  circular frequency, bandwidthω, w
  spectral density, spectral function (chapter 12)s(ω), S(ω)



Introduction

            Is the world a well-ordered entirety,
            or a random mixture,
            which nevertheless is called world-order?

Marc Aurel 

Random influences or phenomena occur everywhere in nature and social life. Their
consideration is an indispensable requirement for being successful in natural, econ-
omical, social, and engineering sciences. Random influences partially or fully contri-
bute to the variability of parameters like wind velocity, rainfall intensity, electromag-
netic noise levels, fluctuations of share prices, failure time points of technical units,
timely occurrences of births and deaths in biological populations, of earthquakes, or
of arrivals of customers at service centers. Random influences induce random events.
An event is called random if on given conditions it can occur or not. For instance,
the events that during a thunderstorm a certain house will be struck by lightning, a
child will reach adulthood, at least one shooting star appears in a specified time
interval, a production process comes to a standstill for lack of material, a cancer
patient survives chemotherapy by 5 years are random. Border cases of random events
are the deterministic events, namely the certain event and the impossible event. On
given conditions, a deterministic (impossible) event will always (never) occur. For
instance, it is absolutely sure that lead, when heated to a temperature of over 

 will become liquid, but that lead during the heating process will turn to327.5 0C
gold is an impossible event. Random is the shape, liquid lead assumes if poured on an
even steel plate, and random is also the occurrence of events which are predicted from
the form of these castings to the future. Even if the reader is not a lottery, card, or
dice player, she/he will be confronted in her/his daily routine with random influences
and must take into account their implications: When your old coffee machine fails
after an unpredictable number of days, you go to the supermarket and pick a new one
from the machines of your favorite brand.  At home, when trying to make your first
cup of coffee, you realize that you belong to the few unlucky ones who picked by
chance a faulty machine. A car driver, when estimating the length of the trip to his
destination, has to take into account that his vehicle may start only with delay, that a
traffic jam could slow down the progress, and that scarce parking opportunities may
cause further delay. Also, at the end of a year the overwhelming majority of the car
drivers realize that having taken out a policy has only enriched the insurance compa-
ny. Nevertheless, they will renew their policy because people tend to prefer moderate
regular cost, even if they arise long-term, to the risk of larger unscheduled cost.
Hence it is not surprising that insurance companies belonged to the first institutions
that had a direct practical interest in making use of methods for the quantitative
evaluation of random influences and gave in turn important impulses for the develop-



ment of such methods. It is the probability theory, which provides the necessary
mathematical tools for their work.

    Probability theory deals with the investigation of regularities random events are   
    subjected to.

The existence of such statistical or stochastic regularities may come as a surprise to
philosophically less educated readers, since at first glance it seems to be paradoxic-
al to combine regularity and randomness. But even without philosophy and without
probability theory, some simple regularities can already be illustrated at this stage:

1) When throwing a fair die once, then one of the integers from 1 to 6 will appear
and no regularity can be observed. But if a die is thrown repeatedly, then the fraction
of throws with outcome 1, say, will tend to 1/6, and with increasing number of throws
this fraction will converge to the value 1/6. (A die is called fair if each integer has
the same chance to appear.)
2) If a specific atom of a radioactive substance is observed, then the time from the
beginning of its observation to its disintegration cannot be predicted with certainty,
i.e., this time is random. On the other hand, one knows the half-life period of a radio-
active substance, i.e., one can predict with absolute certainty after which time from
say originally 10 gram (trillions of atoms) of the substance exactly 5 gram is left.
3) Random influences can also take effect by superimposing purely deterministic
processes. A simple example is the measurement of a physical parameter, e.g., the
temperature. There is nothing random about this parameter when it refers to a spe-
cific location at a specific time. However, when this parameter has to be measured
with sufficiently high accuracy, then, even under always the same measurement
conditions, different measurements will usually show different values. This is, e.g.,
due to the degree of inaccuracy, which is inherent to every measuring method, and to
subjective moments. A statistical regularity in this situation is that with increasing
number of measurements, which are carried out independently and are not biased by
systematic errors, the arithmetic mean of these measurements converges towards the
true temperature. 
4) Consider the movement of a tiny particle in a container filled with a liquid. It
moves along zig-zag paths in an apparently chaotic motion. This motion is generated
by the huge number of impacts the particle is exposed to with surrounding molecules
of the fluid. Under average conditions, there are about  collisions per second1021

between particle and molecules. Hence, a deterministic approach to modeling the
motion of particles in a fluid is impossible. This movement has to be dealt with as a
random phenomenon. But the pressure within the container generated by the vast
number of impacts of fluid molecules with the sidewalls of the container is constant.

Examples 1 to 4 show the nature of a large class of statistical regularities:

   The superposition of a large number of random influences leads under certain        
   conditions to deterministic phenomena.

2                                APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Deterministic regularities (law of falling bodies, spreading of waves, Ohm's law,
chemical reactions, theorem of Pythagoras) can be verified in a single experiment if
the underlying assumptions are fulfilled. But, although statistical regularities can be
proved in a mathematically exact way just as the theorem of Pythagoras or the rules
of differentiation and integration of real functions, their experimental verification
requires a huge number of repetitions of one and the same experiment. Even leading
scientists spared no expense to do just this. The Comte de Buffon  and(1707 − 1788)
the mathematician Karl Pearson  had flipped a fair coin several(1857 − 1936)
thousand times and recorded how often 'head' had appeared. The following table
shows their results (n  number of total flippings, m  number of outcome 'head'):

    Scientist             n            m               m/n       
    Buffon       4040       2048     0.5080 
    Pearson     12000       6019          0.5016  
    Pearson     24000     12012     0.5005

Thus, the more frequently a coin is flipped, the more approaches the ratio m/n the
value 1/2 (compare with example 1 above). In view of the large number of flipp-
ings, this principal observation is  surely not a random result, but can be confirmed
by all those readers who take pleasure in repeating these experiments. However,
nowadays the experiment 'flipping a coin' many thousand times is done by a comput-
er with a 'virtual coin' in a few seconds. The ratio m/n is called the relative frequency
of the occurrence of the random event 'head appears.'
Already the expositions made so far may have convinced many readers that random
phenomena are not figments of human imagination, but that their existence is object-
ive reality. There have been attempts to deny the existence of random phenomena by
arguing that if all factors and circumstances, which influence the occurrence of an
event are known, then an absolutely sure prediction of its occurrence is possible. In
other words, the protagonists of this thesis consider the creation of the concept of
randomness only as a sign of 'human imperfection.' The young Pierre Simeon
Laplace  believed that the world is down to the last detail governed by(1729 − 1827)
deterministic laws. Two of his famous statements concerning this are: 'The curve
described by a simple molecule of air in any gas is regulated in a manner as certain
as the planetary orbits. The only difference between them lies in our ignorance.' And:
'Give me all the necessary data, and I will tell you the exact position of a ball on a
billiard table' (after having been pushed). However, this view has proved futile both
from the philosophical and the practical point of view. Consider, for instance, a
biologist who is interested in the movement of animals in the wilderness. How on
earth is he supposed to be in a position to collect all that information, which would
allow him to predict the movements of only one animal in a given time interval with
absolute accuracy? Or imagine the amount of information you need and the
corresponding software to determine the exact path of a particle, which travels in a
fluid, when there are  collisions with surrounding molecules per second. It is an1021
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unrealistic and impossible task to deal with problems like that in a deterministic way.
The physicist Marian von Smoluchowski  wrote in a paper published in(1872 − 1917)
1918 that 'all theories are inadequate, which consider randomness as an unknown
partial cause of an event. The chance of the occurrence of an event can only depend
on the conditions, which have influence on the event, but not on the degree of our
knowledge.'

Already at a very early stage of dealing with random phenomena the need arose to
quantify the chance, the degree of certainty, or the likelihood for the occurrence of
random events. This had been done by defining the probability of random events and
by developing methods for its calculation. For now the following explanation is
given: The probability of a random event is a number between 0 and 1. The imposs-
ible event has probability 0, and the certain event has probability 1. The probability
of a random event is the closer to 1, the more frequently it occurs. Thus, if in a long
series of experiments a random event A occurs more frequently than a random event
B,  then A has a larger probability than B. In this way, assigning probabilities to
random events allows comparisons with regard to the frequency of their occurrence
under identical conditions. There are other approaches to the definition of probabili-
ty than the classical (frequency) approach, to which this explanation refers. For
beginners the frequency approach is likely the most comprehensible one.

Gamblers, in particular dice gamblers, were likely the first people, who were in need
of methods for comparing the chances of the occurrence of random events, i.e., the
chances of winning or losing. Already in the medieval poem De Vetula of Richard de
Fournival  one can find a detailed discussion about the total number(ca 1200−1250)
of possibilities to achieve a certain number, when throwing 3 dice. Geronimo
Cardano  determined in his book Liber de Ludo Aleae the number of(1501 − 1576)
possibilities to achieve the total outomes 2, 3, ..,12, when two dice are thrown. For
instance, there are two possibilities to achieve the outcome 3, namely (1,2) and (2,1),
whereas 2 will be only then achieved, when (1,1) occurs. (The notation (i, j) means
that one die shows an i and the other one a  j.)  Galileo Galilei   proved(1564 − 1642)
by analogous reasoning that, when throwing 3 dice, the probability to get the (total)
outcome 10 is larger than the probability to get a 9. The gamblers knew this from
their experience, and they had asked Galilei to find a mathematical proof. The
Chevalier de   formulated three problems related to games of chance and askedMéré
the French mathematician Blaise Pascal  for solutions:(1623 − 1662)

1) What is more likely, to obtain at least one 6 when throwing a die four times, or in
a series of 24 throwings of two dice to obtain at least once the outcome (6,6)?
2) How many time does one have to throw two dice at least so that the probability to
achieve the outcome (6,6) is larger than 1/2?
3) In a game of chance, two equivalent gamblers need each a certain number of points
to become winners. How is the stake to fairly divide between the gamblers, when for
some reason or other the game has to be prematurely broken off ? (This problem of
the fair division had been already formulated before de , e.g., in the De Vetula.)Méré
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Pascal sent these problems to Pierre Fermat  and both found their(1601 − 1665)
solutions, although by applying different methods. It is generally accepted that this
work of Pascal and Fermat marked the beginning of the development of probability
theory as a mathematical discipline. Their work has been continued by famous
scientists as Christian de Huygens  Jakob Bernoulli (1629 − 1695), (1654 − 1705),
Abraham de Moivre   Carl Friedrich Gauss  and last(1667 − 1754), (1777 − 1855),
but not least by Simeon Denis de Poisson  However, probability theory(1781 − 1840).
was out of its infancy only in the thirties of the twentieth century, when the Russian
mathematician Andrej Nikolajewi  Kolmogorov  found the solution ofc (1903 − 1987)
one of the famous Hilbert problems, namely to put probability theory as any other
mathematical discipline on an axiomatic foundation.

Nowadays, probability theory together with its applications in science, medicine,
engineering, economy et al. are integrated in the field of stochastics. The linguistic
origin of this term can be found in the Greek word stochastikon. (Originally, this term
denoted the ability of seers to be correct with their forecasts.) Apart from probability
theory, mathematical statistics is the most important part of stochastics. A key subject
of it is to infer by probabilistic methods from a sample taken from a set of interesting
objects, called among else sample space or universe, to parameters or properties of
the sample space (inferential statistics). Let us assume we have a lot of 10 000
electronic units. To obtain information on what percentage of these units is faulty, we
take a sample of 100 units from this lot. In the sample, 4 units are faulty. Of course,
this figure does not imply that there are exactly 400 faulty units in the lot. But
inferential statistics will enable us to construct lower and upper bounds for the
percentage of faulty units in the lot, which limit the 'true percentage' with a given
high probability. Problems like this led to the development of an important part of
mathematical statistics, the statistical quality control. Phenomena, which depend both
on random and deterministic influences, gave rise to the theory of stochastic
processes. For instance, meteorological parameters like temperature and air pressure
are random, but obviously also depend on time and altitude. Fluctuations of share
prices are governed by chance, but are also driven by periods of economic up and
down turns.  Electromagnetic noise caused by the sun is random, but also depends on
the periodical variation of the intensity of sunspots.
Stochastic modeling in operations research comprises disciplines like queueing
theory, reliability theory, inventory theory, and decision theory. All of them play an
important role in applications, but also have given many impulses for the theoretical
enhancement of the field of stochastics. Queueing theory provides the theoretical
fundament for the quantitative evaluation and optimization of queueing systems, i.e.,
service systems like workshops, supermarkets, computer networks, filling stations,
car parks, and junctions, but also military defense systems for 'serving' the enemy.
Inventory theory helps with designing warehouses (storerooms) so that they can on
the one hand meet the demand for goods with sufficiently high probability, and on
the other hand keep the costs for storage as small as possible. The key problem with
dimensioning queueing systems and storage capacities is that flows of customers,
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service times, demands, and delivery times of goods after ordering are subject to
random influences. A main problem of reliability theory is the calculation of the
reliability (survival probability, availability) of a system from the reliabilities of its
subsystems or components. Another important subject of reliability theory is model-
ling the aging behavior of technical systems, which incidentally provides tools for
the survival analysis of human beings and other living beings. Chess automats got
their intelligence from the game theory, which arose from the abstraction of games of
chance. But opponents within this theory can also be competing economic blocs or
military enemies. Modern communication would be impossible without information
theory. This theory provides the mathematical foundations for a reliable transmission
of information although signals may be subject to noise at the transmitter, during
transmission, and at the receiver. In order to verify stochastic regularities, nowadays
no scientist needs to manually repeat thousands of experiments. Computers do this
job much more efficiently. They are in a position to virtually replicate the operation
of even highly complex systems, which are subjected to random influences, to any
degree of accuracy. This process is called (Monte Carlo) simulation. More and very
fruitful applications of stochastic (probabilistic) methods exist in fields like physics
(kinetic gas theory, thermodynamics, quantum theory), astronomy (stellar statistics),
biology (genetics, genomics, population dynamic), artificial intelligence (inference
under undertainty), medicine, genomics, agronomy and forestry (design of experi-
ments, yield prediction) as well as in economics (time series analysis) and social
sciences. There is no doubt that probabilistic methods will open more and more
possibilities for applications, which in turn will lead to a further enhancement of the
field of stochastics.

More than 300 hundreds years ago, the famous Swiss mathematician Jakob Bernoulli
proposed in his book Ars Conjectandi the recognition of stochastics as an independ-
ent new science, the subject of which he introduced as follows:

To conjecture about something is to measure its probability: The Art of conjecturing
or the Stochastic Art is therefore defined as the art of measuring as exactly as possi-
ble the probability of things so that in our judgement and actions we always can
choose or follow that which seems to be better, more satisfactory, safer and more
considered.

In line with Bernoulli's proposal, an independent science of stochastics would have
to be characterized by two features:
1) The subject of stochastics is uncertainty caused by randomness and/or ignorance.
2) Its methods, concepts, and language are based on mathematics.

But even now, in the twenty-first century, an independent science of stochastics is
still far away from being officially established. There is, however, a powerful sup-
port for such a move by internationally leading academics; see von Collani (2003).
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PART  I

Probability Theory
   There is no credibility in sciences in which 
   no mathematical theory can be applied, 
   and no credibility in fields which have no
   connections to mathematics.

      Leonardo da Vinci

CHAPTER 1

Random Events and Their Probabilities

1.1  RANDOM EXPERIMENTS

If water is heated up to  at an air pressure of 101 325 Pa, then it will inevitab-1000C
ly start boiling. A motionless pendulum, when being pushed, will start swinging. If
ferric sulfate is mixed with hydrochloric acid, then a chemical reaction starts, which
releases hydrogen sulfide. These are examples for experiments with deterministic
outcomes. Under specified conditions they yield an outcome, which had been known
in advance.
Somewhat more complicated is the situation with random experiments or experim-
ents with random outcome. They are characterized by two properties:
1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.
2. The possible outcomes of the experiment are known.
Thus, the outcome of a random experiment cannot be predicted with certainty. This
implies that the study of random experiments makes sense only if they can be repeat-
ed sufficiently frequently under identical conditions. Only in this case stochastic or
statistical regularities can be found.

     



Let  be the set of possible outcomes of a random experiment. This set is calledΩ
sample space, space of elementary events, or universe. Examples of random experi-
ments and their respective sample spaces are:
1) Counting the number of traffic accidents a day in a specified area: Ω = {0, 1, ...}.
2) Counting the number of cars in a parking area with maximally 200 parking bays at
a fixed time point: Ω = {0, 1, ..., 200}.
3) Counting the number of shooting stars during a fixed time interval: Ω = {0, 1, ...}.
4) Recording the daily maximum wind velocity at a fixed location: Ω = [0,∞).
5) Recording the lifetimes technical systems or organisms: Ω = [0,∞).
6) Determining the number of faulty parts in a set of 1000: Ω = {0, 1, ..., 1000}.
7) Recording the daily maximum fluctuation of a share price: Ω = [0,∞).
8) The total profit sombody makes with her/his financial investments a year.              
This 'profit' can be negative, i.e. any real number can be the outcome: Ω = (−∞,+∞).
9) Predicting the outcome of a wood reserve inventory in a forest stand: Ω = [0,∞).
10) a) Number of eggs a sea turtle will bury at the beach: Ω = {0, 1, ...}.
b) Will a baby turtle, hatched from such an egg, reach the water?  withΩ = {0, 1}
meaning 0: no, 1: yes.

As the examples show, in the context of a random experiment, the term 'experiment'
has a more general meaning than in the customary sense.
A random experiment may also contain a deterministic component. For instance, the
measurement of a physical quantity should ideally yield the exact (deterministic)
parameter value. But in view of random measurement errors and other (subjective)
influences, this ideal case does not materialize. Depending on the degree of accuracy
required, different measurements, even if done under identical conditions, may yield
different values of one and the same parameter (length, temperature, pressure, amper-
age,...).

1.2  RANDOM EVENTS

A possible outcome  of a random experiment, i.e. any  is called an element-ω ω ∈ Ω,
ary event or a simple event.
1) The sample space of the random experiment 'throwing two dice consists of 36
simple elements:  The gambler wins if the sum  is atΩ = {(i, j), i, j = 1, 2, . .. , 6}. i + j
least 10. Hence, the 'winning simple events' are and (5, 5), (5, 6), (6, 5), (6, 6).

2) In a delivery of 100 parts some may be defective. A subset (sample) of  partsn = 12
is taken, and the number N of defective parts in the sample is counted. The elemen-  
tary events are 0,1,...,12 (possible numbers of defective parts in the sample). The
delivery is rejected if  N ≥ 4.
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3) In training, a hunter shoots at a cardboard dummy. Given that he never fails the
dummy, the latter is the sample space  and any possible impact mark at the dum-Ω,
my is an elementary event. Crucial subsets to be hit are e.g. 'head' or 'heart.'
Already these three examples illustrate that often not single elementary events are
interesting, but sets of elementary events. Hence it is not surprising that concepts and
results from set theory play a key role in formally establishing probability theory. For
this reason, next the reader will be reminded of some basic concepts of set theory.

Basic Concepts and Notation from Set Theory  A set is given by its elements. We
can consider the set of all real numbers, the set of all rational numbers, the set of all
people attending a performance, the set of buffalos in a national park, and so on. A
set is called discrete if it is a finite or a countably infinite set. By definition, a count-
ably infinite set can be written as a sequence. In other words, its elements can be
numbered. If a set is infinite, but not countably infinite, then it is called nondenumer-
able. Nondenumerable sets are for instance the whole real axis, the positive half-axis,
a finite subinterval of the real axis, or a geometric object (area of a circle, target).
Let A and B be two sets. In what follows we assume that all sets A, B, ... considered
are subsets of a 'universal set'  Hence, for any set A, Ω . A ⊆ Ω .
A is called a subset of B if each element of A is also an element of B.
Symbol: A ⊆ B.
The complement of B with regard to A contains all those elements of B which are not
element of A.
Symbol: B\A
In particular,  contains all those elements which are not element of A.A = Ω\A
The intersection of A and B contains all those elements which belong both to A and B.
Symbol: A∩ B

The union of A and B contains all those elements which belong to A or B (or to both).
Symbol: A∪ B

These relations between two sets are illustrated in Figure 1.1 (Venn diagram). The
whole shaded area is A B.
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            Figure 1.1  Venn diagram
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For any sequence of sets , intersection and union are defined as A1, A2, . .. , An

i=1

n
Ai = A1 ∩ A2 ∩ . .. ∩ An ,

i=1

n
Ai = A1 A2 . .. An .

De Morgan Rules for  Sets2
                                                                           (1.1)A B = A∩ B , A∩ B = A B .
De Morgan Rules for  Setsn

                                                                              (1.2)
i=1

n
Ai =

i=1

n
Ai,

i=1

n
Ai =

i=1

n
Ai .

Random Events A random event (briefly: event) A is a subset of the set  of allΩ
possible outcomes of a random experiment, i.e. A ⊆ Ω.

   A random event A is said to have occurred as a result of a random experiment        
   if the observed outcome  of this experiment is an element of A: ω ω ∈ A.

The empty set  is the impossible event since, for not containing any elementary∅
event, it can never occur. Likewise,  is the certain event, since it comprises all pos-Ω
sible outcomes of the random experiment. Thus, there is nothing random about the
events  and  They are actually deterministic events. Even before having complet-∅ Ω.
ed a random experiment, we are absolutely sure that  will occur and   will not.Ω ∅

Let A and B be two events. Then the set-theoretic operations introduced above can be
interpreted in terms of the occurrence of random events as follows: 

 is the event that both A and B occur,A∩ B
 is the event that A or B (or both) occur,A B

If  (A is a subset of B), then the occurrence of A implies the occurrence of B.A ⊆ B
 is the set of all those elementary events which are elements of A, but not of B.A\ B

Thus,  is the event that A occurs, but not B. Note that (see Figure 1.1)A\ B
                                                                                                   (1.3)A\ B = A\ (A∩ B).
The event  is called the complement of A. It consists of all those elementaryA = Ω\ A
events, which are not in A.
Two events A and B are called disjoint or (mutually) exclusive if their joint occur-
rence is impossible, i.e. if  In this case the occurrence of A implies that BA∩ B = ∅.
cannot occur and vice versa. In particular,  and  are disjoint for any event A A A ⊆ Ω .

Short  Terminology
   A and BA∩ B
   A or BA B
   A implies B,  B follows from AA ⊆ B
   A but not BA\B
   A notA
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Example 1.1 Let us consider the random experiment 'throwing a die' with sample
space  and the random events  and  Then,Ω = {1, 2, . .. , 6} A = {2, 3} B = {3, 4, 6}.

 and  Thus, if a 3 had been thrown, then both theA∩ B = {3} A B = {2, 3, 4, 6}.
events A and B have occurred. Hence, A and B are not disjoint. Moreover, A\B = {2},

 and                                                                                �B\A = {4, 6}, A = {1, 4, 5, 6}.

Example 1.2 Two dice  and  are thrown. The sample space isD1 D2

Ω = {(i1, i2), i1, i2 = 1, 2, . .. , 6}.
Thus, an elementary event  consists of two integers indicating the results  and ω i1 i2
of  and  respectively. Let  and  Then,D1 D2, A = {i1 + i2 ≤ 3} B = {i1/i2 = 2}.

A = {(1, 1), (1, 2), (2, 1)}, B = {(2, 1), (4, 2), (6, 3)}.

Hence,
                 A∩ B = {(2, 1}}, A B = {(1, 1), (1, 2), (2, 1), (4, 2), (6, 3)}

and                                                                                          �A\B = {(1, 1), (1, 2)}.

Example 1.3 A company is provided with power by three generators  andG1, G2,
The company has sufficient power to maintain its production if only two out ofG3.

the three generators are operating. Let  be the event that generator  isAi Gi, i = 1, 2, 3,
operating, and  be the event that at least two generators are operating. Then,B

                        �B = A1A2A3 A1A2A3 A1A2A3 A1A2A3.

1.3  PROBABILITY

The aim of this section consists in constructing rules for determining the probabilities
of random events. Such a rule is principally given by a function P on the set E of all
random events A: E.P = P(A), A ∈

Note that in this context A is an element of the set E so that the notation E would not beA ⊆
correct. Moreover, not all subsets of  need to be random events, i.e., the set E need notΩ
necessarily be the set of all possible subsets of Ω .

The function P assigns to every event A a number  which is its probability. OfP(A),
course, the construction of such a function cannot be done arbitrarily. It has to be
done in such a way that some obvious properties are fulfilled. For instance, if A im-
plies the occurrence of the event B, i.e.  the B occurs more frequently than AA ⊆ B,
so that the relation  should be valid. If in addition the function P hasP(A) ≤ P(B)
properties  and , then the probabilities of random events yieldP(∅) = 0 P(Ω) = 1
indeed the desired information about their degree of uncertainty: The closer  isP(A)
to 0, the more unlikely is the occurrence of A, and the closer  is to 1, the moreP(A)
likely becomes the occurrence of A.
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To formalize this intuitive approach, let for now  be a function on E withP = P(A)
properties
I)      II)   If  then P(∅) = 0, P(Ω) = 1, A ⊆ B, P(A) ≤ P(B).

As a corollary from these two properties we get the following property of P :
III) For any event A,  0 ≤ P(A) ≤ 1.

1.3.1 Classical Definition of Probability

The classical concept of probability is based on the following two assumptions:
1) The space  of the elementary events is finite. Ω
2) As a result of the underlying random experiment, each elementary event has the
same probability to occur.
A random experiment with properties 1 and 2 is called a Laplace random experiment.
Let n be the total number of elementary events (i.e. the cardinality of ). Then anyΩ
random event   consisting of m elementary events has probabilityA ⊆ Ω

                                                    (1.4)P(A) = m/n.
Let  Then every elementary event has probabilityΩ = {a1, a2, . .. , an}.

P(ai) = 1/n, i = 1, 2, ..., n.
Obviously, this definition of probability satisfies the properties I, II, and III listed
above. The integer m is said to be the number of favorable cases (for the occurrence
of A), and n is the number of possible cases.
The classical definition of probability arose in the Middle Ages to be able to determine
the chances to win in various games of chance. Then formula (1.4) is applicable given
that the players are honest and do not use marked cards or manipulated dice. For
instance, what is the probability of the event A that  throwing a die yields an even
number? In this case,  so that  and A = {2, 4, 6} m = 3 P(A) = 3/6 = 0.5.

Example 1.4 When throwing 3 dice, what is more likely, to achieve the total sum 9
(event ) or the total sum 10 (event )? The corresponding sample space isA9 A10

 with Ω = {(i, j, k), 1 ≤ i, j, k ≤ 6} n = 63 = 216
possible outcomes. The integers 9 and 10 can be represented a as sum of 3 positive
integers in the following ways:

9 = 3 + 3 + 3 = 4 + 3 + 2 = 4 + 4 + 1 = 5 + 2 + 2 = 5 + 3 + 1 = 6 + 2 + 1,
    10 = 4 + 3 + 3 = 4 + 4 + 2 = 5 + 3 + 2 = 5 + 4 + 1 = 6 + 2 + 2 = 6 + 3 + 1.

The sum 3+3+3 corresponds to the event  'every die shows a 3' A333 = = {(3, 3, 3)}.
The sum 4+3+2 corresponds to the event  that one die shows a 4, another die aA432
3, and the remaining one a 2:
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A432 = {(2, 3, 4), (2, 4, 3), (3, 2, 4), (3, 4, 2), (4, 2, 3), (4, 3, 2)}.
Analogously,

 A441 = {(1, 4, 4), (4, 1, 4), (4, 4, 1)}, A522 = {(2, 2, 5), (2, 5, 2), (5, 5, 2),

A531 = {(1, 3, 5), (1, 5, 3), (3, 1, 5), (3, 5, 1), (5, 1, 3), (5, 3, 1)},
A621 = {(1, 2, 6), (1, 6, 2), (2, 1, 6), (2, 6, 1), (6, 1, 2), (6, 2, 1)}.

Corresponding to the given sum representations for 9 and 10, the numbers of favor-
able elementary events belonging to the events  and , respectively, areA9 A10

mA = 1 + 6 + 3 + 3 + 6 + 6 = 25, mB = 2 + 3 + 6 + 6 + 3 + 6 = 27.

Hence, the desired probabilities are:
P(A9) = 25/216 = 0.116, P(A10) = 27/216 = 0.125.

The dice gamblers of the Middle Ages could not mathematically prove this result,
but from their experience they knew that                                          �P(A9) < P(A10).

Example 1.5  d  dice are thrown at the same time.
What is the smallest number with property that the probability of the eventd = d∗

'no die shows a 6' does not exceed 0.1?A =
The problem makes sense, since with increasing d the probability  tends to 0,P(A)
and if , then  For the corresponding space of elementaryd = 1 P(A) = 5/6. d ≥ 1,
events  has  elements, namely the vectors , where the  areΩ n = 6d (i1, i2, . .. , id) ik
integers between 1 and 6. Amongst the  elementary events those are favorable for6d

the occurrence of  where the  only assume integers between 1 and 5. Hence, forA, ik
the occurrence of  exactly  elementary events are favorable:A 5d

P(A) = 5d/6d.
The inequality  is equivalent to5d/6d ≤ 0.1

d (ln 5/6) ≤ ln(0.1) or d (−0.1823) ≤ −2.3026 or d ≥ 2.3026
0.1823 = 12.63.

Hence,                                                                                                            �d∗ = 13.

Binomial Coefficient and Faculty  For solving the next examples, we need a result
from elementary combinatorics: The number of possibilities to select subsets of k
different elements from a set of n different elements,  is given by the1 ≤ k ≤ n ,
binomial coefficient , which is defined as(n

k )

                          (1.5)⎛
⎝

n
k
⎞
⎠ =

n (n − 1). .. (n − k + 1)
k!

, 1 ≤ k ≤ n,

where  is the faculty of k:  By agreementk! k! = 1 ⋅ 2 . .. k .

  and  (n
0 ) = 1 0! = 1.
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The faculty of a positive integer has its own significance in combinatorics:

    There are  different possibilities to order a set of k different objects.k!

Example 1.6 An optimist buys one ticket in a '6 out of 49' lottery and hopes for hit-
ting the jackpot. What are his chances? There are

⎛
⎝

49
6
⎞
⎠ =

49 ⋅ 48 ⋅ 47 ⋅ 46 ⋅ 45 ⋅ 44
6! = 13 983 816

different possibilities to select 6 numbers out of 49. Thus, one has to fill in almost 14
million tickets to make absolutely sure that the winning one is amongst them.  It is

 and  Hence, the probability  of having picked the six 'cor-m = 1 n = 13 983 816. p6
rect' numbers is

                                    �p6 =
1

13 983 816 = 0.0000000715.

The classical definition of probability satisfies the properties  and P(∅) = 0 P(Ω) = 1,
 since the impossible event  does not contain any elementary events  and∅ (m = 0)
the certain event  comprises all elementary events Ω (m = n).
Now, let A and B be two events containing  and  elementary events, respectiv-mA mB
ely. If  then  so that  If the events A and B are disjoint,A ⊆ B, mA ≤ mB P(A) ≤ P(B).
then they have no elementary events in common so that  contains A B mA + mB
elementary events. Hence

P(A B) = mA + mB
n =

mA
n +

mB
n = P(A) + P(B)

or                                                          (1.6)P(A B) = P(A) + P(B) if A∩ B = ∅.

More generally, if  are pairwise disjoint events, thenA1, A2, . .. , Ar

 (1.7)P(A1 A2 . .. Ar) = P(A1) + P(A2) + . .. + P(Ar), Ai ∩ Ak = ∅, i ≠ k.

Example 1.7 When participating in the lottery '6 out of 49' with one ticket, what is
the probability of the event A to have at least 4 correct numbers?
Let  be the event of having got  numbers correct. Then,Ai i

A = A4 A5 A6.
 are pairwise disjoint events. (It is impossible that there are on oneA4, A5, and A6

and the same ticket, say, exactly 4 and exactly 5 correct numbers.) Hence,
P(A) = P(A4) + P(A5) + P(A6) .

There are  possibilities to choose 4 numbers from the 6 'correct' ones. To(6
4) = 15

each of these  choices there are15

⎛
⎝

49 − 6
6 − 4

⎞
⎠ =

⎛
⎝

43
2
⎞
⎠ = 903
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possibilities to pick 2 numbers from the 43 'wrong' numbers. Therefore, favorable for
the occurrence of  are  elementary events. Hence,A4 m4 = 15 ⋅ 903 = 13 545

p4 = P(A4) = 13 545/13 983 616 = 0.0009686336.

Analogously,

p5 = P(A5) =
⎛
⎝

6
5
⎞
⎠
⎛
⎝

49−6
6−5

⎞
⎠

⎛
⎝

49
6
⎞
⎠

= 6 ⋅ 43
⎛
⎝

49
6
⎞
⎠

= 0.0000184499.

Together with the result of example 1.6, i.e.,P(A) = p4 + p5 + p6 = 0.0009871552,
almost 10 000 tickets have to be bought to achieve the desired result.                       �

1.3.2 Geometric Definition of Probability

The geometric definition of probability is subject to random experiments, in which
every outcome has the same chance to occur (as with Laplace experiments), but the
sample space  is a bounded subset of the one, two or three dimensional EuklidianΩ
space (real line, plain, space). Hence, in each case  is a nondenumerable set. InΩ
most applications,  is a finite interval, a rectangular, a circle, a cube or a sphere.Ω

Let  be a random event. Then we denote by  the measure of A. ForA ⊆ Ω μ(A)
instance, if  is a finite interval, then  is the length of this interval. If A is theΩ μ(Ω)
union of disjoint subintervals of , then  is the total length of these subinter-Ω μ(A)
vals. (We do not consider subsets like the set of all irrational numbers in a finite
interval.)  If  is a rectangular and A is a circle embedded in this rectangular, thenΩ

 is the area of this circle and so on. If  is defined in this way, thenμ(A) μ

  implies  A ⊆ B ⊆ Ω μ(A) ≤ μ(B) ≤ μ(Ω).

Under the assumptions stated, a probability is assigned to every event  byA ⊆ Ω

                                                  (1.8)P(A) =
μ(A)
μ(Ω) .

For disjoint events  and , so that formulas (1.6) and (1.7)A B μ(A B) = μ(A) + μ(B)
are true again. Analogously to the classical probability,  can be interpreted asμ(A)
the measure of all elementary events, which are favorable to the occurrence of A.
With the given interpretation of the measure , every elementary event, i.e. everyμ(⋅)
point in , has measure and probability 0 (different to the Laplace random experi-Ω
ment). (A point, whether at a line, in a plane or space has always extension 0 in all
directions.) But the assumption "every elementary event has the same chance to
occur" is not equivalent to the fact that every elementary event has probability 0.
Rather, this assumption has to be understood in  the following sense:

   All those random events, which have the same measure, have the same probability.
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Thus, never mind where the events (subsets of ) with the same measure are locatedΩ
in  and however small their measure is, the outcome of the random experiment willΩ
be in any of these events with the same probability, i.e., no area in  is preferred withΩ
regard to the occurrence of elementary events.

Example 1.8  For the sake of a tensile test, a wire is clamped at its ends so that the
free wire has a length of 400 cm. The wire is supposed to be homogeneous with
regard to its physical parameters. Under these assumptions, the probability p that the
wire will tear up between 0 and 40 cm or 360 and 400 cm is

p = 40 + 40
400 = 0.2.

Repeated tensile tests will confirm or reject the assumption that the wire is indeed
homogeneous.                                                                                                             �

Example 1.9 Two numbers x and y are randomly picked from the interval [0, 1].
What is the probability that x and y satisfy both the conditions

x + y ≥ 1 and x2 + y2 ≤ 1?

Note: In this context, 'randomly' means that every number between 0 and 1 has the same
chance of being picked.

In this case the sample space is the unit square   since anΩ = [0 ≤ x ≤ 1, 0 ≤ y ≤ 1],
equivalent formulation of the problem is to pick at random a point out of the unit
square, which is favorable for the occurrence of the event

A = {(x, y); x + y ≥ 1, x2 + y2 ≤ 1 }.

Figure 1.2 shows the area (hatched) given by A, whereas the 'possible area'  is leftΩ
white, but also includes the hatched area. Since  and  (areaμ(Ω) = 1 μ(A) = π/4 − 0.5
of a quarter of a circle with radius 1 minus the area of the half of a unit square),

                                                �P(A) = μ(A) ≈ 0.2854.

Example 1.10 (Buffon's needle problem) At an even surface, parallel straight lines
are drawn at a distance of a cm. At this surface a needle of length L is thrown,  L < a.
What is the probability of the event A that the needle and a parallel intersect?
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The position of the needle at the surface is fully determined by its distance of its 'low-
er' endpoint to the 'upper' parallel and by its angle of inclination  to the parallelsα
(Figure 1.3a), since a shift of the needle parallel to the lines obviously has no influ-
ence on the desired probability. Thus, the sample space is given by the rectangle

Ω = {(y,α), 0 ≤ y ≤ a, 0 ≤ α ≤ π}

with area  (Figure 1.3b). Hence, Buffon's needle problem formally consistsμ(Ω) = aπ
in randomly picking elementary events given by  from the rectangle . Since(y,α) Ω
the needle and the upper parallel intersect if and only if  the favorabley < L sinα,
area for the occurrence of A is given by the hatched part in Figure 1.3b. The area of
this part is

μ(A) = ∫0
π L sinα dα = L [−cosα]0

π = L[1 + 1] = 2 L.

Hence, the desired probability is                                                          �P(A) = 2 L/aπ.

1.3.3 Axiomatic Definition of Probability

The classical and the geometric concepts of probability are only applicable to very
restricted classes of random experiments. But these concepts have illustrated which
general properties a universally applicable probability definition should have:

Definition 1.1 A function  on the set of all random events E with  E andP = P(A) ∅ ∈
E is called probability if it has the following properties:Ω ∈

I)   P(Ω) = 1.
II)  For any  E,  A ∈ 0 ≤ P(A) ≤ 1.
III) For any sequence of disjoint events  i.e.,  for A1, A2, ..., Ai ∩ Aj = ∅ i ≠ j,

                                                                                            (1.9)P⎛
⎝⎜i=1

∞
Ai
⎞
⎠⎟
= Σ

i=1

∞
P(Ai).

                                        z

Property III makes sense only if with  E the union  is also an element ofAi ∈ i=1
∞ Ai

E. Hence we assume that the set of all random events E is a σ−algebra:
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Definition 1.2 Any set of random events E is called a  if σ − algebra
1)  E. Ω ∈
2) If  E, then  E. In particular, E.A ∈ A ∈ Ω = ∅ ∈
3) For any sequence  with  E, the union  is also a randomA1, A2, ... Ai ∈ i=1

∞ Ai

event, i.e.,
 E. i=1

∞ Ai ∈

E] is called a measurable space, and E, P] is called a probability space.        z[Ω, [Ω,

Note: In case of a finite or a countably infinite set , the set E is usually the power set of ,Ω Ω
i.e. the set of all subsets of  A power set is, of course, always a algebra. In this book,Ω. σ−
taking into account its applied orientation, specifying explicitly the underlying  algebra isσ−
usually not necessary. E] is called a measurable space, since to any random event E a[Ω, A ∈
measure, namely its probability, can be assigned. In view of the de Morgan rules (1.1): If A and
B are elements of E, then  as well.A∩ B

Given that E is a algebra, properties  of definition 1.1 imply all the propertiesσ− I−III
of the probability functions, which we found useful in sections 1.3.1 and 1.3.2:
a) Let  for  Then, from III),Ai = ∅ i = n + 1, n + 2, . .. .

        (1.10)P( i=1
n Ai) = Σi=1

n P(Ai), Ai ∩ Aj = ∅, i ≠ j, i, j = 1, 2, . .. , n.

In particular, letting  and  this formula impliesn = 2 A = A1, B = A2,

                         (1.11)P(A B) = P(A) + P(B) if A∩ B = ∅.

With taking into account  and formula (1.11) yieldsB = A, Ω = A A P(Ω) = 1,

                           (1.12)P(A) + P(A) = 1 or P(A) = 1 − P(A).

Applying (1.12) with  yields so that A = Ω P(Ω) + P(∅) = 1,
                                              (1.13)P(∅) = 0, P(Ω) = 1.

Note that  is part of definition 1.1.P(Ω) = 1

b) If A and B are two events with  then B can be represented as  A ⊆ B, B = A (B\A).
Since  and  are disjoint, by (1.11),   or, equivalently,A B\A P(B) = P(A) + P(B\A)

                              (1.14)P(B\A) = P(B) − P(A) if A ⊆ B.

Therefore,                                                                        (1.15)P(A) ≤ P(B) if A ⊆ B.

c) For any events A and B, the event  can be represented as follows (Figure 1.1)A B

A B = {A\A∩ B)} {B\(A∩ B)} (A∩ B).

In this representation, the three events combined by ' ' are disjoint. Hence, by (1.10)
with :n = 3

PA B) = P({A\A∩ B)}) + P({B\(A∩ B)}) + P(A∩ B).
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On the other hand, since  and  from (1.14),(A∩ B) ⊆ A (A∩ B) ⊆ B,
                              (1.16)P(A B) = P(A) + P(B) − P(A∩ B).

Given any 3 events A, B, and C, the probability of the event  can be deter-A B C
mined by replacing in (1.16)  A with  and B with C. This yieldsA B

P(A B C) = P(A) + P(B) + P(C) − P(A∩ B) − P(A∩C) − P(B∩C)
                                                                                                      (1.17)+P(A∩ B∩C)

d) For any n events  one obtains by repeated application of (1.16)A1, A2, ..., An
(more exactly, by induction) the Inclusion-Exclusion Formula or the Formula of
Poincar  for the probability of the event é A1 A2 . .. An :

                           (1.18)P(A1 A2 . .. An) = Σ
k=1

n
(−1)k+1Rk

with                             Rk = Σ
(i1<i2<. .. <ik)

n
P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ),

where the summation runs over all k-dimensional vectors out of the set(i1, i2, ..., ik)
 with  and  The sum representing {1, 2, ..., n} 1 ≤ i1 < i2 < . .. < ik ≤ n k = 1, 2, ..., n. Rk

has exactly  terms, so that the total number of terms in (1.18) is(n
k )

Σ
k=1

n ⎛
⎝

n
k
⎞
⎠ = 2n − 1.

For instance, if  then the  in (1.18) aren = 3, Rk

R1 = P(A1) + P(A2) + P(A3),

R2 = P(A1 ∩ A2) + P(A1 ∩ A3) + P(A2 ∩ A3),

R3 = P(A1 ∩ A2 ∩ A3).

Example 1.11 Figure 1.4 shows a simple local computer network. Computers are
located at nodes 1, 2, 3, and 4. The transmission of data between the computers is
possible via cables  which link the four computers. Cable  is avail-e1, e2, . .. , e5, ei
able, i.e. in a position to transfer information, with probability  and unavailablepi
(e.g. under maintenance, waiting for maintenance, waiting for replacement for hav-
ing been stolen) with probability qi = 1 − pi, i = 1, 2, ..., 5.
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What is the probability of the event A that the computer at node 1 can transfer data to
the computer at node 4 via one or more paths (chains) of available edges which con-
nect node 1 to node 4? There are four potential candidates for such paths:

w1 = {e1, e4}, w2 = {e2, e5}, w3 = {e1, e3, e5}, w4 = {e2, e3, e4}.

Let  be the event that all edges in path  are available,  Then event AAi wi i = 1, 2, 3, 4.
occurs when at least one of these four events occurs. Hence, A can be represented as

A = A1 A2 A3 A4.

The  are not disjoint. Hence we apply the inclusion-exclusion formula (1.11) forAi
representing A:

P(A) = P(A1 A2 A3 A4) = R1 − R2 + R3 − R4

with
                               R1 = P(A1) + P(A2) + P(A3) + P(A4),

R2 = P(A1 ∩ A2) + P(A1 ∩ A3) + P(A1 ∩ A4) + P(A2 ∩ A3) + P(A2 ∩ A4)

                                                                                          +P(A2 ∩ A4) + P(A3 ∩ A4),
R3 = P(A1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ A4) + P(A1 ∩ A3 ∩ A4) + P(A2 ∩ A3 ∩ A4),

 R4 = P(A1 ∩ A2 ∩ A3 ∩ A4).

The event  means that both the cables in  and in  are operating. Thus,A1 ∩ A2 A1 A2
to the event  there belongs the set of cables  Hence, theA1 ∩ A2 {e1, e2, e4, e5}.
notation  will be used. To the event  there belongsP(A1 ∩ A2) = p1245 A1 ∩ A2 ∩ A3
the set of cables :  If this way of nota-{e1, e2, e3, e4, e5} P(A1 ∩ A2 ∩ A3) = p12345.
tion is applied to all other probabilities occurring in the , thenRi

R1 = p14 + p25 + p135 + p234,

R2 = p1245 + p1345 + p1234 + p1235 + p2345 + p12345,

  R3 = p12345 + p12345 + p12345 + p12345, R4 = p12345.

The desired probability is
P(A) = p14 + p25 + p135 + p234 − p1245 − p1345 − p1234 − p1235 − p2345 + 3p12345.

In section 1.4.2, an additional assumption on the operation modus of the cables will
be imposed which enables the calculation of  only on the basis of the         �P(A) pi.

1.3.4 Relative Frequency

The probabilities of random events are usually unknown. However, they can be
estimated by their relative frequencies. If in a series of n repetitions of one and the
same random experiment the event A has been observed exactly  times,m = m(A)
then the relative frequency of A is given by
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                                                (1.19)pn(A) =
m(A)

n .

Generally, the relative frequency of A tends to  as n increases:P(A)
                                             (1.20)lim

n→∞
pn(A) = P(A).

Thus, the probability of A can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (for
the theoretical background see section 5.2.2). Empirical verifications of the limit rela-
tion (1.20) were aleady given in the introduction by the coin experiments of Buffon
and Pearson. Without the validity of (1.20) the gamblers in the Middle Ages would
not have been in a position to empirically verify that, when throwing three dice, the
chance to obtain sum 9 is lower than the chance to obtain sum 10 (example 1.4).
It is interesting that the relationship (1.20) in connection with Buffon's needle prob-
lem (example 1.10) allows to estimate the number  with any desired degree ofπ
accuracy. To do this, in the formula  the probability  is replacedP(A) = 2L/πa P(A)
with the relative frequency  for the occurrence of A in a series of n needlepn(A)
throwings. This gives for  the estimateπ

πn = 2L
a pn(A)

.

Lazzarini (1901) threw the needle  times and got for  the estimaten = 3408 π
π3408 = 3.141529,

i.e., the first six figures are the exact ones. The approximate calculation of  was oneπ
of the first examples how to solve deterministic problems by probabilistic methods.
Nowadays, nobody needs to throw a needle manually several tousand times. Com-
puters 'simulate' random experiments of this simple structure many thousand times in
a twinkling of an eye.
The reader may object that the approximate calculation of probabilities of all random
events by their relative frequency is practically not possible, in particular, if the sam-
ple space is not finite. However, depending on the respective random experiment, the
probabilities of all its elementary events are frequently given by a unifying mathemat-
ical pattern (model). For instance, the probability that the random number of traffic
accidents occurring in a specific area during a year is equal to k can frequently be
determined by the formula

pk =
λk

k! e−λ; k = 0, 1, ... ,

where  is the average number of traffic accidents which occur a year in that area.λ
Hence, for determining all infinitely many probabilities , only the paramet-p0, p1, ...
er  has to be estimated. This is done by counting the number  of traffic accidentsλ xi
occurring in year i over a period of  years and determining the arithmetic meann

λ = 1
n Σi=1

n xi.
Defining and discussing mathematical models for the calculation of the probabilities
of random events is the subject of chapter 2.
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1.4  CONDITIONAL PROBABILITY AND INDEPENDENCE
 OF RANDOM EVENTS

1.4.1 Conditional Probability

Two random events A and B can depend on each other in the following sense: The
occurrence of B will change the probability of the occurrence of A and vice versa.
Hence, the additional piece of information 'B has occurred' should be used in order to
predict the probability of the occurrence of A more precisely. If one has to determine
the probability that a device does not fail during its guarantee period (event A), then
this probability may depend on the manufacturer of the device (event B) if there are
several of them who produce the same type. The probability of having a sunny day
on 21 August (event A) will increase if there is a sunny day on 20 August (event B)
in view of the inertia of weather patterns. The probability of attracting a certain dis-
ease (event A) will usually be larger than average if there was/is a family member,
who had suffered from this disease (event B). If A is the random event to spot a
leopard in a certain area of a National Park during a safari, then the probability of A
increases if it is known that there are baboons in this area (event B).
Let us now consider some numerical examples to illustrate how to define the probab-
ility of the occurrence of an event A given that another event B has occurred.

Example 1.12 A gambler throws the dice 1 and 2 simultaneously. What is the prob-
ability that die 1 shows a 6 (event A) on condition that both dice showed an even
number (event B). This probability will be denoted as  The sample space isP(A B).

Ω = {(i, j); i, j = 1, 2, ..., 6}.

In terms of the elementary events the events A and B are given by(i, j),
A = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)},

B = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

Hence,
P(A) = 6/36 and P(B) = 9/36.

On condition 'B has occurred' the sample space  reduces to the 9 elementary eventsΩ
given by B.  From these 9, only the 3 elementary events in the conjunction

A∩ B = {(6, 2), (6, 4), (6, 6)}
are favorable for the occurrence of :  Therefore,A

P(A B) = 3/9.
The following representation shows the general structure of P(A B) :

                                       �P(A B) = 1/3 = 3/36
9/36

=
P(A∩ B)

P(B) .

22                               APPLIED PROBABILITY AND STOCHASTIC PROCESSES

     



Example 1.13 In a bowl there are two white and two red marbles. The numbers 1
and 2 are assigned to the white marbles and the numbers 3 and 4 are assigned to the
red marbles. Two marbles are one after the other randomly picked from the bowl.
Find the probability of the event A that one of the drawn marbles is white and the
other red given the event B that the first drawn marble is white.
The sample space consists of  elementary events:4 ⋅ 3 = 12

 Ω = {(i, j); i ≠ j, i, j = 1, 2, 3, 4}.
The events A and B are given by the following sets of elementary events:

A = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2) },

B = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4) }.
Hence,

 P(A) = 8/12 = 2/3 and P(B) = 6/12 = 1/2.
Since it is known that event B has happened, the space of possible elementary events
is given by B. Hence, the elementary events which are favorable for the occurrence
of event A are given by the conjunction

A∩ B = {(1, 3), (1, 4), (2, 3), (2, 4)}.
This yields

P(A B) = 4
6 = 2

3 = 4/12
6/12

=
P(A∩ B)

P(B) .

For the sake of arriving at the general structure of  solution of the problemP(A B),
had been unnecessarily complicated. The problem is namely quickly solved as
follows: If the first drawn marble is white (event B), then there are one white and two
red marbles left in the bowl. Event A occurs if one of the red marbles will be drawn,
i.e.,                                                                                                        �P(A B) = 2/3.

Example 1.14 The lifetimes of  electronic units had been tested. 205 unitsn = 1000
failed in the interval  180 units failed in the interval and the[0, 500 h), [500, 600 h),
remaining 615 units failed after  Let A be the event that a unit fails in the inter-600 h.
val  and B be the event that a unit fails after a lifetime of at least  [500, 600 h), 500 h.
By formula (1.19) with  the relative frequencies for the occurrence ofn = 1000,
events  and B areA

pn(A) =
m(A)

n = 180
1000, pn(B) =

m(B)
n = 1000 − 205

1000 = 0.795.

What is the relative frequency  of the event A on condition that event  haspn(A B) B
occurred?
Under this condition, only the 795 units, which have survived the first  need to500 h,
be taken into account. From these 795 units, 180 fail in  Therefore,[500, 600 h).

pn(A B) = 180
795 = 0.2264.
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Since  i.e. the occurrence of A implies the occurrence of B, event A satisfiesA ⊆ B,
 Hence, the 'conditional relative frequency'  can be written asA = A∩ B. pn(A B)

                               (1.21)pn(A B) = m(A∩ B)
m(B) =

m(A∩B)
n

m(B)
n

.

By (1.20), the relative frequencies   and    tend to  and  asm(A∩B)
n

m(B)
n P(A∩ B) P(B)

 respectively. Thus, the conditional probability of A given B has again then →∞,
structure we know from the previous examples:

                              �lim
n→∞

pn(A B) = P(A B) = P(A∩ B)
P(B) .

Now it is no longer surprising that the probability of 'A on condition B'  or, equival-
ently, the probability of  'A given B' is defined as follows.

Definition 1.3 Let A and B be two events with  Then the probability of A onP(B) > 0.
condition B is given by

                                         (1.22)P(A B) = P(A∩ B)
P(B) .

z

Note:  is also denoted as the probability of A given B, the conditional probability of AP(A B)
on condition B, or the conditional probability of A given . Of course, in (1.22) the roles of AB
and  can be changed.B

If A and B are arbitrary random events, formula (1.22) implies a product formula for
the probability  of the joint occurrence of arbitrary events A and B:P(A∩ B)

              (1.23)P(A∩ B) = P(A B) P(B) or P(A∩ B) = P(B A) P(A).

Example 1.15  In a bowl there are three white and two red marbles. Two marbles are
randomly taken out one after the other. What is the probability that both of these mar-
bles are red?
Let be A and B be the events that the first and the second, respectively, of the chosen
marbles are red. Hence, the probability  has to be determined. The probabil-P(A∩ B)
ity of A is equal to  On condition A, there are 3 white and 1 red marble inP(A) = 2/5.
the bowl. Hence,  so thatP(B A) = 1/4

                                   �P(A∩ B) = P(B A)P(A) = 1
4 ⋅

2
5 = 0.1.

Example 1.16 In a study, data from a sample of 12 000 persons had been collected.
4800 persons in this sample were obese and 3600 suffered from diabetes 2. From the
diabetes sufferers, 2700 were obese. A person is randomly selected from the sample
of 12 000 persons. It happens to be Max. Let A be the event that Max is obese, and B
be the event that Max has diabetes 2. Then
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P(A) = 0.4, P(B) = 0.3, and P(A B) = 2700/3600 = 0.75.
Hence, the probability that Max is both obese and a diabetes 2 sufferer is, by (1.22),

P(A∩ B) = P(A B)P(B) = 0.75 ⋅ 0.3 = 0.225.

2) To see whether being obese increases the probability of contracting diabetes 2, the
probability  has to be determined: From the right equation of (1.23),P(B A)

P(A∩ B) = 0.225 = P(B A)P(A) = P(B A) ⋅ 0.4.
Hence,  Thus, based on this study, being obese increases theP(B A) = 0.5625.
probability of contracting diabetes 2.                                                                          �

1.4.2 Total Probability Rule and Bayes' Theorem

Frequently several mutually exclusive conditions have influence on the occurrence
of a random event A. The whole of these conditions are known, but it is not known,
which of these conditions is taking effect. However, the probabilities are known
which of these conditions affects the occurrence of A at the time point of interest.
Under these assumptions, a formula for the occurrence of A will be derived. But next
the procedure is illustrated by an example.

Example 1.17 A machine is subject to two stress levels 1 (event  and 2 (eventB1)
 with respective probabilities 0.8 and 0.2. Stress levels can be determined e.g. byB2)

different production conditions as speed, pressu,re or humidity. It is supposed that
the stress level does not change during a fixed working period (hour, day). Given
stress level 1 or 2, the machine will fail during a working period with probability 0.3
or 0.6, respectively. Hence, 

P(A B1) = 0.3, P(A B2) = 0.6.

Since the events  and  are disjoint (mutually exclusive) and  is theB1 B2 Ω = B1 B2
certain event, A can be represented as

A = A∩Ω = A∩ (B1 B2) = (A∩ B1) (A∩ B2).

The events  and  are disjoint so that by formula (1.11)A∩ B1 A∩ B2

P(A) = P(A∩ B1) + P(A∩ B2).

By applying (1.23) to each of the two terms on the right-hand side  this formula,of

 P(A) = P(A B1)P(B1) + P(A B2)P(B2)

= 0.3 ⋅ 0.8 + 0.6 ⋅ 0.2 = 0.36.
Thus, without information on the respective stress level, the failure probability of the
machine in the working period is 0.36.                                                                       �

Now the principle, illustrated by this example, is formulated more generally:
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Definition 1.4 The set of random events  is an exhaustive set{B1, B2, ..., Bn, n ≤ ∞}
of random events for  ifΩ

Ω = i=1
n Bi ,

and it is a mutually disjoint set of events if
Bi ∩ Bj = ∅, i ≠ j, i, j = 1, 2, ..., n.

A mutually disjoint and exhaustive (for ) set of events is called a partition of   zΩ Ω .

Let  be an exhaustive and mutually disjoint set of events with pro-{B1, B2, ..., Bn}
perty  for all and let A be an event with  Then A canP(Bi) > 0 i = 1, 2, ..., n, P(A) > 0.
be represented as follows (see Figure 1.5):

P(A) =
i=1

n
(A∩ Bi).

Since the  are disjoint, the conjunctions  are disjoint as well. FormulaBi A∩ Bi
(1.10) is applicable and yields  Now formula (1.23) appliedP(A) = Σi=1

n P(A∩ Bi).
to all n probabilities  yieldsP(A∩ Bi)

                                      (1.24)P(A) = Σi=1
n P(A Bi)P(Bi).

This result is called the Formula of total probability or the Total probability rule.
Moreover formulas (1.22) and (1.23) yield,

P(Bi A) =
P(Bi ∩ A)

P(A) =
P(A∩ Bi)

P(A) =
P(A Bi)P(Bi)

P(A) .

If  is replaced with its representation (1.24), thenP(A)

                     (1.25)P(Bi A) =
P(A Bi)P(Bi)

Σi=1
n P(A Bi)P(Bi)

, i = 1, 2, ..., n.

Formula (1.25) is called Bayes' theorem or Formula of Bayes. For obvious reasons,
the probabilities  are called a priori probabilities and the conditional probabili-P(Bi)
ties  a posteriori probabilities.P(Bi A)
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            Figure 1.5 Partition of a sample space
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Example 1.18 The manufacturers  delivered to a supermarket a totalM1, M2, and M3
of 1000 fluorescent tubes of the same type with shares 200, 300, and 500, respective-
ly. In these shares, there are in this order  12, 9, and 5 defective tubes.
1) What is the probability that a randomly chosen tube is not defective?
2) What is the probability that a defective tube had been produced by , Mi i = 1, 2, 3?
Let events A and  be introduced as follows:Bi
A = 'A tube, randomly chosen from the whole delivery, is not defective.'

'A tube, randomly chosen from the whole delivery, is from  , 'Bi = Mi i = 1, 2, 3.
According to the figures given:

P(B1) = 0.2, P(B2) = 0.3, P(B3) = 0.5,

P(A B1) = 12/200 = 0.06, P(A B2) = 9/300 = 0.03, P(A B3) = 5/500 = 0.01.

 is a set of exhaustive and mutually disjoint events, since there are no{B1, B2, B3}
other manufacturers delivering tubes of this brand to that supermarket and no two
manufacturers can have produced one and the same tube.
1) Formula (1.23) yields

P(A) = 0.06 ⋅ 0.2 + 0.03 ⋅ 0.3 + 0.01 ⋅ 0.5 = 0.026.

2) Bayes' theorem (1.25) gives the desired probabilities:

P(B1 A) = P(A B1)P(B1)
P(A) = 0.06 ⋅ 0.2

0.026 = 0.4615,

P(B2 A) = P(A B2)P(B2)
P(A) = 0.03 ⋅ 0.3

0.026 = 0.3462,

P(B3 A) =
P(A B3)P(B3)

P(A) = 0.01 ⋅ 0.5
0.026 = 0.1923.

Thus, despite having by far the largest proportion of tubes in the delivery, the high
quality of tubes from manufacturer guarantees that a defective tube is most likelyM3
not produced by this manufacturer.                                                                             �

Example 1.19 1% of the population in a country are HIV-positive. A test procedure
for diagnosing whether a person is HIV-positive indicates with probability 0.98 that
the person is HIV-positive if indeed he/she is HIV-positive, and with probability
0.96 that this person is not HIV-positve if he/she is not HIV-positive.
1) What is the probability that a test person is HIV-positive if the test indicates that?
To solve the problem, random events   and  are introduced:A B
A = 'The test indicates that a person is HIV-positive.'

 = 'A test person is HIV-positive.'B
Then, from the figures given,
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P(B) = 0.01, P(B) = 0.99

     P(A B) = 0.98, P(A B) = 0.02, P(A B) = 0.96, P(A B) = 0.04.
Since  is an exhaustive and disjoint set of events, the total probability rule{B, B}
(1.23) is applicable to determining :P(A)

P(A) = P(A B)P(B) + P(A B) P(B) = 0.98 ⋅ 0.01 + 0.04 ⋅ 0.99 = 0.0494.
Bayes' theorem (1.24) yields the desired probability :P(B A)

P(B A) = P(A B)P(B)
P(A) = 0.98 ⋅ 0.01

0.0494 = 0.1984.

Although the initial parameters of the test look acceptable, this result is quite unsatis-
factory: In view of ,  about 80% HIV-negative test persons will beP(B A) = 0.8016
shocked to learn that the test procedure indicates they are HIV-positive. In such a sit-
uation the test has to be repeated several times. The reason for this unsatisfactory
numerical result is that only a small percentage of the population is HIV-positive.
2) The probability that a person is HIV-negative if the test procedure indicates this is

P(B A) = P(A B)P(B)
P(A)

= 0.96 ⋅ 0.99
1 − 0.0494 = 0.99979 .

This result is, of course, an excellent feature of the test.                                            �

1.4.3 Independent Random Events

If a die is thrown twice, then the result of the first throw does not influence the result
of the second throw and vice versa. If you have not won in the weekly lottery during
the past 20 years, then this bad luck will not increase or decrease your chance to win
in the lottery the following week. An aircraft crash over the Pacific for technical
reasons has no connection to the crash of an aircraft over the Atlantic for technical
reasons the same day. Thus, there are random events which do not at all influence
each other. Events like that are called independent (of each other). Of course, for a
quantitative probabilistic analysis a more accurate definition is required.
If the occurrence of a random event  has no influence on the occurrence of a ran-B
dom event A, then the probability of the occurrence of A will not be changed by the
additional information that  has occurred, i.e.B

                                     (1.26)P(A) = P(A B) = P(A∩ B)
P(B) .

This motivates the definition of independent random events:

Definition 1.5: Two random events A and  are called independent ifB
                                       (1.27)P(A∩ B) = P(A)P(B) .

z

28                               APPLIED PROBABILITY AND STOCHASTIC PROCESSES

     



This is the product formula for independent events A and B. Obviously, (1.27) is also
valid for  and/or  Hence, defining independence of two randomP(B) = 0 P(A) = 0.
events by (1.27) is preferred to defining independence by formula (1.26).
If A and B are independent random events, then the pairs A and  and B, as wellB, A
as  and  are independent, too. That means relation (1.27) implies, e.g.,A B

P(A∩ B) = P(A)P(B).

This can be proved as follows:
P(A∩ B) = P(A∩ (Ω\B)) = P((A∩Ω)\(A∩ B)) = P(A\(A∩ B))

                                = P(A) − P(A∩ B) = P(A) − P(A)P(B)
                      = P(A)[1 − P(B)] = P(A)P(B).

The generalization of the independence property to more than two random events is
not obvious. The pairwise independence between  events is defined as follows:n ≥ 2
The events  are called pairwise independent if for each pair   A1, A2, ..., An (Ai, Aj)

P(Ai ∩ Aj) = P(Ai)P(Aj), i ≠ j, i, j = 1, 2, ..., n.

A more general definition of the independence of n events is the following one:

Definition 1.6 The random events  are called completely independentA1, A2, ..., An
or simply independent if  for all k = 2, 3, ..., n,

                   (1.28)P(Ai1 ∩ Ai2 ∩ . .. ∩ Aik ) = P(Ai1 )P(Ai2 ) . .. P(Aik)

for any subset  of  with  z{Ai1 , Ai2 , ..., Aik} {A1, A2, ..., An} 1 ≤ i1 < i2 < . .. < ik ≤ n.

Thus, to verify the complete independence of n random events, one has to check

Σ
k=2

n ⎛
⎝

n
k
⎞
⎠ = 2n − n − 1

conditions. Luckily, in most applications it is sufficient to verify the case :k = n
                   (1.29)P(A1 ∩ A2 ∩ . .. ∩ An) = P(A1)P(A2) . .. P(An).

The complete independence is a stronger property than the pairwise independence.
For this reason it is interesting to consider an example, in which the  areA1, A2, ..., An
pairwise independent, but not complete independent.

Example 1.20 The dice  and  are thrown. The corresponding sample spaceD1 D2
consists of 36 elementary events:  LetΩ = {(i, j); i, j = 1, 2, ..., 6}.

 '  shows a 1' A1 = D1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)},

 '  shows a 1' A2 = D2 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)},

 ' '  ' 'A3 = both D1 and D2 show the same number = {(i, i), i = 1, 2, ..., 6)}.
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Since the  each contain 6 elementary events, Ai
 P(A1) = P(A2) = P(A3) = 1/6 .

The  have only one elementary event in common, namely  Hence,Ai (1, 1).

P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) =
1
6 ⋅

1
6 = 1

36 .

Therefore, the  are pairwise independent. However, there isAi

A1 ∩ A2 ∩ A3 = {(1, 1)}.

Hence,

          �P(A1 ∩ A2 ∩ A3) =
1
36 ≠ P(A1)P(A2)P(A3) =

1
6 ⋅

1
6 ⋅

1
6 = 1

216 .

Example 1.21 (Chevalier de )  What is more likely: 1) to get at least one 6,Méré
when throwing four dice simultaneously (event A), or 2) to get the outcome (6,6) at
least once, when throwing two dice 24 times simultaneously (event B)?
The complementary events to A and B are:

 'none of the dice shows a 6, when four dice are thrown simultaneously,'A =
 'the outcome (6,6) does not occur, when two dice are thrown 24 times.'B =

1) Both the four results obtained by throwing four or two dice and the results by
repeatedly throwing two dice are independent of each other. Hence, since the proba-
bility to get no 6, when throwing one die, is 5/6, formula (1.29) with  yieldsn = 4

P(A) = (5/6)4.

The probability, not to get the result (6,6) when throwing two dice, is 35/36. Hence,
formula (1.29) yields with  the probabilityn = 24

P(B) = (35/36)24.
Thus, the desired probabilities are

                 �P(A) = 1 − (5/6)4 ≈ 0.518, P(B) = 1 − (35/36)24 ≈ 0.491.

Example 1.22  In a set of traffic lights, the color 'red' (as well as green and yellow) is
indicated by two bulbs which operate independently of each other. Color 'red' is
clearly visible if at least one bulb is operating.
What is the probability that in the time interval [0, 200 hours] color 'red' is visible if
it is known that a bulb survives this interval with probability 0.95 ?
To answer this question, let

 'bulb 1 does not fail in [0, 200],'   B = 'bulb 2 does not fail in [0, 200].'A =
The event of interest is

 'red light is clearly visible in [0, 200].'C = A B =
By formula (1.16), 

P(C) = P(A B) = P(A) + P(B) − P(A∩ B).
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Since A and B are independent,
P(C) = P(A) + P(B) − P(A)P(B)= 0.95 + 0.95 − (0.95)2.

Thus, the desired probability is
P(C) = 0.9975.

Another possibility of solving this problem is to apply the Rules of de Morgan (1.1):

P(C) = P(A B) = P(A∩ B) = P(A)P(B) = (1 − 0.95)(1 − 0.95)

                                             = 0.0025
so that                                                                                �P(C) = 1 − P(C) = 0.9975.

Example 1.23 ('2 out of 3 system') A system S consists of 3 independently operat-
ing subsystems  The system operates if and only if at least 2 of itsS1, S2, and S3.
subsystems operate. Figure 1.6 illustrates the situation: S operates if there is at least
one path with two operating subsystems (symbolized by rectangles) from the entrance
node en to the exit node ex. As an application may serve the following one: The pres-
sure in a high-pressure tank is indicated by 3 gauges. If at least 2 gauges show the
same pressure, then this value can be accepted as the true one. (But for safety reasons
the failed gauge has to be replaced immediately.)
At a given time point , subsystem  is operating with probability t0 Si pi, i = 1, 2, 3.
What is the probability that the system S is operating at time point ps t0?
Let  be the event that S is working at time point  and  be the event that  isAS t0, Ai Si
operating at time point  Then,t0.

AS = (A1 ∩ A2) (A1 ∩ A3) (A2 ∩ A3).

With  formula (1.17) can be directlyA = A1 ∩ A2, B = A1 ∩ A3, and C = A2 ∩ A3,
applied and yields the following representation of :AS

P(AS) = P(A1 ∩ A2) + P(A1 ∩ A3) + (A2 ∩ A3) − 2P(A1 ∩ A2 ∩ A3).

In view of the independence of the this probability can be written asA1, A2, and A3,

P(AS) = P(A1)P(A2) + P(A1)P(A3) + P(A2)P(A3) − 2P(A1)P(A2)P(A3).
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Figure 1.6  Diagram of a '2 out of 3-system'
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or
P(AS) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

In particular, if thenp = pi, i = 1, 2, 3,

                                               �P(AS) = (3 − 2p)p2.

Disjoint and independent random events are causally not connected. Nevertheless,
sometimes there is confusion about their meaning and use. This may be due to the
formal analogy between their properties:

   If the random events  are disjoint, then, by formula (1.10),A1, A2, ..., An

P(A1 A2 . .. An) = P(A1) + P(A2) + . .. + P(An).

    If the random events  are independent, then, by formula (1.29),A1, A2, ..., An

P(A1 ∩ A2 ∩ . .. ∩ An) = P(A1) ⋅ P(A2) . .. P(An).

1.5 EXERCISES

Sections 1.1 1.3−
1.1) A random experiment consists of simultaneously flipping three coins.
(1) What is the corresponding sample space?
(2) Give the following events in terms of elementary events:                                        
A = 'head appears at least two times,' B = 'head appears not more than once,' and       
C = 'no head appears.'
(3) Characterize verbally the complementary events of A, B, and C.

1.2) A random experiment consists of flipping a die to the first appearance of a '6'.
What is the corresponding sample space?

1.3) Castings are produced weighing either 1, 5, 10, or 20 kg. Let A, B, and C be the
events that a casting weighs 1 or 5kg, exactly 10kg, and at least 10kg, respectively. 
Characterize verbally the events A∩ B, A B, A∩C, and (A B) ∩C .

1.4) Three randomly chosen persons are to be tested for the presence of gene g.
Three random events are introduced:
A = 'none of them has gene g,'                                                                                       
B = 'at least one of them has gene g,'                                                                             
C = 'not more than one of them has gene g'.
Determine the corresponding sample space  and characterize the eventsΩ

 by elementary events.A∩ B, B C, and B∩C
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1.5) Under which conditions are the following relations between events A and B true:
(1)  (2)  (3) A∩ B = Ω , A∪ B = Ω , A∪ B = A∩ B ?

1.6) Visualize by a Venn diagram whether the following relations between random
events A, B, and C are true:
(1) A∩ (B∪C) = (A∩ B) ∪ (A∩C) ,
(2) (A∩ B) ∪ (A∩ B) = A ,
(3) A∪ B = B∪ (A∩ B) .

1.7) (1) Verify by a Venn diagram that for three random events A, B, and C the
following relation is true: (A\B) ∩C = (A∩C)\(B∩C) .
(2) Is the relation  true as well?(A∩ B)\C = (A\C) ∩ (B\C)

1.8) The random events A and B belong to a  E.σ−algebra
What other events, generated by A and B, must belong to E  (see definition 1.2)?

1.9) Two dice  and  are simultaneously thrown. The respective outcomes of D1 D2 D1
and  are  and . Thus, the sample space is D2 ω1 ω2 Ω = {(ω1,ω2); ω1,ω2 = 1, 2, ..., 6}.

Let the events A, B, and C be defined as follows: 
A = 'The outcome of  is even and the outcome of  is odd',D1 D2

B = "The outcomes of  and  are both even".D1 D2

What is the smallest  E generated by A and B ('smallest' with regard to theσ−algebra
number of elements in E)?

1.10) Let A and B be two disjoint random events, A ⊂ Ω , B ⊂ Ω .
Check whether the set of events {A, B,  and } is (1) an exhaustive andA∩ B, A∩ B
(2) a disjoint set of events (Venn diagram).

1.11) A coin is flipped 5 times in a row. What is the probability of the event A that
'head' appears at least 3 times one after the other?

1.12) A die is thrown. Let  and  be two random events.A = {1, 2, 3} B = {3, 4, 6}
Determine the probabilities P(A∪ B), P(A∩ B), and P(B\A).

1.13) A die is thrown 3 times. Determine the probability of the event A that the
resulting sequence of three integers is strictly increasing.

1.14) Two dice are thrown simultaneously. Let  be an outcome of this ran-(ω1,ω2)
dom experiment, ' ' and  ' .' A = ω1 + ω2 ≤ 10 B = ω1 ⋅ ω2 ≥ 19
Determine the probability P(A∩ B).
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1.15) What is the probability  to get 3 numbers right with 1 ticket in the '6 out ofp3
49' number lottery?

1.16) A sample of 300 students showed the following results with regard to physical
fitness and body weight:
                                                                                  weight [kg]

     60 <   [60-80]      80 >

              good        48               64             11

             fitness  satisfactory      22        42        29

 bad      19        17        48

One student is randomly chosen. It happens to be Paul.
(1) What is the probability that the fitness of Paul is satisfactory? 
(2) What is the probability that the weight of Paul is greater than 80 kg?
(3) What is the probability that the fitness of Paul is bad and that his weight is less
than 60 kg?

1.17) Paul writes four letters and addresses the four accompanying envelopes. After
having had a bottle of whisky, he puts the letters randomly into the envelopes. Deter-
mine the probabilities  that k letters are in the 'correct' envelopes, pk k = 0, 1, 2, 3.

1.18) A straight stick is broken at two randomly chosen positions. What is the pro-
bability that the resulting three parts of the stick allow the construction of a triangle?

1.19) Two hikers climb to the top of a mountain from different directions. Their arriv-
al time points are between 9:00 and 10:00 a.m., and they stay on the top for 10 and
20 minutes, respectively. For each hiker, every time point between 9 and 10:00 has
the same chance to be the arrival time. What is the probability that the hikers meet on
the top?

1.20) A fence consists of horizontal and vertical wooden rods with a distance of 10 cm
between them (measured from the center of the rods). The rods have a circular sec-
tional view with a diameter of 2cm. Thus, the arising squares have an edge length of
8cm. Children throw balls with a diameter of 5cm horizontally at the fence. What is
the probability that a ball passes the fence without touching the rods?

1.21) Determine the probability that the quadratic equation
 x2 + 2 a x = b − 1

does not have a real solution if the pair (a,b) is randomly chosen from the quarter
circle {(a, b); a, b > 0, a2 + b2 < 1}.

34                                APPLIED PROBABILITY AND STOCHASTIC PROCESSES

  



1.22) Let A and B be disjoint events with  and  Determine  theP(A) = 0.3 P(B) = 0.45.
probabilities P(A∪ B), P(A∪ B), P(A∪ B), and P(A∩ B).

1.23) Let  Determine .P(A∩ B) = 0.3 and P(B) = 0.6. P(A∪ B)

1.24) Is it possible that for two events A and B with  and  theP(A) = 0.4 P(B) = 0.2
relation  is true?P(A∩ B) = 0.3

1.25) Check whether for 3 arbitrary random events A, B, and C the following con-
stellations of probabilities can be true:
(1) P(A) = 0.6, P(A∩ B) = 0.2, and P(A∩ B) = 0.5,
(2) P(A) = 0.6, P(B) = 0.4, P(A∩ B) = 0, and P(A∩ B∩C) = 0.1,
(3) .P(A∪ B∪C) = 0.68 and P(A∩ B) = P(A∩C) = 1

1.26) Show that for two arbitrary random events A and B the following inequalities
are true: P(A∩ B) ≤ P(A) ≤ P(A∪ B) ≤ P(A) + P(B).

1.27) Let A, B, and C be 3 arbitrary random events.
(1) Express the event 'A occurs, but B and C do not occur' in terms of suitable rela-
tions between these events and their complements.
(2) Prove: the probability of the event 'exactly one of the events A, B, or C occurs' is

P(A) + P(B) + P(C) − 2P(A∩ B) − 2P(A∩C) − 2P(B∩C) + 3P(A∩ B∩C).

Section 1.4
1.28) Two dice are simultaneously thrown. The result is  What is the proba-(ω1,ω2).
bility p of the event ' ' on condition that ' ?' ω2 = 6 ω1 + ω2 = 8

1.29) Two dice are simultaneously thrown. By means of formula (1.24) determine
the probability p that the dice show the same number.

1.30) A publishing house offers a new book as standard or luxury edition and with or
without a CD. The publisher analyzes the first 1000 orders:
                                                                       luxury edition

  yes    no

with CD    yes   324     82

   no     48   546

Let A (B) the random event that a book, randomly choosen from these 1000, is a
luxury one (comes with a CD). (1) Determine the probabilities

 P(A), P(B), P(A∪ B), P(A∩ B), P(A B), P(B A), P(A∪ B B), and P(A B).
(2) Are the events A and B independent?
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1.31) A manufacturer equips its newly developed car of type Treekill optionally with
or without a tracking device and with or without speed limitation technology and
analyzes the first 1200 orders:
                                                                           speed limitation

   yes    no

  tracking device    yes     74    642 

   no     48    436

Let A (B) the random event that a car, randomly chosen from these 1200, has speed
limitation (comes with a tracking device).
(1) Calculate the probabilities  from the figures in the table.P(A), P(B), and P(A∩ B)
(2) Based on the probabilities determined under a), only by using the rules developed
in section 1.3.3, determine the probabilities

P(A∪ B), P(A B), P(B A), P(A∪ B B), and P(A B).

1.32) A bowl contains m white marbles and n red marbles. A marble is taken ran-
domly from the bowl and returned to the bowl together with r marbles of the same
color. This procedure continues to infinity.
(1) What is the probability that the second marble taken is red?
(2) What is the probability that the first marble taken is red on condition that the
second marble taken is red? (This is a variant of 's urn problem.)Pólya

1.33) A test procedure for diagnosing faults in circuits indicates no fault with probab-
ility 0.99 if the circuit is faultless. It indicates a fault with probability 0.90 if the cir-
cuit is faulty. Let the probability of a circuit to be faulty be 0.02.
(1) What is the probability that a circuit is faulty if the test procedure indicates a fault?
(2) What is the probability that a circuit is faultless if the test procedure indicates that
it is faultless?

1.34) Suppose 2% of cotton fabric rolls and 3% of nylon fabric rolls contain flaws.
Of the rolls used by a manufacturer, 70% are cotton and 30% are nylon.
a) What is the probability that a randomly selected roll used by the manufacturer
contains flaws?                                                                                                               
b) Given that a randomly selected roll used by the manufacturer does not contain
flaws, what is the probability that it is a nylon fabric roll?

1.35) A group of 8 students arrives at an examination. Of these students 1 is very
well prepared, 2 are well prepared, 3 are satisfactorily prepared, and 2 are insuffi-
ciently prepared. There is a total of 16 questions. A very well prepared student can
answer all of them, a well prepared 12, a satisfactorily prepared 8, and an insuffi-
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ciently prepared 4. Each student has to draw randomly 4 questions. Student Frank
could answer all the 4 questions. What is the probability that Frank
(1) was very well prepared,                                                                                            
(2) was satisfactorily prepared,                                                                                      
(3) was insufficiently prepared?

1.36) Symbols 0 and 1 are transmitted independently from each other in proportion
. Random noise may cause transmission failures: If a 0 was sent, then a 1 will1 : 4

arrive at the sink with probability 0.1. If a 1 was sent, then a 0 will arrive at the sink
with probability 0.05 (figure).
(1) What is the probability that a received symbol is '1'?
(2) '1' has been received. What is the probability that  '1' had been sent?
(3) '0' has been received. What is the probability that '1' had been sent?

1.37) The companies 1, 2, and 3 have 60, 80, and 100 employees with 45, 40, and 25
women, respectively. In every company, employees have the same chance to be
retrenched. It is known that a woman had been retrenched (event B).
What is the probability that she had worked in company 1, 2, and 3, respectively?

1.38) John needs to take an examination, which is organized as follows: To each
question 5 answers are given. But John knows the correct answer only with probabil-
ity 0.6. Thus, with probability 0.4 he has to guess the right answer. In this case, John
guesses the correct answer with probability 1/5 (that means, he chooses an answer by
chance). What is the probability that John knew the answer to a question given that
he did answer the question correctly?

1.39) A delivery of 25 parts is subject to a quality control according to the following
scheme: A sample of size 5 is drawn (without replacement of drawn parts). If at least
one part is faulty, then the delivery is rejected. If all 5 parts are o.k., then they are
returned to the lot, and a sample of size 10 is randomly taken from the original 25
parts. The delivery is rejected if at least 1 part out of the 10 is faulty.
Determine the probabilities that a delivery is accepted on condition that
(1) the delivery contains 2 defective parts,
(2) the delivery contains 4 defective parts.
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1.40) The random events  are assumed to be independent. Show thatA1, A2, ..., An

P(A1 ∪ A2 ∪ . .. ∪ An) = 1 − (1 − P(A1))(1 − P(A2)) . .. (1 − P(An)).

1.41) n hunters shoot at a target independently of each other, and each of them hits it
with probability 0.8. Determine the smallest  with property that the target is hit withn
probability 0.99 by at least one hunter.

1.42) Starting a car of type Treekill is successful with probability 0.6. What is the
probability that the driver needs no more than 4 start trials to be able to leave?

1.43) Let A and B be two subintervals of [0, 1]. A point x is randomly chosen from
 Now A and B can be interpreted as random events, which occur if  or[0, 1]. x ∈ A

 respectively. Under which condition are A and B independent?x ∈ B,

1.44) A tank is shot at by 3 independently acting anti-tank helicopters with one anti-
tank missile each. Each missile hits the tank with probability 0.6. If the tank is hit by
1 missile, it is put out of action with probability 0.8. If the tank is hit by at least 2 mis-
siles, it is put out of action with probability 1.
What is the probability that the tank is put out of action by this attack?

1.45) An aircraft is targeted by two independently acting ground-to-air missiles. Each
missile hits the aircraft with probability 0.6 if these missiles are not being destroyed
before. The aircraft will crash with probability 1 if being hit by at least one missile.
On the other hand, the aircraft defends itself by firing one air-to-air missile each at
the approaching ground-to-air missiles. The air-to-air missiles destroy their respec-   
tive targets with probablity 0.5.
(1) What is the probability that p the aircraft will crash as a result of this attack? 
(2) What is the probability that the aircraft will crash if two independent air-to-air
missiles are fired at each of the approaching ground-to-air-missiles?

1.46) The liquid flow in a pipe can be interrupted by two independent valves  andV1
, which are connected in series (figure). For interrupting the liquid flow it is suf-V2

ficient if one valve closes properly. The probability that an interruption is achieved
when necessary is 0.98 for both valves. On the other hand, liquid flow is only possi-
ble if both valves are open. Switching from 'closed' to 'open' is successful with
probability 0.99 for each of the valves.
(1) Determine the probability to be able to interrupt the liquid flow if necessary.
(2) What is the probability to be able to resume liquid flow if both valves are closed?

38                                APPLIED PROBABILITY AND STOCHASTIC PROCESSES

  

V1 V2



CHAPTER 2

One-Dimensional Random Variables

2.1  MOTIVATION AND TERMINOLOGY

Starting point of chapter 1 is a random experiment with sample space , which is theΩ
set of all possible outcomes of the random experiment under consideration, and the
set (  E of all random events, where a random event  E is a subset ofσ−algebra) A ∈
the sample space:  In this way, together with a probability function P definedA ⊆ Ω.
on E, the probability space [ E, P] is given. In many cases, the outcomes (element-Ω,
ary events) of random experiments are real numbers (throwing a die, counting the
number of customers arriving per unit time at a service station, counting of wildlife
in a specific area, total number of goals in a soccer match, or measurement of life-
times of organisms and technical products). In these cases, the outcomes of a series
of identical random experiments allow an immediate quantitative analysis. However,
when the outcomes are not real numbers, i.e.  is not a subset of the real axis or theΩ
whole real axis, then such an immediate numerical analysis is not possible. To over-
come this problem, a real number z is assigned to the outcome  by a given real-val-ω
ued function g defined on : Ω z = g(ω), ω ∈ Ω.
Examples for situations like that are:
1) When flipping a coin, the two possible outcomes are  'head' and 'tail'. Aω1 = ω2 =
'1' is assigned to head and a '0' to tail (for instance).
2) An examination has the outcomes  'with distinction', 'very good',             ω1 = ω2 =

'good',   'satisfactory', and  'not passed'.  The figures '5', '4',  '1' (forω3 = ω4 = ω5 = . .. ,
instance) are assigned to these verbal evaluations.
3) Even if the outcomes are real numbers, you may be more interested in figures de-
rived from these numbers. For instance, the outcome is the number n of items you
have produced during a workday. For first  item you get a financial reward of $10,
for the second of $11, for the third $12, and so on. Then you are first of all interested
in your total income per working day.
4) If the outcomes of random experiments are vectors of  real numbers, it may be
opportune to assign a real number to these vectors. For instance, if you throw four
dice simultaneously, you get a vector with four components. If you win, when the
total sum exceeds a certain amount, then you are not in the first place interested in
the four individual results, but in their sum. In this way, you reduce the complexity of
the ran- dom experiment.
5) The random experiment consists in testing the quality of 100 spare parts taken ran-
domly from a delivery. A '1' is assigned to a spare part which meets the requirements,

  



and a '0' otherwise. The outcome of this experiment is a vector ω = (ω1,ω2, . .. ,ω100),
the components  of which are 0 or 1. Such a vector is not tractable, so you want toωi
assign a summarizing quality parameter to it to get a random experiment, which has a
one-dimensional result. This can be, e.g., the relative frequency of those items in the
sample, which meet the requirements:

                                           (2.1)z = g(ω) = 1
100 Σ

k=1

100
ωk .

Basically, application of a real function to the outcomes of a random experiment does
not change the 'nature' of the random experiment, but simply replaces the 'old' sample
space with a 'new' one, which is more suitable for the solution of directly interesting
numerical problems. In the cases 1 and  listed above:3 − 5
1) The sample space {tail, head} is replaced with {0, 1}.
3) The sample space {0, 1, 2, 3, 4, ...} is  replaced  with {0, 10, 21, 33, 46,...}.
4) The sample space  which consists of {(ω1,ω2,ω3,ω4); ωi = 1, 2, ..., 6}, 64 = 1296
elementary events of the structure  is replaced with the sampleω = (ω1,ω2,ω3,ω4),
space {6, 7, ..., 24}.
5) The sample space consisting of the  elementary events  2100 ω = (ω1,ω2, ...,ω100)
with  is 0 or 1 is reduced by the relative frequency function g given by (2.1) to aωk
sample space with 101 elementary events:

{0, 1
100 , 2

100 , . .. , 99
100 , 1}.

Since the outcome  of a random experiment is not predictable, it is also randomω
which value the function  will assume after the random experiment. Hence,g(ω)
functions on the sample space of a random experiment are called random variables.
In the end, the concept of a random variable is only a somewhat more abstract formu-
lation of the concept of a random experiment. But the terminology has changed: One
says on the one hand that as a result of a random experiment an elementary event has
occurred, and on the other hand, a random variable has assumed a value. In this
book (apart from Chapter 12) only real-valued random variables are considered. As it
is common in literature, random variables will be denoted by capital Latin letters,
e.g. X, Y, Z or by Greek letters as ζ, ξ, η.
Let X  be a random variable:   The range  of X is the set of allX = X(ω), ω ∈ Ω. RX
possible values X can assume. Symbolically:  The elements of  areRX = X(Ω). RX
called the realizations of X or their values. If there is no doubt about the underlying
random variable, the range is simply denoted as R.

    A random variable X is a real function on the sample space  of a random exper-Ω
    iment. This function  generates a new random experiment, whose sample space is  
    given by the range  of X. The probabilistic structure of the new random experi-RX
    ment is determined by the probabilistic structure of the original one.
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When discussing random variables, the original, application-oriented random exper-
iment will play no explicit role anymore. Thus, a random variable can be considered
to be an abstract formulation of a random experiment. With this in mind, the proba-
bility that X assumes a value out of a set A,  is an equivalent formulatio  forA ⊆ R, n
the probability that the random event A occurs, i.e.

P(A) = P(X ∈ A) = P(ω, X(ω) ∈ A).

For one-dimensional random variables X, it is sufficient to know the interval probab-
ilities  for all intervals: P(I) = P(X ∈ I) I = [a, b), a < b, i.e.

                          (2.2)P(X ∈ I) = P(a < X ≤ b) = P(ω, a < X(ω) ≤ b).

If  is a finite or countably infinite set, then  is simply the set of all thoseR I = [a, b)
realizations of X, which belong to I.

Definition 2.1 The probability distribution or simply distribution of a one-dimen-
sional random variable X is given by a rule P, which assigns to every interval of the
real axis  the probabilities (2.2).                                                  I = [a, b], a < X ≤ b,

Remark In view of definition 1.2, the probability distribution of any random variable X should
provide probabilities  for any random event A from the sigma algebra E of the under-P(X ∈ A)
lying measurable space E], i.e. not only for intervals. This is indeed the case, since from[Ω,
measure theory it is known that a probability function, defined on all intervals, also provides
probabilities for all those events, which can be generated by finite or countably infinite unions
and conjunctions of intervals. For this reason, a random variable is called a measurable function
with regard to [ E]. This application-oriented text does not explicitely refer to this measure-Ω,
theoretic background and is presented without measure-theoretic terminology.

    A random variable X is fully characterized by its range  and by its probability  RX
    distribution. If a random variable is multidimensional, i.e. its values are n-dimen-
    sional vectors, then the definition of its probability distribution is done by assign-  
    ing probabilities to rectangles for  and to rectangular parallelepipeds for      n = 2
     and so on.n = 3

In chapter 2, only one-dimensional random variables will be considered, i.e., their
values are scalars.
The set of all possible values , which a random variable X can assume, only playsRX
a minor role compared to its probability distribution. In most cases, this set is deter-
mined by the respective applications; in other cases there prevails a certain arbitrar-
iness. For instance, the faces of a die can be numbered from 7 to 12; a 3 (2) can be
assigned to an operating (nonoperating) system instead of 1 or 0. Thus, the most
important thing is to find the probability distribution of a random variable.
Fortunately, the probability distribution of a random variable X is fully characterized
by one function, called its (cumulative) distribution function or its probability distri-
bution function:
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Definition 2.2 The probability distribution function (cumulative distribution function
or simply distribution function)  of a random variable X is defined asF(x)

                                        F(x) = P(X ≤ x), −∞ ≤ x ≤ +∞.

Any distribution function  has the following obvious properties:F(x)

1)                                                                                        (2.3)F(−∞) = 0, F(+∞) = 1,

2)                                                                                   (2.4)F(x1) ≤ F(x2) if x1 ≤ x2.

On the other hand, every real-valued function  satisfying the conditions (2.3) andF(x)
(2.4) can be considered the distribution function of a random variable.
Given the distribution function of X, it must be possible to determine the interval pro-
babilities (2.2). This can be done as follows:
For the event " " is given by the union of two disjoint events:a < b, X ≤ b

" "  " "  " ".X ≤ b = X ≤ a a < X ≤ b

Hence, by formula (1.11)  , or, equivalently,, P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b)

                                      (2.5)P(a < X ≤ b) = F(b) − F(a).

Thus, the cumulative distribution function contains all the information, specified in
definition 2.1, about the probability distribution of a random variable. Note that defi-
nition 2.2 refers both to discrete and continuous random variables:

    A random variable X is called discrete if it can assume only  finite or countably      
    infinite many values, i.e., its range R is a finite or a countably infinite set. A ran-   
    dom variable X is called continuous if it can assume all values from the whole real
    axis, a real half-axis, or at least from a finite interval of the real axis or unions of  
     finite intervals.

Examples for discrete random variables are:
Number of flipping a coin to the first appearance of 'head', number of customers arriv-
ing at a service station per hour, number of served customers at service station per
hour, number of traffic accidents in a specified area per day, number of staff being
on sick leave a day, number of rhinos poached in the Krüger National park a year,
number of exam questions correctly answered by a student, number of sperling errors
in this chapter.

Examples for continuous random variables are:
Length of a chess match, service time of a customer at a service station, lifetimes of
biological and technical systems, repair time of a failed machine, amount of rainfall
per day at a measurement point, measurement errors, sulfur dioxide content of the air
(with regard to time and location), daily stock market fluctuations.
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2.2  DISCRETE RANDOM VARIABLES

2.2.1 Probability Distribution and Distribution Parameters

Let X be a discrete random variable with range  The probability dis-R = {x0, x1, . .. }.
tribution of X is given by a probability mass function  This function assigns tof (x).
each realization of X its probability  Without loss of genera-pi = f (xi) ; i = 0, 1, ....
lity it can be assumed that each  is positive. Otherwise, an  with  couldpi xi f (xi) = 0
be deleted from  Let  " " be the random event that X assumes value R. Ai = X = xi xi.
The  are mutually disjoint events, since X cannot assume two different realizationsAi
at the same time. The union of all Ai,

,i=0
∞ Ai

is the certain event , since X must take on any of its realizations. (A random experi-Ω
ment must have an outcome.) Taking into account (1.9), a probability mass function

 has two characteristic properties:f (x)
1)    2)                                    (2.6)f (xi) > 0, Σi=0

∞ f (xi) = 1.
Every function  having these two properties can be considered to be the probabi-f(x)
lity mass function of a discrete random variable. By means of  the probabilityf (x),
distribution function of X, defined by ( ), can be written as follows:2.3

F(x) =
⎧

⎩
⎨
⎪
⎪

0 if x < x0,
Σ

{xi, xi≤x}
f (xi) if x0 ≤ x.

With  an equivalent representation of  ispi = f (xi), F(x)

              F(x) = P(X ≤ x) =
⎧

⎩
⎨
⎪
⎪

0 for x < x0 ,
Σi=0

k pi for xk ≤ x < xk+1, k = 0, 1, 2, . .. .

Figure 2.1 shows the typical graph of the distribution function of a discrete random
variable X in terms of the cumulative probabilities :si
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Figure 2.1  Graph of the distribution function of an arbitrary discrete random variable
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   sk = p0 + p1 + . .. + pk ; k = 0, 1, ...,

or                                     sk = F(xk) = f (x0) + f (x1) + . .. + f (xk).

Thus, the distribution function of a discrete random variable is a piecewise constant
function (step function) with jumps  sizesof

      pi = P(X = xi) = F(xi) − F(xi − 0), i = 0, 1, ... .
The probability mass function of a random variable X as well as its distribution func-
tion can be identified with the probability distribution P  of .X X

Figure 2.2 shows the probability histogram of a discrete random variable. It graphi-
cally illustrates the frequency distribution of the occurrence of the values  of X. Inxi
this special case, the distribution is symmetric around i.e.x3,

p0 = p6, p1 = p5, and p2 = p4.

Hint  For technical reasons it is frequently practical to renumber the  and  and start withxi pi
instead of . In what follows, no further reference will be made regarding this.x1 (p1) x0 (p0)

Moreover, the notation  will be preferred to pi f (xi).

Example 2.1 (uniform distribution) A random variable X is uniformly distributed
over its range  if it has the probability distributionR = {1, 2, ..., m}

pi = P(X = xi) =
1
m ; i = 1, 2, ..., m; m < ∞.

The conditions (2.6) are fulfilled. Thus, X is the outcome of a Laplace random exper-
iment (section 1.3), since every value of X has the same chance to occur. The cumu-
lative probabilities are  The corresponding distribution function issi = i/m, i ≤ m.

      F(x) = P(X ≤ x) =
⎧

⎩

⎨
⎪

⎪

0 for x < 1,
i/m for i ≤ x < i + 1, i = 1, 2, . .. , m − 1,

1 for m ≤ x.
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Figure 2.2  Probability histogram of a symmetric discrete distribution
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Example 2.2 The leaves of Fraxinus excelsior (an ash tree) have an odd number of
leaflets. This numbervaries from 3 to 11. A sample of  leaves had been takenn = 300
from a tree. Let X be the number of leaflets of a randomly picked leaf from this sam-
ple. Then X is a random variable with range R = {3, 5, 7, 9, 11}.
Table 2.1 shows the probability distribution of X: The first column contains the pos-
sible number of leaflets i, the second column the number  of leaves with i leaflets,ni
the third one the probability that a randomly choosen leaf from the sample has i leaf-
lets: . (In terms of mathematical statistics,  is the relative frequency of thepi = ni/n pi
occurrence of leaves with i leaflets in the sample.) The fourth column contains the
cumulative probabilities  (cumulative frequencies).sk

   i     ni      pi      si

   3       8  0.0267  0.0267

   5    36  0.1200  0.1467

   7  108  0.3600  0.5067

   9  118  0.3933  0.9000

 11    30  0.1000  1

Table 2.1 Distribution of leaflets at leaves of Fraxinus excelsior

Figure 2.3 shows the distribution function and the probability histogram of X. For
instance,  is the probability that a randomly selected leaf has at most 7s7 = 0.5607
leaflets, and a randomly drawn leaf from the sample has most likely 9 leaflets.        

   Figure 2.3 Distribution function a) and histogram b) for example 2.2

As pointed out before, the probability distribution and the range R contain all the in-
formation on X. However, to get quick information on essential features of a random
variable, it is desirable to condense as much as possible of this information to some
numerical parameters. In what follows, let the range of X be . If theR = {x0, x1, . .. }
range is finite, i.e.,  the formulas to be given stay valid ifR = {x0, x1, . .. , xm; m < ∞},
letting xm+1 = xm+2 = . .. = 0.

2 ONE-DIMENSIONAL RANDOM VARIABLES                                                   45

  

a)

0 3 5 7 9 11

0.2

0.4

0.6

0.8

1

xx
0 3 5 7 9 11

b)

0.4

0.3

0.2

0.1

si pi



Mean Value  If a random variable X has the finite range  then atR = {x0, x1, ..., xm},
first glance the average result of a random experiment with outcome  isX

x = 1
m+1 Σi=0

m xi,

the arithmetic mean of all possible values of X. But this is only true if every value of
X has the same chance to occur as this is the case with a  uniformlydistributed random
variable. Otherwise, those realizations of X contribute most to the average result (rela-
tively to their absolute value), which occur more frequently than other realizations.
To illustrate this, let us assume that in a series of n random experiments  times ,n0 x0

 times , , and  times  occurred. Then there is , andn1 x1 . .. nm xm n = n0 + n1 + . .. + nm
the arithmetic mean of all observations is

x = 1
n(n0x0 + n1x1 + . .. + nmxm) =

n0
n x0 +

n1
n x1 + . .. + nm

n xm.

The ratio  is the relative frequency for the occurrence of  out of the total of nni/n xi
observations, which, as will be shown in section 5.2.2, tends for all   to thei = 0, 1, ..., m
probability  as  Thus, the following definition is well motivated:pi = P(X = xi) n →∞.

The mean value, or expected value, or simply the mean of a random variable  isX

   given that                         (2.7)E(X) = Σi=0
∞ xi pi Σi=0

∞ xi pi < ∞ .

Thus, the mean value of a discrete random variable X is the weighted sum of all its
possible values, where the weights of the  are their respective probabilities. Thexi
convergence condition in (2.7) makes sure that  exists (i.e., is finite). Note thatE(X )

                                             (2.8)E( X ) = Σi=0
∞ xi pi.

A statistical motivation to the mean value of a random variable is the following one:
If one and the same random experiment with outcome X is repeated n times and the
results are  the arithmetic mean tends to  as   xi1 , xi2,..., xin , 1

n Σk=1
n xik E(X ) n →∞.

If X is nonnegative with range then its mean value can be written inR = {0, 1, 2, ...},
the following way:

                    (2.9)E(X) = Σi=0
∞ i pi = Σi=1

∞ P(X ≥ i) = Σi=1
∞ Σk=i

∞ pk .

If  is a real function, then the mean value of the random variable  ish(x) Y = h(X)

                                         (2.10)E(Y) = Σi=0
∞ h(xi)pi.

In this formula,  are the possible values which the random var-yi = h(xi), i = 0, 1, ...
iable Y can take on. Since the  occur with the same probabilities as the , namelyyi xi

 (2.10) gives indeed the mean value of Y. As a special case,  let  Then thepi, Y = X n.
mean value of  is given by (2.10) with :X n h(xi) = xi

n

E(X n) = Σi=0
∞ xi

n pi, n = 0, 1, ... .

 is called the n th (ordinary) moment of X. Therefore, the mean value  isE(X n) E(X )
the first (ordiary) moment of X.

46                               APPLIED PROBABILITY AND STOCHASTIC PROCESSES

  



Variability In addition to its mean value  one is interested in the variabilityE(X ),
(scatter, fluctuations) of the outomes of a random experiment (given by X) in series
of repetitions of this experiment. These fluctuations are measured by the absolute
distances of the values  from E(X):  This leads to the mean absolutexi xi − E(X) .
linear deviation of a random variable  from its mean value:X

                           (2.11)E( X − E(X ) ) = Σi=0
∞ xi − E(X) pi .

The mean absolute linear deviation of X is a special case of the n th absolute central
(ordinary) moment of :X

   Mn = E( X − E(X) n) = Σi=0
∞ xi − E(X) n pi , n = 0, 1, ... .

For pactical and theoretical reasons, one usually prefers to work with the squared
deviation of the  from :  The mean value of the squared deviationxi E(X) (xi − E(X ))2.
of a random variable X from its mean value  is called variance of X and denotedE(X)
as :Var(X)

                     (2.12)Var(X) = E(X − E(X))2 = Σi=0
∞ (xi − E(X))2 pi.

The variance is obviously equal to the second absolute central moment of . TheX
square root of the variance  is called the standard deviation of  For anyVar(X) X.
random variable , the following notation is common:X

σ2 = Var(X), σ = Var(X) .

Note, in determining , formula (2.10) has been used with   Var(X ) h(xi) = (xi − E(X))2.
From (2.12), for any constant ,h

Var(hX ) = h2Var(X ).

There is a useful relationship between the variance and the second moment of :X

Var(X ) = E(X − E(X ))2 = E(X 2) − 2 E[X E(X )] + E [(E(X )]2

so that
                                    (2.13)Var(X) = E(X 2) − (E(X))2.

The coefficient of variation of  isX
V(X ) = σ/ E(X ) .

Variance, standard deviation, and coefficient of variation are all measures for the var-
iability of X. The coefficient of variation is most informative in this regard for taking
into account not only the deviation of X from its mean value, but also relates this de-
viation to the mean value of X. For instance, if the variabilities of two random variab-
les X and Y with equal variances , but with different mean valuesVar(X) = Var(Y) = 5

 and  have to be compared, then it is already intuitively obviousE(X) = 10 E(Y) = 100,
that the scatter behavior of X is more distinct than that of :Y

V(X) = 0.5, V(Y) = 0.05.
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Continuation of Example 2.2 The mean number of leaflets is

 E(X) = 3 ⋅ 0.0267 + 5 ⋅ 0.1200 + 7 ⋅ 0.3600 + 9 ⋅ 0.3933 + 11 ⋅ 0.1000 = 7.8398.
The variance of the number of leaflets is

Var(X) = (3 − 7.8398)2 ⋅ 0.0267 + (5 − 7.8398)2 ⋅ 0.12 + (7 − 7.8398)2 ⋅ 0.36
                   + (9 − 7.8398)2 ⋅ 0.3933 + (11 − 7.8398)2 ⋅ 0.1 = 3.3751.

Altogether,
E(X) = 7.8398, Var(X) = 3.3751, Var(X) = 1.8371, V(X) = 0.2343.

It is interesting to compare the standard deviation to the mean absolute linear devia-
tion, since one expects that  is somewhere in the order of the standardE( X − E(X) )
deviation: From (2.14),

E( X − E(X) ) = 3 − 7.8398 ⋅ 0.0267 + 5 − 7.8398 ⋅ 0.12 + 7 − 7.8398 ⋅ 0.36

                           + 9 − 7.8398 ⋅ 0.3933 + 11 − 7.8398 ⋅ 0.1 = 1.5447.

Thus,                                                   E( X − E(X) ) = 1.5447 < Var(X) = 1.8371.

2.2.2 Important Discrete Probability Distributions

In this section, the following finite and infinite series are needed:

                                                                      (2.14)Σ
i=0

n
i = n(n + 1)

2

                                                        (2.15)Σ
i=0

n
i2 =

n(n + 1)(2n + 1)
6

      (2.16)Σ
i=0

∞
xi = 1

1 − x , 0 ≤ x < 1 (geometric series)

                                            (2.17)Σ
i=0

∞
i xi = x

(1 − x)2 , 0 ≤ x < 1

                                                    (2.18)Σ
i=0

n
xi = 1 − xn+1

1 − x , x ≠ 1

                             (exponential series)      (2.19)Σ
i=0

∞ xi

i !
= ex, x < +∞

                  (binomial series)           (2.20)Σ
i=0

n ⎛
⎝

n
i
⎞
⎠ xiyn−i = (x + y)n

Note that in view of (2.6) every probability distribution  of a discrete ran-{p0, p1, ...}
dom variable must fulfill  normalizing conditionthe

                                               (2.21)Σi=0
∞ pi = 1.
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Uniform Distribution  A random variable X with range   has aR = {x1, x2, ..., xn}
discrete uniform distribution if

pi = P(X = xi) =
1
n ; i = 1, 2, ..., n .

Thus, each possible value has the same probability. The normalizing condition (2.21)
is obviously fulfilled. Mean value and variance are

E(X) = x = 1
n Σi=1

n xi , Var(X) = 1
n Σi=1

n (xi − x)2.

Thus,  is the arithmetic mean of all values which X can assume.E(X)
Particularly, if   for then the formulas (2.14) and (2.15) yieldxi = i i = 1, 2, ..., n,

                       (2.22)E(X) = n + 1
2 , Var(X) = (n − 1) (n + 1)

12 .

For instance, if X is the outcome of 'rolling a die', then and R = {1, 2, ..., 6} pi = 1/6
so that

 and  E(X) = 3.5, Var(X) ≈ 2.92, Var(X) ≈ 1.71, V(X) = 0.59 = 59% ,

and    so thatE( X − E(X) ) = 1
6 1 − 3.5 + 2 − 3.5 + . .. + 6 − 3.5 ) = 1.5

E( X − E(X) ) = 1.5 < Var(X) ≈ 1.71.

Bernoulli Distribution A random variable X with range  has a BernoulliR = {0, 1}
distribution with parameter ifp, 0 < p < 1,

                       (2.23)p0 = P(X = 0) = 1 − p, p1 = P(X = 1) = p.

Mean value and variance are
                                  (2.24)E(X) = p, Var(X) = p (1 − p).

This is easily verified:
                                E(X) = 0 ⋅ (1 − p) + 1 ⋅ p = p

Var(X) = (0 − p)2(1 − p) + (1 − p)2 p = p (1 − p).

The random experiment, which leads to the Bernoulli distribution, is called Bernoulli
trial. It has two outcomes: event A and its complementary event . Event A occursA
with probability p, and event  occurs with probability  The random variable XA 1 − p.
defined by (2.23) assigns a "1" to event A and a "0" to event A :

                         (2.25)X =
⎧

⎩
⎨

1 if A has occurred,
0 if A has occurred.

The occurrence of A is frequently referred to as success. With this terminology, X is
the indicator variable for the occurrence of a success or a failure, respectively. Gen-
erally, since X can only assume two values, it is called a (random) binary variable.
Specifically, since the two possible values of X are 0 and 1, it is a -variable.(0, 1)
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Geometric Distribution A random variable X with range  has a geo-R = {1, 2, ...}
metric distribution with parameter  ifp, 0 < p < 1,

                           (2.26)pi = P(X = i) = p (1 − p)i−1, i = 1, 2, ... .

In view of the geometrical series (2.21), the normalizing condition (2.26) is fulfilled.
Mean value and variance are

   E(X ) = 1/p , Var(X ) = (1 − p)/p2.

To verify these formulas, use the series (2.16) and (2.17) as well as formula (2.13). A
more elegant derivation is given in section 2.5.1.
For instance, if X is the random integer indicating how frequently one has to toss a
die to get for the first time a '6' (= success), then X has a geometric distribution with

  and p = 1/6, E(X) = 6, Var(X) = 30, Var(X) ≈ 5.4772.

   Generally, a geometrically distributed random variable X can be interpreted as      
   the number of independent Bernoulli trials one has to carry out to have for the       
   first time a 'success'.

The geometric distribution is also defined with range andR = {0, 1, ...}
                         (2.27)pi = P(X = i) = p (1 − p)i, i = 0, 1, 2, ... .

In this case, mean value and variance are
E(X ) = (1 − p)/p, Var(X ) = (1 − p)/p2.

Example 2.3 ('nonaging property' of the geometric distribution)  Let X  be a geomet-
rically with parameter p distributed random variable. For any integers m ≥ 0 and n ≥ 1
determine the conditional probability P(X = m + n X > m).
In view of the geometrical series (2.16) with x = 1 − p,

P(X > m) = Σi=m+1
∞ p (1 − p)i−1 = p (1 − p)m Σ i=0

∞ (1 − p)i = (1 − p)m.

By the formula of conditional probability (1.22) and since the event " "X = m + n
implies the event " ",X > m

P(X = m + n X > m) = P((X = m + n) ∩ (X > m))
P(X > m) =

P(X = m + n))
P(X > m)

           =
p (1 − p)m+n−1

(1 − p)m = p (1 − p)n−1.

Hence,
                  (2.28)P(X = m + n X > m) = P(X = n), m, n = 1, 2, ... .

This result has an interesting interpretation: If X is the lifetime of a technical unit,
which can only fail at time points  and which has survived m time units,n = 1, 2...,
then the residual lifetime of the unit has the same lifetime distribution as the unit at
the start of its operation, i.e. as a new unit. Such a unit is called nonaging.               

50                               APPLIED PROBABILITY AND STOCHASTIC PROCESSES

  



Binomial Distribution A random variable X with range  has aR = {0, 1, ..., n}
binomial distribution with parameters p and  ifn

                  (2.29)pi = P(X = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i, i = 0, 1, ..., n.

Frequently the notation  is used.pi = b(i, n, p)
In view of the binomial series (2.20) with  and , the normalizing condi-x = p y = 1 − p
tion (2.21) is fulfilled. Mean value and variance are

                              (2.30)E(X) = n p, Var(X) = n p (1 − p).
The proofs will be given in section 2.5.1.
The binomial distribution occurs in the following situation: A Bernoulli trial, whose
outcome is the (0,1)-indicator variable for the occurrences of events A and  as giv-A
en by (2.25), is independently repeated n times. (Independence in the sense of defini-
tion 1.5: The respective outcomes of the n Bernoulli are independent random events.)
Let the outcome of the  trial be :i th Xi

    Xi =
⎧

⎩
⎨

1 if A has occurred,
0 if A has occurred,

i = 1, 2, ..., n.

The outcome of a series of n Bernoulli trials is a random vector  X = (X1, X2, ..., Xn),
whose components  can take on values 0 or 1. The sumXi

X = Σi=1
n Xi

is equal to the random number of successes in a series of n Bernoulli trials. X has a
binomial distribution with parameters n and p: In view of the product formula for
independent events (1.29), the probability that in  a '1' occurs i times and a '0'X
occurs  times in a specific order, is(n − i)

pi(1 − p)n−i.
There are  different possibilities to order the i '1's and  '0's.(n

i ) (n − i)

For instance, let  Then the probability that vector  (first Bernoulli trialn = 3. (0, 1, 1)
is a failure, the second and third trial are successes) occurs is  But there are(1 − p)p2.

 vectors with 1 failure and 2 successes having probability :(3
2) = 3 (1 − p)p2

  (1, 1, 0), (1, 0, 1), (0, 1, 1).

Hence, the probability that a series of three Bernoulli trials yields one failure and two
successes is 3p2(1 − p).

Example 2.4 A power station supplies power to 10 bulk consumers. They use power
independently of each other and in random time intervals, which, for each customer,
accumulate to 20% of the calendar time. What is the probability of the random event
B that at a randomly chosen time point at least seven customers use power?
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The problem leads to a Bernoulli trial, where the 'success event' A for every custo-
mer is 'using power'. By assumption,  Let  be the event that exact-p = P(A) = 0.2. Bi
ly i customers simultaneously use power. Then the event of interest is

B = B7 B8 B9 B10.

The  are disjoint so thatBi

             P(B) = Σi=7
10 P(Bi) = Σi=7

10 (10
i ) (0.2)i (0.8)10−i

                                       = 7.864 ⋅ 10−4 + 7.373 ⋅ 10−5 + 4.096 ⋅ 10−6 + 1.024 ⋅ 10−7

                                                                                    = 0.000864.

Example 2.5 From a large delivery of calculators a sample of size  is taken.n = 100
The delivery will be accepted if there are at most 4 defective calculators in the sam-
ple. The average rate of defective calculators from the producer is known to be 2%.
1) What is the probability  that the delivery will be rejected (producer's risk)?    Prisk
2) What is the probability  to accept the delivery although it contains 7% defec-Crisk
tive calculators (consumer's risk)?
1) Picking a defective calculator is declared a "success" (event A). The probability of
this event is  Thus, the underlying Bernoulli trial has parameters P(A) = 0.02. p = 0.02
and   The probabilities  that i from 100 calculators are defective are:n = 100. pi

pi = ⎛
⎝

100
i
⎞
⎠ (0.02)i (0.98)100−i, i = 0, 1, ..., 100.

In particular,
p0 = 0.1326, p1 = 0.2706, p2 = 0.2734, p3 = 0.1823, p4 = 0.0902

so that the producer's risk is
Prisk = 1 − p0 − p1 − p2 − p3 − p4 = 0.0509.

2) Now a "success" (picking a defective calculator) has probability  p = P(A) = 0.07
so that the probabilities  to have i defective calculators in a sample of 100 arepi

pi = ⎛
⎝

100
i
⎞
⎠ (0.07)i (0.93)100−i, i = 0, 1, ..., 100.

In particular,
p0 = 0.0007, p1 = 0.0053, p2 = 0.0198, p3 = 0.0486, p4 = 0.0888.

Thus, the consumer's risk is Thus, the  pro-Crisk = p0 + p1 + p2 + p3 + p4 = 0.1632.
posed acceptance/rejection plan favors the producer.                                                 

In examples like the previous one the successive calculation of the probabilities pi
can be efficiently done by using the following recursion formula:

pi+1 =
n − i
i + 1

⋅
p

1 − p ⋅ pi ; i = 0, 1, ..., n − 1.
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Negative Binomial Distribution  A random variable X with range   hasR = {0, 1, ...}
a negative binomial distribution with parameters p and r,  if0 < p < 1, r > 0,

                 (2.31)pi = P(X = i) = ⎛
⎝

i − 1 + r
i

⎞
⎠ pi(1 − p)r; i = 0, 1, ... .

Equivalently,

pi = P(X = i) = ⎛
⎝
−r
i
⎞
⎠ (−p)i(1 − p)r; i = 0, 1, ... .

Mean value and variance are

                                  (2.32)E(X) = r
p , Var(X) = (1 − p) r

p2 .

If r is a positive integer, then X can be interpreted as the total number of trials in a
series of independent Bernoulli trials till the  success occurs.The geometric dis-r th
tribution is a special case of the negative binomial distribution if r = 1.
The negative binomial distribution is also called Pascal distribution.

Hypergeometric Distribution  A random variable X with range
R = {0, 1, ..., min(n, M)}

has a hypergeometric distribution with parameters M, N, and n, ifM ≤ N, n ≤ N,

        (2.33)pm = P(X = m) =
⎛
⎝

M
m
⎞
⎠
⎛
⎝

N −M
n −m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

; m = 0, 1, ..., min(n, M) .

Mean value and variance are:

              (2.34)E(X) = n M
N , Var(X) = n M

N
⎛
⎝1 −

M
N
⎞
⎠
⎛
⎝1 −

n − 1
N − 1

⎞
⎠ .

As an application, consider the lottery '6 out of 49'. In this case,  , ,M = n = 6 N = 49
and  is the probability that a gambler hits exactly m winning numbers with onepm
coupon (see example 1.7). More generally, hypergeometrically distributed random
variables occur in the following situations: In a set of N elements belong M elements
to type 1 and  elements to type 2. A sample of n elements is randomly takenN −M
from this set. What is the probability that there are m elements of type 1 (and, hence,

 elements of type ) in this sample?n −m 2

If X is the random number of type 1 elements in the sample, then X has the distribu-
tion (2.33): There are  possibilities to select from M  type 1-elements exactly m,(M

m )
and to each of these possibilities there are  possibilities to select from  (N−M

n−m ) N − M
type 2-elements exactly  The product of both numbers is the number of favor-n − m.
able cases for the occurrence of the event ' '. Finally, there are  possibilitiesX = m (N

n )
to select n elements from a total of N elements. Problems of this kind are typical ones
in statistical quality control.
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Example 2.6 A customer knows that on average 4% of parts delivered by a manufac-
turer are defective and has accepted this percentage. To check whether the manufac-
turer exceeds this limit, the customer takes from each batch of 800 parts randomly a
sample of size 80 and accepts the delivery if there are at most 3 defective parts in a
batch. What is the probability that the customer accepts a batch, which contains 50
defective parts? In this case,

 and N = 800, M = 50, n = 80.
Let X be the random number of defective parts in the sample. Then the probabilities

 arepi = P(X = i)

pi =

⎛
⎝

50
i
⎞
⎠
⎛
⎝

800 − 50
80 − i

⎞
⎠

⎛
⎝

800
80

⎞
⎠

; i = 0, 1, 2, 3.

The exact values are

p0 = 0.00431, p1 = 0.02572, p2 = 0.07406, p3 = 0.13734.
Thus, the acceptance probability  of the delivery (consumer's risk) isCrisk

Crisk = p0 + p1 + p2 + p3 = 0.24143.
Note that according to agreement the average number of faulty parts in a batch is
supposed to be 32.                                                                                                        

Remark When comparing examples 2.5 and 2.6, the reader will notice that despite the same
type of problems, for their solution first the binomial disribution and then the hypergeometric
distribution had been used. This is because in example 2.5 the size of the delivery, from which
a sample was taken, had been assumed to be large compared to the sample size, whereas in
example 2.6 the size of the set of parts, namely 50, is fairly small compared to the sample of
size 5 taken from this lot. If a sample of moderate size is taken from a sufficiently large set of
parts, then this will not significantly change the ratio between defective and nondefective parts
in the set, and one can assume the probability p of picking a defective part stays approximate-
ly the same. In this case the binomial distribution will yield acceptable approximate values.
But if you want to apply the binomial distribution to small lots of parts, then, after every test
of a part, you have to return it to the lot. In this case the ratio between defective and nondefec-
tive parts in the lot will not change either. The policy 'with replacement' is not always applic-
able, since during a check a part is frequently 'tested to death'. Generally, when applying the
binomial distribution (hypergeometric distribution) in quality control, then "sampling with
replacement" ("sampling without replacement") refers.

Example 2.7  Let N be the unknown number of adult zebras in a large National Park.
A number of  randomly selected zebras from the total population of thisM = 100
park had been marked. A year later, a second sample from the whole adult zebra
population of this park was taken, this time of size  Amongst these there weren = 50.

 zebras marked a year ago. Construct an estimation  for N with property thatm = 7 N
for  the probability of the observed event ' ' is maximal.N = N X = 7
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This way of estimating  makes sense, since one does not assume to have observedN
by chance an unlikely event instead of a very likely one. In this case, the hypergeo-
metrically distributed random variable X is the number of marked zebras in the
second sample of size . Let  be the probability that theren = 50 p7(N) = P(X = 7 N)
are 7 marked zebras in the second sample given that the whole zebra population is of
size N. Then, by definition of , the following two inequalities must be true:N

      (2.35)p8(N + 1) =

⎛
⎝

100
7

⎞
⎠
⎛
⎝⎜

N + 1 − 100
50 − 7

⎞
⎠⎟

⎛
⎝⎜

N + 1
50

⎞
⎠⎟

≤

⎛
⎝

100
7

⎞
⎠
⎛
⎝⎜

N − 100
50 − 7

⎞
⎠⎟

⎛
⎝⎜

N
50

⎞
⎠⎟

= p7(N),

       (2.36)p7(N − 1) =

⎛
⎝

100
7

⎞
⎠
⎛
⎝⎜

N − 1 − 100
50 − 7

⎞
⎠⎟

⎛
⎝⎜

N − 1
50

⎞
⎠⎟

≤

⎛
⎝

100
7

⎞
⎠
⎛
⎝⎜

N − 100
50 − 7

⎞
⎠⎟

⎛
⎝⎜

N
50

⎞
⎠⎟

= p7(N).

Inequality (2.35) is equivalent to

⎛
⎝⎜

N − 99
43

⎞
⎠⎟
⎛
⎝⎜

N
50

⎞
⎠⎟
≤
⎛
⎝⎜

N − 100
43

⎞
⎠⎟
⎛
⎝⎜

N + 1
50

⎞
⎠⎟

.

By making use of the representation (1.5) of the binomial coefficient (cancelling the
factors which are equal at both sides), this inequality reduces to

(N − 99)(N − 49) ≤ (N − 142)(N + 1) or 4993 ≤ 7N or 713.3 ≤ N.

Inequality (2.36) is equivalent to

⎛
⎝⎜

N − 101
43

⎞
⎠⎟
⎛
⎝⎜

N
50

⎞
⎠⎟
≤
⎛
⎝⎜

N − 100
43

⎞
⎠⎟
⎛
⎝⎜

N − 1
50

⎞
⎠⎟

.

Again by using (1.5), this inequality simplifies to

(N − 143)N ≤ (N − 100)(N − 50) or 7N ≤ 5000 or N ≤ 714.3.

Hence,  so that                                                                713.3 ≤ N ≤ 714.3, N = 714.

If the probabilities  of the hypergeometric distribution have to be successivelypm
calculated, then the following recursion formula is useful:

pm+1 =
(n −m)(M −m)

(m + 1)(N −M − n +m + 1) pm ; m = 0, 1, ..., min(n, M).
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Poisson Distribution A random variable X with range  has a PoissonR = {0, 1, ...}
distribution with parameter  ifλ

                      (2.37)pi = P(X = i) = λi

i !
e−λ, λ > 0, i = 0, 1, ... .

In view of the exponential series (2.19), the normalizing condition (2.21) is fulfilled.
Again by making use  (2.19), of

E(X) = Σ
i=0

∞
i pi = Σ

i=1

∞
i λ

i

i !
e−λ = Σ

i=1

∞ λi

(i − 1) !
e−λ

                     = λ e−λ Σ
i=0

∞ λi

i !
= λ e−λe+λ = λ .

In section 2.2.3 it will be proved that the variance of X is equal to  as well. Thus,λ

                                        (2.38)E(X) = λ, Var(X) = λ .

In the context of the Poisson distribution, X is frequently said to be the number of
Poisson events (occurring in time or in a spacial area).

Example 2.8 Let X be the random number of staff of a company being on sick leave
a day. Long-term observations have shown that X has a Poisson distribution with pa-
rameter λ = E(X) = 10.
What is the probability that the number of staff being on sick leave a day is 9, 10, or
11?

   p9 =
109

9 ! e−10 = 0.1251,

p10 =
1010

10 ! e−10 = 0.1251,

 p11 =
1011

11 ! e−10 = 0.1137.

Hence, the desired probability is
                             P(9 ≤ X ≤ 11) = p9 + p10 + p11 = 0.3639.

With regard to applications, it is frequently more adequate to write the Poisson prob-
abilities (2.37)  the following form:in

              (2.39)pi = P(X = i) = (λ t)i

i !
e−λ t, λ > 0, t > 0; i = 0, 1, ... .

In this form, the Poisson distribution depends on the two parameters  and t. Theλ
parameter t refers to the time span or to the size of a spacial area (1-, 2-,  or 3-dimen-
sional), and  refers to the mean number of Poisson events occurring per unit time,λ
per length unit, etc. Thus, t is a scale parameter. 
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Example 2.9 The number of trees per unit of area in a virgin forest stand with a stem
diameter of at least  (measured at a height of 1.3 m) follows a Poisson distribu-50 cm
tion with parameter  λ = 0.004 [m2]−1.
What are the probabilities that in any subarea of  in this stand there are1000 m2

(1) none of such trees, and (2) exactly four of such trees?

Formula (2.39) is applied with  and  . The results areλ = 0.004 [m2]−1 t = 1000 m2

p0 = e−0.004⋅1000 = e−4 ≈ 0.0183,

  p4 =
[(0.004) ⋅ 1000]4

4! e−0.004⋅1000

                                                        = 44

4! e−4 ≈ 0.1954.

If the 'Poisson probabilities'  have to be manually calculated, then the followingpi
recursion formula is useful:

pi+1 =
λ

i + 1
pi ; i = 0, 1, ...

Approximations  In view of binomial coefficients involved in the definition of the
binomial and particularly in the hypergeometric distribution, the following approxi-
mations are useful for numerical analysis with a calculator:

Poisson Approximation to the Binomial Distribution If n is sufficiently large and p
is sufficiently small  then,

                    (2.40)⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i ≈ λi

i !
e−λ; λ = np, n = 0, 1, ... .

As a rule of thumb, the Poisson approximation is applicable if

np < 10 and n > 1500p.

Binomial  Approximation  to  the Hypergeometric Distribution 

     (2.41)
⎛
⎝

M
m
⎞
⎠
⎛
⎝

N −M
n −m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

≈ ⎛
⎝

n
m
⎞
⎠ pm(1 − p)n−m with p = M/N; m = 0, 1, ..., n.

As a rule of thumb, the binomial approximation to  the hypergeometric distribution is
applicable if

0.1 < M/N < 0.9, n > 10, and n/N < 0.05.

This approximation is heuristically motivated by the remark after example 2.6.
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Poisson Approximation to the Hypergeometric Distribution If n is sufficiently large
and  is sufficiently small, thenp = M/N

                        (2.42)
⎛
⎝

M
m
⎞
⎠
⎛
⎝

N −M
n −m

⎞
⎠

⎛
⎝

N
n
⎞
⎠

≈ λm

m! e−λ with λ = n ⋅ M
N .

This relation combines the approximations (2.40) and (2.41). As a rule of thumb, the
Poisson approximation is applicable if

M/N ≤ 0.1, n > 30, n/N < 0.05.

Example 2.10  On average, only 0.01% of trout eggs will develop into adult fish.
What is the probability  that at least three adult fish arise from 40 000 eggs?p≥3
Let X be the random number of eggs out of 40 000 which develop into adult fish. It
is assumed that the eggs develop independently of each other. Then X has a binomial
distribution with parameters  and  Thus,n = 40 000 p = 0.0001.

pi = P(X = i) = ⎛
⎝

40 000
i

⎞
⎠ (0.0001)i (0.9999)40 000−i,

where  Since n is large and p is small, the Poisson distribution withi = 0, 1, ..., 40 000.
parameter  can be used to approximately calculate the :λ = np = 4 pi

pi =
4i

i!
e−4; i = 0, 1, ... .

The desired probability is
  p≥3 = 1 − p0 − p1 − p2 = 1 − 0.0183 − 0.0733 − 0.1465

                                                        = 0.7619.

Continuation of Example 2.6  The binomial and the Poisson approximations to the
hypergeometric distribution are applied with 

N = 800, M = 50, and n = 80.
Table 2.2 compares the exact values to the ones obtained from approximations. The
third condition in the corresponding 'rule of thumbs', namely , is not ful-n/N < 0.05
filled.                                                                                                                                              

 Exact  0.00431  0.02572  0.07406  0.13734  0.24143

 Binomial  0.00572  0.03053  0.08039  0.13934  0.25598

 Poisson  0.00673  0.03369  0.08422  0.14037  0.26501

Table 2.2 Comparison of exact probabilities to its approximative values (example 2.6)
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2.3 CONTINUOUS RANDOM VARIABLES

2.3.1 Probability Distribution

The probability distribution of a discrete random variable Y is given by assigning to
each possible value of Y its probability according to the probability mass function of
Y. This approach is no longer feasible for random variables, which can assume non-
countably many values. To illustrate the situation, let us recall the geometric distribu-
tion over the interval [0, T] (page 15). This distribution defines the probability distri-
bution of a random variable X with noncountable, but finite, range  in theR = [0, T]
following way: The probability that X takes on a value out of an interval  with[a, b]

 is0 ≤ a < b ≤ T < ∞
P(a ≤ X < b) = (b − a) /T .

If then length of this 'interval probability' tends to 0:  However,b → a, P(X = a) = 0.
to assign to each value of X the probability 0 cannot be the way to define the probab-
ility distribution of a random variable with noncountably many values. Moreover, a
noncountable range R does not exclude the possibility that there exists a finite or
countably infinite set of values of X which actually have positive probabilities. Hence,
the probability distribution of X will be defined via the distribution function of X
(definition 2.2) as suggested in section 2.1:

                                      (2.43)F(x) = P(X ≤ x), x ∈ R .
As shown there (formula 2.5), the interval probabilities for any interval   withI = [a, b]

 and  are given in terms of the distribution function bya < b a, b ∈ R
                                    (2.44)P(a < X ≤ b) = F(b) − F(a).

To exclude the case that  has jumps for some   (i.e. F(x) has points of dis-F(x) x ∈ R
continuity), a continuous random variable is defined as follows:

    A random variable is called continuous if its distribution function  has a first  F(x)
    derivative f (x) = F (x).

Equivalently, a random variable is called continuous if there is a function  so thatf (x)

                                         (2.45)F(x) = ∫−∞
x f (u) du.

The function
                              (2.46)f (x) = F (x) = dF(x)/dx, x ∈ R ,

is called probability density function, probability density, or briefly density of X.
Sometimes the term probability mass function is used. A density has properties 

                                  (2.47)f (x) ≥ 0, ∫−∞
+∞ f (x) dx = 1.

Conversely, every function  with properties (2.47) can be interpreted as the den-f (x)
sity of a continuous random variable (Figure 2.4).
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Note If a random variable X has a density , then its distribution function need not exist inf (x)
an explicit form. This is the case if  is not integrable. Then, if no tables are available, thef (x)
values of  have to be calculated by numerical integration of (2.45).F(x)

The range of X coincides with the set of all those x for which its density is positive:
 (Figure 2.4). In terms of the density, the interval probability (2.44)R = {x, f(x) > 0}

has the form

                                    (2.48)P(a < X ≤ b) = ∫a
b f (x) dx.

Thus, the probability that X assumes a value between a and b is equal to the area be-
low  and above the x-axis between a and b (Figure 2.4). This implies the largerf (x)

 is in an environment of x, the larger is the probability that X assumes a value outf (x)
of this environment.

Example 2.11 A popular example for a continuous probability distribution is the
exponential distribution with parameter : It has distribution function and densityλ
(see Figure 2.5 a) and b))

                (2.49)F(x) =
⎧
⎩
⎨

1 − e−λ x, x > 0,
0, x ≤ 0, f (x) =

⎧
⎩
⎨

λ e−λ x, x > 0,
0, x ≤ 0.

A random variable with this distribution cannot take on negative values since
F(0) = P(X ≤ 0) = 0.

By (2.44), if   and  the probability that X takes on a value betweenλ = 1, a = 1, b = 2,
1 and 2 is                      P(1 < X ≤ 2) = F(2) − F(1) = (1 − e−2) − (1 − e−1) = 0.2325 .
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Figure 2.4  Relationship between distribution function and density
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A motivation of the term 'probability density' follows from the definition of  asf (x)

f (x) = lim
Δx→0

F(x + Δx) − F(x)
Δx

so that, for small ,Δx

                 (2.50)f (x) ≈
F(x + Δx) − F(x)

Δx or f (x)Δx ≈ F(x + Δx) − F(x).

Hence,  is indeed a probability per unit of x, and  is approximately the prob-f (x) f (x)Δx
ability that X takes on a value in the interval  This is the reason why for[x, x + Δx].
some heuristic derivations it is useful to interpret  as the probability that Xf (x) dx
takes on value x. Of course, for continuous random variables this probability is :0

P(X = x) = lim
Δx→0

[F(x + Δx) − F(x)] = F(x) − F(x) = 0.

Example 2.12 The weights of 60 balls for ball bearings of the same type have been
measured. Normally, one would expect that all balls have the same weight as prescri-
bed by the standard for this type of ball bearings. In view of unavoidable technolog-
ical fluctuations and measurement errors, this is not a realistic expectation. Table 2.3
shows the results of the measurements [in g]:

 5.77  5.82  5.70  5.78  5.70  5.62  5.66  5.66  5.64  5.76
 5.73  5.80  5.76  5.76  5.68  5.66  5.62  5.72  5.70  5.78
 5.76  5.67  5.70  5.72  5.81  5.79  5.78  5.66  5.76  5.72
 5.70  5.78  5.76  5.70  5.76  5.76  5.62  5.68  5.74  5.74
 5.81  5.66  5.72  5.74  5.64  5.79  5.72  5.82  5.74  5.73
 5.81  5.77  5.60  5.72  5.78  5.76  5.74  5.70  5.64  5.78

Table 2.3 Sample of 60 weight measurements of balls for ball bearings of the same type

The data fluctuate between 5.60 and 5.82. This interval is called the range of the
sample. Of course, the weights of the balls can principally assume any value within
the range, but the accuracy of the measurement method applied is restricted to two
decimals after the point. To get an idea on the frequency distribution of the data, they
are partitioned into class intervals (or cells). In Table 2.4, the integer  denotes theni
number of measurements which belong to class i, and  with  is thepi = ni/n n = 60
relative frequency of the random event   'a measurement is in class interval i '. AAi =
ball is randomly selected from the data set. Let X be the number of the class which
the weight of this ball belongs to. Then X is a discrete random variable with range
{1, 2,..., 6} and probability distribution

 pi = P(X = i) = ni/n, i = 1, 2, ..., 6.
The corresponding cumulative probabilities  aresi

si = p1 + p2 + . .. + pi, i = 1, 2, ..., 6, s6 = 1.
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   X      class     ni      pi      si

   1   [5.59-5.63)      4  0.0667  0.0667

   2  [5.63-5.67)      8  0.1333  0.2000

   3  [5.67-5.71)    10  0.1667  0.3667

   4  [5.71-5.75)    13  0.2167  0.5834

   5  [5.75-5.79)    17  0.2833  0.8667

   6  [5.79-5.83)      8  0.1333  1

Table 2.4  Probability distribution of X for example 2.12

Now we essentially are in the same situation as in example 2.3. In Table 2.4 the nota-
tion  means that the left end point  belongs to the class interval, but the[ai, ai+1) ai
right end point  does not.ai+1

Figure 2.6 Distribution function a) and probability histogram b) of X (example 2.12)

The jump size of the distribution function between the  and the  class isi th (i + 1) th
determined by the data belonging to the  class, i.e., by the probabilities   i th pi = ni/n :

F60(x) = P(X ≤ x) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪
⎪

0 for x < 5.63
0.0667 for 5.63 ≤ x < 5.67
0.2000 for 5.67 ≤ x < 5.71
0.3667 for 5.71 ≤ x < 5.75
0.5834 for 5.75 ≤ x < 5.79
0.8667 for 5.79 ≤ x < 5.83
1 for 5.83 ≤ x

.

The histogram is an approximation to the probability density of the random weight Y
of the balls, which actually is a continuous random variable, for the following reason:
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If the length of the class intervals is scheduled to be one, what can always be done by
scaling the x-axis accordingly (see Figure 2.10, page 70), then the area of the column
over this interval is the probability  that Y takes on a value from this interval.pi = ni/n
This corresponds to the interval probabilities (2.48) given by a density. By comparing
the probability histogram with the theoretical densities proposed in section 2.3.4, one
gets a first hint at the type of the probability distribution of Y. For instance, when com-
paring the histogram (Figure 2.6 b) with the density of the exponential distribution
(Figure 2.5 b), this distribution can immediately be excluded as a suitable model.      

By partitioning in the previous example the 60 ball weights in classes, information
about the probability distribution of the ball weights was lost. No information is lost
when defining an empirical distribution function  of Y based on a sample ofFn(x)
size n (i.e., the results of n repetitions of a random experiment with outcome Y have
been registered) as follows:

Fn(x) =
n(x)

n ,

where  is the number of values in the sample, which are equal or smaller than x. n(x)

Theorem of I. V. Glivenko:  tends to  as  in the follow-Fn(x) F(x) = P(Y ≤ x) n → ∞
ing sense: If  where  is the range of Y, thenGn = supx∈R Fn(x) − F(x) , R

P( lim
n→∞

Gn = 0) = 1.

Note that  has jumps of size  at each sample value.Fn(x) 1/n

2.3.2 Distribution Parameters

The probability distribution function and/or the density of a continuous random vari-
able X contain all the information on X. But, as with discrete random variables, to get
fast information on essential features of a random variable or its probability distribu-
tion, it is desirable to condense as much as possible of this information into some nu-
merical parameters. Their interpretation is the same as for discrete random variables.
Remember that a random variable X can be interpreted as the outcome of a random
experiment. The mean value gives information on the average outcome of the random
experiment in a long series of repetitions. The characteristic feature of the median is
that, in a long series of repetitions of the random experiment, on average 50% of its
outcomes are to the left of the median and 50% to the right. Hence, mean value and
median characterize the central tendency of X .

Mean Value The mean value (mean, expected value) of  is defined asX

                                         (2.51)E(X) = ∫−∞
+∞ x f (x) dx

on condition that  ∫−∞
+∞ x f (x) dx < ∞.
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The condition makes sure that the integral (2.51) exists  Note that.

E( X ) = ∫−∞
+∞ x f (x) dx .

Formula (2.51) can be derived from the definition of the mean value of a discrete ran-
dom variable (2.7): For simplicity of notation, let the range of X be  R isR = [0, ∞).
partitioned in intervals  of length  as follows:Ik Δx

Ik = (kΔ, (k + 1)Δ], k = 0, 1, ... .

Let  be a discrete random variable, which takes on a value  from each  withX∼ xk Ik
probability  Then, by (2.7) and (2.50), as pk = F((k + 1)Δ) − F(kΔ); k = 0, 1, ... Δ → 0,

E(X∼) = Σk=0
∞ xk pk = Σk=0

∞ ∫kΔ
(k+1)Δ xk f (x) dx

                         → ∫0
∞ x f (x) dx = E(X).

For nonnegative continuous random variables, the analogue to formula (2.10) is

                                        (2.52)E(X) = ∫0
∞[1 − F(x)] dx.

This formula is verified by partial integration as follows:

E(X) = ∫0
+∞ x f (x) dx = lim

t→∞ ∫0
t x f (x) dx

                                      = lim
t→∞

⎡⎣t F(t) − ∫0
t F (x) dx⎤⎦ = lim

t→∞ ∫0
t [F(t) − F (x)] dx

                = ∫0
∞[1 − F(x)] dx.

From (2.51) one gets analogously by partial integration the mean value of a random
variable X with range  asR = (−∞, +∞)

E(X) = ∫0
∞[1 − F(x)] dx − ∫−∞

0 F(x) dx.

If  is a real function and X any continuous random variable with density h(x) f (x),
then the mean value of the random variable  can directly be obtained fromY = h(X)
the density of X:

                                    (2.53)E(h(X)) = ∫−∞
+∞ h(x) f (x) dx.

If  with constants a and b, then  andh(x) = a x + b Y = aX + b

                                      (2.54)E(aX + b) = a E(X) + b.
If both X and  are nonnegative, one obtains by partial integration of (2.53) a for-h(x)
mula for , which generalizes formula (2.52):E(h(X))

                  (2.55)E(h(X)) = ∫0
∞[1 − F(x)]dh(x) = ∫0

∞[1 − F(x)]h (x) dx,

where  denotes the first derivative of  (assuming its existence).h (x) h(x)
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Moments  By specifying , formula (2.53) yields the moments of X:h(x)

The (ordinary) n th moment of X is the mean value of :X n

                           (2.56)μn = E(X n) = ∫−∞
+∞ xn f (x) dx; n = 0, 1, ... .

In particular,  and μ0 = 1 μ1 = E(X ).
The n th (ordinary) central moment of  isX

             (2.57)mn = E((X − E(X))n) = ∫−∞
+∞(x − E(X))n f (x) dx , n = 0, 1, ... ,

and the n th absolute central moment of  isX

             (2.58)Mn = E( X − E(X) n) = ∫−∞
+∞ x − E(X) n f (x) dx , n = 0, 1, ... .

Median The median of a continuous random variable X with distribution function
 is defined as that value  of X which satisfies F(x) x0.5 F(x0.5) = 0.5.

Hence, in a long series of experiments with outcome X about 50% of the results will
be to the left of  and 50% to the right of  (Figure 2.7). One may expect thatx0.5 x0.5

 But this is not generally true as the following example shows.x0.5 = E(X).

Example 2.13 Let X have an exponential distribution with parameter  (see exampleλ
2.11), i.e.,  Then, by formula (2.52),F(x) = 1 − e−λ x, x ≥ 0.

E(X) = ∫0
∞ e−λ xdx = 1/λ .

Now, let  Then, by (2.55), the second moment of X becomesh(x) = x2.

E(X 2) = ∫0
∞ e−λ x 2x dx = 2 ∫0

∞ x e−λ x dx = − 2
λ2 ⎡⎣e−λx(λx + 1)⎤⎦ 0

∞

                                                              = − 2
λ2 [0 − 1] = 2/λ2.

The median  is solution of the equation  so thatx0.5 1 − e−λ x0.5 = 0.5

x0.5 = 0.6931/λ .

Thus, for the exponential distribution,   and                x0.5 < E(X ) E(X 2) > [E(X )]2.

Percentile The  (also denoted as  of a continuous randomα-percentile α-quantile)
variable X is defined as that value  of X which satisfiesxα

                                          (2.59)F(xα) = α, 0 < α < 1.
Hence, in a long series of experiments with outcome X, about  of the results willα%
be to the left of  and  to the right of  (Figure 2.7). Thus, the median isxα (1 − α)% xα
the 0.5-percentile of X or of its probability distribution, respectively.
Percentiles are important criteria in quality control. For instance, for an exponentially
distributed lifetime, what should the mean life of an electronic part be so that 95% of
these parts operate at least 5 years without failure? The mean life is  so that μ = 1/λ μ
must satisfy  Therefore, P(X > 5) = e−5/μ ≥ 0.95. μ ≥ 97.5 years.
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Mode A mode  of a continuous random variable X with density  is a value atxm f (x)
which  assumes a relative maximum.  is unimodal if it has exactly one mode.f (x) f (x)
Otherwise it is called multimodal. 
A density may have an uncountably infinite set of modes. This happens when the
density takes on a (relative) maximum over a whole interval. For a unimodal density
(in this case  assumes its absolute maximum at ), the most outcomes during af (x) xm
long series of experiments will be in an environment of xm.

A function  is said to be symmetric with symmetry center  if for all xf (x) xs

f (xs − x) = f (xs + x).

It is quite obvious that for a random variable X with a unimodal and symmetric prob-
ability density , median, mode and symmetry center coincide. If, in addition, thef (x)
mean value of X is finite, then

 E(X ) = x0.5 = xm = xs.

Example 2.14 The Laplace distribution, also called doubly exponential distribution,
has a symmetric density with symmetry center at  (Figure 2.8):xs = μ

f (x) = 1
2 λ e−λ x−μ , − ∞ < x < ∞ .

This density assumes its maximum at  namely . Thus,xm = μ, f (μ) = λ/2

                                                 E(X) = x0.5 = xm = μ.
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In what follows, formulas for the measures of variability, introduced in section 2.2
for discrete random variables, are given for continuous random variables. Their inter-
pretation does not change.

Variance The variance of X is the mean value of the squared deviation of X from its
mean value , i.e. the mean value of the random variable :E(X ) Y = (X − E(X ))2

Var(X) = E(X − E(X))2.

The calculation of this mean value does not require knowledge of the density of Y,
but can be done by (2.53) with :h(x) = (x − E(X))2

                                (2.60)Var(X) = ∫−∞
+∞(x − E(X ))2 f (x) dx.

Thus, the variance of X is its  central moment (equation 2.57).2 nd
If with constants a and b the random variable  is of interest, then  becomesaX + b h(x)

h(x) = (ax + b − aE(X) − b)2 = a2(x − E(X ))2

so that
                                     (2.61)Var(aX + b) = a2Var(X).

There is an important relationship between the variance and the second moment of :X

                                   (2.62)Var(X) = E(X 2) − [E(X )]2.

The proof is identical to the one for the corresponding relationship for discrete ran-
dom variables (see formula 2.17).

Standard Deviation The standard deviation of X is the square root of . It isVar(X)
frequently denoted as :σ

σ = Var(X ) .

Coefficient of Variation The coefficient of variation of  is defined as the ratioX
V(X ) = σ /E(X) .

It follows from formulas (2.54) and (2.61) that X and aX have the same coefficient of
variation. More generally, since the coefficient of variation considers the values of X
in relation to their average size, this coefficient allows to compare the variability of
different random variables.
An important measure of the variability is also the mean absolute linear deviation of
X from its mean value:

                            (2.63)E( x − E(X ) ) = ∫−∞
+∞ x − E(X ) f (x) dx.

This is the  absolute central moment of X as defined by (2.58):1st
M1 = E( x − E(X ) ).
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Example 2.15 Let X be the random emission of  [in 100 kg/h] of a chemical fac-SO2
tory. Its distribution function  (density ) over one day, starting at midnight,F(x) f (x)
has been found to be (Figure 2.9)

F(x) =
⎧

⎩

⎨
⎪

⎪

0 for x < 0,
x for 0 ≤ x ≤ 1,
1 for 1 < x.

f (x) =
⎧

⎩

⎨
⎪

⎪

0 for x < 0,
0.5 x−0.5 for 0 ≤ x ≤ 1,

0 for 1 < x.

The graph of the density shows that the bulk of the (illegal) emissions occurs imme-
diately after midnight. Later the emissions tend to the accepted values.
By (2.52), the mean value of  isX

E(X) = ∫0
1(1 − x ) dx = [x − 2

3 ⋅ x3/2]0
1 = 1/3 [100 kg/h].

This result and formulas (2.56) and (2.62) yield the second moment and the variance:

E(X 2) = ∫0
1 x2 0.5 x−1/2 dx = 0.5 ∫0

1 x1.5 dx = 0.2 ,

σ2 = Var(X) = 0.2 − (1/3)2 ≈ 0.0889.

Standard deviation and coefficient of variation are
  σ = Var(X) ≈ 0.2981, V(X) = σ/E(X) ≈ 0.8943 = 89, 43% .

The  absolute central moment of X is1st

M1 = E( X − 1/3 ) = ∫0
1 x − 1/3 0.5 x−0.5dx

= ∫0
1/3(1/3 − x) 0.5 x−0.5dx + ∫1/3

1 (x − 1/3) 0.5 x−0.5dx = 0.1283 + 0.1283

so that                                                                    E( X − 1/3 ) = 0.2566 [100 kg/h].

Continuation of Example 2.12 a) The probabilities  in example 2.12 are actuallypi
assigned to the class numbers 1, 2, ...,6. To be able to get quantitative information on
the ball weights, now the  are assigned to the middle points of the class intervals.pi
That means the original range of X, namely {1, 2, ... ,6}, is replaced with the range
{5.605, 5.645, 5.68.5, 5.725, 5.765, 5.805}. The choice of the middle points takes
into account that the classes do not contain their upper limit. 
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In this way, a discrete random variable has been generated, which approximates the
original continuous one, the weight of the balls. Mean value and variance of  areX

 E(X ) = 5.605 ⋅ 0.0667 + 5.645 ⋅ 0.1333 + 5.685 ⋅ 0.1667 + 5.725 ⋅ 0.2167,
and

  Var(X) = (5.605 − 5.722)2 ⋅ 0.0667 + (5.645 − 5.722)2 ⋅ 0.1333
                 + (5.685 − 5.722)2 ⋅ 0.1667 + (5.725 − 5.722)2 ⋅ 0.2167
                 + (5.765 − 5.722)2 ⋅ 0.2833 + (5.805 − 5.722)2 ⋅ 0.1333

so that
 E(X) = 5.722, Var(X ) = 0.00343, Var(X) = 0.05857.

For the sake of comparison, the first absolute central moment is calculated:

E( X − E(X) ) = 5.605 − 5.722 ⋅ 0.0667 + 5.645 − 5.722 ⋅ 0.1333

                                    + 5.685 − 5.722 ⋅ 0.1667 + 5.725 − 5.722 ⋅ 0.2167
                                    + 5.765 − 5.722 ⋅ 0.2833 + 5.805 − 5.722 ⋅ 0.1333

                                             = 0.0481.
By representing several values of the original data set by their average value, the
numerical effort is reduced, but some of the information contained in the data set is
lost. Based on the data set given, maximal information on the mean value and on the
variance of X give the arithmetic mean  and the empirical variance  respectively,x s2,
which are calculated from the individual  values provided by Table 2.2n = 60 :

             (2.64)x = 1
n Σi=1

n xi and s2 = 1
n−1 Σi=1

n (xi − x)2 = 1
n−1 Σi=1

n xi
2 − n

n−1 x2 .

The numerical results are, including the empirical standard deviation :s = s2

x = 5.727, s2 = 0.0032, and s = 0.0566.
Directly from the data set, the empirical mean absolute deviation is given by

1
n Σi=1

n xi − x = 1
60 Σi=1

60 xi − 5.727 = 0.0475.

b) The frequency histogram of Figure 2.5 suggests a suitable empirical density f60(y)
with respect to class intervals of length 1:

        f60(y) =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

0 if y < 2/3,
3

145 (3y − 2) if 2/3 ≤ y < 5.5 ,
3
55 (−3y + 22) if 5.5 ≤ y ≤ 22/3 ,

0 if 22/3 < y .

Having assigned length 1 to all class intervals formally means that the variables x and
y in Figure 2.10 are related by the linear transformation  or, in termsy = 25x − 138.75,
of the corresponding variables  and X:Y
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                           (2.65)Y = 25X − 138.75 or X = 0.04Y + 5.55.

First of all, it has to be shown that  is indeed a probability density, i.e,. it hasf 60(y)
to be shown that the area A of the triangle is equal to 1: Since it is composed of 2
rectangular triangles, there  no need for integration:is

A = 1
2 0.3 ⋅ (5.5 − 2/3) + 1

2 0.3 ⋅ (22/3 − 5.5) = 1.

This empirical density allows the calculation of estimates for the distribution para-
meters by the formulas given in this section.
The mean value of  isY

E(Y ) = ∫
2/3

22/3
y f60(y)dy = 3

145 ∫
2/3

5.5
y (3y − 2)dy + 3

55 ∫
5.5

22/3
y (−3y + 22)dy

= 3
145 ⎡⎣y3 − y2 ⎤⎦ 2/3

5.5 + 3
55 ⎡⎣−y3 + 11y2 ⎤⎦ 5.5

22/3

                                     = 4.4965.

By formulas (2.54) and (2.65),  so thatE(X) = 0.04 E(Y) + 5.55
E(X) = 0.04 ⋅ 4.4965 + 5.55 = 5.729.

By formula (2.60), an estimate of the variance of Y is

Var(Y ) = ∫
2/3

22/3
y2 f60(y)dy − [E(Y)]2

= 3
145 ∫

2/3

5.5
y2 (3y − 2)dy + 3

55 ∫
5.5

22/3
y2 (−3y + 22)dy − [4.4965]2

  = 3
145

⎡
⎣y3 ⎛

⎝
3
4 y − 2

3
⎞
⎠

⎤
⎦ 2/3

5.5
+ 3

55
⎡
⎣y3 ⎛

⎝−3
4y + 22

3
⎞
⎠

⎤
⎦ 5.5

22/3
− [4.4965]2

 = 2.0083.
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Hence, by formulas (2.59) and (2.60),

Var(X) = 0.042Var(Y) = 0.003213.
By (2.63), the mean absolute linear deviation of  from  isY E(Y)

 E( Y − E(Y) ) = ∫2/3
22/3 y − 4.4965 f60 (y) dy

= 3
145 ∫2/3

4.4965(4.4965 − y) (3y − 2) dy + 3
145 ∫4.4965

5.5 (y − 4.4965) (3y − 2) dy

                                     + 3
55 ∫5.5

22/3(y − 4.4965) (−3y + 22) dy

= 0.58111 + 0.14060 + 0.44402 = 1.16573.

Hence,                                                 E( X − E(X) ) = 0.04E( Y − E(Y) ) = 0.04663.

Truncation Most of the probability distributions for random variables have ranges
 or , respectively. If, however, in view of whatever reasons a random[0, ∞) (−∞, +∞)

variable, which is  supposed to have distribution function , can only take on valuesF(x)
from an interval , then a truncation of the range of X or its distribution, respec-[c, d]
tively, makes sense. This is being done by replacing  with the condi-F(x) = P(X ≤ x)
tional distribution function . By formula (1.22),F[c,d ](x) = F(X ≤ x c ≤ X ≤ d)

                            (2.66)F[c,d ](x) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

0 if x < c,
F(x)−F(c)
F(d)−F(c) if c ≤ x ≤ d,

1 if d < x.

For instance, when the exponential distribution (example 2.10) is truncated with re-
gard to the interval  then[c, d ],

                              (2.67)F[c,d ](x) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

0 if x < c,
e−λc−e−λx

e−λc−e−λd if c ≤ x ≤ d,

1 if d < x.

Most important is the special case . Then,c = 0

                                (2.68)F[0,d ](x) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

0 if x < 0,
1 − e−λx

1 − e−λd if 0 ≤ x ≤ d,

1 if d < x.

Truncation is actually a very adequate tool to tailor probability distributions to the
respective application. Although, as mentioned above, most of the common probabi-
lity distributions have unbounded ranges (at least to the right), unbounded random
variables are unrealistic (even impossible) outcomes of random experiments like
determining life-, repair-, and service times or measurement errors.
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Standardization  A random variable  (discrete or continuous) withS
E(S) = 0 and Var(S) = 1

is called a standard random variable.

In view of formulas (2.54) and (2.59), for any random variable X with finite mean
value  and variance  the linear transformation of X given byμ = E(X) σ2 = Var(X),

                                                  (2.69)S =
X − μ

σ
or, equivalently, by

S = 1
σ X −

μ
σ

is a standard random variable. S is called the standardization or normalization of X.

Skewness  In case of a continuous random variable, its distribution is symmetric if
and only if its density is a symmetric function. The skewness of a distribution meas-
ures the degree of asymmetry of arbitrary probability distributions, including discrete
ones. (Remember the skewness of a discrete probability distribution is visualized by
its histogram.) The two most popular skewness criterions are Charlier's skewness γC
and Pearson's skewness :γP

γC =
m3
σ3 , γP =

μ − xm
σ ,

where , and  are in this order mean value, third  central moment (seeμ, m3, xm σ
formula 2.57), mode, and standard deviation of X. For symmetric distributions both
criteria are equal to 0. They are negative if the density is skewed to the right ('long
tail' of the density to the right (Figure 2.11)) and positive if the density is skewed to
the left ('long tail' of the density to the left).
Charlier's skewness is invariant to the linear transformation (2.69), i,.e., invariant to
standardization. That means, X and its standardization  have the same(X − E(X))/σ
skewness if measured by γC.
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2.3.3  Important Continuous Probability Distributions

In this section some important probability distributions of continuous random varia-
bles X will be listed. If the distribution function is not explicitely given, it can only be
represented as integral over the density.
Note: In what follows, the areas where the distribution function is 0 or 1 or, equivalently, the
density is 0, are no longer explicitely taken into account when specifying the domains of defi-
nition of these functions.

Uniform Distribution A random variable X has a uniform distribution over the finite
interval (range)  with  if it has distribution function and density[c, d ] c < d

F(x) = x − c
d − c

, c ≤ x ≤ d, f (x ) = 1
d − c

, c ≤ x ≤ d.

Thus, for any subinterval  of , the corresponding interval probability is[a, b] [c, d ]

 P(a < X ≤ b) = b − a
d − c

.

This probability depends only on the length of the interval  but not on its posi-[a, b] ,
tion within the interval  i.e., all subintervals of   of the same length have[c, d ] , [c, d ]
the same chance that X takes on a value out of it.
Mean value and variance of  areX

E(X) = c + d
2 , Var(X) = 1

12 (d − c)2.

Power Distribution A random variable X has a power distribution with finite range 
 if it has distribution function and density (Figure 2.13)[0, τ ]

,      F(x) = ⎛
⎝

x
τ

⎞
⎠

α
f (x) = α

τ
⎛
⎝

x
τ

⎞
⎠

α−1
, α > 0, τ > 0, 0 ≤ x ≤ τ.

Mean value and variance are

     E(X) = ατ
α + 1, Var(X) = ατ 2

(α + 1)2(α + 2)
, α > 0, τ > 0.

The uniform distribution with range  is seen to be a special case if [0, τ ] α = 1.
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Note  is a scale parameter, i.e., without loss of generality  can be chosen as meas-τ τ = 1
urement unit.  is the shape or form parameter of  this distribution, since  determines theα α
shape of the graph of the density.

Pareto Distribution A random variable X has a Pareto distribution with range [τ, ∞)
if it has distribution function  densityand

F(x) = 1 − ⎛
⎝

τ
x

⎞
⎠

α
, f (x) = α

τ
⎛
⎝

τ
x

⎞
⎠

α+1
, x ≥ τ > 0, α > 0.

Mean value and variance are

 E(X) = ατ
α − 1 , α > 1, Var(X) = α τ 2

(α − 1)2 (α − 2)
, α > 2 .

For  and  mean value and variance, respectively, do not exist, i.e., they areα < 1 α < 2
not finite.

Cauchy Distribution A random variable X has a Cauchy distribution with parame-
ters  and  if it has densityλ μ

f (x) = λ
π [λ2 + (x − μ)2]

, − ∞ < x < ∞, λ > 0, − ∞ < μ < ∞ .

This distribution is symmetric with symmetry center  Mean value and variance areμ.
infinite.
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Exponential Distribution A random variable X has an exponential distribution with
(scale ) parameter  if it has distribution function and density (Figure 2.5, page 60)λ

                      (2.70)F(x) = 1 − e−λ x, f (x) = λ e−λx, λ > 0, x ≥ 0.
Mean value and variance are

                              (2.71)E(X) = 1/λ, Var(X) = 1/λ2.

Erlang Distribution A random variable X has an Erlang distribution with para-
meters  and n if it has distribution function and densityλ

                        (2.72)F(x) = 1 − e−λ x Σ
i=0

n−1 (λ x)i

i !
= e−λ x Σ

i=n

∞ (λ x)i

i !
,

               (2.73)f (x) = λ
(λ x)n−1

(n − 1) ! e−λ x; x ≥ 0, λ > 0, n = 1, 2, ...

Mean value and variance are
E(X ) = n /λ , Var(X ) = n /λ2.

The exponential distribution is a special case of the Erlang distribution for . Then = 1
relationship between the Erlang distribution and the Poisson distribution with para-
meter  is obvious, since the right-hand side of (2.72) is the probability that at least nλ
Poisson events occur in the interval   (formula (2.39), page 56).[0, x]

Gamma Distribution A random variable X has a gamma distribution with parame-
ters  and  if it has density (Figure 2.16)α β

                       (2.74)f (x) =
βα

Γ(α) xα−1e−β x, x > 0, α > 0, β > 0,

where the gammafunction  is defined byΓ(y)

                                   (2.75)Γ(y) = ∫0
∞ t y−1e−t d t , y > 0.

Mean value, variance, mode and Charlier's skewness are

            (2.76)E(X) = α /β , Var(X) = α /β2, xm = (α − 1)/β, γC = 2/ α .

Special cases: Exponential distribution for  and , Erlang distribution forα = 1 β = λ
α = n and β = λ .
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Figure 2.16 Densities of the gamma distribution

Beta Distribution  A random variable X has a beta distribution with range  and(c, d )
parameters  and  if it has densityα β

f (x) =
(d − c)1−α−β

B(α, β)
( x − c)α−1(d − x)β−1, c < x < d, α > 0, β > 0,

where the beta function  is defined asB(x, y)

B(α, β) = ∫0
1 xα−1(1 − x)β−1dx.

An equivalent representation of the beta function is

B(x, y) =
Γ(x) Γ(y)
Γ(x + y) ; x > 0, y > 0.

Mean value and variance are

E(X ) = c + (d − c) α
α + β , Var(X) =

(d − c)2α β
(α + β)2(α + β + 1)

.

The mode of this distribution is

 for xm = c + (d − c) α − 1
α + β − 2 α ≥ 1, β ≥ 1, and α + β > 2.

A special case is the uniform distribution in  if .[c, d ] α = β = 1
If X has a beta distribution on the interval , then  has  a beta(c, d) Y = (X − c)/(d − c)
distribution on the interval  Hence, it is sufficient to consider the beta distribu-(0, 1).
tion with range (0,1). The corresponding density is

f (x) = 1
B(α, β)

xα−1(1 − x)β−1, 0 < x < 1, α > 0, β > 0.

Figure 2.17 Densities of the beta-distribution over (0, 1)
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Weibull Distribution A random variable X has a Weibull distribution with scale
parameter  and shape parameter  (2-parameter Weibull distribution) if it hasθ β
distribution function and density (Figure )2.18

     (2.77)F(x) = 1 − e(x/θ)β , f (x) =
β
θ

⎛
⎝

x
θ

⎞
⎠

β−1
e(x/θ)β ; x > 0, β > 0, θ > 0.

Mean value and variance are

        (2.78)E(X) = θ Γ⎛
⎝

1
β + 1⎞

⎠ , Var(X) = θ2 ⎡
⎣
⎢Γ⎛

⎝
2
β + 1⎞

⎠ − ⎛
⎝Γ⎛

⎝
1
β + 1⎞

⎠
⎞
⎠

2 ⎤
⎦
⎥.

Special cases: Exponential distribution if  and  Rayleigh distribution ifθ = 1/λ β = 1.
 Distribution function, density, and parameters of the Rayleigh distribution areβ = 2.

                 (2.79)F(x) = 1 − e(x/θ)2 , f (x) = 2 x
θ2 e(x/θ)2 ; x > 0, θ > 0.

                          (2.80)E(X) = θ π/4 , Var(X ) = θ2 (1 − π/4).

3-parameter Weibull distribution  A random variable X has a 3-parameter Weibull
distribution with parameters  if it has distribution function and densityα, β, and θ

F(x) =
⎧

⎩
⎨
⎪
⎪

0 for x < α,

1 − e
−⎛

⎝
x − α

θ
⎞
⎠

β

for α ≤ x ,

f (x) =

⎧

⎩

⎨
⎪

⎪

0 for x < α,

β
α

⎛
⎝

x − α
θ

⎞
⎠

β−1
e

−⎛
⎝
x − α

θ
⎞
⎠

β

for α ≤ x .

 is a parameter of location, since X  cannot assume values smaller than α α.
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Remark The Weibull distribution was found by the German mining engineers E. Rosin and E.
Rammler in the late twenties of the past century when investigating the distribution of the size
of stone, coal, and other particles after a grinding process (see, for example, Rosin, Rammler
(1931)). Hence, in the mining engineering literature, the Weibull distribution is called Rosin-
Rammler distribution. The Swedish engineer W. Weibull came across this distribution type
when investigating mechanical wear in the early thirties of the past century.

Example 2.16 By a valid standard, the useful life X of front tires of a certain type of
trucks comes to an end if their tread depth has decreased to 5 mm. From a large sam-
ple of  useful lifes of front tires, taken under average usage conditions, then = 120
mean useful life had been determined to be . The histogram of the same sam-2 years
ple also justifies to assume that X has a Rayleigh distribution.
a) What is the probability of the random event A that the useful life of a tire exceeds
2.4 years?
By (2.77), the unknown parameter  of the Rayleigh distribution can be obtainedθ
from the equation  It follows  Hence,E(X) = 2 = θ π/4 . θ = 2.25676.

P(A) = P(X > 2.4) = e−(2.4/θ2) = 0.34526.
b) What is the probability of A on condition that a tire has not yet reached the end of
its useful life after 2 years of usage? From the formula of the conditional probability
(1.22),  the desired probability is

P(A X > 2) = P(X > 2.4 X > 2)

 =
1 − F(2.4)
1 − F(2)

= e−(2.4/θ2)

e−(2/θ2)

                                            = e−0.4/2.256762
= 0.83757.

Normal Distribution  A random variable X has a normal (or Gaussian) distribution
with parameters μ and  if it has density (Figure 2.19)σ2

     (2.81)f (x) = 1
2 π σ

e
−1

2
⎛⎝
x − μ

σ
⎞
⎠

2

, − ∞ < x < +∞, − ∞ < μ < +∞, σ > 0.

The corresponding distribution function can only be given as an integral, since there
exists no function the first derivative of which is f (x) :

                  (2.82)F(x) = 1
2π σ ∫

−∞

x
e

−
(y−μ)2

2σ2 dy, − ∞ < x < +∞.

As the notation of the parameters indicates, mean value and variance are
                                     (2.83)E(X ) = μ , Var(X ) = σ2.

The mean absolute deviation of X from  isE(X )

                              (2.84)E( X − E(X ) ) = 2/π σ ≈ 0.798σ.
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This can be seen as follows: The substitution  iny = (x − μ)/σ

E( X − E(X) ) = ∫
−∞

+∞
x − μ 1

2π σ
e−(x−μ)2/2σ2 dx

yields

E( X − E(X) ) = ∫
−∞

+∞
y 1

2π
e−y2/2 σ dy

= σ
2π

⎡

⎣
⎢⎢⎢ ∫

−∞

0
(−y) e−y2/2 dy + ∫

0

∞
y e−y2/2 dy

⎤

⎦
⎥⎥⎥

= 2 σ
2π ∫

0

∞
y e−y2/2 dy = 2 σ

2π
⎡
⎣−e−y2/2 ⎤

⎦ 0

∞
= 2 σ

2π
.

The density  is positive at the whole real axis. It is symmetric with symmetryf (x)
center  and has points of inflection at  and xs = μ x1 = μ − σ x2 = μ + σ.
In the intervals  X assumes values with probabilities:[μ − kσ, μ + kσ], k = 1, 2, 3,

         P(μ − σ ≤ X ≤ μ + σ) = 0.6827,
P(μ − 2σ ≤ X ≤ μ + 2σ) = 0.9545,

 P(μ − 3σ ≤ X ≤ μ + 3σ) = 0.9973.

In particular, if a random experiment with outcome X is repeated many times, then
99.73% of the values of X will be in the ' interval' . Therefore,3σ- [μ − 3σ, μ + 3σ]
only 0.27% of all outcomes will be outside the  In view of the symmetry3σ-interval.
of , this implies that for  negative values of X occur only with probabilityf (x) μ ≥ 3σ

1
2 (1 − 0.9973) = 0.000135 = 0.0135%.

Thus, in case  the normal distribution can approximately serve as probabilityμ ≥ 3σ
distribution for a nonnegative random variable. If , then a truncation withμ < 3σ
regard to  is recommended according to formula (2.68) with  and  x = 0 c = 0 d = ∞.
This makes sure that negative values cannot occur. The truncated normal distribution
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is a favorite model for lifetimes of systems subject to wear out. Generally, for rea-
sons to be substantiated later (section 5.2.3, page 208), the normal distribution is a
suitable probability distribution of random variables, which are generated by additive
superposition of numerous effects.
A normally distributed random variable X with parameters μ and  is denoted asσ2

  X = N(μ, σ2).
Generally, the standardization  of a random variable X as given by (2.70) does notS
have the same distribution type as X. But the standardization

 S =
X − μ

σ
of a normally distributed random variable  is again normally distributed.X = N(μ, σ)
This can be seen as follows:

FS(x) = P(S ≤ x) = P⎛
⎝

X−μ
σ ≤ x⎞

⎠ = P(X ≤ σx + μ).

From (2.82), substituting there ,u = y−μ
σ

FS(x) = 1
2π σ ∫

−∞

σx+μ
e

−
(y−μ)2

2σ2 dy = 1
2π ∫

−∞

x
e−u2/2du .

By comparison with (2.82), the right integral in this line is seen to be the distribution
function of a normally distributed random variable with mean value 0 and variance 1.
This implies the desired result, namely  S is said to be standard normal.S = N(0, 1).
Its distribution function is denoted as Φ(x) :

          (2.85)Φ(x) = P(N(0, 1) ≤ x) = 1
2π

∫
−∞

x
e−u2/2du , − ∞ < x < ∞.

The corresponding density  isϕ(x) = Φ (x)

                             (2.86)ϕ(x) = 1
2π

e−x2/2, − ∞ < x < ∞ .

 or  respectively, determins the standard normal distribution.Φ(x) ϕ(x),

 is closely related to the Gaussian error integral Erf (x), which led C. F. GaussΦ(x)
to the normal distribution:

Erf (x) = ∫0
x e−u2/2du.

Simple transformations, taking into account  yieldΦ(0) = 1/2,

Φ(x) = 1
2 + 1

π
Erf ⎛

⎝⎜
x
2

⎞
⎠⎟

and Erf (x) = π ⎛
⎝Φ( 2 x) − 1

2
⎞
⎠ .

Since  is symmetric with symmetry center  (Figure 2.20),ϕ(x) xs = 0

Φ(x) = 1 − Φ(−x) .
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From this another useful formula results:

                 (2.87)P(−x ≤ N(0, 1) ≤ +x) = Φ(x) − Φ(−x) = 2Φ(x) − 1.

Hence, there is the following relationship between the α- and the (1−α)-percentiles of
the standardized normal distribution:

−xα = x1−α, 0 < α < 1/2.

This is the reason for introducing the following notation (Figure 2.20):
zα = x1−α, 0 < α < 1/2.

Hence, with  replaced by α α/2,

P(−zα/2 ≤ N(0, 1) ≤ zα/2) = Φ(zα/2) − Φ(−zα/2) = 1 − α .

The distribution function  of  can be expressed in terms of   asF(x) X = N(μ, σ2) Φ(x)
follows:

 F(x) = P(X ≤ x) = P⎛
⎝

X − μ
σ ≤

x − μ
σ

⎞
⎠ = P⎛

⎝N(0, 1) ≤
x − μ

σ
⎞
⎠ = Φ⎛

⎝
x − μ

σ
⎞
⎠ .

Corollaries  1) The interval probabilities (2.5) are given for any normally distributed
random variable  by X = N(μ, σ2)

                        (2.88)P(a ≤ X ≤ b) = Φ⎛
⎝

b − μ
σ

⎞
⎠ − Φ⎛

⎝
a − μ

σ
⎞
⎠ .

2) If  denotes the of thenxα α-percentile X = N(μ, σ2),

α = F(xα) = Φ⎛
⎝

xα − μ
σ

⎞
⎠

so that, for any α < 1/2,

 or  xα − μ
σ = zα xα = σzα + μ.

Therefore, determining the percentiles of any normally distributed random variable
can be done by a table of the percentiles of the standardized normal distribution.
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Example 2.17 A company needs cylinders with a diameter of 20 mm. It accepts devi-
ations of  The manufacturer produces these cylinders with a random diame-±0.5 mm.
ter X, which has a N(20, σ2)-distribution.
a) What percentage of cylinders is accepted by the company if  σ2 = 0.04 mm?
Since the condition  is fulfilled ( ), X can be considered a positiveμ ≥ 3σ μ ≥ 100σ
random variable. By (2.89) and (2.88), the probability to accept a cylinder is

P( X − 20 ≤ 0.5) = P(19.5 ≤ X ≤ 20.5) = P⎛
⎝

19.5−20
0.2 ≤ N(0, 1) ≤ 20.5−20

0.2
⎞
⎠

= P(−2.5 ≤ N(0, 1) ≤ +2.5) = 2 Φ(2.5) − 1

= 2 ⋅ 0.9938 − 1 = 0.9876.
Thus, 98.76% of the produced cylinders are accepted.
b) What is the value of   if the company would reject 4% of the cylinders?σ2

P( X − 20 > 0.5) = 1 − P(19.5 ≤ X ≤ 20.5)

         = 1 − P⎛
⎝

19.5 − 20
σ ≤ N(0, 1) ≤ 20.5 − 20

σ
⎞
⎠

 = 1 − P⎛
⎝−0.5

σ ≤ N(0, 1) ≤ 0.5
σ

⎞
⎠ = 1 − [2 Φ(0.5/σ) − 1]

 = 2 [1 − Φ(0.5/σ)].
The term  is required to be equal to 0.04. This leads to the equation2 [1 − Φ(0.5/σ)]

Φ(0.5/σ) = 0.98.
Now one takes from the table that value  for which   In otherx0.98 Φ(x0.98) = 0.98.
words, one determines the 0.98-percentile of the standardized normal distribution.
This percentile is seen to be  Hence, the desired  must satisfyx0.98 = 2.06. σ

0.5/σ = 2.06.
It follows                                                                                                  σ = 0.2427.

Example 2.18 By a data set collected over 32 years, the monthly rainfall from
November to February in an area has been found to be normally distributed with
mean value 92 mm and variance 784 mm. (Again, the condition  is fulfilled.)μ ≥ 3σ
What are the probabilities of the 'extreme cases' that (1) the monthly rainfall during
the given time period is between 0 and 30 mm, and (2) exceeds 150 mm?

(1)      P(0 ≤ X ≤ 30) = P⎛
⎝

0 − 92
28 ≤ N(0, 1) ≤ 30 − 92

28
⎞
⎠ = Φ(−2.214) − Φ(−3.286)

≈ Φ(−2.214) ≈ 0.0135.

(2)          P(X > 150) = P⎛
⎝N(0, 1) > 150 − 92

28
⎞
⎠ = 1 − Φ(2.071) ≈ 1 − 0.981

                                                        = 0.019 .
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The first four moments (2.56) of the normal distribution  areN(μ, σ2)
              μ1 = μ = E(X),

                μ2 = σ2 + μ2,
           μ3 = 3μσ2 + μ3,

  μ4 = μ4 + 6μ2σ2 + 3σ4,
and its first four central moments (2.57) are

m1 = 0, m2 = σ2, m3 = 0, m4 = μ4 + 6μ2σ2 + 3σ4.
In view of the key role the normal distribution plays in probability theory, it is useful,
particularly for applications, to know how well any other probability distribution can
be approximated by the normal distribution. Information about this gives the excess 

 defined for any probability distribution with second central moment  andγE m2
fourth central moment :m4

γE = m4

(m2)2 − 3.

Since  is 0 for  the excess can serve as a measure for the deviation of theγE N(μ, σ2),
distribution of any random variable with mean  and variance  from  inμ σ2 N(μ, σ2)
an environment of μ.

Logarithmic Normal Distribution  A random variable Y has a logarithmic normal
distribution or log-normal distribution with parameters μ and  if it has distributionσ2

function and density (Figure )2.21

F(y) = Φ⎛
⎝

ln y − μ
σ

⎞
⎠ ; y > 0, σ > 0, − ∞ < μ < ∞ ,

f (y) = 1
2π σ y

e
−

(ln y − μ)
2σ2

2

; y > 0, σ > 0, − ∞ < μ < ∞ .

Thus, Y has a log-normal distribution with parameters  and  if it has structureμ σ2

 with  Hence, if  is the  of the log-normal distri-Y = eX X = N(μ, σ2). yα α-percentile
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bution and  the  of the , then  or, in terms of thexα α-percentile N(μ, σ2) yα = exα ,
  of the standard normal distribution,  Since theα-percentile uα yα = eσ uα+μ. u0.5 = 0,

median is  The distribution is unimodal with mode y0.5 = eμ. ym = eμ−σ2 .
Mean value and variance of X are

E(X ) = eμ+σ2/2, Var(X ) = [E(X )]2 ⎛
⎝eσ2

− 1⎞
⎠ .

The Charlier skewness and the excess are

γC = ⎛
⎝ eσ2

− 1 ⎞
⎠

⎛
⎝eσ2

+ 2⎞
⎠ , γE = e4σ2

+ 2e3σ2
+ 3e2σ2

− 6.

Example 2.19 As the Rosin-Rammler distribution, the logarithmic normal distribu-
tion is a favorite model for the particle size of stone and other materials after a grind-
ing process. Statistical analysis has shown that the diameter of lava rock particles
after a grinding process in a special mill has a logarithmic normal distribution with
mean value  and variance E(X) = 1.3002 mm Var(X) = 0.0778.
What percentage of particles have their diameter in I = [1.1, 1.5 mm]?
Solving the system of equations ,   for  and  givesE(X) = 1.3002 Var(X) = 0.0778 μ σ2

 and  Therefore,μ = 0.24 mm σ2 = 0.045.

P(1.1 ≤ X ≤ 1.5) = Φ⎛
⎝

ln 1.5 − 0.24
0.212

⎞
⎠ − Φ⎛

⎝
ln 1.1 − 0.24

0.212
⎞
⎠

= Φ(0.781) − Φ(−0.683) = 0.783 − 0.246 = 0.537.
Thus, the corresponding percentage of particles is 53.7%.                                          

Logistic Distribution A random variable X has a logistic distribution with parame-
ters  and  if it has distribution functionμ σ

F(x) = 1

1 + e
− π

3 σ
(x−μ)

, − ∞ < x < +∞, σ > 0,

and density (Figure 2.22)
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f (x) =

π
3 σ

e
− π

3 σ
(x−μ)

⎛

⎝
⎜⎜⎜
1 + e

− π
3 σ

(x−μ)⎞

⎠
⎟⎟⎟

2 , − ∞ < x < +∞, σ > 0.

This distribution is symmetric with regard to  Mean value, variance, and excess areμ.

E(X ) = μ, Var(X ) = σ2, γE = 1.2 .

The denominator of F(x) has the functional structure of a well-known growth curve
originally proposed by Verhulst (1845). Generally, the logistic distribution proved to
be a suitable probabilistic model for growth processes with saturation (i.e., not exceed-
ing a given upper bound) of plants, in particular trees.

Inverse Gaussian Distribution A random variable X has an inverse Gaussian distri-
bution or a Wald distribution with positive parameters  and  if it has the densityα β
(Figure 2.23)

                   (2.89)f (x) = α
2π x3 exp

⎛

⎝
⎜−

α(x − β)2

2β2x
⎞

⎠
⎟ , x > 0.

Integration gives the corresponding distribution function

F(x) = Φ
⎛
⎝⎜

x − β
β α x

⎞
⎠⎟

+ e−2α/β Φ
⎛
⎝⎜
−

x + β
β α x

⎞
⎠⎟

, x > 0.

Mean value, variance, and mode are

        (2.90)E(X ) = β, Var(X ) = β3/α, xm = β ⎛
⎝ 1 + (3β/2α)2 − 3β/2α⎞

⎠ .

Charlier's skewness and excess are
γC = 3 β/α , γE = 15β /α .
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The practical significance of the inverse Gaussian distribution is mainly due to the
fact that it is the first passage time distribution of the Brownian motion process and
some of its derivatives (pages 504, 513). This has made the inverse Gaussian distri-
bution a favorite model for predicting time to failures of systems, which are subject
to wearout.

2.3.4 Nonparametric Classes of Probability Distributions
This section is restricted to the class of nonnegative random variables. Lifetimes of
technical systems and organisms are likely to be the most prominent members of this
class. Hence, the terminology is tailored to this application. The lifetime of a system
is the time from its starting up time point (birth) to its failure (death), where 'failure'
is assumed to be an instantaneous event. In the engineering context, a failure of a
system needs not be equivalent to the end of its useful life. If X is a lifetime of a sys-
tem with distribution function  then  is called its  failure probab-F(x) = P(X ≤ x), F(x)
ility and  is its survival probability.   and   are the respectiveF(x) = 1 − F(x) F(x) F(x)
probabilities that the system does or does not fail in the interval [0, x].

Residual Lifetime  Let  be the distribution function of the residual lifetime Ft(x) Xt
of a system, which has already worked for t time units without failing (Figure 2.24):

Ft(x) = P(Xt ≤ x) = P(X − t ≤ x X > t).
By the formula of the conditional probability (1.22)

Ft(x) =
P(X − t ≤ x ∩ X > t)

P(X > t) =
P(t < X ≤ t + x)

P(X > t)
so that, by (2.44), page 59,

                            (2.91)Ft(x) =
F(t + x) − F(t)

1 − F(t) , t > 0, x ≥ 0.

The corresponding conditional survival probability  isFt(x) = 1 − Ft(x)

                               (2.92)Ft(x) =
F(t + x)

F(t)
, t > 0, x ≥ 0.

Hence, by using formula (2.52), the mean residual lifetime  is seen to beμ(t) = E(Xt)

                           (2.93)μ(t) = ∫0
∞ Ft(x) dx = 1

F(t) ∫t
∞ Ft(x) dx.
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Example 2.20 Let the lifetime X have a uniform distribution over [0,T ]:
F(x) = x/T, 0 ≤ x ≤ T.

Then,
Ft(x) = x

T − t , 0 ≤ t < T, 0 ≤ x ≤ T − t.

Thus,  is uniformly distributed over the interval , and for fixed x, the con-Xt [0, T − t]
ditional failure probability is increasing with increasing age t of the system,  t < T.   �

Example 2.21 Let X have an exponential distribution with parameter λ :
F(x) = 1 − e−λx, x ≥ 0.

Then, for given  the conditional failure probability of the system in  ist > 0 [t, t + x]

Ft(x) =
(1 − e−λ(t+x)) − (1 − e−λt)

e−λt = 1 − e−λx = F(x), x ≥ 0.

That means, if a system with exponentially distributed lifetime is known to have sur-
vived the interval  then it is at time point t 'as good as new' from the point of[0, t],
view of its future failure behavior, since its residual lifetime  has the same failureXt
probability as the system had at time point  when it started operating. In othert = 0,
words, systems with property

                                    (2.94)Ft(x) = F(x) for all t ≥ 0.
'do not age'. Thus, the exponential distribution is the continuous analogue to the
geometric distribution (example 2.3). Its is, moreover, the only continuous distri-
bution which has this so-called memoryless property or lack of memory property.
Usually, systems (technical or biological ones) have this nonaging property only in
certain finite subintervals of their useful life. These intervals start after the early
failures have tapered off and last till wearout processes start. In the nonaging period
failures or deaths are caused by purely random influences as natural catastrophes or
accidents. In real life there is always some overlap of the early failure, nonaging, and
wear out periods.                                                                                                         �

The fundamental relationship (2.94) is equivalent to the functional equation
F(t + x) = F(x) ⋅ F(t).

Only functions of type  are solutions of this equation, where a is a constant.ea x

The engineering and biological background of the conditional failure probability  
motivates the following definition:

Definition 2.3 A system is aging (rejuvenating) in the interval  if for[t1, t2], t1 < t2,
an arbitrary but fixed x,  the conditional failure probability  is increasingx > 0, Ft(x)
(decreasing) with increasing t,                                                                    zt1 ≤ t ≤ t2.

Remark  Here and in what follows the terms 'increasing' and 'decreasing' have the meaning of
'nondecreasing' and 'nonincreasing', respectively.
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For technical systems periods of rejuvenation may be due to maintenance actions,
and for human beings due to successful medical treatment or adopting a healthier
lifestyle.
Provided the existence of the density  another approach to modeling thef (x) = F (x),
aging behavior of a system is based on the concept of its failure rate. To derive this
rate, the conditional failure probability  of a system in the interval  isFt(Δt) [t, t + Δt]
considered relative to the length  of this interval. This gives a conditional failureΔt
probability per unit time, i.e. a 'failure probability rate':

 1
Δt Ft(Δt) = 1

F(t)
⋅

F(t + Δt) − F(t)
Δt .

If  the second ratio on the right-hand side tends to . Hence,Δt → 0, f (t)

                                   (2.95)lim
Δt→0

1
Δt Ft(Δt) = f (t)/F(t).

This limit is called  failure rate or hazard function, and it is denoted as λ(t) :
                                           (2.96)λ(t) = f (t)/F(t).

In demography and actuarial science,  is called  force of mortality. Integration onλ(t)
both sides of (2.96) yields

                     (2.97)F(x) = 1 − e
−∫0

x
λ(t)dt

or F(x) = e
−∫0

x
λ(t)dt

, x ≥ 0.

 introducing the integrated failure rateBy

Λ(x) = ∫0
x λ(t)dt,

 and the corresponding survival probabilities can be written as follows:F(x), Ft(x)

F(x) = 1 − e−Λ(x), F(x) = e−Λ(x),

       (2.98)Ft(x) = 1 − e−[Λ(t+x)−Λ(t)], Ft(x) = e−[Λ(t+x)−Λ(t)], x ≥ 0, t ≥ 0.

This representation of  implies an important property of the failure rate:Ft(x)

    A system ages in if and only if its failure rate is increasing in this  [t1, t2], t1 < t2,
    interval.

Formula (2.95) can be interpreted in the following way: For small Δt,
                                            (2.99)Ft(Δt) ≈ λ(t) Δt.

Thus, for  sufficiently small,  is approximately the probability that theΔt λ(t) Δt
system fails 'shortly' after time point t if it has survived the interval  Hence, the[0, t].
failure rate gives information on both the instantaneous tendency of a system to fail
and its 'state of wear' at any age t. 
The relationship (2.99) can be written more exactly in the form

Ft(Δt) = λ(t) Δt + o(Δt),
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where  is the Landau order symbol with respect to , i.e.  is any functiono(x) x → 0 o(x)
of x with property

                                           (2.100)lim
x→0

o(x)
x = 0.

In the ratio of (2.100),  both functions  and  the  function  tendy1(x) = o(x) y2(x) = x
to 0 if  but  must approach 0 'much faster' than  ifx → 0, y1(x) = o(x) y2(x) = x

 Otherwise (2.100) could not be true.x → 0.

The relationship (2.99) can be used for the statistical estimation of :  At time ,λ(t) t = 0
n identical systems start operating. Let  be the number of those systems, whichn(t)
have failed in the interval  Then the number of systems which have survived[0, t].

 is , and the number of systems which have failed in the interval [0, t] n − n(t) (t, t + Δt]
is  Then an estimate for the system failure rate in  isn(t + Δt) − n(t). (t, t + Δt]

λ(x) = 1
Δt

n(t + Δt) − n(t)
n − n(t) , t < x ≤ t + Δt.

Based on the behaviour of the conditional failure probability of systems, numerous
nonparametric classes of probability distributions have been proposed and investigat-
ed during the past 60 years. Originally, they aimed at applications in reliability engi-
neering, but nowadays these classes also play an important role in fields like demo-
graphy, actuarial science, and risk analysis.

Definition 2.4   is an IFR (increasing failure rate) or a DFR (decreasing failureF(x)
rate) distribution if  is increasing or decreasing in t for fixed but arbitrary x, res-Ft(x)
pectively. Briefly:  is IFR (DFR).                                                                         zF(x)

If the density  exists, then (2.98) implies the following corollary:f (x) = F (x)

Corollary  is IFR (DFR) in the interval  if and only if the cor-F(x) [x1, x2], x1 < x2,
reponding failure rate  is increasing (decreasing) in λ(x) [x1, x2].

The Weibull distribution shows that, within one and the same parametric class of
probability distributions, a distribution may belong to different nonparametric proba-
bility distributions: From (2.77) and (2.97),

Λ(x) = (x/θ)β

so that

λ(x) =
β
θ ⋅ ⎛

⎝
x
θ

⎞
⎠

β−1
, x ≥ 0.

Hence, the Weibull distribution is IFR for  and DFR for  For  theβ > 1 β < 1. β = 1
failure rate is constant:  (exponential distribution). The exponential distribu-λ = β/θ
tion is both IFR and DFR. This versatility of the Weibull distribution is one reason
for being a favorite model in applications.
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The failure rate (force of mortality) of human beings and other organisms is usually
not strictly increasing. In short time periods, for instance, after having overcome a
serious disease or another life-threatening situation, the failure rate will decrease,
although the average failure rate will definitely increase. Actually, in view of the
finite lifetimes of organism, their failure rates  will tend to infinity as  λ(x) x → ∞.
Analogously, technical systems, which operate under different, time-dependent stress
levels (temperature, pressure, humidity, speed), will not have a strictly increasing
failure rates, although in the long-run, their average failure rates are increasing. This
motivates the following definition:

Definition 2.5  is an IFRA (increasing failure rate average) distribution or aF(x)
DFRA (decreasing failure rate average) distribution if

− 1
x ln F(x)

is an increasing or a decreasing function in x, respectively.                                        z

To justify the terminology, assuming the density  exists and taking thef (x) = F (x)
natural logarithm on both sides of the right equation in (2.97) yields

ln F(x) = −∫0
x λ(t) dt .

Therefore,

λ(x) = −1
x ln F(x) = 1

x ∫0
x λ(t) dt

so that  turns out to be the average failure rate in  An advantage of−(1/x)ln F(x) [0, x].
definitions 2.3 to 2.5 is that they do not require the existence of the density. But the
existence of the density and, hence, the existence of the failure rate, motivates the
terminology. Other intuitive proposals for nonparametric classes are based on the
'new better than used' concept or on the behavior of the mean residual lifetime μ(t);
see Lai, Xie (2006) for a comprehensive survey.
Obviously,  being IFR (DFR) implies  being IFRA (DFRA):F(x) F(x)

IFR ⇒ IFRA, DFR ⇒ DFRA .
Knowing the type of the nonparametric class  belongs to allows the constructionF(x)
of upper or lower bounds on  or . For instance, if   is the  F(x) F(x) μn = E(Xn) n th
moment of X and   is IFR, thenF(x) = P(X ≤ x)

             F(x) ≥
⎧

⎩
⎨
⎪
⎪

exp{−x (n!/μn)1/n} for x ≤ μn
1/n,

0 otherwise.

In particular, for  with n = 1 μ = μ1 = E(X),

                          (2.101)F(x) ≥
⎧

⎩
⎨

exp{−x /μ} for x ≤ μ,
0 otherwise.
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If  is IFR, thenF(x)

                              (2.102)sup
x

F(x) − e−x/μ ≤ 1 − 2γ + 1

with

γ =
μ2

2μ2 − 1.

It can be shown that  ( ) if  is IFR (DFR).γ ≤ 0 γ ≥ 0 F(x)

If  is IFRA, thenF(x)

                                 (2.103)F(x) ≤
⎧

⎩
⎨

1 for x < μ,
e−rx for x ≥ μ,

where  is the unique solution ofr = r(x, μ)

1 − rμ = e−r μx.

Example 2.22 Let X have distribution function

F(x) = P(X ≤ x) = 1 − e−x2 , x ≥ 0.

This is a Rayleigh distribution (page 77) so that  is IFR and X has mean valueF(x)

 and second moment μ = E(X) = π/4 μ2 = Var(X) + μ2 = 1

(see formulas (2.80)). Figure 2.25 compares the exact graph of  the corresponding
survival probability with the lower bound (2.101) and the upper bound (2.103).F(x)
By (2.102), an upper bound for the maximum deviation of the exact graph of F(x)
from the exponential survival probability with the same mean  as X is,μ = π/4
since γ = 2/π − 1 ≈ −0.3634,

                    �sup
x

F(x) − e−x/ π/4 = sup
x

e−x2
− e−x/ π/4 ≤ 0.4773.
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2.4 MIXTURES OF RANDOM VARIABLES

The probability distribution P  (definition 2.1) of any random variable X depends onX
one or more numerical parameters. To emphasize the dependency on a special para-
meter , in this section the notation P  instead of P  is used. Equivalently, inλ X(λ) X
terms of the distribution function and density of X,

FX(x) = FX(x, λ), f X(x) = fX(x, λ).

Mixtures of random variables or, equivalently, their probability distributions arise
from the assumption that the parameter  is a realization (value) of a random vari-λ
able L, and all the probability distributions belonging to the set P{ X(λ), λ ∈ RL},
where  is the range of L, are mixed in a way to be explained as follows:RL

1. Discrete random parameter L  Let L have range  and probabi-RL = {λ0, λ1, ...}
lity distribution 

P  with L = {π0, π1, ...} πn = P(L = λn), n = 0, 1, ..., Σn=0
∞ πn = 1.

Then the mixture of the probability distributions of type P  in terms of the mix-X(λ)
ture of the corresponding probability distribution functions of type  FX(x, λ), λ ∈ RL,
is defined as

G(x) = Σn=0
∞ FX(x, λn) πn.

2. Continuous random parameter L Let L have range  with  andRL RL ⊆ (−∞, +∞)
probability density

f L(λ), λ ∈ RL.

Then the mixture of the probability distributions of type P  in terms of the  distri-X(λ)
bution functions of type  is defined asFX(x, λ)

G(x) = ∫RL
FX(x, λ) fL(λ) d λ.

Thus, if L is a discrete random variable, then  is the weighted sum of the distri-G(x)
bution functions  with weights  given by the probability mass functionFX(x, λn) πn
of L. If L is continuous, then  is the weighted integral of  with weightG(x) FX(x, λ)
function  In either case,  has properties (2.3) and (2.4) so that it is thef L(x, λ). G(x)
distribution function of a random variable Y, called a mixed random variable, and the
probability distribution of Y is the mixture of probability distributions of type P  X(λ).

If X is continuous and L discrete, then the density of  isY
 g(x) = Σn=0

∞ fX(x, λn) πn.

If X and L are continuous, then the density of  isY
g(x) = ∫RL

fX(x, λ) fL(λ) d λ .
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Formally,  and  are the mean values of  and respectively:G(x) g(x) FX(x, L) f X(x, L),

G(x) = E(FX(x, L)), g(x) = E( f X(x, L)).

If L is discrete and X is discrete with probability distribution
PX(λ) = {pi(λ) = P(X = x, λ); i = 0, 1, ...},

then the probability distribution of Y, given so far by its distribution function ,G(x)
can also be characterized by its individual probabilities:

                 (2.104)P(Y = xi) = Σn=0
∞ pi(λn) πn = E(pi(L)); i = 0, 1, ... .

If L is continuous and  is discrete, thenX
                        (2.105)P(Y = xi) = ∫RL

pi(λ) fL(λ) d λ = E(pi(L)).

The probability distribution of L is sometimes called structure or mixing distribution.
Hence, the probability distribution P  of the 'mixed random variable' Y is a mixtureY
of probability distributions of type P  with regard to a structure distribution P .X,λ L

The mixture of probability distributions provides a method for producing types of
probability distributions, which are specifically tailored to serve the needs of special
applications. 

Example 2.23 ( mixture of exponential distributions ) Assume X  has  an  exponential
distribution with parameter :λ

FX(x, λ) = P(X ≤ x) = 1 − e−λx, x ≥ 0.

This distribution is to be mixed with regard to a structure distribution P , where L isL
exponentially distributed with density

f L(λ) = μe−μλ, μ > 0.

Mixing yields  distribution functionthe

G(x) = ∫0
∞ FX(x, λ) fL(λ) d λ = ∫0

∞(1 − e−λx) μe−μλdλ = 1 −
μ

x + μ .

Hence, mixing exponential distributions with regard to an exponential structure dis-
tribution gives the Lomax distribution with distribution function and density

                 (2.106)G(x) = x
x + μ , g(x) =

μ
(x + μ)2 , x ≥ 0, μ > 0.

The Lomax distribution is also known as Pareto distribution of the second kind.     �

Example 2.24 (mixture of binomial distributions) Let X have a binomial distribution
with parameters n and p:

P(X = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i, i = 0, 1, 2, ..., n.
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The parameter n is considered to be a value of a Poisson with parameter  distributedλ
random variable N:

P(N = n) = λn

n! e−λ; n = 0, 1, ... (λ fixed).

Then, from (2.104), using
⎛
⎝

n
i
⎞
⎠ = 0 for n < i,

the mixture of binomial distributions P ,  with regard to the PoissonX(n), n = 0, 1, ...
structure distribution P  is obtained as follows:N

P(Y = i) = Σ
n=0

∞ ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i λn

n! e−λ

= Σ
n=i

∞ ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i λn

n! e−λ

= (λ p)i

i ! e−λ Σ
k=0

∞ [λ (1 − p)] k

k!
=

(λ p)i

i !
e−λ eλ (1−p).

Thus,

                                           P(Y = i) =
(λ p)i

i !
e−λ p; i = 0, 1, ... .

This is a Poisson distribution with parameter                                                        �λp.

Mixed Poisson Distribution  Let X  have a Poisson distribution with parameter :λ

PX(λ) = {P(X = i) = λi

i !
e−λ ; i = 0, 1, ....; λ > 0}.

A random variable Y with range  is said to have a mixed Poisson distribution{0, 1, ...}
if its probability distribution is a mixture of the Poisson distributions P  withX(λ)
regard to any structure distribution. For instance, if the structure distribution is given
by the density  of a positive random variable L (i.e., the parameter λ of thefL(λ)
Poisson distribution is a realization of ), the distribution of Y isL

                      (2.107)P(Y = i) = ∫
0

∞
λi

i !
e−λ fL(λ) d λ, i = 0, 1, ... .

A mixed Poisson distributed random variable Y with any structure parameter L has the
following properties

                        (2.108)

E(Y) = E(L)
Var(Y) = E(L) + Var(L)

P(Y > n) = ∫
0

∞
λn

n ! e−λ FL(λ)) d λ

⎫

⎭

⎬
⎪

⎪

⎪
⎪

where  is the distribution function of L and FL(λ) = P(L ≤ λ) FL(λ) = 1 − FL(λ).
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Example 2.25 (mixed Poisson distribution, gamma structure distribution)  Let the
random structure variable  have a gamma distribution with densityL

fL(λ) =
βα

Γ(α) λα−1e−β λ, λ > 0, α > 0, β > 0.

 corresponding mixed Poisson distribution is obtained as follows:The

P(Y = i) = ∫
0

∞
λi

i !
e−λ βα

Γ(α) λα−1e−βλ d λ

= 1
i !

βα

Γ(α) ∫
0

∞
λi+α−1e−λ (β+1) d λ

= 1
i !

βα

Γ(α)
1

(β + 1)i+α ∫
0

∞
xi+α−1e−x d x

   = 1
i !

Γ(i + α)
Γ(α)

βα

(β + 1)i+α
.

Thus,

   (2.109)P(Y = i) = ⎛
⎝

i − 1 + α
i

⎞
⎠

⎛
⎝

1
β + 1

⎞
⎠

i ⎛
⎝

β
β + 1

⎞
⎠

α
; α > 0, β > 0, i = 0, 1, ... .

This is a negative binomial distribution with parameters  and  (seer = α p = 1/(β + 1)
formula (2.31), page 53). In deriving this result, the following property of the gamma
function with had been usedx = i + α, i = 1, 2, ...,

                                       �Γ(x) = (x − 1) Γ(x − 1); x > 0.

2.5  GENERATING FUNCTIONS

Probability distributions or at least moments of random variables can frequently be
obtained from special functions, called (probability or moment) generating functions
of random variables or, equivalently, of their probability distributions. This is of im-
portance, since it is in many applications of stochastic methods easier to determine
the generating function of a random variable instead of directly its probability distri-
bution. This will be in particular demonstrated in Part II of this book in numerous
applications. The method of determining the probability distribution of a random var-
iable from its generating function is mathematically justified, since to every probabi-
lity distribution belongs exactly one generating function and vice versa.
Formally, going over from a probability distribution to its generating function is a
transformation of this distribution. In this section, transformations are separately
considered for discrete random variables (z-transformation) and for continuous ran-
dom variables (Laplace transformation).
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2.5.1 z-Transformation

The discrete random variable X has range  and probability distributionR = {0, 1, ...}
  { pi = P(X = i); i = 0, 1, ...}.

The z-transform  of  X or, equivalently, of its probability distribution is for anyM(z)
real number z with  defined as the power seriesz ≤ 1

M(z) = Σi=0
∞ pi zi.

Thus, the probability distribution of X has been transformed into a power series. In
this book, the extension of this series to complex numbers z is not necessary.
To avoid misunderstandings, sometimes the notation  is used instead of MX(z) M(z).

From (2.10) with  is seen to be the mean value of h(zi) = zi, M(z) Y = zX :

                                           (2.110)M(z) = E(z X).

 converges absolutely for :M(z) z ≤ 1

M(z) ≤ Σi=0
∞ pi zi ≤ Σi=0

∞ pi = 1.

Therefore,  can be differentiated (as well as integrated) term by term:M(z)

M (z) = Σi=0
∞ i pi zi−1 .

Letting  yieldsz = 1
M (1) = Σi=0

∞ i pi = E(X).

Taking the second derivative of  givesM(z)

M (z) = Σi=0
∞ (i − 1) i pi zi−2 .

Letting  yieldsz = 1

 M (1) = Σi=0
∞ (i − 1) i pi = Σi=0

∞ i2 pi − Σi=0
∞ i pi .

Therefore,  Thus, the first two moments of X areM (1) = E(X 2) − E(X).

                       (2.111)E(X) = M (1), E(X 2) = M (1) + M (1).

Continuing in this way, all moments of X can be generated by derivatives of M(z).
Hence, the power series  is indeed a moment generating function. By (2.13)M(z) ,

                       (2.112)E(X) = M (1), Var(X) = M (1) + M (1) − [M (1)]2.

 is also a probability generating function, sinceM(z)

p0 = M(0), p1 = M (0), p2 = 1
2!M (0), p3 = 1

3!M (0), ... .

Generally,

                          (2.113)pn = 1
n!

dnM(z)
dz z=0

; n = 0, 1, ... .
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Otherwise, according to the definition of developing a given z-transform withM(z),
unknown underlying probability disribution into a power series yields the probabil-
ities  simply as the coefficients of pi zi.

Geometric Distribution Let X have a geometric distribution with parameter p (page
50):

pi = P(X = i) = p (1 − p)i; i = 0, 1, ... .

Then,

M(z) = Σ
i=0

∞
p (1 − p)izi

          = p Σ
i=0

∞
[(1 − p)z]i.

By the geometrical series (2.16) with x = (1 − p) z,

M(z) =
p

1 − (1 − p) z .

The first two derivatives are

M (z) =
p(1 − p)

[1 − (1 − p)z]2 , M (z) =
2 p(1 − p)2

[1 − (1 − p) z]3 .

Hence, by (2.111) and (2.112),

E(X ) =
1 − p

p , E(X 2) =
(1 − p)(2 − p)

p2 , Var(X ) =
1 − p
p2 .

Poisson Distribution Let X have a Poisson distribution with parameter  (page 56):λ

pi = P(X = i) = λi

i !
e−λ; i = 0, 1, ... .

Then, in view of the exponential series (2.19),

M(z) = Σ
i=0

∞ λi

i!
e−λ zi = e−λ Σ

i=0

∞ ( λ z)i

i!
= e−λ e+λz.

Hence,
M(z) = eλ (z−1).

The first two derivatives are
M (z) = λ eλ (z−1), M (z) = λ2eλ (z−1).

Letting  yieldsz = 1
M (1) = λ , M (1) = λ2.

Thus, mean value, second moment, and variance of  areX

E(X ) = λ, E(X 2) = λ (λ + 1), Var(X ) = λ .
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Mixed Poisson Distribution The mixed Poisson distribution with density  offL(λ)
its structure parameter  has the individual probabilities (formula (2.107))L

P(Y = i) = ∫
0

∞
λi

i !
e−λ fL(λ) d λ , i = 0, 1, ... .

Hence, its z-transform is

MY(z) = Σ
i=0

∞ ⎛

⎝
⎜ ∫

0

∞
λ i

i ! e−λ fL(λ) d λ
⎞

⎠
⎟ zi = ∫

0

∞
Σ
i=0

∞ (λ z)i

i ! e−λ fL(λ) d λ

so that
MY(z) = ∫0

∞ eλ(z−1) fL(λ) d λ .

This result can be interpreted as  'mixture of z-transforms of Poisson distributions'.

Binomial Distribution Let X have a binomial distribution with parameters n and p
(page 51):

pi = P(X = i) = ⎛
⎝

n
i

⎞
⎠ pi(1 − p)n−i; i = 0, 1, ..., n.

Then,

    M(z) = Σ
i=0

n
pi zi = Σ

i=0

n ⎛
⎝

n
i

⎞
⎠ pi(1 − p)n−i zi

                           = Σ
i=0

n ⎛
⎝

n
i

⎞
⎠ (pz)i(1 − p)n−i.

This is the binomial series (2.20) with  and  so thatx = pz y = 1 − p

M(z) = [p z + 1 − p)]n.

By differentiation,
M (z) = n p[ p z + 1 − p)]n−1,

M (z) = (n − 1) n p2[p z + 1 − p)]n−2.

Hence,
     and  M (1) = n p M (1) = (n − 1) n p2

so that mean value, second moment, and variance of  areX

E(X ) = n p, E(X 2) = (n − 1)n p2 + n p, Var(X ) = n p (1 − p).

Convolution  Let  and  be the respective probability distribu-{p0, p1, ...} {q0, q1, ...}
tion of the discrete random variables X and Y, and let a sequence  be defin-{r0, r1, ...}
ed as follows

      (2.114)rn = Σi=0
n pi qn−i = p0 qn + p1 qn−1 + . .. + pn q0, n = 0, 1, ... .
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The sequence  is called the convolution of the probability distributions of{r0, r1, ...}
X and Y. The convolution is the probability distribution of a certain random variable

 since  fulfills the conditions of a discrete probability distribution (2.6):Z {r0, r1, ...}

Σn=0
∞ rn = 1, rn ≥ 0.

For deriving the z-transform of Z, Dirichlet's formula on how to change the order of  
summation in finite or infinite double sums is needed:

                                                             (2.115)Σn=0
∞ Σi=0

n ain = Σi=0
∞ Σn=i

∞ ain .

Now,
 MZ(z) = Σn=0

∞ rn zn = Σn=0
∞ Σi=0

n pi qn−i zn

  = Σi=0
∞ pi zi ⎛

⎝Σn=i
∞ qn−i zn−i ⎞

⎠

    = ⎛
⎝Σi=0

∞ pi zi ⎞
⎠

⎛
⎝Σk=0

∞ qk zk ⎞
⎠ .

Thus, the z-transform of the convolution of the probability distributions of two ran-
dom variables X and Y is equal to the product of the z-transforms of the probability
distributions of X and Y:

                                  (2.116)MZ(z) = MX(z) ⋅ MY(z).

2.5.2 Laplace Transformation

The Laplace transform  of a real function  is defined asf (s) f (x), x ∈ (−∞, +∞),

                                      (2.117)f (s) = ∫−∞
+∞ e −s x f (x) dx,

where the parameter s is a complex number. 
The Laplace transform of a function need not exist. The following assumptions 1 and
2 make sure that this function exists for all s with Re (s) > b :
1)  is piecewise continuous.f (x)

2) There exist finite real constants a and b so that  for all f (x) ≤ aebx x > 0.

Notation If  is any complex number (i.e.,  and x, y are real numbers), thenc = x + i y i = −1
 denotes the real part of c: For the applications dealt with in this book, theRe (c) Re (c) = x.

parameter s can be assumed to be a real number.

If  is the density of a random variable X, then  has a simple meaning:f (t) f (s)

                                                                                       (2.118)f (s) = E(e−s X).

This formula is identical to (2.110) if there z is written in the form z = e−s.
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The n-fold derivative of  with respect to s isf (s)

dn f (s)
dsn = (−1)n∫−∞

+∞ xne s x f (x) dx.

Hence, the moments of all orders of  can be obtained from  and X E(X 0) = E(1) = 1

                                             (2.119)E(X n) = (−1)n dn f (s)
dsn

s=0
, n = 1, 2, ... .

Sometimes it is more convenient to use the notation
f (s) = L( f, s ).

Partial integration in  yieldsf (s)

                                     (2.120)L⎛
⎝∫−∞

x f(u) du, s⎞
⎠ = 1

s f (s)

and, if  for all  and  denotes the  derivative of  f (x) > 0 x ∈ (−∞, +∞) f (n)(x) n th f (x)
with regard to x, then

                               (2.121)f (n)(s) = sn f (s); n = 1, 2, ... .

Note This equation has to be modified for all  if  for :n = 1, 2, ... f (x) = 0 x < 0

        (2.122)f (n)(s) = sn f (s) − sn−1 f (0) − sn−2 f (0) − . .. − s1f (n−2)(0) − f (n−1)(0).

In particular, for n = 1,

                                (2.123)L⎛
⎝

d f (x)
dx

, s⎞
⎠ = s f (s) − f (0).

Let , ...,  be any n functions for which the corresponding Laplace transformsf1, f2 fn
exist and  Then,f = f1 + f2 + . .. + fn.

                              (2.124)f (s) = f 1 (s) + f 2 (s) + . .. + f (s).

Convolution  The convolution  of two continuous functions  and , whichf1 ∗ f2 f1 f2
are defined on , is given by(−∞, +∞)

                           (2.125)( f1 ∗ f2)(x) = ∫−∞
+∞ f1(x − u) f2(u) du.

The convolution is a commutative operation, i.e.,

( f1 ∗ f2)(x) = ( f2 ∗ f1)(x) = ∫−∞
+∞ f2(x − u) f1(u) du.

If  for all  thenf1(x) = f2(x) = 0 x < 0,

          (2.126)( f1 ∗ f2)(x) = ∫0
x f2(x − u) f1(u) du = ∫0

x f1(x − u) f2(u) du.

The following formula is the 'continuous' analogue to (2.116):
                 (2.127)L( f1 ∗ f2, s) = L( f1, s) ⋅ L(f2, s) = f1 (s) ⋅ f 2 (s).
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 proof of this relationship is easily establishedA :

L(f1 ∗ f2, s) = ∫−∞
+∞ e−sx ∫−∞

+∞ f2(x − u) f1(u) du dx

= ∫−∞
+∞ e−su f1(u) ∫−∞

+∞ e−s (x−u) f2(x − u) dx du

= ∫−∞
+∞ e−su f1(u) ∫−∞

+∞ e−s y f2(y) dy du

= L(f1, s) ⋅ L(f2, s) = f 1(s) ⋅ f 2(s).

In proving this relationship, the 'continuous version' of Dirichlet's formula (2.115)
had been applied:

    ∫−∞
z ∫−∞

y f (x, y) dx dy = ∫−∞
z ∫−∞

z f (x, y) dy dx.

Verbally, equation (2.126) means that the Laplace transform of the convolution of
two functions is equal to the product of the Laplace transforms of these functions.

Retransformation The Laplace transform  is called the image of , and  f (s) f (x) f (x)
is the preimage of  Finding the preimage of a given Laplace transform (retrans-f (s).
formation) can be a difficult task. Properties (2.124) and (2.127) of the Laplace trans-
formation suggest that Laplace transforms should be decomposed as far as possible
into terms and factors (for instance, decomposing a fraction into partial fractions),
because the retransformation of the arising less complex terms is usually easier than
the retransformation of the original image.
Retransformation is facilitated by contingency tables. These tables contain important
functions (preimages) and their Laplace transforms. Table 2.5 presents a selection of
Laplace transforms, which are given by rational functions in s, and their preimages.
There exists, moreover, an explicit formula for the preimages of Laplace transforms.
Its application requires knowledge of complex calculus.

Example 2.26  Let X have an exponential distribution with parameter :λ

f (x) = λe−λ x, x ≥ 0.
The Laplace transform of  isf (x)

f (s) = ∫0
∞ e−s x λ e−λ x dx = λ ∫0

∞ e−(s+λ) x dx

so that

f (s) = λ
s + λ .

The  derivative of  isn th f (s)

dn f (s)
dsn = (−1)n λ n!

(s + λ)n+1 .
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Thus, the  moment of X isn th

                                         �E(X n) = n!
λn ; n = 0, 1, ... .

Example 2.27  Let X have a normal distribution with density

f (x) = 1
2π σ

e
−

(x−μ)2

2σ2 ; x ∈ (−∞, +∞).

The Laplace transform of  isf (x)

 f (s) = 1
2π σ

∫
−∞

+∞
e−s xe

−
(x−μ)2

2σ2 dx.

This improper parameter integral exists for all s. Substituting  yieldsu = (x − μ)/σ

f (s) = 1
2π

e−μs ∫
−∞

+∞
e−σ s ue− u2/2du = 1

2π
e−μs+ 1

2 σ2s2

∫
−∞

+∞
e− 1

2 (u+σs)2
du.

By substituting , the second integral is seen to be  Hence,y = u + σs 2π .

                                    (2.128)f (s) = e
−μs+ 1

2σ2s2
.

                  �

Two important special cases of the Laplace transform are the characteristic function
and the moment generating function.

Characteristic Function  The  characteristic function

ψ(y) = ∫−∞
+∞ ei y xf (x) dx

of a random variable with density  f (x) is a special case of its Laplace transform,
namely if the parameter s is purely imaginary number, i.e.  Thus, the charac-s = i y.
teristic function is nothing else but the Fourier transform of  f (x). The advantage of
the characteristic function to the Laplace transform is that it always exists:

ψ(y) = ∫−∞
+∞ ei y xf (x) dx

≤ ∫−∞
+∞ ei y x f (x) dx

= ∫−∞
+∞ f (x) dx = 1.

As the z-transform and the Laplace transform, the characteristic function is moment
and probability generating. Characteristic functions belong to the most important
tools for solving theoretical and practical problems in probability theory.
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Moment Generating Function  Formally, the moment generating function  isM(⋅)
exactly defined as the Laplace transform , namely by formula (2.117). The dif-f (s)
ference is that in case of the moment generating function the parameter s is always
real and usually denoted as '-t' so that

M(t) = ∫−∞
+∞ et x f (x) dx .

The key properties derived for Laplace transforms are of course also valid for the
moment generating function. In particular, if  is a probability density, thenf (x)

M(t) = E(etX).
The terminology is a bit confusing, since, as mentioned before, z-transform, the Lap-
lace transform, and the characteristic function of a random variable are all moment-
as well as probability generating.

Example 2.28  Let an image function be given by
f (s) = s

(s2 − 1)2 .

 can be written asf (s)

f (s) = s
s2 − 1

⋅ 1
s2 − 1

= f 1(s) ⋅ f 2 (s).

The preimages of the factors can be found by means of Table 2.5:

f1(x) = cosh x = 1
2 (ex + e−x)

and
 f2(x) = sinh x = 1

2 (ex − e−x) .

Let  be 0 for all  Then preimage  of  is given by thef1(x) and f2(x) x < 0. f (x) f (s)
convolution (2.126) of  :f1(x) and f2(x)

  ( f1 ∗ f2)(x) = 1
4 ∫0

x (e(x−u) + e−(x−u)) (eu − e−u) du

= 1
4

⎡⎣∫0
x ex(1 − e−2u) du + ∫0

x e−x(e2u − 1) du ⎤⎦

= 1
4 ex ⎡

⎣u + 1
2e−2u ⎤

⎦ 0

x
+ e−x ⎡

⎣
1
2e2u − u⎤

⎦ 0

x

= 1
4 xex + 1

2e−x − 1
2ex + 1

2ex − xe−x − 1
2e−x .

Thus,

f (x) = 1
2 x sinh x.

This verifies the preimage given in Table 2.5 with                                           �a = 1.
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Example 2.29 Let an image function be given by

f (s) = s
(s2 − 1)(s + 2)2 .

The preimage cannot be taken from Table 2.5. But as in the previous example, it can
be determined by factorization. But now the method of decomposition of   intof (s)
par- tial fractions is used: The denominator has the simple zeros  ,   ands = 1 s = −1
the doubly zero  Hence,   can be written in the forms = −2. f (s)

f (s) = s
(s2 − 1)(s + 2)2 =

A1
s − 1 +

A2
s + 1 +

B1
s + 2 +

B2
(s + 2)2 .

The coefficients  are determined by multiplying the equation by A1, A2, B1, and B2
 and subsequent comparison of the coefficients of on(s2 − 1)(s + 2)2 sn; n = 0, 1, 2, 3;

both sides. This gives the equations

s0 : 4A1 − 4A2 − 2B1 − B2 = 0
s1 : 8A1 − B1 = 1
s2 : 5A1 + 3A2 + 2B1 + B2 = 0

  s3 : A1 + A2 + B1 = 0

The solution is
A1 = 1/18, A2 = 1/2, B1 = −5/9, B2 = −2/3.

Therefore,

f (s) = 1
18 ⋅ 1

s − 1 + 1
2 ⋅ 1

s + 1 − 5
9 ⋅ 1

s + 2 + 2
3 ⋅ 1

(s + 2)2 .

The preimage of the last term can be found in Table 2.5. If no table is available, then
this term is represented as

1
(s + 2)2 = 1

s + 2 ⋅ 1
s + 2.

The preimage of each factor is  so that the preimage of  is equal to thee−2x 1/(s + 2)2

convolution of   with itself:e−2x

e−2x ∗ e−2x = ∫0
x e−2(x−y) ⋅ e−2ydy

         = ∫0
x e−2xdy

  = x e−2x.

Now, by (2.124), retransformation of the image  can be done term by :f (s) term

                              �f (x) = 1
18 ex + 1

2 e−x − 5
9 e−2x + 2

3 x e−2x.
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f (s)  preimage f (s)  preimage

1
s

1 1
(s2 − a2)2

1
2a2 (x cosh ax − 1

a sinh ax)

1
sn , n ≥ 1 1

(n − 1)! xn−1 s
(s2 − a2)2

1
2a x sinh a x

1
s + a

e−a x s2

(s2 − a2)2
1
2a (sinh a x + a x cosh a x)

1
(s + a)n

1
(n − 1)! xn−1 e−a x 1

(s + a)(s + b)
1

b − a
(e−a x − e−b x)

s
(s + a)2

(1 − a x) e−a x s
(s + a)(s + b)

1
b − a

(b e−b x − a e−a x)

s
(s + a)3 (1 − a

2 ) x e−a x 1
(s + a)(s + b)2

1
(b−a)2 (e−ax − e−bx − (b − a)xe−bx)

s
(s + a)4

1
2x2e−ax − a

6x3e−ax s
(s + a)(s + b)2

1
(b−a)2 {−a−ax + [a + b(b − a)x]e−bx}

1
s2 − a2

1
a sinh (a x) s2

(s + a)(s + b)2

1
(b−a)2 [(a2e−ax + b(b − 2a − b2x + abx)]e−bx

1
s2 + a2

1
a sin (a x) 1

s (s + a)2
1

a2 (1 − e−a x − a x e−a x)

s
s2 − a2

cosh (a x) 1
s (s + a)(s + b)

1
ab(a − b)

[a(1 − e−bx) − b(1 − e−ax)]

s
s2 + a2

cos a x 1
(s + a)(s + b)(s + c)

1
(a − b)(b − c)(c − a)

[(c − b)e−ax+

+(a − c)e−bx + (b − a)e−cx]

1
s (s + a)

1
a (1 − e−a x)

s
(s + a)(s + b)(s + c)

1
(a − b)(b − c)(c − a)

[a(b − c) e−ax+

+b(c − a)e−bx + c(a − b)e−cx]

1
s2 (s + a)

1
a2 (e−a x + a x − 1) s2

(s + a)(s + b)(s + c)
1

(a − b)(b − c)(c − a)
[−a2(b − c)e−a x

−b2(c − a)e−bx − c2(a − b)e−c x]

1
(s2 + a2)2

1
2a2 (1

a sin ax − x cos ax) 1
(s + a)(s2 + b2)

1
a2 + b2 [e−a x + a

b
sin bx − cos bx]

s
(s2 + a2)2

1
2a x sin a x

s
(s + a)(s2 + b2)

1
a2 + b2 [−ae−a x + a cos bx + b sin bx]

s2

(s2 + a2)2
1

2a (sin ax + ax cos ax) s2

(s + a)(s2 + b2)

1
a2 + b2 ⎡⎣a2e−a x − ab sin bx + b2cos bx⎤⎦

Table 2.5 Images and the corresponding preimages of the Laplace transformation
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2.6  EXERCISES

Sections 2.1 and 2.2
2.1) An ornithologist measured the weight of 132 eggs of helmeted guinea fowls
[gram]:
    number i                                 1       2       3       4       5       6       7       8         9     10
    weight                                38       41     42     43     44     45     46     47      48     50xi

    number of eggs                     4         6       7     10      13     26      33     16      10       7 ni

There are no eggs weighing less than 38 and more than 50. Let X  be the weight of a
randomly picked egg from this sample.
(1) Determine the probability distribution of X.
(2) Draw the distribution function of X.
(3) Determine the probabilities P(43 ≤ X ≤ 48) and P(X > 45).

(4) Determine E(X), Var(X) , and E( X − E(X) ).

2.2) 114 nails are classified by length:

         number i               1         2         3         4         5         6         7
         length (in mm)               15.0     15.1   15.2    15.3    15.4    15.5    15.6    xi < 15.0 > 15.6
         number of nails              0         3        10       25       40       18       16         2            0ni

Let X denote the length of a nail selected randomly from this population.
(1) Determine the probability distribution of X.
(2) Determine the probabilities P(X ≤ 15.1), and P(15.0 < X ≤ 15.5).
(3) Determine E(X), m3 = E(X − E(X)) 3, σ = Var(X) , γC, and γP.
Interprete the skewness measures.

2.3) A set of 100 coins from an ongoing production process had been sampled and
their diameters measured. The measurement procedure allows for a degree of accur-
acy of  The table shows the measured values  and their numbers:±0.04 mm. xi

      i       1       2       3      4      5       6       7

xi   24.88   24.92   24.96   25.00   25.04   25.08   25.12

ni 2     6     20    40    22    8     2     

Let X be the diameter of a randomly from this set picked coin.
(1) Draw the distribution function of X.
(2) Determine E(X), E( X − E(X) ), Var(X), and V(X).
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2.4) 84 specimen copies of soft coal, sampled from the ongoing production in a col-
liery over a period of 7 days, had been analyzed with regard to ash and water content,
respectively [in %]. Both ash and water content have been partitioned into 6 classes.
The table shows the results:

water

 [16, 17)  [17, 18)  [18, 19)  [19, 20)  [20, 21)  [21, 22]

 [23, 24) 0 0 1 1 2 4

 [24, 25) 0 1 3 4 3 3

       ash  [25, 26) 0 2 8 7 2 1

 [26, 27) 1 4      10 8 1 0

 [27, 28) 0 5 4 4 0 0

 [28, 29) 2 0 1 0 1 0

Let X be the water content and Y be the ash content of a randomly chosen specimen
copy out of the 84 ones. Since the originally measured values are not given, it is as-
sumed that the values, which X and Y can take on, are the centers of the given classes,
i.e., 16.5, 17.5, 21.5.. .. ,
(1) Draw the distribution functions of X and Y.
(2) Determine E(X), Var(X), E(Y), and Var(Y).

2.5) It costs $ 50 to find out whether a spare part required for repairing a failed device
is faulty or not. Installing a faulty spare part causes damage of  $1000.
Is it on average more profitable to use a spare part without checking if
(1)  1%  of all spare parts of that type,
(2)   3% of all spare parts of that type, and
(3) 10 % of all spare parts of that type are faulty?

2.6) Market analysts predict that a newly developed product in design 1 will bring in
a profit of $ 500 000, whereas in design 2 it will bring in a profit of $ 200 000 with
probability 0.4, and a profit of $ 800 000 with probability 0.6.
What design should the producer prefer?

2.7) Let X be the random number one has to throw a die, till for the first time a 6
occurs. Determine  and E(X ) Var(X ).

2.8) 2% of the citizens of a country are HIV-positive. Test persons are selected at
random from the population and checked for their HIV-status.
What is the mean number of persons which have to be checked till for the first time
an HIV-positive person is found?
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2.9) Let X be the difference between the number of head and the number of tail if a
coin is flipped 10 times.
(1) What is the range of X ?
(2) Determine the probability distribution of X.

2.10) A locksmith stands in front of a locked door. He has 9 keys and knows that
only one of them fits, but he has otherwise no a priori knowledge. He tries the keys
one after the other.
What is the mean number of trials till the door opens?

2.11) A submarine attacks a warship with 8 torpedoes. The torpedoes hit the warship
independently of each other with probability 0.8. Any successful torpedo hits one of
the 8 submerged chambers of the ship independently of other successful ones with
probability 1/8. The chambers are isolated from each other. In case of one or more
hits, a chamber fills up with water. The ship will sink if at least 3 chambers are hit by
one or more torpedos. What is the probability that the attack sinks the warship?

2.12) Three hunters shoot at 3 partridges. Every hunter, independently of the others,
takes aim at a randomly selected partridge and hits his/her target with probability 1.
Thus, a partridge may be hit by several pellets, whereas lucky ones escape a hit.
Determine the mean  of the random number X of hit partridges.E(X )

2.13) A lecturer, for having otherwise no merits, claims to be equipped with extra-
sensory powers. His students have some doubt about it and ask him to predict the
outcomes of ten flippings of a fair coin. The lecturer is five times successful. Do you
believe that, based on this test, the claim of the lecturer is justified?

2.14) Let X have a binomial distribution with parameters  and n = 5 p = 0.4.
(1) Draw the distribution function of X.
(2) Determine the probabilities

P(X > 6), P(X < 2), P(3 ≤ X < 7), P(X > 3 X ≤ 2), and P(X ≤ 3 X ≥ 4).

2.15) Let X have a binomial distribution with parameters  and p.n = 10
Determine an interval I so that  for all P(X = 2) < P(X = 3) p ∈ I.

2.16) The stop sign at an intersection is on average ignored by 4% of all cars. A car,
which ignores the stop sign, causes an accident with probability 0.01. Assuming inde-
pendent behavior of the car drivers:
(1) What is the probability that from 100 cars at least 3 ignore the stop sign?
(2) What is the probability that at least one of the 100 cars causes an accident due to
ignoring the stop sign?
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2.17) Tessa bought a dozen claimed to be fresh-laid farm eggs in a supermarket.
There are 2 rotten eggs amongst them. For breakfast she boils 2 eggs.
What is the probability that her breakfast is spoilt if already one bad egg will have
this effect?

2.18) A smart baker mixes 20 stale breads from the previous days with 100 freshly
baked ones and offers this mixture for sale. Tessa randomly chooses 3 breads from
the 120, i.e., she does not feel and smell them. What is the probability that she has
bought at least one stale bread?

2.19) Some of the 270 spruces of a small forest stand are infested with rot (a fungus
affecting first the core of the stems). Samples are taken from the stems of 30 random-
ly selected trees. 
(1) If 24 trees from the 270 are infested, what is the probability that there are less than
4 infested trees in the sample?
Determine this probability both by the binomial approximation and by the Poisson
approximation to the hypergeometric distribution.
(2) If the sample contains six infested trees, what is the most likely number of infest-
ed trees in the forest stand (see example 2.7)?

2.20) Because it happens that one or more airline passengers do not show up for their
reserved seats, an airline would sell 602 tickets for a flight that holds only 600 pas-
sengers. The probability that, for some reason or other, a passenger does not show up
is 0.008.
What is the probability that every passenger who shows up will have a seat?

2.21) Flaws are randomly located along the length of a thin copper wire. The number
of flaws follows a Poisson distribution with a mean of 0.15 flaws per cm. What is the
probability  of at least 2 flaws in a section of length 10 cm?p≥2

2.22) The random number of crackle sounds produced per hour by an old radio has a
Poisson distribution with parameter λ = 12.
What is the probability that there is no crackle sound during the 4 minutes transmis-
sion of a listener's favorite hit?

2.23) The random number of tickets car driver Odundo receives has a Poisson distri-
bution with parameter  a year. In the current year, Odundo had received his firstλ = 2
ticket on the 31st of March.
What is the probability that he will receive another ticket in that year ?

2.24) Let X have a Poisson distribution with parameter .λ
For which nonnegative integer n is the probability  maximal?pn = P(X = n)
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2.25) In 100 kg of a low-grade molten steel tapping there are on average 120 impu-
rities. Castings weighing 1kg are manufactured from this raw material. What is the
probability that there are at least 2 impurities in a casting if the spacial distribution of
the impurities in the raw material is assumed to be Poisson?

2.26) In a piece of fabric of length 100 m there are on average 10 flaws. These flaws
are assumed to be Poisson distributed over the length. The 100 m of fabric are cut in
pieces of length 4 m.
What percentage of the 4 m cuts can be expected to be without flaws?

2.27) X have a binomial distribution with parameters n and p. Compare the following
exact probabilities with the corresponding Poisson approximations and give reasons
for possible larger deviations:
(1) P(X = 2) for n = 20, p = 0.1,
(2) P(X = 2) for n = 20, p = 0.9,
(3) P(X = 0) for n = 10, p = 0.1,
(4) P(X = 3) for n = 20, p = 0.4.

2.28) A random variable X has range  and probability distributionR = {x1, x2, . .. , xm}

 {pk = P(X = xk); k = 1, 2, ..., m}, Σk=1
m pk = 1.

A random experiment with outcome X is repeated n times. The outcome of the  k th
repetition has no influence on the outcome of the  one, (k + 1) th k = 1, 2, ..., m − 1.
Show that the probability of the event

{  occurs  times,  occurs  times, ,  occurs  times}x1 n1 x2 n2 . .. xm nm

is given by

  with   n!
n1! n2! . .. nm! p1

n1 p2
n2 . .. pm

nm Σk=1
m nk = 1.

This probability distribution is called the multinomial distribution. It contains as a
special case the binomial distribution (n = 2).

2.29) A branch of the PROFIT-Bank has found that on average 68% of its customers
visit the branch for routine money matters (type 1-visitors), 14% are there for invest-
ment matters (type 2-visitors), 9% need a credit (type 3-visitors), 8% need foreign
exchange service (type 4-visitors), and 1% only make a suspicious impression or
even carry out a robbery (type 5-visitors).
(1) What is the probability that amongst 10 randomly chosen visitors 5, 3, 1, 1, and 0
are of type 1, 2, 3, 4, or 5, respectively                                                                     ?
(2) What is the probability that amongst 12 randomly chosen visitors 4, 3, 3, 1, and 1
are of type 1, 2, 3, 4, or 5, respectively?

110                             APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Section 2.3
2.30) Let  and  be the respective distribution function and the probabilityF(x) f (x)
density of a random variable X. Answer with yes or no the following questions:
(1)    and  can be arbitrary real functions.F(x) f (x)
(2)    is a nondecreasing function.f (x)
(3)    cannot have jumps.f (x)
(4)    cannot be negative.f (x)
(5)    is always a continuous function.F(x)
(6)    can assume values between  and F(x) −1 +1.
(7)   The area between the abscissa and the graph of  is always equal to 1.F(x)
(8)    must always be smaller than 1.f (x)
(9)   The area between the abscissa and the graph of  is always equal to 1.f (x)
(10) The properties of  and  are all the same to me.F(x) f (x)

2.31) Check whether by suitable choice of the parameter a the following functions
are densities of random variables. If the answer is yes, determine the respective dis-
tribution functions, mean values, variances, medians, and modes.
(1) f (x) = a x , − 3 ≤ x ≤ +3,
(2) f (x) = a x e−x2 , x ≥ 0,
(3) f (x) = a sin x, 0 ≤ x ≤ π,
(4) f (x) = a cos x, 0 ≤ x ≤ π.

2.32) (1) Show that  is a probability density.f (x) = 1
2 x

, 0 < x ≤ 1,

(2) Draw the graph of the corresponding distribution function and determine the cor-
responding 0.1, 0.5, and the 0.9-percentiles. Check whether the mean value exists.

2.33) Let X be a continuous random variable. Confirm or deny the following state-
ments:
(1)  The probability  is always positive.P(X = E(X ))
(2) There is always Var(X ) ≤ 1.
(3)  can be negative if X can assume negative values.Var(X )
(4)  is never negative.E(X )

2.34) The current which flows through a thin copper wire is uniformly distributed in
the interval [0, 10] (in mA). For safety reasons, the current should not fall below the
crucial level of 4 mA.
What is the probability that at any randomly chosen time point the  current is below
4 mA?
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2.35) According to the timetable, a lecture begins at 8:15 a.m. The arrival time of
Professor Wisdom in the venue is uniformly distributed between 8:13 and 8:20,
whereas the arrival time of student Sluggish is uniformly distributed over the time
interval from 8:05 to 8:30.
What is the probability that Sluggish arrives after Wisdom in the venue?

2.36) A road traffic light is switched on every day at 5:00 a.m. It always begins with
red and holds this colour for two minutes. Then it changes to yellow and holds this
colour for 30 seconds before it switches to green to hold this colour for 2.5 minutes.
This cycle continues till midnight. 
(1) A car driver arrives at this traffic light at a time point which is uniformly distri-
buted between 9:00 and 9:10 a.m. What is the probability that the driver catches the
green light period?
(2) Determine the same probability on condition that the driver's arrival time point has
a uniform distribution over the interval [8:58, 9:08].

2.37) A continuous random variable  has the probability densityX

f (x) =
⎧

⎩
⎨

1/4 for 0 ≤ x ≤ 2,
1/2 for 2 < x ≤ 3.

Determine  and  Var(X ) E( X − E(X ) ).

2.38) A continuous random variable X has the probability density
f (x) = 2 x, 0 ≤ x ≤ 1.

(1) Draw the corresponding distribution function.
(2) Determine and compare the measures  variabilityof

E( X − E(X ) ) and Var(X ) .

2.39) The lifetime X of a bulb has an exponential distribution with a mean value of
 Calculate the probabilities E(X) = 8000 hours.

   and P(X ≤ 4000), P(X > 12000), P(7000 ≤ X < 9000), P(X < 4000)
(time limits in hours).

2.40) The lifetimes of 5 identical bulbs are exponentially distributed with parameter
λ = 1.25 ⋅ 10−4 [h−1].
All of them are switched on at time  and will fail independently of each other.t = 0
(1) What is the probability that at time  a) all 5 bulbs and b) at least 3t = 8000 hours
bulbs have failed?
(2) What is the probability that at least one bulb survives 12 000 hours?
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2.41) The period of employment of staff in a certain company has an exponential
distribution with property that 92% of staff leave the company after only 16 months.
What is the mean time an employee is with this company and the corresponding stand-
ard deviation?

2.42) The times between the arrivals of taxis at a rank are independent and have an
exponential distribution with parameter  An arriving customer does notλ = 4 [h−1].
find an available taxi and the previous one left 3 minutes earlier. No other customers
are waiting. What is the probability that the customer has to wait at least 5 minutes
for the next free taxi?

2.43)  A small branch of a bank has the two tellers 1 and 2. The service times at these
tellers are independent and exponentially distributed with parameter λ = 0.4 [min−1].
When Pumeza arrives, the tellers are occupied by a customer each. So she has to wait.
Teller 1 is the first to become free, and the service of Pumeza starts immediately.
What is the probability that the service of Pumeza is finished sooner than the service
of the customer at teller 2?

2.44) Four weeks later Pumeza visits the same branch as in exercise 2.43. Now the
service times at tellers 1 and 2 are again independent, but exponentially distributed
with respective parameters  and .λ1 = 0.4 [min−1] λ2 = 0.2 [min−1]
(1) When Pumeza enters the branch, both tellers are occupied and no customer is wait-
ing. What is the mean time Pumeza spends in the branch till the end of her service?
(2) When Pumeza enters the branch, both tellers are occupied, and another customer
is waiting for service. What is the mean time Pumeza spends in the branch till the end
of her service? (Pumeza does not get preferential service.)

2.45) An insurance company offers policies for fire insurance. Achmed holds a poli-
cy according to which he gets full refund for that part of the claim which exceeds
$3000. He gets nothing for a claim size less than or equal to $ 3000. The company
knows that the average claim size is $5642.
(1) What is the mean refund Achmed gets from the company for a claim if the claim
size is exponentially distributed?                                                                                   
(2) What is the mean refund Achmed gets from the company for a claim if the claim
size is Rayleigh-distributed?

2.46) Pedro runs a fruit shop. Mondays he opens his shop with a fresh supply of straw-
berries of s pounds, which is supposed to satisfy the demand for three days. He knows
that for this time span the demand X is exponentially distributed with a mean value
of 200 pounds. Pedro pays $ 2 for a pound and sells it for $ 4. So he will lose $ 2 for
each pound he cannot sell, and he will make a profit of $ 2 out of each pound he sells.
What amount  of strawberries Pedro should stock for a period of three days tos = s∗
maximize his mean profit?
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2.47) The probability density function of the random annual energy consumption X
of an enterprise [in  is108kwh]

f (x) = 30(x − 2)2[1 − 2(x − 2) + (x − 2)2], 2 ≤ x ≤ 3.
(1) Determine the distribution function of X. What is the probability that the annual
energy consumption exceeds 2.8?
(2) What is the mean annual energy consumption? 

2.48) The random variable X  is normally distributed with mean  and standardμ = 5
deviation σ = 4.
Determine the respective values of x which satisfy

  P(X ≤ x) = 0.5, P(X > x) = 0.95, P(x ≤ X < 9) = 0.2, P(3 < X ≤ x) = 0.95,

           P(−x ≤ X ≤ +x) = 0.99.

2.49) The response time of an average male car driver is normally distributed with
mean value 0.5  and standard deviation 0.06  (in seconds).
(1) What is the probability that his response time is greater than 0.6 seconds?
(2) What is the probability that his response time is between 0.50 and 0.55 seconds?

2.50) The tensile strength of a certain brand of paper is modeled by a normal distribu-
tion with mean 24 psi and variance  9 [psi]2.
What is the probability that the tensile strength of a sample does not fall below the
critical level of 20 psi ?

2.51) The total monthly sick leave time of employees of a small company has a nor-
mal distribution with mean 100 hours and standard deviation 20 hours.
(1) What is the probability that the total monthly sick leave time will be between 50
and 80 hours?
(2) How much time has to be budgeted for sick leave to make sure that the budgeted
total amount for sick leave is only exceeded with a probability of less than 0.1?

2.52) The random variable X has a Weibull distribution with mean value 12 and vari-
ance 9.
(1) Calculate the parameters  and  of this distribution.β θ

(2) Determine the conditional probabilities  and P(X > 10 X > 8) P(X ≤ 6 X > 8).

2.53) The random measurement error X of a meter has a normal distribution with
mean 0 and variance  i.e.,  It is known that the percentage of meas-σ2, X = N(0,σ2).
urements, which deviate from the 'true' value by more than  is 80%. Use this0.4 ,
piece of information to determine σ.
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2.54) If sand from gravel pit 1 is used, then molten glass for producing armored glass
has a random impurity content X which is -distributed. But if sand fromN(60, 16)
gravel pit 2 is used, then this content is -distributed (  and  in 0.01%). TheN(62, 9) μ σ
admissable degree of impurity should not exceed 0.64%.
Sand from which gravel pit should be used?

2.55) Let X have a geometric distribution with
P(X = i) = (1 − p)pi; i = 0, 1, ...; 0 < p < 1.

By mixing these geometric distributions with regard to a suitable structure distribution
density  show thatf (p)

Σ
i=0

∞ 1
(i + 1)(i + 2)

= 1.

2.56) A random variable X has distribution function
Fα(x) = e−α/x; α > 0, x > 0

(  distribution).Frechét
What distribution type arises when mixing this distribution with regard to the expo-
nential structure distribution density f (α) = λ eλα; λ > 0, α > 0 ?

2.57) The random variable  has distribution function (Lomax distribution, page 93)X
F(x) = x

x + 1, x ≥ 0.

Check whether there is a subinterval of   on which  is DFR or IFR.[0,∞) F(x)

2.58) Check the aging behavior of systems whose lifetime distributions have
(1) a  distribution with distribution function  (sketch itsFrechét F(x) = e−(1/x)2 , x > 0
failure rate), and
(2) a power distribution with distribution function  F(x) = 1 − (1/x2), x ≥ 1.
respectively?

2.59) Let  be the distribution function of a nonnegative random variable X withF(x)
finite mean value . μ
(1) Show that the function  defined byFs(x)

Fs(x) = 1
μ ∫0

x(1 − F(t) )dt

is the distribution function of a nonnegative random variable Xs.
(2) Prove: If X is exponentially distributed with parameter then so is  andλ = 1/μ, Xs
vice versa.
(3) Determine the failure rate  of λs(x) Xs.
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2.60) Let X be a random variable with range {1, 2, ...} and probability distribution

P(X = i) = ⎛
⎝⎜
1 − 1

n2
⎞
⎠⎟

1
n2(i−1) ; i = 1, 2, ...

Determine the z-transform of  X and by means of it , and .E(X ) E(X 2), Var(X )

2.61) Determine the Laplace transform  of the density of the Laplace distributionf (s)
with parameters  and  (page 66):λ μ

f (x) = 1
2λe−λ x−μ , − ∞ < x < +∞,

By means of  determine f (s) E(X ), E(X 2), and Var(X ).
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CHAPTER 3

Multidimensional Random Variables

The previous chapter essentially dealt with one-dimensional random variables and
their probabilistic characterization and properties. Frequently a joint probabilistic
analysis of two or more random variables is necessary. For instance, for weather
predictions the meteorologist must take into account the interplay of randomly fluc-
tuating parameters as air pressure, temperature, wind force and direction, humidity,
et cetera. The operator of a coal power station, in order to be able to properly
planning the output of the station, needs to take into account outdoor temperature as
well as ash and water content of the coal presently available. These three parameters
have a random component and there is a dependency between ash and water content.
The information technologist, when analyzing stochastic signals, has jointly to
consider their random phases and amplitudes. The forester, who has to estimate the
amount of wood in a forest stand, measures both height and stem diameter (at a
height of 1.3 m) of trees. Even in chapter 2 of this book vectors of random variables
occurred without having explicitely hinted to this: When a die is tossed twice, then
the outcome is  The binomial distribution is derived from a sequence of n(X1, X2).
binary random variables  More challenging situations will be dis-(X1, X2, ..., Xn).
cussed in Part II of this book: Let, for instance,  be the price of a unit of stock atX(t)
time t and  Then the components of the n-dimensional vector0 < t1 < t2 < . .. < tn.

 are the random stock prices at time points . There is an(X(t1), X(t2), ..., X(tn)) ti
obvious dependency between the  so that for the prediction of the stock priceX(ti)
development in time the random variables  should not be analyzed separately ofX(ti)
each other. The same refers to other time series as registering temperatures, popula-
tion sizes, et cetera, at increasing time points.

3.1 TWO-DIMENSIONAL RANDOM VARIABLES

3.1.1 Discrete Components

Let X and Y  be two random variables, which are combined to a random vector (X, Y ).
This vector is also called a two-dimensional random variable or a bivariate random
variable. In this section, X and Y are assumed to be discrete random variables with
respective ranges  and  Then the range of  isRX = {x0, x1, ...} RY = {y0, y1, ...}. (X, Y)
the set of two-dimensional vectors

RXY = {(x, y), x ∈ RX, y ∈ RY}.
The (deterministic) vector  is called a realization of (x, y) (X, Y).



For instance, if two dice are thrown simultaneously and the outcomes are X and Y,
respectively, then the range of  is(X, Y)

RXY = {(i, j); i, j = 1, 2, ..., 6}.
If X  and Y are the random number of traffic accidents occruring a year in the two
neighboring towns Atown and Betown, respectively, then

RX = {0, 1, ...} and RY = {0, 1, ...},
and the range of  is  It makes sense to consider X(X, Y) RXY = {(i, j), i, j = 0, 1, 2, ...}.
and Y together, since weather, seasonal factors, vacation periods, and other condi-
tions induce a dependency between X and Y. 

Joint probability distribution Let
 and {pi = P(X = xi ; i = 0, 1, ...} {qj = P(Y = xj ; j = 0, 1, ...}

be the probability distributions of  and Y, respectively. Furthermore, letX
  for all                         (3.1)ri j = P(X = xi ∩ Y = yj) (xi, yj) ∈ RXY

be the probabilities for the joint occurrence of the random events ' ' and ' 'X = xi Y = yj.
The set of probabilities

                                              (3.2){ri j; i, j = 0, 1, ...}

is the joint or two-dimensional probability distribution of the random vector (X, Y ).
From the definition of the ri j,

                                     (3.3)pi = Σj=0
∞ ri j , qj = Σi=0

∞ ri j .

Marginal Distributions The probability distribution  of X and the{ pi, i = 0, 1, ...}
probability distribution of Y are called the marginal distributions of  { qi, i = 0, 1, ...}

 The marginal distributions of  do not contain the full information on the(X, Y ). (X, Y)
joint probability distribution of  if there is a dependency between X and Y. How-(X, Y)
ever, if X and Y are independent, then the joint probability distribution of  and(X, Y)
its marginal distributions are equivalent in this regard.

Definition 3.1 (independence) Two discrete random variables X and Y are (statisti-
cally) independent if 

                                          ri j = pi qj, i, j = 0, 1, ... .

If X and Y are independent, then the value, which X has assumed, has no influence on
the value, which Y has assumed and vice versa. This is the situation when throwing
two dice simultaneously, or when X denotes the number of shark attacks at humans
occurring at the shores of South Africa in 2025 and Y the ones at the shores of
Hawaii in 2030. The mean value of the product  isXY

                                       (3.4)E(XY ) = Σi=1
∞ Σj=1

∞ ri j xi xj.
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For independent X and Y, the mean value of  becomesXY

E(XY) = Σi=1
∞ Σj=1

∞ piqjxi xj = (Σi=1
∞ pi xi) (Σj=1

∞ qj yj)

so that                                                                                  (3.5)E(XY ) = E(X ) ⋅ E(Y ).

Conditional Probability Distribution By formula (1.22), the conditional probabili-
ties of   given   and   given  respectively, areX = xi Y = yj Y = yj X = xi,

    | |   P(X = xi Y = yj) =
ri j
qj

, P(Y = yj X = xi) =
ri j
pi

.

The sets

 and 
ri j
qj

; i = 0, 1, ...
ri j
pi

; j = 0, 1, ...

are the conditional probability distributions of X given  and of Y given Y = yj X = xi ,
respectively. The corresponding conditional mean values are

E(X Y = yj) = Σ
i=0

∞
xi

ri j
qj

, E(Y X = xi) = Σ
j=0

∞
yj

ri j
pi

.

If X and Y are independent, then the conditions have no influence on the respective
mean values, since  and  (see formula 2.7):ri j/qj = pi ri j/pi = qj

E(X Y = yj) = E(X), E(Y X = xi) = E(Y); i, j = 0, 1, ... .

The conditional mean value  of X given Y is a random variable, since the con-E(X Y )
dition is random. The range of  isE(X Y )

{E(X Y = y0), E(X Y = y1), ... },
and the mean value of  is  sinceE(X Y ) E(X ),

E(E(X Y)) = Σj=0
∞ E(X Y = yj)P(Y = yj) = Σj=0

∞ Σi=0
∞ xi

ri j
qj

qj

 = Σi=0
∞ xiΣj=0

∞ ri j = Σi=0
∞ xi pi = E(X).

Because the roles of  and Y can be exchanged,X
                       (3.6)E(E(X Y )) = E(X ) and E(E(Y X )) = E(Y ) .

Example 3.1 Two dice are thrown. The outcomes are  and  respectively. LetX1 X2,

  and   'total number of even figures in ' X = max(X1, X2) Y = (X1, X2).

The ranges of X and Y are  and   Since  and  RX = {1, 2, 3, 4, 5, 6} RY = {0, 1, 2}. X1 X2
are independent,

    P(X1 = i, X2 = j) = P(X1 = i) ⋅ P(X2 = j) = 1
6 ⋅

1
6 = 1

36 .

By (3.6), the  and the  are the corresponding row and column sums in Table 3.1.qj pi
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         X
    Y   

     1      2      3      4      5       6 qj

   0       1/36      0    3/36      0    5/36       0   9/36  
     1     0    2/36    2/36    4/36    4/36     6/36  18/36 
     2     0    1/36       0    3/36      0     5/36     9/36

pi   1/36    3/36    5/36    7/36    9/36    11/36     1

Table 3.1  Joint distribution and marginal distribution for example 3.1

The mean values of X and  areY

E(X ) = 1
36(1 + 2 ⋅ 3 + 3 ⋅ 5 + 4 ⋅ 7 + 5 ⋅ 9 + 6 ⋅ 11) ≈ 4.472,

                                  E(Y ) = 1
36(0 ⋅ 9 + 1 ⋅ 18 + 2 ⋅ 9) = 1.

X and Y are not independent of each other:  If  then  If  then Y canX = 1, Y = 1. X = 2,
only be 1 or 2 and so on. Hence, it makes sense to determine the conditional distri-
butions, e.g.

P(X = i Y = j) =
ri j
qj

; i = 1, 2, ..., 6 ; j = 0, 1, 2.

    j = 0 : 1
9 , 0, 3

9 , 0, 5
9 , 0 , E(X Y = 0) = 35

9 ≈ 3.889.

j = 1 : 0, 1
9 , 1

9 , 2
9 , 2

9 , 3
9 , E(X Y = 1) = 41

9 ≈ 4.556.

                                               j = 2 : 0, 1
9 , 0, 3

9 , 0, 5
9 , E(X Y = 2) = 44

9 ≈ 4.889.

3.1.2   Continuous Components

3.1.2.1 Probability Distribution
Let X and Y be continuous, real-valued random variables with distribution functions

 , FX(x) = P(X ≤ x) FY(y) = P(Y ≤ y)

and ranges , respectively. As with discrete random variables X and Y,  isRX RY, (X, Y)
called a random vector, a two-dimensional random variable, or a bivariate random
variable. Analogously to the distribution function of a (one-dimensional) random
variable, there is a function, which contains the complete probabilistic information
on This is the joint distribution function  of X and Y defined by(X, Y). FX,Y(x, y)

FX,Y(x, y) = P(X ≤ x, Y ≤ y), x ∈ RX, y ∈ RY,

where ' '  ' .' (For discrete random variables X and Y theX ≤ x, Y ≤ y = X ≤ x∩ Y ≤ y
joint distribution function is defined in the same way.) To discuss the properties of
the joint distribu- tion function, it can be assumed without loss of generality that
RX = RY = (−∞,+∞).
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 has the following properties:FX,Y(x, y)

(1)                           FX,Y(−∞, y) = FX,Y(x,−∞) = 0, FX,Y(+∞,+∞) = 1.

(2)                          0 ≤ FX,Y(x, y) ≤ 1.
(3)                         FX,Y(x,+∞) = FX(x), FX,Y(+∞, y) = FY(y).

(4) For  and  x1 ≤ x2 y1 ≤ y2,

              FX,Y(x1, y1) ≤ FX,Y(x2, y1) ≤ FX,Y(x2, y2),
             FX,Y(x1, y1) ≤ FX,Y(x1, y2) ≤ FX,Y(x2, y2).

Thus,  is nondecreasing in every argument.FX,Y(x, y)

(5)                         P(X > x, Y ≤ y) = FY(y) − FX,Y(x, y).

(6)                      P(X ≤ x, Y > y) = FX(x) − FX,Y(x, y).

(7)     P(X > x, Y > y) = 1 − FY(y) − FX(x ) + FX,Y(x, y).

A generalization of the formula (2.44) to random vectors (X,Y) is
   (3.7)P(a < X ≤ b, c < Y ≤ d ) = [FX,Y(b, d) − FX,Y(b, c)] − [FX,Y(a, d ) − FX,Y(a, c)].

Any function , which has properties  and is continuous on the left inF(x, y) (1) and (4)
x and y is the joint distribution function of a random vector  if, in addition, the(X, Y)
right-hand side of (3.7) is nonnegative for all a, b and c, d with  and  (seea < b c < d
exercise 3.17). Properties  are implications of properties  For in-(5) − (7) (1) and (4).
stance, to prove (5), the random event ' ' is equivalently represented as'X > x, Y ≤ y

' \' '.  Hence, by formula (1.14)Y ≤ y X ≤ x , Y ≤ y ,
P(X > x, Y ≤ y) = P(Y ≤ y) − P(X ≤ x, Y ≤ y) = FY(y) − FX,Y(x, y).

Property (6) follows from (5) by changing the roles of X and Y. Property (7) is a
special case of formula (3.7) (see exercise (3.16) for a proof of formula (3.7)). 
Note   Properties (1) to (7) also are true for random vectors with discrete components. 

The probability distribution functions of X and Y are the marginal distribution func-
tions of the two-dimensional random variable , and the pair  is the(X, Y) (FX, FY)
marginal distribution of (X, Y ).

Joint Probability Density Assuming its existence, the partial derivative of FX,Y(x, y)
with respect to x and y,

                                        (3.8)f X,Y(x, y) =
∂FX,Y(x, y)

∂x ∂y ,

is called the joint (probability) density of . Equivalently, the joint density can(X, Y )
be defined as a function  satisfyingfX,Y(x, y)

               (3.9)FX,Y(x, y) = ∫−∞
x ∫−∞

y fX,Y (u, v)du dv , − ∞ < x, y < +∞.
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Every joint (probability) density has the  propertiestwo

                           (3.10)fX,Y(x, y) ≥ 0, ∫−∞
+∞ ∫−∞

+∞ fX,Y(x, y)dx dy = 1.

Conversely, any function of two variables x and y satisfying these two conditions can
be considered the joint density of a random vector  From property (3) of the(X, Y).
previous page and formula (3.9) one obtains the marginal densities of  in terms(X, Y)
of the joint density:

                  (3.11)fX (x) = ∫−∞
+∞ fX,Y (x, y)dy, fY (y) = ∫−∞

+∞ fX,Y(x, y)dx .

Analogously to discrete random variables, the marginal distribution  or, in{FX, FY}
terms of the densities,  does not contain the full information on the{ fX(x), fY(y)},
joint probability distribution of  as given by  if there is a (statistical)(X, Y) FX,Y(x, y)
dependency between X and Y. If X and Y are independent, then  and itsFX,Y(x, y)
marginal distribution  are equivalent in this regard:{FX, FY}

Definition 3.2 (independence) Two random variables X and Y are independent if
                                           FX,Y (x, y) = FX(x) ⋅ FY(y).

Remark For discrete random variables this definition of independence is equivalent to the one
given by definition 3.1. Representations of the distribution functions of discrete random varia-
bles are given at page 43. 

In terms of the densities, X and Y are independent if and only if
                                       (3.12)fX,Y(x, y) = fX(x) ⋅ fY(y).

The mean value of XY is
                                  (3.13)E(X Y) = ∫∫−∞

+∞ x y f (x, y)dxdy.

 with discrete random variables (formula 3.5), for independent random variables:As
                                         (3.14)E(X Y) = E(X ) ⋅ E(Y).

Although in many applications the independence assumption is not justified,  analyti-
cal results can frequently only be derived under this assumption. A reason for this
situation is, apart from mathematical challenges, the inherent difficulties the analyst
faces when trying to quantify statistical dependency.
Let  be a rectangle with sufficiently small side lengths  and  Then theRΔxΔy Δx Δy.
random vector  assumes a realization from this rectangle approximately with(X, Y)
probability

P((X, Y ) ∈ RΔxΔy) ≈ fX,Y(x, y) ΔxΔy.

More generally, if B is an area in the plane, then the probability that the vector (X, Y )
assumes a realization from  is given by the surface integralB

                                (3.15)P((X, Y) ∈ B) = ∫∫
B

fX,Y(x, y)dx dy.
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Figure 3.1  Normal regions with regard to the x-axis a) and the y-axis b)

For a normal region with regard to the x-axis
B = {a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)}

(Figure  the surface integral (3.15) can be calculated by the double integral3.1a),

                        (3.16)P((X, Y) ∈ B) = ∫a
b ⎛
⎝∫y1(x)

y2(x) fX,Y(x, y)dy⎞⎠ dx.

For a normal region with regard to the y-axis
B = {x1(x) ≤ x ≤ x2(x), c ≤ y ≤ d }

(Figure  the surface integral (3.15) can be calculated by the double integral3.1b),

P((X, Y) ∈ B) = ∫c
d ⎛
⎝∫x1(y)

x2(y) fX,Y(x, y)dx⎞⎠ dy.

Double integrals can frequently be more efficiently calculated by transition from the
Cartesian coordinates x and y to curvilinear coordinates u and v:

   or   u = u(x, y), v = v(x, y) x = x(u, v), y = y(u, v).

Then the normal region B with regard to e.g. the x-axis is transformed to a region :B

B = {a ≤ u ≤ b , v1(u) ≤ v ≤ v2(u)},
 the double integral (3.16) becomesand

    (3.17)∫∫
B

fX,Y(x, y)dx dy = ∫a
b ⎛
⎝∫v1(u)

v2(u) fX,Y(x(u, v), y(u, v)) ∂(x, y)
∂(u, v) dv⎞⎠ du,

where

 ∂(x, y)
∂(u, v) =

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

is the functional determinant of the transformation.
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If  then (3.16) becomesB = [a < X ≤ b, c < Y ≤ d ],

P((X, Y) ∈ B) = ∫a
b ⎛
⎝∫c

d fX,Y(x, y)dy⎞⎠ dx.

This integral easily implies formula (3.7).

Example 3.2 The joint probability density of the random vector  is(X, Y)
fX,Y(x, y) = e−(x+y); x ≥ 0, y ≥ 0.

(1) The corresponding marginal densities are

 fX(x) = ∫0
∞ e−(x+y) dy = e−x, fY(y) = ∫0

∞ e−(x+y)dx = e−y; x, y ≥ 0.

Thus, X and Y are both exponentially distributed with parameter  Moreover,λ = 1.
since  X and Y are independent.e−(x+y) = e−x ⋅ e−y,

(2) Let  The region B is hatched in Figure 3.2. The lower bound forB = { Y − X ≤ 1}.
B is  if  and  if  The upper bound is  if  y = 0 0 ≤ x ≤ 1 y = x − 1 1 ≤ x. y = x + 1 x ≥ 0.
Therefore, the outer integral of formula (3.16) has to be split with regard to the x-in-
tervals  and [0, 1] [1,∞) :

P( Y − X ≤ 1) = ∫0
1 ⎛
⎝∫1

x+1 e−(x+y) dy⎞⎠ dx + ∫1
∞ ⎛
⎝∫x−1

x+1 e−(x+y) dy⎞⎠ dx

                              = ∫0
1 e−x ⎡⎣1 − e−(x+1) ⎤⎦ dx + ∫1

∞ e−x ⎡⎣e−(x−1) − e−(x+1) ⎤⎦dx

                                          = 1 − 1/e .
Hence,                                                                                     P( Y − X ≤ 1) ≈ 0.632.

Example 3.3 Let
fX,Y(x, y) = 1

2 x y, 0 ≤ x ≤ y ≤ 2.

(1) Show that  is a joint probability density.fX,Y(x, y)
(2) Determine the probability .P(X 2 > Y)
(3) Are X and Y independent?
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Figure 3.3 Possible (shaded) and favorable (hatched) region for (X,Y) (example 3.3)

(1) It needs to be shown that the conditions (3.10) are fulfilled.  is obviouslyf (x, y)
nonnegative. Further,

∫0
2 ⎛
⎝∫x

2 1
2 x y dy⎞⎠ dx = ∫0

2 ⎛
⎝∫x

2 1
2 x y dy⎞⎠ dx

= 1
2 ∫0

2(2x − x3/2)dx = 1
2 ⎡⎣x2 − x4/8⎤⎦ 0

2 = 1.

(2) In Figure 3.3 the possible set of realizations of  is shaded, and the region B(X, Y)
for which  is hatched. The upper bound of B is given by the parabola  Y2 > X y = x2

between  and  and the straight line  between  and  Thex = 1 x = 2 y = 2 x = 2 x = 2.
lower bound of B is the straight line  between  and  Hence, the desiredy = x x = 1 x = 2.
probability is

P(X 2 > Y) = ∫1
2 ⎛
⎝∫x

x2 1
2 x y dy⎞⎠ dx + ∫ 2

2 ⎛
⎝∫x

2 1
2 x y dy⎞⎠ dx

               = 1
4 ∫1

2 ⎛
⎝x

5 − x3 ⎞
⎠ dx + 1

4 ∫ 2
2 ⎛

⎝4x − x3 ⎞
⎠ dx

                             = 1
4
⎛
⎝

8
6 − 1 − 1

6 +
1
4 + 8 − 4 − 4 + 1⎞⎠ .

Thus, P(X 2 > Y) ≈ 0.354.

(3) The marginal densities  and  arefX(x) fY(y)

fX(x) = ∫x
2 1

2 x y dy = 1
2 x ⎡

⎣⎢
y2

2
⎤
⎦⎥ x

2
= 1

4
⎛
⎝4x − x3 ⎞

⎠ , 0 ≤ x ≤ 2.

 fY(y) = ∫0
y 1

2 x y dy = 1
2 y ⎡⎣

x2

2
⎤
⎦ 0

y
= 1

4 y3, 0 ≤ y ≤ 2.

Since
fX,Y(x, y) ≠ fX(x) ⋅ fY(y),

X and Y are not independent.                                                                                       
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Two-Dimensional Uniform Distribution The random vector  has a uniform(X, Y )
distribution in a finite region B of the -plane with positive area  if(x, y) μ(B)

f (x, y) = 1
μ(B) , (x, y) ∈ B.

Outside B the joint density  is 0. The conditions (3.10) are fulfilled sincef (x, y)

∫∫
B

f (x, y)dx dy = ∫∫
B

1
μ(B) dx dy = 1

μ(B) ∫∫B
dx dy = 1.

For any  the probability that  assumes a value from A isA ⊆ B (X, Y )

P((X, Y ) ∈ A) =
μ(A)
μ(B) .

Remark The uniform distribution of a random vector in a plane is identical to the geometric
distribution introduced in section 1.3.2 (formula (1.8)) if  is a finite subset of a plane.Ω

Example 3.4 Let X be the daily power production of a power station, and let Y be the
daily demand of the consumer. The random vector  has a uniform distribution(X, Y)
over the region

.B = {900 ≤ x ≤ 1000, 850 ≤ y ≤ 950}
What is the probability that the demand exceeds the supply?
The possible realizations of the random vector are in the shaded region (region B) of
Figure 3.4. Its area is 10 000. Hence, the joint density of  is(X, Y)

fX,Y(x, y) = 1
10 000 , (x, y) ∈ B.

The subregion of B, where , is the hatched part of B.  Its lower bound is theY > X
straight line  Hence, the desired probability isy = x.

P(Y > X) = ∫900
950 ∫x

950 1
10 000 dy dx = 1

10 000 ∫900
950(950 − x)dx,

which works out to be P(Y > X) = 0.125.
Of course, no integration is required to arrive at this result, since the area of the hatch-
ed part is a half of the area of a square with side length 50.                                       
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Theorem 3.1 (1) If X and Y are independent and in the respective intervals  and[a, b]
 uniformly distributed, then the random vector  has a uniform distribution[c, d ] (X, Y )

on the rectangle
B = {a ≤ x ≤ b, c ≤ y ≤ d}.

(2) Conversely, if  has a uniform distribution on the rectangle B, then the ran-(X, Y )
dom variables X and Y are independent and uniformly distributed in the intervals

 and , respectively.[a, b] [c, d ]

Proof (1) If X is uniformly distributed in  and Y in , then[a, b] [c, d ]

FX(x) =
x − a
b − a

, a ≤ x ≤ b,

 FY(y) =
y − c
d − c

, c ≤ y ≤ d.

Hence, by definition 3.2, the joint distribution function of  is(X, Y )

FX,Y(x, y) = (x − a)(y − c)
(b − a)(d − c)

, (x, y) ∈ B.

The corresponding joint density is

fX,Y(x, y) = ∂F(x, y)
∂x∂y = 1

(b − a)(d − c)
, (x, y) ∈ B.

 is the joint density of a random vector , which is uniformly distributedf (x, y) (X, Y )
on the rectangle B.

(2) If  is uniformly distributed in the rectangle B, then its corresponding mar-(X, Y)
ginal densities are

 fX (x) = ∫c
d fX,Y (x, y)dy = ∫c

d 1
(b − a)(d − c)

dy = 1
b − a

, a ≤ x ≤ b,

 fY (y) = ∫a
b fX,Y(x, y)dx = ∫a

b 1
(b − a)(d − c)

dx = 1
d − c

, c ≤ y ≤ d,

so that . Hence, X and Y are independent and uniformly distri-fX,Y(x, y) = fX(x) ⋅ fY(y)
buted in the intervals  and , respectively.                                                    [a, b] [c, d ]

3.1.2.2 Conditional Probability Distribution
Given a random vector the conditional distribution function of Y given  (X, Y), X = x
and the corresponding conditional density of Y given  are denoted asX = x

FY(y x) = P(Y ≤ y X = x), fY(y x) = dFY(y x)/dy.

For continuous random variables, the event ' ' has probability 0 so that the defini-X = x
tion of the conditional probability by formula (1.22) cannot directly be applied to
deriving  Hence, consider for a  the conditional probabilityFY(y x). Δx > 0
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P(Y ≤ y x ≤ X ≤ x + Δx) = P(Y ≤ y ∩ x ≤ X ≤ x + Δx)
P(x ≤ X ≤ x + Δx)

=
∫−∞

y 1
Δx
⎛
⎝∫x

x+Δx fX,Y(u, v)d u⎞⎠ d v
1
Δ x [FX(x + Δx) − FX(x)]

.

If  then, assuming Δx → 0, fX(x) > 0,

                             (3.18)FY(y x) = 1
fX(x) ∫−∞

y f X,Y (x, v)dv .

Differentiation yields the desired conditional density:

                                         (3.19)fY(y x) =
fX,Y(x, y)

fX(x)
.

By (3.12), if X and Y are independent, then
fY(y x) = fY(y).

The conditional mean value of Y given  isX = x

                                      (3.20)E(Y x) = ∫−∞
+∞ y fY(y x)d y.

The function  is called regression function of Y with regard to x. ItmY(x) = E(Y x)
quantifies the average dependency of Y from X. For instance, if X is the body weight
and Y the height of a randomly chosen member from a population of adults, then

 is the average height of a member of this population with body weight x. Or:mY(x)
the difference  is the mean increase in body height if the bodymY(x + Δx) −mY(x)
weight increases from x to x + Δx.
The conditional mean value of   given X isY

E(Y X) = ∫−∞
+∞ y fY(y X )d y.

 is a random variable with propertyE(Y X)
                                           (3.21)E(E(Y X )) = E(Y ) .

This is proved as follows:
                     E(E(Y X )) = ∫−∞

+∞ ∫−∞
+∞ y fY(y x )d y fX(x)dx

                               = ∫
−∞

+∞

∫
−∞

+∞
y f (x,y)

fX(x)
d y fX(x)dx = ∫

−∞

+∞

∫
−∞

+∞
y f (x, y)d y dx.

Hence, by (3.11),
E(E(Y X )) = ∫−∞

+∞ y fY(y)dy = E(Y).
If  and Y are independent, thenX

                                       (3.22)E(Y X = x) = E(Y X) = E(Y).
Clearly, the roles of X and Y can be exchanged in the formulas (3.18) to (3.22).
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Formula (3.21), applied to the representation (2.62) of the variance (page 67), can be
used to derive a conditional variance formula for  (exercise 3.21):Var(X)

                           (3.23)Var(X) = E[Var(X Y)] + Var[E(X Y)].

Example 3.5 The random vector  has the joint probability density(X, Y )
fX,Y(x, y) = x + y, 0 ≤ x, y ≤ 1.

 is nonnegative at the unit square. The marginal densities are fX,Y(x, y)

f X(x) = ∫0
1(x + y)dy = [xy + y2/2]0

1 = x + 1/2, 0 ≤ x ≤ 1,

f Y(y) = ∫0
1(x + y)dx = [x2/2 + yx]0

1 = y + 1/2, 0 ≤ y ≤ 1.

Since  the random variables X and Y are not independent.fX,Y(x, y) ≠ f X(x) ⋅ f Y(y),
(Give an intuitive explanation for this.) The mean value of  isX

E(X ) = ∫0
1 x (x + 1/2)dx = [x3/3 + x2/4]0

1 = 7
12 ≈ 0.5833.

In view of the symmetry between x and y in fX,Y(x, y),

E(Y ) = 7
12 ≈ 0.5833.

By (3.19), the conditional density of Y on condition  isX = x

fY(y x) = x + y
x + 1/2

= 2 x + y
2x + 1, 0 ≤ x, y ≤ 1.

The regression function  of Y with regard to x ismY(x) = E(Y X = x)

         mY(x) = 2 ∫
0

1
y x + y

2x + 1dy = 2
2x + 1 ∫0

1
[yx + y2]dy

 = 2
2x + 1

⎡

⎣
⎢

xy2

2 +
y3

3
⎤

⎦
⎥

0

1

so that

  mY(x) =
2 + 3x
3 + 6x , 0 ≤ x ≤ 1.

In particular,
mY(0) =

2
3 ≈ 0.6667, mY(1) =

5
9 ≈ 0.5556, mY(0.5) = 7

12 = E(Y) ≈ 0.5833.

The relatively small influence of the conditions at the conditional mean values sug-
gests that the dependency between X and Y is not that strong (Figure 3.5). The condi-
tional mean value of Y given X is the random variable

E(Y X) = 2 + 3X
3 + 6X ,

which has mean value                                                                              E(Y ) = 7/12.
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Example 3.6 The random variable  has probability densityY

fY(y) = 3y2, 0 ≤ y ≤ 1.

On condition  the random variable X is uniformly distributed in Y = y, [0, y], y > 0.
(1) What is the joint probability density of the random vector ?(X, Y)
(2) Determine the conditional mean values  and .E(Y X = x) E(X Y = y)

(1) On condition  with  the density of X isY = y y > 0

fX(x y) = 1
y , 0 ≤ x ≤ y.

Hence, by formula (3.19), the joint density of   is(X, Y)

f (x, y) = fX(x y) ⋅ fY(y) =
1
y ⋅ 3y2 = 3y, 0 ≤ x ≤ y ≤ 1.

The (unconditional) density of  one obtains from (3.11):X

fX (x) = ∫x
1 3y dy = 3

⎡

⎣
⎢

y2

2
⎤

⎦
⎥

0

1
= 1.5 (1 − x2), 0 ≤ x ≤ 1.

(2) The regression function  of Y with regard to  ismY(x) = E(Y x) X = x

mY(x) = ∫
−∞

+∞
y

fX,Y(x, y)
fX(x)

d y = 2 ∫
x

1 y2

1 − x2 d y

          = 2
3

1 − x3

1 − x2 , 0 ≤ x < 1.

The conditional mean value of X given  isY = y

 E(X y) = ∫
−∞

+∞
x fX(x y) d x = ∫

0

y
x
y d x

                                                     = 0.5 y, 0 ≤ x < y.
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3.1.2.3 Bivariate Normal Distribution
The random vector  has a bivariate (2-dimensional) normal or a bivariate(X, Y)
(2-dimensional) Gaussian distribution with parameters

μx, μy, σx, σy and ρ, − ∞ < μx,μy < ∞, σx > 0, σy > 0, − 1 < ρ < 1

if it has joint density

(3.24)fX,Y(x, y) = 1
2πσxσy 1−ρ2

exp − 1
2(1−ρ2)

⎛
⎝
(x−μx)2

σx
2 − 2ρ (x−μx)(y−μy)

σxσy +
(y−μy)2

σy
2

⎞
⎠

with  By (3.11), the corresponding marginal densities are seen to be-∞ < x, y < +∞.

fX(x) =
1

2π σx
exp

⎛

⎝
⎜−

(x − μx)2

2σx
2

⎞

⎠
⎟ , − ∞ < x < +∞,

 fY(x) =
1

2π σy
exp

⎛

⎝
⎜−

(y − μy)2

2σy
2

⎞

⎠
⎟ , − ∞ < y < +∞ .

Hence, if  has a bivariate normal distribution with parameters (X, Y) μx, σx, μy, σy,
and  then the random variables X and Y have each a normal distribution with res-ρ,
pective parameters  and . Since the independence of  X and Y is equiv-μx, σx μy, σy
alent to

fX,Y(x, y) = fX(x) fY(y),

X and Y are independent if and only if  . (In the next section it will be shownρ = 0
that the parameter  is the correlation coefficient  between X and Y, a measure of theρ
degree of linear statistical dependency between any two random variables.)

The conditional density of Y given  is obtained from  and (3.19):X = x fX,Y(x, y)

    (3.25)fY(y x) = 1
2π σy 1−ρ2

exp − 1
2σy

2(1−ρ2)
⎛
⎝y − ρ

σy
σx (x − μx) − μy ⎞⎠

2
.

Hence, given  the random variable Y has a normal distribution with parametersX = x,

  and       (3.26)E(Y X = x) = ρ
σy
σx (x − μx) + μy Var(Y X = x) = σy

2(1 − ρ2).

Thus, the regression function
mY(x) = E(Y X = x)

of Y with regard to  for the bivariate normal distribution  is a straight line.X = x

Example 3.7 The daily consumptions of tap water X and Y of two neighboring towns
have a joint normal distribution with parameters

μx = μy = 16 [103 m3], σx = σy = 2 [103m3], and ρ = 0.5.
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The conditional probability density of Y on condition  has parametersX = x

E(Y x) = ρ σy
σx (x − μx) + μy = 0.5 ⋅ 2

2 (x − 16) = x
2 + 8

                 Var(Y x) = σy
2(1 − ρ2) = 4 (1 − 0.52) = 3.

Hence,

     fY(y x) = 1
2π 3

exp
⎧

⎩
⎨− 1

2
⎛
⎝⎜

y− x
2−8

3
⎞
⎠⎟

2⎫

⎭
⎬, − ∞ < y < +∞.

This is the density of an -distributed random variable. Some conditionalN(8 + x/2, 3)
interval probabilities are:

P(14 < Y ≤ 16 X = 10) = Φ⎛
⎝⎜

16−13
3

⎞
⎠⎟
− Φ⎛

⎝⎜
14−13

3
⎞
⎠⎟
= 0.958 − 0.718 = 0.240,

P(14 < Y ≤ 16 X = 14) = Φ⎛
⎝⎜

16−15
3

⎞
⎠⎟
− Φ⎛

⎝⎜
14−15

3
⎞
⎠⎟
= 0.718 − 0.282 = 0.436.

The corresponding unconditional probability is 

          P(14 < Y ≤ 16) = Φ⎛
⎝

16−16
2

⎞
⎠ − Φ

⎛
⎝

14−16
2

⎞
⎠ = 0.500 − 0.159 = 0.341.

3.1.2.4 Bivariate Exponential Distributions
In this section some joint probability distributions of random vectors  with non-(X, Y)
negative X and Y are considerered, whose marginal distributions are one-dimensional
exponential distributions.
a) A random vector  has a Marshall-Olkin distribution if its joint distribution(X, Y)
function  is for  given byFX,Y(x, y) = P(X ≤ x, Y ≤ y) x, y ≥ 0

       (3.27)FX,Y(x, y) = 1 − e−(λ1+λ)x − e−(λ2+λ)y + e−λ1 x−λ2 y−λ max(x,y)

with positive parameters and a nonnegative parameter  By property (3) atλ1, λ2, λ.
page 121, the corresponding marginal distribution functions are

FX(x) = 1 − e−(λ1+λ) x, FY(y) = 1 − e−(λ2+λ) y; x, y ≥ 0.

Using property (7) at page 121 gives the corresponding  joint survival function

     FX,Y(x, y) = P(X > x, Y > y) = e−λ1x−λ2y−λmax(x,y), x, y ≥ 0.

The joint density of  is(X, Y)

       fX,Y(x, y) =
⎧

⎩
⎨
λ2(λ1 + λ) e−λ2y−(λ1+λ)x if x > y,
λ1(λ2 + λ) e−λ1x−(λ2+λ)y if x ≤ y.

This distribution has the following physical background: A system, which starts oper-
ating at time point  consists of two subsystems  and . They are subject tot = 0, S1 S2
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three types of shocks: A shock of type i occurs at time  and immediately destroysTi
subsystem ,  A shock of type 3 occurs at time  and immediately destroysSi i = 1, 2. T
both subsystems. The subsystems cannot fail for other reasons. The arrival times of
the shocks and  are asssumed to be independent, exponentially with para-T1, T2, T
meters  and  distributed random variables. Hence, the respective lifetimes Xλ1,λ2, λ
and Y of the subsystems  and  areS1 S2

X = min(T1, T) and Y = min(T2, T).
Thus, the lifetimes of the subsystems are clearly dependent, and their joint survival
probability is given by FX,Y(x, y).

b) A random vector  has a Gumbel distribution with positive parameters (X, Y) λ1,λ2
and parameter if its joint distribution function is given byλ, 0 ≤ λ ≤ 1,

           (3.28)FX,Y(x, y) = 1 − e−λ1 x + e−λ2 y − e−λ1x−λ2y−λ x y, x, y ≥ 0.
The corresponding marginal distribution functions are

FX(x) = 1 − e−λ1 x, FY(y) = 1 − e−λ2 y, x, y ≥ 0,
so that the corresponding joint survival probability is

   FX,Y(x, y) = P(X > x, Y > y) = e−λ1x−λ2 y−λ x y, x, y ≥ 0,

c) Another useful bivariate distribution of a random vector  with exponential(X, Y)
marginal distributions is given for  by the joint distribution functionx ≥ 0 and y ≥ 0

  FX,Y(x, y) = P(X ≤ x, Y ≤ y) = 1 − e−λ1 x − e−λ2 y − [e+λ1 x + e+λ2 y − 1]−1,

 The corresponding marginal distribution functions are the same as theλ1,λ2 > 0.
ones of the Gumbel distribution. Again by property (7) at page 121, the joint survival
probability is

  FX,Y(x, y) = P(X > x, Y > y) = [e+λ1 x + e+λ2 y − 1]−1; λ1,λ2 > 0, x, y ≥ 0.

3.1.3 Linear Regression and Correlation Analysis

For a given random vector  the aim of this section is to approximate Y by a lin-(X, Y)
ear function  of X: Y∼

                                                  (3.29)Y∼ = a X + b.
Such an approximation can be expected to yield good results if the regression funct-
ion  of Y with regard to x is at least approximately a straight line:mY(x)

                                  (3.30)mY(x) = E(Y X = x) ≈ αx + β.

Whether this assumption is realistic in a practical situation, one can empirically check
by a scatter diagram of a sample: Let, for instance, X be the speed of a car and Y the
corresponding braking time to a full stop.  n measurements of  both speed  and  corres-
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ponding braking time had been done. The result is a sample of structure
{(xi, yi), i = 1, 2, ..., n}.

If the scatter diagram of this sample looks principally like the one in Figure 3.6, then
assumption (3.29) is justified.
As criterion for the optimum fit of  to Y serves the mean squared deviation:Y∼

                          (3.31)Q(a, b) = E[(Y − Y∼ ]2 = E[Y − (a X + b)]2.

The parameters a and b have to be determined such that  assumes its absoluteQ(a, b)
minimum. The necessary conditions are

                                  (3.32)
∂Q(a, b)

∂a = 0,
∂Q(a, b)

∂b
= 0.

By multiplying out the brackets in (3.31),  is seen to beQ(a, b)

        (3.33)Q(a, b) = E(Y 2) − 2a E(XY) − 2b E(Y) + a2E(X2) + 2ab E(X) + b2

so that the necessary conditions (3 32) become.
∂Q(a, b)

∂a = −2 E(XY) + 2aE(X 2) + 2b E(X) = 0,

                   
∂Q(a, b)

∂b
= −2 E(Y) + 2a E(X) + 2b.

The unique solution  is(a, b) = (α,β)

,                                       (3.34)α =
E(XY) − E(X)E(Y)

Var(X)
                                              (3.35)β = E(Y ) − αE(X ).

Since       
∂2Q(a, b)

∂a2 = 2E(X 2),
∂2Q(a, b)

∂b2 = 2, and
∂2Q(a, b)
∂a∂b

= 2 E(X ),

the sufficient condition for an absolute minimum at  is fulfilled:(a, b) = (α,β)

 
∂2Q(a, b)

∂a2 ⋅
∂2Q(a, b)

∂b2 −
⎛
⎝
⎜
∂2Q(a, b)
∂a∂b

⎞
⎠
⎟

2
= 4 ⎛⎝E(X

2) − [E(X )]2 ⎞
⎠ = 4 Var(X ) > 0.
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With  and , the smallest possible mean square deviation ofσX
2 = Var(X ) σY

2 = Var(Y )

Y from  is obtained from (3.33) by substituting there a and b with  and :Y∼ α β
                                     (3.36)Q(α,β) = (σY − ασX)2.

 is the residual variance. The smaller , the better is the fit of  to Y.Q(α,β) Q(α,β) Y∼

Definition 3.3 The straight line
y∼ = α x + β

is called regression line. The parameters  and  are the regression coefficients.     α β

Best Estimate If the regression function  is not linear, then the 'random regres-mY(x)
sion line'  is not the best estimate for Y with regard to the meanY∼(α,β) = αX + β
squared deviation. Without proof, the following key result is given:

The best estimate for Y is , i.e. for all real-valued functions ,mY(X) = E(Y X) g(x)

.E(Y − E(Y X ))2 ≤ E(Y − g(X ) )2

Only if the regression function  is linear,  is the bestmY(x) = E(Y x) Y∼(α,β) = αX + β
estimate for Y with regard to the mean-squared deviation. In view of (3.26), this
proves an important property of the bivariate normal distribution:

    If  has a bivariate normal distribution, then the regression line(X, Y)

     Y∼(α,β) = αX + β

   is the best possible estimation for  with respect to the mean-squared deviation. Y

Covariance The covariance between two random variables X and Y is defined as

                           (3.37)Cov(X, Y) = E([X − E(X)] ⋅ [Y − E(Y)]).

By multiplying out the brackets, one obtains an equivalent formula for the covariance:
                                (3.38)Cov(X, Y) = E(X Y) − E(X) ⋅ E(Y).

The covariance has properties
                                         (3.39)Cov(X, X ) = Var(X ),

and                                                          (3.40)Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z).

From (3.14) and (3.38):

    If two random variables are independent, then their covariance is 0.

For this reason, the covariance serves as a measure for the degree of statistical depen-
dence between two random variables. Generally one can expect that with increasing
absolute value  the degree of statistical dependence is increasing. But thereCov(X, Y)
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are examples (given later) which prove that  not necessarily implies theCov(X, Y) = 0
independence of X and Y.
In view of being a measure for the dependence of two random variables, it is not sur-
prising that the covariance between X and Y is a factor of  (see (3.34)). If X and Yα
are independent, then  In this case the regression line has slope Cov(X, Y) = 0. α = 0,
i.e., it is a parallel to the x-axis, which gives no indication of a possible dependency
between X and Y.
Unfortunately, the covariance does not allow to compare the degree of dependency
between two different pairs of random variables, since it principally can assume any
real value from  to −∞ +∞.

Example 3.8 The random vector  has the joint density(X, Y)

fX,Y(x, y) = 1
2x y, 0 ≤ x ≤ y ≤ 2.

The marginal distributions are known from example 3.3:
fX(x) =

1
4(4x − x3), 0 ≤ x ≤ 2; fY(y) =

1
4 y3, 0 ≤ y ≤ 2.

X and Y are defined in such a way that they cannot be independent. The correspond-
ing mean values and variances are

       E(X) = 16/15, Var(X) = 132/675,
                                E(Y) = 8/5, Var(Y) = 8/75.

By (3.13),

E(XY) = ∫0
2 ∫x

2 x y 1
2x y dydx = 1

2 ∫0
2 x2 ⎛

⎝∫x
2 y2dy⎞⎠ dx

            = 1
6 ∫0

2 x2(8 − x3)dx = 16/19.

With these parameters, the regression coefficients can  calculated:be

α =
16
9 − 16

15 ⋅
8
5

132
675

= 0.36364,

  β = 8
5 − α ⋅

16
15 = 1.21212,

which gives the regression line

y∼ = 0.36364 x + 1.21212 .

Thus, an increase of X by one unit approximately implies on average an increase of Y
by 0.36364 units. The covariance between X and Y is 0.07111.
In view of the restriction for the joint density to the region  one would0 ≤ x ≤ y ≤ 2,
expect that the regression line assumes at value  the value 2 as well. But this isx = 2
not the case since  This is because the regression function  is not ay∼(2) = 1.93. mY(x)
straight line so that the regression line  is only  an  approximation  to   The  exactmY(x).
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average relationship between X and Y is given by the regression function:

 mY(x) = E(Y X = x) = ∫
x

2
y

f X,Y(x, y)
fX(x)

dy

  = ∫
x

2
y

1
2 xy

1
4 (4x − x3)

dy = 2
4 − x2 ∫x

2
y2 dy

= 2
3 ⋅ 8 − x3

4 − x2 , 0 ≤ x < 2.

Figure 3.7 shows that the largest differences between the regression function and the
regression line are at the left- and at the right-hand side of the x-interval [0, 2].          

Correlation Coefficient The correlation coefficient  between two randomρ = ρ(X, Y )
variables X and Y with standard deviations  and  is defined as the ratioσX σY

.          (3.41)ρ(X, Y) = E[(X − E(X )) ⋅ (Y − E(Y ))]
σX σY

=
E(XY ) − E(X ) ⋅ E(Y )

σX σY

The random variables X and Y are uncorrelated if they are positively cor-ρ(X, Y) = 0,
related if , and negatively correlated if ρ(X, Y) > 0 ρ(X, Y) < 0.

The correlation coefficient can be written as the mean value of the product of the
standardizations of  and Y:X

                     (3.42)ρ(X, Y) = E ⎛
⎝
(X − E(X ))

σX
⎞
⎠ ⋅

⎛
⎝
(Y − E(Y ))

σY
⎞
⎠ .

There is the following relationship to the covariance between X and Y:

                                       (3.43)ρ(X, Y) = Cov(X, Y)
σX σY

.

Hence, X and Y are uncorrelated if and only if  If X and Y are indepen-Cov(X, Y) = 0.
dent, then X and Y are uncorrelated. But the converse need not be true (see examples
3.11 and 3.12).
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The Marshall-Olkin distribution and the Gumbel distribution (pages 132 and 133) are
examples for the equivalence of X and Y being independent and uncorrelated:
If  has the Marshall-Olkin distribution (3.27), then the correlation coefficient(X, Y)
between X and Y  (exercise 3.18)is

ρ(X, Y) = λ
λ1 + λ2 + λ

.

 if and only if  X and Y are independent if and only if ρ(X, Y) = 0 λ = 0. λ = 0.

If  has the Gumbel distribution (3.28) with  then the correlation co-(X, Y) λ1 = λ2 = 1,
efficient between X and Y   (without proof)is

ρ(X, Y) = ∫
0

∞ e−y

1 + λ ydy − 1.

If  then  and X and Y are independent, and, vice versa, if X and Yλ = 0, ρ(X, Y) = 0
are independent or , then ρ(X, Y) = 0 λ = 0.

With the correlation coefficient, the regression coefficients  and  can be written asα β
(compare to (3.26))

                              (3.44)α = ρ
σY
σX

, β = E(Y ) − ρ
σY
σX

E(X ),

and another representation of the regression line is
y∼ − E(Y)
σY

= ρ
x − E(X)
σX

.

Therefore, when X and Y are positively (negatively) correlated, then an increase (dec-
rease) in X will on average lead to an increase (decrease) in Y. If X and Y are uncor-
related, the regression line does not depend on x at all. Nevertheless, even in this case
there may be a dependency between X and Y, since X can have influence on the vari-
ability of Y. Figure 3.8 illustrates this situation: If the regression line is aρ = 0,
parallel to the x-axis, namely  With increasing x the fluctuations of they∼ ≡ E(Y).
realizations of Y become larger and larger, but in such a way that  remainsE(Y )
constant.
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Theorem 3.2 The correlation coefficient  has the following properties:ρ(X, Y )
(1) If X and Y are independent, then ρ(X, Y ) = 0.
(2) If  X and Y are linearly dependent, then ρ(X, Y ) = ±1.
(3) For any random variables X and Y:  −1 ≤ ρ(X, Y ) ≤ +1.

Proof  (1) The assertion follows from  and (3.38).Cov(X, Y) = σXσY ρ(X, Y)
(2) Let  for any a and b. Then, from (2.54) and (2.61),Y = a X + b

E(Y) = a E(X) + b, σY
2 = a2Var(X).

Now, from (3.42),

ρ(X, Y) = E ⎛
⎝
(X − E(X ))

σX
⎞
⎠ ⋅

⎛
⎝

a (X − E(X ))
a σX

⎞
⎠ = E

⎛

⎝
⎜

a (X − E(X ))2

a σX
2

⎞

⎠
⎟

   = a
a ⋅

σX
2

σX
2 = a

a =
+1 if a > 0
−1 if a < 0

.

(3) Using (3.43), the residual variance (3.36) can be written in the form
Q(α,β) = σY

2 (1 − ρ2).

Since a quadratic deviation can never be negative and  is positive anyway, the fac-σY
2

tor  must be positive. But  is equivalent to                        1 − ρ2 1 − ρ2 > 0 −1 ≤ ρ ≤ +1.

According to this theorem, the correlation coefficient can be interpreted as the covar-
iance standardized to the interval  In case of independence the correlation[−1,+1].
coefficient is 0; for linear (deterministic) dependence this coefficient assumes one of
its extreme values -1 or +1. Thus, unlike the covariance, the correlation coefficient
allows for comparing the (linear) dependencies between different pairs of random
variables. However, the following examples show that even in case of (nonlinear)
functional dependence the correlation coefficient can be so close to 1 that the differ-
ence is negligibly small, whereas, on the other hand, the correlation coefficient can
be 0 for non-linear functional dependence.

Example 3.9 The bending strength Y of a steel rod of a given length is given by the
equation where X is the diameter of the rod and the parameter c is a mate-Y = c X 2,
rial constant. X is a random variable, which has a uniform distribution in the interval

 The input parameters for   are [3.92 cm, 4.08 cm]. ρ(X, Y)

E(X ) = 4,

    Var(X ) = 1
0.16 ∫3.92

4.08 x2dx − 16 = 1
0.48

⎡⎣x3 ⎤⎦ 3.92
4.08 − 16 = 0.0021333,

E(Y) = c
0.16 ∫3.92

4.08 x2dx = 16.0021333 ⋅ c,
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Var(Y) = c2

0.16 ∫3.92
4.08 x4dx − [c E(Y)]2 = 0.1365380 ⋅ c2,

and

E(XY) = c
0.16 ∫3.92

4.08 x3dx = 64.0256000 ⋅ c .

Hence, the correlation coefficient between X and Y is

.ρ(X, Y) = 64.0256 ⋅ c − 4 ⋅ 16.0021333 ⋅ c
0.0461877 ⋅ 0.3695105 ⋅ c = 0.9999976

Although there is no linear functional relationship between X and Y, their correlation
coefficient is practically 1. (The extreme  degree of numerical accuracy is required to
make sure that the calculated correlation coefficient does not exceed 1.)                   

Example 3.10 Let where X has a uniform distribution in the interval Y = sin X, [0,π],
i.e., it has density  The input parameters for  arefX(x) = 1/π, 0 ≤ x ≤ π. Cov(X, Y)

E(X) = π/2,

E(Y) = 1
π ∫0

π sin x dx = 1
π [−cos x]0

π = 2/π.

E(XY) = 1
π ∫0

π x sin x dx = 1
π [sin x − x cos x]0

π = 1.

Hence,  so that  as well. Despite X and Y being functionallyCov(X, Y) = 0 ρ(X, Y) = 0
related, they are uncorrelated. (Give an intuitive explanation for this.)                      

As mentioned before in section 3.1.2.3, if the random vector  has a bivariate(X, Y)
normal distribution, then the random variables X and Y are independent if and only if
they are uncorrelated. There are bivariate distributions, which do not have this prop-
erty, i.e., dependent random variables can be uncorrelated. This will be demonstrated
by the following two examples.

Example 3.11 The random vector  has the joint probability density(X, Y)

  fX,Y(x, y) = x2 + y2

4π exp
⎧

⎩
⎨
⎛
⎝
⎜-

x2 + y2

2
⎞
⎠
⎟
⎫

⎭
⎬, − ∞ < x, y < +∞.

Next the marginal densities of  have to be determined:fX,Y(x, y)

   fX(x) = ∫
−∞

+∞ x2 + y2

4π exp
⎧

⎩
⎨
⎛
⎝
⎜-

x2 + y2

2
⎞
⎠
⎟
⎫

⎭
⎬dy

= e−x2/2

2 2π

⎛

⎝
⎜x2 ∫

−∞

+∞ 1
2π

e−y2/2dy + ∫
−∞

+∞
y2 1

2π
e−y2/2dy

⎞

⎠
⎟ .

The integrand of the first integral is the density of an distribution; the secondN(0, 1)-
integral is the variance of an -random variable. Both integrals are equal to 1N(0, 1)
so that
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fX(x) =
1

2 2π
(x2 + 1) e−x2/2, − ∞ < x, y < +∞.

Since  is symmetric in x and y,fX,Y(x, y)

fY(y) =
1

2 2π
(y2 + 1) e−y2/2, − ∞ < x, y < +∞.

Obviously, so that X and Y are not independent.fX,Y(x, y) ≠ fX(x) ⋅ fY(y)

The mean value of  isXY

E(XY) = ∫
−∞

+∞
x y x2 + y2

4π exp
⎧

⎩
⎨
⎛
⎝
⎜−

x2 + y2

2
⎞
⎠
⎟
⎫

⎭
⎬dx dy

               = 1
4π

⎛

⎝
⎜ ∫
−∞

+∞
x3e−x2/2dx

⎞

⎠
⎟

⎛

⎝
⎜ ∫
−∞

+∞
y3e−y2/2dy

⎞

⎠
⎟ .

Both integrals in the last line  are 0, since their integrands are odd functions with re-
gard to the origin. But  and  are 0 as well, since  and  are sym-E(X) E(Y) fX(x) fY(y)
metric functions with regard to the origin. Hence,  Thus, X and YE(XY) = E(X) ⋅ E(Y).
are uncorrelated, but not independent.                                                                          

Regression line and correlation coefficient are defined for discrete random variables
as well. The next example gives a discrete analogue to the previous one.

Example 3.12 Let X and Y be two discrete random variables with ranges
RX = {−2,−1,+1,+2} and RY = {−1, 0,+1}.

Their joint distribution is given by Table 3.2:

         X
    Y   

    -2     -1     +1    +2 qj

   -1       1/16    1/8    1/8    1/16   6/16
     0   1/16    1/16    1/16    1/16   4/16
   +1   1/16    1/8    1/8    1/16   6/16

pi   3/16    5/16    5/16    3/16      1  

Table 3.2 Joint and marginal distribution for Example 3.12

From Table 3.2  The input parameters into the covariance between X and Y are:

E(X) = 1
16 [3 ⋅ (−2) + 5 ⋅ (−1) + 5 ⋅ (+1) + 3 ⋅ (+2)] = 0,

                        E(Y) = 1
16 [6 ⋅ (−1) + 4 ⋅ 0 + 6 ⋅ (+1)] = 0,
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E(XY) = 1
16 [(−2)(−1) + 2 ⋅ (−1)(−1) + 2 ⋅ (+1)(−1) + (+2)(−1)]

 + 1
16 [ (−2) ⋅ 0 + 2 ⋅ (−1) ⋅ 0 + 2 ⋅ (+1) ⋅ 0 + (+2) ⋅ 0]

                + 1
16 [(−2)(+1) + 2 ⋅ (−1)(+1) + 2 ⋅ (+1)(+1) + (+2)(+1)] = 0.

Hence, so that X and Y are uncorrelated.Cov(X, Y) = ρ(X, Y) = 0
On the other hand,

P(X = 2, Y = −1) = 1
16 ≠ P(X = 2) ⋅ P(Y = −1) = 3

16 ⋅
6

16 = 9
128

so that X and Y are not independent.                                                                             �

In applications it is usually assumed that the random vector  has a bivariate nor-(X, Y)
mal distribution. Reasons for this are the following ones
1) The regression line  coincides with the regression functiony∼ = αx + β

mY(x) = E(Y X = x).

Hence,  is the best estimate for Y with regard to the mean squared deviationY∼ = αX + β
of Y from Y∼.
2) X and Y are independent if and only if X and Y are uncorrelated.
3) Applicability of statistical procedures.

Statistical Approach to Linear Regression The approach to the linear regression
analysis adopted so far in this section is based on assuming that the joint distribution
of the random vector   is known, including the numerical parameters involved.(X, Y)
The statistical approach is to estimate the numerical parameters based on a sample 

 This sample is obtained by repeating the random experiment{(xi, yi); i = 1, 2, ..., n}.
with outcome  independently and under identical conditions n times and register-(X, Y)
ing the realizations  The principle of minimizing the mean squared deviation(xi, yi).
(3.31) is now applied to minimizing the arithmetic mean of the squared deviations of
the observed values  from the ones given by the regression line whoseyi y∼ = α x + β,
coefficients  and  are to be estimated:α β

             (3.45)Q(α,β) = 1
n Σi=1

n
( yi − y∼ i)2 = 1

n Σi=1

n
(yi − αxi − β)2 → min .

This method of parameter estimation is called the method of least squares. Differen-
tiating (3.45) with respect to  and  yields necessary and in this case also sufficientα β
conditions for the best least square estimates of  and  (of course, the factor 1/n canα β
be ignored):

Σ
i=1

n
xi yi − α Σ

i=1

n
xi

2 − n x y + αn x2 = 0,

β = y − α x .
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The unique solution is

                          (3.46)α =
Σ
i=1

n
xi yi − n x y

Σ
i=1

n
xi

2 − n x2
=
Σ
i=1

n
(xi − x) (yi − y)

Σ
i=1

n
(xi − x)2

,

                                                 β = y − α x ,
where  and  are the arithmetic meansx y

x = 1
n Σi=1

n xi, y = 1
n Σi=1

n yi.

 and  are (point) estimates of the unknown regression coefficients  and  Withα β α β.
the additional notation

sX
2 = 1

n − 1 Σi=1
n (xi − x)2, sY

2 = 1
n − 1 Σi=1

n (yi − y)2,

sXY = 1
n − 1 Σi=1

n (xi − x)(yi − y) = 1
n − 1

⎛
⎝Σi=1

n xi yi − n x y⎞⎠ ,

the empirical regression coefficients  and  can be rewritten asα β

                           (3.47)α =
sXY

sX
2 = r ⋅ sY

sX
, β = y − r ⋅ sY

sX
x ,

where , the empirical or sample covariance, is an estimate for the (theoretical)sXY
covariance  between X and Y, andCov(X, Y)

                                          (3.48)r = r(X, Y) = sXY
sX ⋅ sY

,

the empirical or sample correlation coefficient, is an estimate for the (theoretical)
correlation coefficient   between X and Y. With this notation and interpre-ρ = ρ(X, Y)
tation the analogies between (3.43) and (3.47) as well as (3.41) and (3.48) are obvious.
It is interesting that the same estimates of the regression coefficients would have been
obtained if all mean values in (3.34) are replaced with the corresponding arithmetic
means. (Note that variances are mean values as well.) The fact that in ,  and sX

2 sY
2 , sXY

the factor  appears instead of  is motivated by theorem 4.2 (page 188).1/(n − 1) 1/n

Example 3.13 In a virgin forest stand of yellowwoods (Podocarpus latifolius) in the
Soutpansberg, South Africa, 12 trees had been randomly selected and had their stem
diameters (1.3 m above ground) and heights measured. Table 3.3 shows the results:

Tree number   1   2   3   4   5   6   7   8   9  10  11  12

Stem diameter [cm]  xi  44  62  50  84  38  95  76  104  35  99  57  78

Height [m]                yi  32  48  38  56  31  62  57  73  28  76  41  49

Table 3.3 Stem diameters and the corresponding tree heights

3 MULTI-DIMENSIONAL RANDOM VARIABLES                                             143



Then,
      x = 68.50, y = 49.25, sx = 24.21, sy = 16.03, sX,Y = 378.14.

This gives the empirical correlation coefficient as

 r = sXY
sX ⋅ sY

= 378.14
24.21 ⋅ 16.03 = 0.974.

Hence, there is a strong linear connection between stem diameter and tree height. This
numerical result is in concordance with Figure 3.9. The empirical regression line,
therefore, adequately quantifies the average relationship between stem diameter and
tree height:

y∼ = α x + β = 0.645 x + 5.068 .

Hence, the average increase of the height of a yellowwood is  if the stem0.645 m
diameter increases by 1cm.                                                                                          �

3.2  n-DIMENSIONAL RANDOM VARIABLES

Let   be continuous random variables with distribution functionsX1, X2, ..., Xn, n ≥ 2,

                                (3.49)FX1 (x1), FX2 (x2), . .. , FXn (xn)

and probabiliy densities 
                                (3.50)fX1 (x1), fX2 (x2), . .. , fXn (xn).

In  what follows, let
 X = (X1, X2, ..., Xn).

The joint distribution function of  the random vector  is defined as X

             (3.51)FX(x1, x2, ..., xn) = P(X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn).

The marginal distribution functions  are obtained from  byFXi (xi) FX(x1, x2, ..., xn)

FXi (xi) = F(∞, ...,∞, xi,∞, ...,∞); i = 1, 2, ..., n.
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Basic properties of the joint distribution function are:

1) one or more of the  are equal to FX(x1, x2, . .. , xn) = 0 if xi -∞.

2) FX(+∞,+∞, . .. ,+∞) = 1,

3)  is nondecreasing in each FX(x1, x2, ..., xn) x1, x2, ..., xn.

Apart from the marginal distribution functions,  yields the joint dis-FX(x1, x2, ..., xn)
tributions of all subvectors of . Let, for instance,X

{Xi, Xj} ⊂ {X1, X2, ..., Xn}; i < j, n > 2.
Then the joint distribution function  of the random vector  isFXi,Xj (xi, xj) (Xi, Xj)

FXi,Xj (xi, xj) = FX(∞, . .. ∞, xi,∞, . .. ,∞, xj+1,∞, . .. ,∞).

In this way, the joint distribution functions of all subvectors
{Xi1,Xi2 , ..., Xik} ⊂ {X1, X2, ..., Xn}, k < n,

can be obtained. For instance, the joint distribution function of   is(X1, X2, ..., Xk)

FX1, X2,...,Xk (x1, x2, ..., xk) = FX(x1, x2..., xk,∞,∞, ...,∞), k < n.

The joint probability density of  is the n th mixed partial derivative of the joint dis-X
tribution function with respect to the x1, x2, ... , xn :

                         (3.52)f X(x1, x2, ..., xn) =
∂nFX(x1, x2, ... , xn)

∂x1∂x2. .. ∂xn
.

The characteristic properties of the two-dimensional densities can be extended in a
straightforward way to the n-dimensional densities. In particular, properties (3.11)
are special cases of

  (3.53)f X(x1, x2, ..., xn) ≥ 0, ∫−∞
+∞ . .. ∫−∞

+∞ f X(x1, x2, ..., xn)dx1dx2. .. dxn = 1,

and the marginal densities are for all i = 1, 2, ..., n,

     (3.54)fXi (xi) = ∫−∞
+∞ . .. ∫−∞

+∞ f X(x1, x2, . .. , xn)dx1. .. dxi−1 dxi+1. .. dxn.

Definition 3.4 (independence) The random variables   are (completely)X1, X2, ..., Xn
independent if and only if

                    zFX(x1, x2, ..., xn) = FX1 (x1) ⋅ FX2 (x2) ⋅ . .. ⋅ FXn (xn).

For the practical relevance of this definition, see comment after formula (3.14), page
122. In terms of the densities, the  are independent if and only ifX1, X2, ..., Xn

                (3.55)f X(x1, x2, ..., xn) = fX1 (x1) ⋅ fX2 (x2) ⋅ . .. ⋅ fXn (xn).

Definition 3.4 also includes discrete random variables. However, for discrete random
variables  (complete) independence can be equivalently defined byXi
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(3.56)P(X1 = x1, X2 = x2, . .. , Xn = xn) = P(X1 = x1) ⋅ P(X2 = x2) ⋅ . .. ⋅ P(Xn = xn)

for all xi ∈ RXi ; i = 1, 2, ..., n.

The intuitive meaning of independence is that the values, which any of the   haveXi
assumed, has no influence on the values, which the remaining  have taken on.Xj

If the  are independent, the set of the marginal distributionsXi

   {FX1 (x1), FX2 (x2), ..., FXn (xn)}

contains the same amount of information on the probability distribution of the random
vector  as the joint probability distribution function.X
If the  are independent, then every subset  of the setX1, X2, ..., Xn {Xi1 , Xi2 , ..., Xik}

 is independent as well. In particular, all possible pairs of random var-{X1, X2, ..., Xn}
iables  are independent (pairwise independence of the  (Xi, Xj), i ≠ j, X1, X2, ..., Xn).
As the following example shows, pairwise independence of the  doesX1, X2, ..., Xn
not necessarily imply their complete independence.

Example 3.14 Let be pairwise independent random events and A1, A2, and A3 X1, X2,
and  their  respective indicator variables:X3

Xi =
1 if Ai occurs,
0 otherwise,

i = 1, 2, 3.

By (3.56), complete independence of the and  would imply that X1, X2, X3

,P(X1 = 1, X2 = 1, X3 = 1) = P(X1 = x1) ⋅ P(X2 = x2) ⋅ P(X3 = x3)
or equivalently that

P(A1 ∩ A2 ∩ A3) = P(A1) ⋅ P(A2) ⋅ P(A3).

However, we know from example 1.20 that the pairwise independence of random
events  does necessarily imply their complete independence.             �A1, A2, and A3

The joint density of  is(Xi, Xj), i < j,

fXi,Xj (xi, xj) = ∫−∞
+∞ . .. ∫−∞

+∞ fX (x1, x2, ..., xn)dx1. .. dxi−1dxi+1. .. dxj−1dxj+1. .. dxn,

whereas the joint density of  is(X1, X2, ..., Xk), k < n,

fX1,X2,...,Xk (x1, x2, ..., xk) = ∫−∞
+∞ . .. ∫−∞

+∞ f X(x1, x2, ..., xk, xk+1. .. xn)dxk+1. .. dxn.

Conditional densities can be obtained analogously to the two-dimensional case: For
instance, the conditional density of  given  is(X1, X2, ..., Xn) Xi = xi

      (3.57)f X1,...,Xi−1,Xi+1,...,Xn (x1, ..., xi−1, xi+1, ..., xn xi) =
f X(x1, x2, ..., xn)

fXi (xi)
,

and the conditional density of  given  is(X1, X2, ..., Xn) (X1 = x1, X2 = x2, ..., X = xk)
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  (3.58)fXk+1,Xk+2,...,Xn (xk+1, xk+2, ..., xn x1, x2, ..., xk) =
f X(x1, x2, ..., xn)

fX1,X2,...,Xk (x1, x2, ..., xk)
.

for  Let  be a real-valued function of n variables. Then thek < n. y = h(x1, x2, ..., xn)
mean value of the random variable  is defined asY = h (X1, X2, ..., Xn)

  (3.59)E(Y) = ∫−∞
+∞ . .. ∫−∞

+∞ h( x1, x2,…, xn) fX (x1, x2, ..., xn)dx1dx2. .. dxn.

In particular, the mean value of the product  isY = X1 X2. .. Xn

E(X1 X2. .. Xn) = ∫−∞
+∞ . .. ∫−∞

+∞ x1 x2. .. xn fX (x1, x2, ..., xn)dx1dx2. .. dxn.

Due to (3.55), for independent  this n-dimensional integral simplifies to the prod-Xi
uct of n one-dimensional integrals:

                       (3.60)E(X1 X2. .. Xn) = E(X1)E(X2) . .. E(Xn).

    The mean value of the product of independent random variables is equal to the      
     product of the mean values of these random variables.

The conditional mean value of   on condition  isY = h (X1, ..., Xn) X1 = x1, ..., Xk = xk

                                                                                         (3.61)E(Y x1, x2, . .. , xk) =

   = ∫
−∞

+∞

∫
−∞

+∞
. .. ∫

−∞

+∞
h(x1, x2, ..., xn)

fX (x1, x2, ..., xn)
fX1, X2,..., Xk (x1, x2, ..., xk)

dxk+1dxk+2. .. dxn.

Replacing in (3.61) the realizations  with the corresponding random vari-x1, x2, ..., xk
ables  yields the random mean value of Y on condition :X1, X2, ..., Xk X1, X2, ..., Xk

                  (3.62)E(Y X1, X2, ..., Xk ) = ⎛
⎝∫−∞
+∞ . .. ∫−∞

+∞ h(X1, X2, . .. , Xk, xk+1, . .. xn)

                                   × fX (X1,X2,. .. ,Xk, xk+1,. .. xn)
fX1, X2,..., Xk (X1,X2,...,Xk)

dxk+1dxk+2. .. dxn
⎞
⎠ .

The mean value of this random variable (with respect to all  isX1, X2, ..., Xk)

                      (3.63)E X1,X2,...,Xk ( E(Y X1, X2, ..., Xk ) ) = E(Y).

For instance, the mean value of with respect to the random varia-E(Y X1, X2, ..., Xk )

bles is the random variable:X1, X2, ..., Xk−1

                  (3.64)E X1,X2,...,Xk−1 (E(Y X1, X2, ..., Xk )) = E(Y Xk ).

Now it is obvious how to obtain the conditional mean values  andE(Y xi1 , xi2 , . .. , xik )
 with regard to any subsets ofE(Y Xi1 , Xi2 , . .. , Xik )

 and {x1, x2, ..., xn} {X1, X2, ..., Xn},

respectively.
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Let be the covariance between  and  It is use-ci j = Cov (Xi, Xj) Xi Xj; i, j = 1, 2, ..., n .
ful to unite the  in the covariance matrix :ci j C

C = ((ci j)) ; i, j = 1, 2, ..., n .

The main diagonal of C consists of the variances of the :Xi

ci i = Var(Xi); i = 1, 2, ..., n.

n-Dimensional Normal Distribution  Let  be an n-dimensionalX = (X1, X2, . .. , Xn)
random vector with  for  and covariance matrix .μi = E(Xi) i = 1, 2, ..., n, C = ((ci j))
Furthermore, let  and  be the positive determinant and the inverse of , res-C C−1 C
pectively, as well as

 and μ = (μ1,μ2, . .. ,μn), x = (x1, x2, . .. , xn).

 has an n-dimensionally normal (or Gaussian) distribution if it has(X1, X2, . .. , Xn)
joint density

              (3.65)fX(x) =
1

(2π)n C
exp ⎛⎝−

1
2 (x − μ)C−1(x − μ)T ⎞

⎠ ,

where  is the transpose of the vector(x − μ)T

    x − μ = (x1 − μ1, x2 − μ2, . .. , xn − μn).

By doing the matrix-vector-multiplication in (3.65),  becomesfX(x)

     (3.66)fX(x) =
1

(2π)n C
exp

⎛
⎝
⎜− 1

2 C Σ
i=1

n
Σ
j=1

n
Ci j (xi − μi)(xj − μj

⎞
⎠
⎟ ,

where  is the cofactor of  Ci j ci j.

For   and  (3.66) specializes to the density of the bivariate normaln = 2, x1 = x, x2 = y,
distribution (3.24). Generalizing from the bivariate special case, it can be shown that
the random variables  have an -distribution with Xi N(μi,σi

2) σi
2 = ci i, i = 1, 2, ..., n,

if  has an n-dimensional normal distribution, i.e., the marginal distributions of  X X
are the one-dimensional normal distributions

 N(μi,σi
2); i = 1, 2, ..., n.

If the  are uncorrelated, then  is a diagonal matrix with  for Xi C = ((ci j)) ci j = 0 i ≠ j
so that the joint density  assumes the  product form (3.55): fX(x1, x2, ..., xn)

          (3.67)fX(x1, x2, ⋅⋅⋅, xn) = Π
i=1

n ⎡

⎣
⎢⎢⎢

1
2π σi

exp ⎛
⎝⎜
−1

2
⎛
⎝

xi − μi
σi

⎞
⎠

2 ⎞
⎠⎟
⎤

⎦
⎥⎥⎥ .

Hence, the  are independent if and only if they are uncorrelated.X1, X2, ..., Xn
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Theorem 3.3 The random vector  have an n-dimensionally normal(X1, X2, ..., Xn)
distribution. If the random variables  are linear combinations of the ,Y1, Y2, ..., Ym Xi
i.e., if there exist constants  so thatai j

Yi = Σj=1
n ai j Xj ; i = 1, 2, ..., m ,

then  has an m-dimensional normal distribution (without proof).       �(Y1, Y2, ..., Ym)

The following two n-dimensional distributions are generalizations of the bivariate
distributions (3.27) and (3.28), respectively.

n-Dimensional Marshall-Olkin Distribution The random vector  X = (X1, X2, ..., Xn)
has an n-dimensional Marshall-Olkin distribution with positive parameters λ1, λ2, ...,
and  and with nonnegative parameter  if it has the joint survival probabilityλn λ

          FX(x1, x2, ..., xn) = P(X1 > x1, X2 > x2, ..., Xn > xn)

                     = e−λ1x1−λ2 x2−. .. −λn xn−λmax(x1,x2,...,xn), xi ≥ 0, i = 1, 2, ..., n.

n-Dimensional Gumbel Distribution The random vector  has anX = (X1, X2, ..., Xn)
n-dimensional Gumbel distribution with positive parameters  and withλ1, λ2, ...,λn
parameter if it has the joint survival probabilityλ, 0 ≤ λ ≤ 1,

           FX(x1, x2, ..., xn) = P(X1 > x1, X2 > x2, ..., Xn > xn)

                         = e−λ1x1−λ2 x2−. .. −λn xn−λx1x2⋅. .. ⋅xn) , xi ≥ 0, i = 1, 2, ..., n.

3.3  EXERCISES

3.1) Two dice are thrown. Their respective random outcomes are  and  LetX1 X2.
 and Y be the number of even components of  X and Y haveX = max(X1, X2) (X1, X2).

the respective ranges  and RX = {1, 2, 3, 4, 5, 6} RY = {0, 1, 2}.
(1) Determine the joint probability distribution of the random vector (X,Y) and the
corresponding marginal distributions. Are X and Y independent?
(2) Determine E(X), E(Y), and E(XY).

3.2) Every day a car dealer sells X cars of type 1 and Y cars of type 2. The following
table shows the joint distribution  of {ri j = P(X = i, Y = j); i, j = 0, 1, 3} (X, Y).

         Y       0      1     2
X    0     0.1     0.1     0
       1     0.1     0.3    0.1
       2       0     0.2    0.1
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(1) Determine the marginal distributions of (X, Y).
(2) Are X and Y independent?
(3) Determine the conditional mean values E(X Y = i), i = 0, 1, 2.

3.3) Let B be the upper half of the circle  The random vector  is uni-x2 + y2 = 1. (X, Y)
formly distributed over B.
(1) Determine the joint density of (X, Y).
(2) Determine the marginal distribution densities.
(3) Are X and Y independent? Is theorem 3.1 applicable to answer this question?

3.4) Let the random vector  have a uniform distribution over a circle with radius(X, Y)
r = 2.
Determine the distribution function of the point  from the center of this circle.(X, Y)

3.5) Tessa and Vanessa have agreed to meet at a  between 16 and 17 o'clock. Thecafé
arrival times of Tessa and Vanessa are X and Y, respectively. The random vector (X, Y)
is assumed to have a uniform distribution over the square

B = {(x, y); 16 ≤ x ≤ 17, 16 ≤ y ≤ 17}.

Who comes first will wait for 40 minutes and then leave.
What is the probability that Tessa and Vanessa will miss each other?

3.6) Determine the mean length of a chord, which is randomly chosen in a circle with
radius r. Consider separately the following ways how to randomly choose a chord:
(1) For symmetry reasons, the direction of the chord can be fixed in advance. Draw
the diameter of the circle, which is perpendicular to this direction. The midpoints of
the chords are uniformly distributed over the whole length of the diameter.
(2) For symmetry reasons, one end point of the chord can be fixed at the periphery of
the circle. The direction of a chord is uniformly distributed over the interval in [0,π].
(3) How do you explain the different results obtained under (1) an (2)?

3.7) Matching bolts and nuts have the diameters X and Y, respectively. The random
vector  has a uniform distribution in a circle with radius  and midpoint(X, Y) 1mm

 Determine the probabilities(30mm, 30mm).
(1)  and (2) P(Y > X), P(Y ≤ X < 29).

3.8) The random vector  is defined as follows:  is uniformly distributed in the(X, Y) X
interval  On condition , the random variable Y is uniformly distributed in[0, 10]. X = x
the interval  Determine[0, x].

(1) fX,Y(x, y), fX(x y), and fY(y x),

(2)  (3) E(Y), E(Y X = 5), P(5 ≤ Y < 10).
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3.9) Let
 fX,Y(x, y) = c x2 y, 0 ≤ x, y ≤ 1,

be the joint probability density of the random vector .(X, Y)
(1) Determine the constant c and the marginal densities.
(2) Are X and Y independent?

3.10) The random vector  has the joint probability density(X, Y)

fX,Y(x, y) = 1
2 e−x, 0 ≤ x, 0 ≤ y ≤ 2.

(1) Determine the marginal densities and the mean values  and E(X) E(Y).
(2) Determine the conditional densities  and . Are X and Y independ-fX(x y) fY(y x)
ent?

3.11) Let
f (x, y) = 1

2 sin(x + y), 0 ≤ x, y ≤ π
2 ,

be the joint probability density of the random vector  (X, Y).

(1) Determine the marginal densities.
(2) Are X and Y independent?
(3) Determine the conditional mean value E(Y X = x).
(4) Compare the numerical values  to  Are theE(Y X = 0) and E(Y X = π/2) E(Y).
results in line with your anwer to (2)?

3.12) The temperatures X and Y, measured daily at the same time at two different lo-
cations, have the joint density

fX,Y(x, y) = x y
3 exp ⎡

⎣
⎢−1

2
⎛
⎝x

2 + y3

3
⎞
⎠
⎤
⎦
⎥ , 0 ≤ x, y ≤ ∞.

Determine the probabilities
 and P(X > Y) P(X < Y ≤ 3X).

3.13) A large population of rats had been fed with individually varying mixtures of
wholegrain wheat and puffed wheat to see whether the composition of the food has
any influence on the lifetimes of the rats. Let Y be the lifetime of a rat and X the cor-
responding ratio of wholegrain it had in its food. An evaluation of (real life) data jus-
tifies the assumption that the random vector  has a bivariate normal distribution(X, Y)
with parameters (in months)

 and  μx = 0.50, σx
2 = 0.028, μy = 6.0, σy

2 = 3.61, ρ = 0.92.
With these parameters, X and Y are unlikely to assume negative values.
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(1) Determine the regression function  and the corresponding resid-mY(x), 0 ≤ x ≤ 1,
ual variance.
(2) Determine the probability P(Y ≥ 8, X ≤ 0.6).
You may use software you are familiar with to numerically calculate this probability. Other-
wise, only produce the double integral.)

3.14) In a forest stand, the stem diameter X  and the(measured 1.3 m above ground)
corresponding tree height  have a bivariate normal distribution with joint densityY

fX,Y(x, y) = 1
0.48π exp

⎧

⎩
⎨− 25

18
⎛

⎝
⎜
(x − 0.3)2

σx
2 − 2ρ(x − 0.3)(y − 30)

0.4 +
(y − 30)2

25
⎞

⎠
⎟
⎫

⎭
⎬.

Remark  With this joint density, negative values of X and Y are extremely unlikely.

Determine
(1) the correlation coefficient  and ρ = ρ(X, Y),
(2) the regression line y∼ = αx + β.

3.15) The prices per unit X and Y of two related stocks have a bivariate normal dis-
tribution with parameters

μX = 24, σX
2 = 49, μY = 36, σY

2 = 144, and ρ = 0.8.

(1) Determine the probabilities
P( Y − X ≤ 10) and P( Y − X > 15).

You may make use of software you are familiar with to numerically calculate these probabil-
ities. Otherwise only produce the respective double integrals.

(2) Determine the regression function  and  corresponding residual variance.mY(x)

3.16)  has the joint distribution function  Show that(X, Y) FX,Y(x, y).

P(a < X ≤ b, c < Y ≤ d ) = [FX,Y(b, d) − FX,Y(b, c)] − [FX,Y(a, d ) − FX,Y(a, c)]

for  and . (This is formula (3.7), page 121.) For illustration, see the Figure:a < b c < d

The area integral of the joint probability density  over the hatched areafX,Y(x, y)
gives the desired probability.
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3.17) Let a function of two variables x and y be given by

F(x, y) = 0 for x + y ≤ 0,
1 for x + y > 0.

Show that  does not fulfill the conditionF(x, y)
[F(b, d) − F(b, c)] − [F(a, d ) − F(a, c)] ≥ 0

for all  with  and  Hence, although  is continuous ona, b, c, and d a < b c < d. F(x, y)
the left in x and y and nondecreasing in x and y, it cannot be the joint distribution
function of a random vector (X,Y).

3.18) The vector  has the joint distribution function  Show that(X, Y) FX,Y(x, y).
P(X > x, Y > y) = 1 − FY(y) − FX(x ) + FX,Y(x, y).

3.19) The random vector  has the joint distribution function (Marshall-Olkin(X, Y)
distribution, page 132) with parameters λ1 > 0, λ2 > 0, and λ ≥ 0

FX,Y(x, y) = 1 − e−λ1 x − e−λ2 y − e−λ1 x−λ2 y−λ max(x,y).

Show that the correlation coefficient between  and Y is given byX

ρ(X, Y) == λ
λ1 + λ2 + λ

.

3.20) At time  a parallel system S consisting of two elements  and   startst = 0, e1 e2
operating. Their lifetimes  and  are dependent with joint survival functionX1 X2

F(x1, x2) = P(X1 > x1, X2 > x2) =
1

e+0.1x1 + e+0.2x2 − 1
, x1, x2 ≥ 0.

(1) What are the distribution functions of  and X1 X2?
(2) What is the probability that the system survives the interval [0, 10]?
Note By definition, a parallel system is fully operating at a time point t if at least one of its
elements is still operating at time t, i.e., a parallel system fails at that time point when the last
of its operating elements fails. See also example 4.16, page 176.

3.21) Prove  conditional variance formulathe

Var(X) = E[Var(X Y)] + Var[E(X Y)] .
Hint Make use of formulas (2.62) and (3.21).

3.22) The random edge length X of a cube has a uniform distribution in the interval
 Determine the correlation coefficient  where  is the[4.8, 5.2]. ρ = ρ(X, Y), Y = X 3

volume of the cube.
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3.23) The edge length X of a equilateral triangle is uniformly distributed in the inter-
val  Determine the correlation coefficient between X and the area Y of the[9.9, 10.1].
triangle.

3.24) The random vector  has the joint density(X, Y)
fX,Y(x, y) = 8x y, 0 < y ≤ x ≤ 1.

Determine 
(1) the correlation coefficient ρ(X, Y),
(2) the regression line  of Y with regard to X,y∼ = αx + β
(3) the regression function y = mY(x).

3.25) The random variables U and V are uncorrelated and have mean value 0. Their
variances are 4 and 9, respectively.
Determine the correlation coefficient  between the random variablesρ(X, Y)

 and X = 2U + 3V Y = U − 2V.

3.26) The random variable Z is uniformly distributed in the interval [0, 2π].
Check whether the random variables  and  are uncorrelated.X = sin Z Y = cos Z
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CHAPTER 4

Functions of Random Variables

4.1 FUNCTIONS OF ONE RANDOM VARIABLE

4.1.1 Probability Distribution

Functions of a random variable have already played important roles in the previous
two chapters. For instance, the n th moment of a random variable X is the mean value
of the random variable  the variance of X is the mean value of the randomY = X n,
variable  a standard random variable S is defined byY = (X − E(X ))2,

 S = X−E(X )

Var(X )
,

and the Laplace transform of the density of X is defined as the mean value of the ran-
dom variable  In each case, a function  is given, which assigns aY = e−s X. y = h(x)
value y to each realization x of X. Since it is random, which value X assumes, it is also
random which value  takes on. In this way, a new random variable is generated,h(x)
which is denoted as  Hence,  the focus is not in the first place on the valuesY = h(X ).
assumed by X, but on the values assumed by Y. The situation is quite analogous to
the one which occurred when making the transition from the outcomes , ofω ω ∈ Ω,
the underlying random experiment to the corresponding values of a random variable

 (section 2.1). Theoretically, one could straightly assign to every elementaryX = X(ω)
event  the value  instead of making a detour via X, as the probabilityω y = h(X(ω))
distribution of Y is fully determined by the one of X:

P(Y ∈ A) = P(X ∈ h−1(A)),

where  is the inverse function of  A motivation for making this detour is givenh−1 h.
by an example: The area of a circle with diameter D has to be determined. In view of
a random measurement error , the true diameter D is not known so that one has toΔ
work with an estimate for D, namely with the random variable  This givesX = D + Δ.
instead of the true area of the circle  only a random estimate of A: A = h(D) = π

4 D2

Y = h(X ) = π
4 X 2.

The aim is to obtain from the probability distribution of X, assumed to be known, the
desired probability distribution of Y. Another situation: A random signal X is emitted
by a source (the useful signal), which arrives at the receiver as . The receiverY = sin X
knows that this coding takes place, and he has information on the probability
distribution of Y. Based on this knowledge, the receiver needs to extract information
on the probability distribution of the useful signal.



a) Strictly increasing h(x) Let X be a continuous random variable with distribution
function  and with rangeFX(x) = P(X ≤ x)

 RX = [a, b], − ∞ ≤ a < b ≤ +∞.

 is assumed to be a differentiable and strictly increasing function on  Hence,h(x) RX.
to every  there exists exactly one  so that  and vice versa. This impliesx0 y0 y0 = h(x0)
the existence of the inverse function  which will be denoted ash(x),

x = x(y) = h−1(y).
Its defining property is  for all  The domain of definition of h−1(h(x)) = x x ∈ RX. h−1

is given by
 RY = {y, y = h(x), x ∈ RX}.

 is also the range of the random variable RY Y = h(X ).

To derive the distribution function of Y note that the random event " " occursh(X) ≤ y0
if and only if the random event " " occurs. Therefore, for all ,X ≤ h−1(y0) = x0 y ∈ RY
the distribution function of Y can be obtained from FX :

 FY(y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X ≤ h−1(y)) = FX(h−1(y)), y ∈ RY.

Using the chain rule, differentiation of  with regard to y yields the probabilityFY(y)
density  of Y:fY(y)

fY(y) =
d FY(y)

dy
= fX(h−1(y)) ⋅ d h−1(y)

dy
= fX(x(y)) ⋅

dx
dy

.

b) Strictly decreasing h(x) Under otherwise the same assumptions and notations as
under a), let  be a strictly decreasing function in  In this case, the randomh(x) RX.
event " " occurs if and only if the random event " " occurs.h(X) ≤ y0 X > h−1(y0) = x0
Hence, for all y ∈ RY,

          FY(y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X > h−1(y)) = 1 − FX(h−1(y)), y ∈ RY.

Differentiation of  with regard to y yields the corresponding density:FY(y)

      fY(y) =
d FY(y)

dy
= −fX(h−1(y)) ⋅ d h−1(y)

dy
= −fX(x(y)) ⋅

dx
dy

= fX(x(y)) ⋅
⎛
⎝⎜−

dx
dy

⎞
⎠⎟ .

Summarizing If  is strictly increasing, the distribution function of  isy = h(x) Y = h(X )
                                 (4.1)FY(y) = FX(h−1(y)), y ∈ RY.

If  strictly decreasing, theny = h(x)
                               (4.2)FY(y) = 1 − FX(h−1(y)), y ∈ RY.

In both cases, the probability density of   isY = h(X )

                             (4.3)fY(y) = fX(h−1(y)) ⋅ d h−1(y)
dy

= fX(x(y)) ⋅
dx
dy

.
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In the important special case of a linear transformation , the inverseh(x) = a x + b
function of  is  so that the results (4.1) to (4.3) specialize toh(x) h−1(y) = (y − b )/a

            FY(y) = FX
⎛
⎝

y−b
a
⎞
⎠ for a > 0,

                                    (4.4)FY(y) = 1 − FX
⎛
⎝

y−b
a
⎞
⎠ for a < 0,

 fY(y) =
1
a fX

⎛
⎝

y−b
a
⎞
⎠ for a ≠ 0.

 pointed out before, in this caseAs
                           (4.5)E(Y) = c E(X ) + d, Var(Y) = a2Var(X ).

Example 4.1 The distribution density of the random variable X is
fX(x) = 1/x2, x ≥ 1.

Integration yields the distribution function of the shifted Lomax distribution

FX(x) =
x − 1

x , x ≥ 1.

Distribution function and density of the random variable  has to be determin-Y = e−X

ed. The function  transforms the range   of X to the rangeh(x) = e−x RX = [1,∞)
RY = (0, 1/e]

of  Since  is strictly decreasing and  equations (4.2)Y = e−X. h(x) x(y) = h−1(y) = −ln y,
and (4.3) yield

                       �FY(y) = −
1

ln y
and fY(y) =

1
y (ln y)2 , 0 < y ≤ 1

e .

Example 4.2 X has an exponential distribution with parameter λ = 1 :
fX(x) = e−x, x ≥ 0.

The density of  has to be determined. Since  the range ofY = 3 − X 3 y = h(x) = 3 − x3,
 is  Moreover,Y = h(X ) RY = (−∞, 3).

   x(y) = h−1(y) = (3 − y)1/3 and dx
dy

= −1
3 (3 − y)−2/3, y ∈ RY.

With these relations, equation (4.3) yields

                                 �fY(y) =
e−(3−y)1/3

3 (3 − y)2/3 , − ∞ < y < 3.

Example 4.3 A body with mass m moves along a straight line with a random velocity
X, which is uniformly distributed in the interval  What is the probability[0.8, 1.2].
density of the body's kinetic energy  and what is its mean kinetic energy?Y = 1

2m X 2,
X has density

fX(x) =
1

0.4 = 2.5, 0.8 ≤ x ≤ 1.2.
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By the transformation  the range  of X is transformed toh(x) = 1
2mx2, RX = [0.8, 1.2]

the range  of Y. SinceRY = [0.32 m, 0.72 m]

x(y) = h−1(y) = 2y
m , dx

dy =
1

2 m y , y ∈ RY,

and  is constant in  equation (4.3) yieldsfX(x) RX,

fY(y) = 2.5
2m

⋅ 1
y , 0.32 m ≤ y ≤ 0.72 m.

The mean kinetic energy of the body with mass m is

E(Y) = ∫
RY

y fY(y)dy = 2.5
2m ∫

0.32 m

0.72 m
y ⋅ 1

y dy

= 2.5
2m

⎡
⎣

2
3 y3/2 ⎤

⎦ 0.32 m

0.72 m
= 5

3 2 m
⎡⎣(0.72 m)3/2 − (0.32 m)3/2 ⎤⎦

so that                                                                                                �E(Y) = 0.506 m.

Nonmonotone h(x) Equations analogous to (4.1) to (4.2) can also be established for
nonmonotone functions h(x).
As a special case, let us assume that  assumes an absolute maximum at y = h(x) x = x0
(Figure 4.1). More exactly, let

h(x) = h1(x) for x ≤ x0,
h2(x) for x > x0,

where  and  are strictly increasing and strictly decreasing, respectively, inh1(x) h2(x)
their respective domains of definition. Then the random event " " with  Y ≤ y Y = h(X )
can be written in the following form:

" "  " "  " "Y ≤ y = h1(x) ≤ y ∪ h2(x) ≤ y
(Figure 4.1). Hence,
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FY(y) = P(h(X ) ≤ y) = P(h1(X ) ≤ y) + P(h2(X ) ≤ y)

= P(X ≤ h1
−1(y)) + P(X > h2

−1(y)).

Thus,  can be represented asFY(y)

                    (4.6)FY(y) = FX(h1
−1(y)) + 1 − FX(h2

−1(y)), y ∈ RY.

Differentiating  and letting  and  yields the probabilityFY(y) x1 = h1
−1(y) x2 = h2

−1(y)
density of Y:

                  (4.7)fY(y) = fX(x1(y))
dx1
dy

+ fX(x2(y))
dx2
dy

, y ∈ RY.

This representation of  is also valid if  assumes at  an absolute mini-fY(y) h(x) x = x0
mum.

Example 4.4 A lawn sprinkler moves the direction of its nozzle from horizontal to
perpendicular, i.e., within the angular area from 0 to  with constant angular velo-π/2,
city. Possible rotation movements of the nozzle do not play any role in what follows.
It has to be checked, whether in this way the lawn, assumed to be a horizontal plane,
is evenly irrigated, i.e., every part of the lawn receives on average the same amount
of water per unit time.

-coordinates are introduced in that plane, in which the trajectory of a water drop(x, z)
is embedded. The nozzle is supposed to be in the origin (0,0) of this plane. It is known
from physics that a drop of water, which leaves the nozzle at time 0 with velocity s
and angle  to the lawn, is at time t at location (air resistance being negelected)α

x = s t cosα, z = s t sinα − 1
2g t2,

where t is such that , and g denotes the gravitational constant:z ≥ 0
g = 6.6726 ⋅ 10−11m3kg−1s−2.

As soon as z becomes 0, the drop of water lands. This happens at time
tL = 2 s

g sinα.
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The corresponding x-coordinate is (Figure 4.2)
   with   xL = a sin 2α a = s2/g ,

since  From this results the well-known fact that under the as-sin 2α = 2 sinα cosα.
sumptions stated, a drop of water, just as any other particle, flies farthest if the start
angle is  (Figure 4.3). Since the nozzle moves with constant angular velocity, the450

start angle of a drop of water leaving the nozzle at a random time point is a random
variable  with density α

                                        (4.8)fα(α) =
2
π , 0 ≤ α ≤ π

2 ,

i.e.  is uniformly distributed in the interval  The lawn, under the irrigationα [0, π/2].
policy adopted, will be evenly irrigated if and only if the random landing point

X = a sin 2α
with range  has a uniform distribution in the interval  as well. ThisRX = [0, a] [0,π/2]
seems to be unlikely, and the probabilistic analysis will confirm this suspicion.

The function  assumes its absolute maximum a at thex = h(α) = a sin 2α, 0 ≤ α ≤ π/2,
location  (Figure 4.4). The function  is strictly increasing inα = π/4 x = h(α) = h1(α)

, and  is strictly decreasing in the interval  In view of this,[0, π4 ] x = h(α) = h2(α) [π4 , π2 ].
for all 0 ≤ x ≤ a,

α1 = h1
−1(x) = 1

2 arcsin x
a ,

α2 = h2
−1(x) = π

2 −
1
2 arcsin x

a .

Differentiation with regard to  yieldsx

dα1
dx

=
dα2
dx

= 1
2a 1 − (x/a)2

.

Now ( ) and (4.8) yield4.7

 fX(x) =
2
π

1
2a 1 − (x/a)2

+ 2
π

1
2a 1 − (x/a)2
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so that the final result is

fX(x) =
2

πa 1 − (x/a)2
, 0 ≤ x ≤ a.

This density tends to  if  (Figure 4.5). Therefore, the outer area to be irrigat-∞ x → a
ed will get more water than the area next to the nozzle. A 'fair' irrigation can only be
achieved with varying angular speed of the nozzle. (Note that in order to be in line
with the adequate -system of coordinates used in this example, the roles of the(x, z)
variables x and y in formulas (4.3) and (4.7) have been taken over by  and x,α
respectively.)                                                                                                                �

The derivation of the density  for  (formulas (4.3) and (4.7) was donefY(y) Y = h(X )
in two basic steps:
1) The distribution function  is expressed in terms of FY(y) FX.
2) The distribution function  is differentiated.FY(y)
For nonmonotonic functions  it is frequently more convenient, instead of me-y = h(x)
ticulously following (4.7), to do these two steps individually, tailored to the respec-
tive problem. This will be illustrated by the following example.

Example 4.5 X has both distribution function and density  and  in theFX(x) fX(x)
range  The density of  is to be determined.RX = (−∞, + ∞). Y = X 2

The parabola  assumes its absolute minimum at  so that it is clearly not ay = x2 x = 0
monotonic function. The random event ' ' happens if and only if (Figure 4.6)Y ≤ y0

− y0 ≤ X ≤ + y0 .

Hence,  so that, by equation (2.5), page 42,FY(y) = P(− y ≤ X ≤ + y )

FY(y) = FX( y ) − FX(− y ).

Differentiation yields

fY(y) =
1

2 y
⎡⎣fX( y ) − fX(− y )⎤⎦, 0 ≤ y < ∞.
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In particular, for an - distributed random variable X, the density of  isN(0, 1) Y = X 2

fY(y) =
1

2 y
⎡

⎣
⎢⎢⎢

1
2π

e−y/2 + 1
2π

e−y/2 ⎤

⎦
⎥⎥⎥ =

1
2πy

e−y/2, 0 < y < ∞.

This is the density of a  (chi-square distribution) with one degree ofχ2-distribution
freedom.                                                                                                                       �

Note A random variable X has a chi-square distribution with n degrees of freedom (or, equiva-
lently, with parameter n) if it has density

                  (4.9)fX(x) =
1

2n/2Γ(n/2)
x

n
2−1e−x/2, 0 < x < ∞, n = 1, 2, ...,

where the Gamma function  is defined by formula (2.75), page 75.Γ(⋅)

Mean Value of Y According to formula (2.51), the mean value  of a randomE(Y)
vari- able  with density  isY fY(y)

E(Y ) = ∫RY
y fY(y)dy.

If  has structure  with a strictly monotone function , then, by (4.3),Y Y = h(X) y = h(x)

   E(Y) = ∫RY
y fX(h−1(y)) dx

dy
dy.

Substituting  and , respectively, yieldsy = h(x) x = h−1(y)

                                    (4.10)E(Y) = ∫Rx
h(x) fX(x)dx .

Hence, knowledge of  is not necessary for obtaining  We already made usefY(y) E(Y).
of this in chapters 2 and 3 when determining moments, variance, and other parameters.

Continuation of Example 4.3 The mean kinetic energy  of the body has to beE(Y)
calculated by formula (4.10). Since the density of X is

fX(x) =
1

0.4 = 2.5, 0.8 ≤ x ≤ 1.2,

the mean kinetic energy is

E(Y) = E⎛⎝
1
2 m X 2 ⎞

⎠ =
1
2 m E(X 2) = 1

2 m ∫0.8
1.2 x2 2.5 dx

               �= 1.25 m ⎡
⎣

x3

3
⎤
⎦ 0.8

1.2
= 1.25

3 m ⎡⎣1.23 − 0.83 ⎤⎦ = 0.506 m.

Continuation of Example 4.4 The mean x-coordinate of the random landing point
 of a drop of water will be calculated by formula (4.10): Since the densityX = a sin 2α

of  is given by (4.8),α

            �E(X) = a ∫0
π/2(sin 2α) 2

π dα = 2a
π ⎡⎣−

1
2 cos 2α⎤⎦ 0

π/2
= 2a/π ≈ 0.6366 .
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4.1.2 Random Numbers

Computers, even scientific calculators, are equipped with software for the generation
of random numbers, i.e., a computer can randomly pick numbers from the interval

 More exactly, a computer can generate or simulate arbitrarily frequently and[0, 1].
independently of each other realizations of a random variable X, which has a uniform
distribution in the interval  The result of n successive, independent simulations[0, 1].
is a set of numbers

                                     (4.11){x1, x2, ..., xn}, xi ∈ [0, 1].

This set is called a sequence of random numbers or, more precisely, a sequence of
random numbers generated from a -uniform distribution. In applications, how-[0, 1]
ever, one will only in rare cases directly need random numbers simulated from a uni-
form distribution. Hence the following problem needs to be solved:

Problem Let X have a uniform distribution in the interval  Does there exist a[0, 1].
function  with property that the random variable  has ay = h(x), 0 ≤ x ≤ 1, Y = h(X )
desired distribution function ?F(y)

By asuumption, the distribution function of  isX

                        (4.12)FX(x) =
⎧

⎩

⎨
⎪

⎪

0 for x < 1,
x for 0 ≤ x < 1,
1 for x > 1.

The function, which solves the problem, is simply  where  is the inverseh = F −1, F−1

function of F, i.e.  for all . This can be seen as follows:F−1(F(y)) = y y ∈ RY

For  taking into account (4.12),Y = F−1(X),

P(Y ≤ y) = P(F−1(X) ≤ y) = P(X ≤ F(y)) = FX(F(y)) = F(y).

Thus,  has indeed the desired distribution function  This re-Y = F−1(X) FY(y) = F(y).
sult is summarized in the following theorem (compare to formula (4.1)):

Theorem 4.1 Let X be a uniformly in  distributed random variable with distribu-[0, 1]
tion function , and  be a strictly monotone, but otherwise arbitrary distribu-FX(x) F(y)
function. Then the random variable  has distribution functionY = F−1(X)

FY(y) = F(y).

Vice versa, if X is a random variable with distribution function then FX(x), Y = FX(X )
has a uniform distribution in                                                                             �[0, 1].

Now it is obvious, how to generate from the sequence of random numbers (4.11),
simulated from a -uniform distribution, a sequence of random numbers, which[0, 1]
is simulated from a probability distribution given by FY(y) :

  with                    (4.13){y1, y2, ..., yn} yi = F−1(xi), i = 1, 2, ..., n.
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The set of numbers (4.13) will be called simply a sequence of random numbers from
a probability distribution given by  If, for instance,  is the distributionFY(y). FY(y)
function of a Weibull distributed random variable, then (4.13) is called a sequence of
Weibull distributed random numbers; analogously, there are sequences of normally
distributed random numbers and so on.
Of course, these numbers are not random at all, but are realizations of a random varia-
ble Y with distribution function  More precisely: The sequence (4.13) of realFY(y).
numbers  is generated by the outcomes of n independent repetitions of ay1, y2, ..., yn
random experiment with random outcome Y.
In the literature, the terminology 'to simulate a sequence of random numbers from a
given distribution' is used equivalently to 'simulate a random variable with a given
probability distribution', e.g., to 'simulate an exponenially distributed random varia-
ble' or to 'simulate a normally distributed random variable'.

Example 4.6 Based on a random variable X, which has a uniform distribution in the
interval  a random variable Y is to be generated, which has an exponential dis-[0, 1],
tribution with parameter λ :

F(y) = P(Y ≤ y) = 1 − e−λy, y ≥ 0.

First, the equation  has to be solved for y:x = 1 − e−λy

y = F−1(x) = − 1
λ ln(1 − x), 0 ≤ x < 1.

Hence, the random variable
Y = F−1(X) = − 1

λ ln(1 − X)

has an exponential distribution with parameter  Thus, if the sequence (4.11) of uni-λ.
formly in distributed random numbers is given, the corresponding sequence of[0, 1]-
exponentially with parameter  distributed random numbers isλ

{y1, y2, ..., yn},

where                                                       �yi = F−1(xi) = −
1
λ ln(1 − xi), i = 1, 2, ..., n.

It is not always possible to find an explicit formula for the inverse function of F−1 F.
For instance, if  is the distribution function of a normal distribution with parame-F(y)
ters  and  then the equationμ σ2,

x = F(y) = 1
2π σ

∫
−∞

y
e
−
(u − μ)2

2σ2 du

cannot explicitely solved for y. However, given the  the numerical calculation ofxi,
the corresponding , i.e., the numerical calculation of a sequence of normally distri-yi
buted random numbers, is no problem at all.
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Generalization Let Y and Z be two random variables with strictly monotone distribu-
tion functions  and  respectively. Is there a function  so thatFY(y) FZ(z), z = h(y)

Z = h(Y) ?
This function can be derived by twofold application of theorem 4.1: According to this
theorem, the random variable  has a uniform distribution in [0,1]. Hence,X = FY(Y)
again by this theorem, the random variable  has distribution function  soFZ

−1(X) FY
that the desired function  isz = h(y)

z = FZ
−1(FY(y)).

Thus, if  then Y has distribution function , and Z has distributionZ = FZ
−1(FY(Y)), FY

function FZ(z).

Example 4.7 Let Y and Z be two random variables with distribution functions
FY(y) = 1 − e−y, y ≥ 0, and FZ(z) = z , 0 ≤ z ≤ 1.

For which function  is z = h(y) Z = h(Y) ?
The random variable

X = FY(Y) = 1 − e−Y

with realizations x, is uniformly distributed in [0,1]. Moreover,0 ≤ x ≤ 1,
FZ
−1(x) = x2.

Hence, the desired function is 
z = h(y) = (1 − e−y )2 , y ≥ 0,

so that there is the following relationship between Y and Z:

                                                    �Z = ⎛
⎝1 − e−Y ⎞

⎠
2
.

Discrete Random Variables Sequences of random numbers of type (4.11), simulat-
ed from a uniform distribution in  can also be used to simulate sequences of[0, 1],
random numbers from discrete random variables.
For instance, if Y is a random variable with range  and probabi-RY = {−3,−1,+1,+3}
lity distribution

{P(Y = −3) = 0.2, P(Y = −1) = 0.1, P(Y = +1) = 0.4, P(Y = +3) = 0.3},

then sequences of random numbers from this probability distribution can be simulat-
ed from a random variable , which has a uniform distribution in [0,1], as follows:X

Y =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

−3 for 0.0 ≤ X ≤ 0.2,
−1 for 0.2 < X ≤ 0.3,
+1 for 0.3 < X ≤ 0.7,
+3 for 0.7 < X ≤ 1.0.
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This representation of Y is not unique, since the assignment of subintervals of [0,1]
to the values of Y only requires that the length of subintervals correspond to the res-
pective probabilities. So, another, equivalent representation of Y would be, e.g.,

Y =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

−3 for 0.8 ≤ X ≤ 0.2,
−1 for 0.7 < X ≤ 0.8,
+1 for 0.0 ≤ X ≤ 0.4,
+3 for 0.4 < X ≤ 0.7.

The method of simulating sequences of random numbers from a given distribution
based on sequences of uniformly in [0,1]-distributed random numbers is, for obvious
reasons, called the inverse transformation method. There are a couple of other simu-
lation techniques for generating sequences of random numbers, e,.g. the failure or
hazard rate method and the rejection method. They do, however, not fit in the frame-
work of section 4.1.

One question still needs to be answered: How are sequences of random numbers from
a [0,1]-uniform distribution generated?
It can be done manually by repeating a Laplace random experiment (page 12) with
outcomes 0,1,...,9 several times. For instance, 10 balls, with respective numbers 0, 1,
...,9 attached to them, are put into a bowl. A ball is randomly selected. Its number  i1
is the first decimal. The ball is returned to the bowl. After shaking it, a second ball is
randomly drawn from the bowl; its number is the second decimal, and so on.i2
When having done this m-times, the number

0.i1i2. .. im

has been generated. After having repeated this procedure n times, a sequence of n in
[0,1] uniformly distributed random numbers has been simulated. Or, by repeating the
Laplace experiment 'flipping a coin' with outcomes '1' (head) or '0' (tail) m times, one
obtains a binary number with m digits. Decades ago, researchers would obtain [0,1]-
uniformly distributed sequences of random numbers from voluminous tables of ran-
dom numbers.
Note  In what follows, the attribute '[0,1]-uniform(ly)' will be omitted.
But how are nowadays sequences of random numbers generated by a computer? The
answer is quite surprising: Usually by deterministic algorithms. From the numerical
point of view, these algorithms are most efficient. But they only yield sequences of
pseudo-random numbers. Extensive statistical tests, however, have established that
sequences of pseudo-random numbers, when properly generated, have the same statis-
tical properties as sequences of (genuine) random numbers, i.e., sequences of pseudo-
random numbers and sequences random numbers cannot be distinguished from each
other.
There are three basic properties, which any sequences of (pseudo-) random numbers

 for sufficiently large n must fulfill:x1, x2, ..., xn
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1) The  are in [0,1] uniformly distributed in the sense that every subinter-x1, x2, ..., xn
val of [0,1] of the same length contains about the same number of xi.
2) Within the sequence  no dependencies can be found. In particular, thex1, x2, ..., xn
structure of any subsequence (denoted as ss) of  does not contain any in-x1, x2, ..., xn
formation on any other subsequence of  which is disjoint to ss.x1, x2, ..., xn,
3) The sequence  is not periodic, i.e., there is no positive integer p withx1, x2, ..., xn
property that there exists an element  of this sequence with  and after  thexp xp = x1 xp
numbers develop in the same way as from the start, i.e.,

 x1, x2, . .. , xp = x1, xp+1 = x2, xp+2 = x3, ..., x2p = x1, . ..

In this case, the sequence  would consist of identical subsequences ofx1, x2, ..., xn
length p (only the last one is likely to be shorter).

Congruence Method This method is probably mostly used by random number gene-
rators (of computers) to produce sequences of pseudo-random numbers.
Starting with a nonnegative integer  (the seed ) a sequence of pseudo-random num-z1
bers  withx1, x2, ...

                                      (4.14)xi = zi/m, i = 1, 2, ...
is generated as follows:

                           (4.15)zi+1 = (a zi + b)mod m, i = 1, 2, ...
with integers a, b, and m, which in this order are called factor, increment, and module,
a > 0, b ≥ 0, m > 0.

Note  The relation  (read: z is equal to y modulo m) between three numbers z, y,z = y mod m
and m means that z is the remainder, which is left after the division of y by m.

Each of the figures  generated by (4.15) is an element of the set  zi {0, 1, ..., m − 1}.
Thus, the sequence  must have a finite period p with  Therefore, the{zi} p ≤ m,
algorithm has to start with an m as large as possible or necessary, respectively, so that
with re- gard to the respective application a sufficiently large sequence of random
numbers has been generated before the sequence reaches length p. The specialized
literature gives recommendations how to select the parameters a, b, and  to makez1
sure that the generated sequences of pseudo-random numbers have the properties 1
to 3 listed above.
If , then the algorithm is called the multiplicative congruence method, and forb = 0

 it is called the linear congruence method.b > 0

Example 4.8 Let    and  The corresponding  recur-a = 21, b = 53, m = 256, z1 = 101.
sive equations (4.15) are

                      (4.16)zi+1 = (21 zi + 53)mod 256, i = 1, 2, ... .

The first seven equations are
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z2 = (21 ⋅ 101 + 53)mod 256 = 2174 mod 256 = 126,
z3 = (21 ⋅ 126 + 53)mod 256 = 2699 mod 256 = 139,
z4 = (21 ⋅ 139 + 53)mod 256 = 2972 mod 256 = 156,

    z5 = (21 ⋅ 156 + 53)mod 256 = 3329 mod 256 = 1,
           z6 = (21 ⋅ 1 + 53)mod 256 = 74 mod 256 = 74,

    z7 = (21 ⋅ 74 + 53)mod 256 = 1607 mod 256 = 71,
       z8 = (21 ⋅ 71 + 53)mod 256 = 1544 mod 256 = 8.

The corresponding first eight numbers in the sequence of pseudo-random numbers
calculated by  are xi = zi/256

x1 = 0.39453; x2 = 0.49219; x3 = 0.54297; x4 = 0.60938;

   x5 = 0.00391; x6 = 0.28906; x7 = 0.27734; x8 = 0.03125.
Of course, with a sequence of eight pseudo-random numbers one cannot confirm that
the sequence generated by (4.16) and (4.14) satisfies the three basic properties above.
This example and the following one can only explain the calculation steps.              �

Mid-Square Method  From a figure integer  one generates the subsequent fig-2k- zi
ure  by identifying it with the middle  figures of  If  has less than  zi+1 2k zi

2. zi
2 2k

figures, then the missing ones will be replaced with 0 at the front of  The figure zi
2. zi

yields the decimals of the pseudo-random number  after the point. The specializedxi
literature gives hints how to select  and k so that the generated sequence ofz1
pseudo-random numbers  fulfills the basic properties 1 to 3 listed above.x1, x2, ..., xn

Example 4.9 Let  and  The first 7 numbers of the corresponding se-k = 2 z1 = 4567.
quences  and  are{zi} {xi}

z1 = 4567 z1
2 = 20857489 x1 = 0.4567

z2 = 8574 z2
2 = 73513476 x2 = 0.8574

z3 = 5134 z3
2 = 26357956 x3 = 0.5134

z4 = 3579 z4
2 = 12809241 x4 = 0.3579

z5 = 8092 z5
2 = 65480464 x5 = 0.8092

z6 = 4804 z6
2 = 23078416 x6 = 0.4804

z7 = 0784 z7
2 = 00614656 x7 = 0.0784

It is obvious that after sufficiently many steps one must return to an  already obtain-xi
ed before. This is because the total number of 4-figure integers is 10000. Hence, with
regard to this example, the generated sequence  of pseudo-random numbersx1, x2, ...
must have a period p not exceeding 10 000.                                                                 �
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The generation of random numbers is the basis for computer-aided modelling (simu-
lation) of complex stochastic systems in industry, economy, military, science, huma-
nity, or other areas in order to determine properties or relevant parameters of these
systems. Such properties/parameters are, for instance, productivity, stability, availa-
bility, safety, efficiency criteria, mean values, variances, state probabilities, ... . By
computer-aided simulation, systems can be qualitatively and quantitatively evaluated,
which in view of their complexity or lack of input data and other information cannot
be analyzed by only using analytical methods. Simulation considerably reduces costly
and time consuming experiments, which otherwise have to be carried out under real-
life conditions. The application of computer-aided simulation is facilitated by special
software packages.

4.2 FUNCTIONS OF SEVERAL RANDOM VARIABLES

4.2.1 Introduction

A rectangle with side lengths a and b has the area  In view of random meas-A = ab.
urement errors one has only the random side lengths X and Y, which give for A the
random estimate  If this rectangle is the base of a cylinder with randomA = X Y.
height Z, then a random estimate of its volume is  is V V = A Z = X Y Z.
If instead of the exact values of voltage V and resistance R in view of random fluctua-
tions only the random values  and  are given and if the conditions for Ohm's lawV R
are fulfilled, then instead of the exact value of the corresponding amperage  I = V/R,
one has only the random estimate I = V/R.
Has an investor per year the random profits (losses) from shares, bonds, and funds X,
Y, and Z, respectively, then her/his annual total profit (loss) will be P = X + Y + Z.
If the signal  with random Y has been sent and will have its its amplitude sin Y (= 1)
randomly distorted to X during transmission, then the receiver obtains the message

.X sin Y
Consists a system of two subsystems with respective random lifetimes X and Y and
fails it as soon as the first subsystem fails, then its lifetime is  If this systemmin(X, Y).
only fails if when both subsystems are down, then its lifetime is  These aremax(X, Y).
examples for functions of two or more random variables which motivate the subject
of the rest of this chapter.
The following sections 4.2.2 to 4.2.6 essentially deal with functions of two random
variables  If the generalization to functions of an arbitrary number ofZ = h(X, Y).
random variables  is straightforward, then the correspondingZ = h(X1, X2, ..., Xn)
results will be given. This is usually only then the case when the  areX1, X2, ..., Xn
independent.
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4.2.2 Mean Value

The random vector  have the joint density  and range  given by(X, Y) fX,Y(x, y) RX,Y
the normal region with regard to the x-axis

RX,Y = {(x, y); a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)}
(Figure 3.1, page 123). Let  be a function on  and  Then,z = h(x, y) RX,Y Z = h(X, Y).
by formula (3.59), the mean value of  provided its existence, is defined asZ,

                           (4.17)E(Z) = ∫a
b ∫y1(x)

y2(x) h(x, y) fX,Y(x, y)d ydx.

Since outside of  the joint density is 0, it is not wrong to write this mean value asRX,Y

E(Z) = ∫−∞
+∞ ∫−∞

+∞ h(x, y) fX,Y(x, y)d ydx.

For the calculation of  this formula may not help very much, since in each caseE(Z)
the bounds prescribed by  have to be inserted.RX,Y

If the random variables X and Y are discrete with respective ranges RX = {x0, x1, ...},
 and joint distributionRY = {y0, y1, ...},

{ri j = P(X = xi, Y = yj; i, j = 0, 1, ...},

then                                                                         (4.18)E(Z) = Σi=0
∞ Σj=0

∞ h(xi, yj) ri j.

Example 4.10 The random vector  has a uniform distribution in the rectangle(X, Y)
 The mean value of the random variable  RX,Y = {0 ≤ x ≤ π, 0 ≤ y ≤ 1}. Z = X sin(XY)

has to be calculated.
Since a rectangle is a normal region, formula (4.17) is directly applicable with

 for all  and :fX,Y(x, y) = 1/π (x, y) ∈ RX,Y h(x, y) = x sin(xy)

E(Z) = ∫0
π ∫0

1 x sin(xy) 1
π d ydx = 1

π ∫0
π x⎛⎝∫0

1 x sin(xy)d y⎞⎠ dx

= 1
π ∫0

π x⎛⎝
⎡
⎣−

cos(xy)
x ⎤

⎦ 0

1 ⎞
⎠ dx = 1

π ∫0
π x(1 − cos x)dx = 1

π[x − sin x]0
π.

Hence,                                                                                                           �E(Z) = 1.

Example 4.11 A target, which is positioned in the origin (0,0) of the coordinate(x, y)-
system is subject to permanent artillery fire. The random x-coordinate X and the ran-
dom y-coordinate Y of the impact marks of the shells are independent and identical as

-distributed random variables. (The assumption  means thatN(0,σ2) E(X) = E(Y) = 0
there are no systematic deviations from the target.)
Let Z be the random distance of an impact mark to the target (origin). The aim is to
determine the probability distribution of Z and .E(Z)
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By (2.81) and (3.13), the joint probability density of  is(X, Y)

     fX,Y(x, y) = 1
2π σ

e
− x2

2σ2 ⋅ 1
2π σ

e
− y2

2σ2 = 1
2πσ2 e

− x2+y2

2σ2 , − ∞ < x, y < +∞.

Since the distance of the impact mark to the target   the distributionis Z = X 2 + Y2 ,
function of  is principally given byZ

              (4.19)FZ(z) = P(Z ≤ z) = ∫∫
{(x,y), x2+y2 ≤ z}

1
2πσ2 e

− x2+y2

2σ2 dx dy.

To facilitate the evaluation of this double integral, a transition is made to polar coor-
dinates (special curvilinear coordinates, page 123) according to Figure 4.7:

x = r cosϕ, y = r sinϕ or r = x2 + y2 , ϕ = arctan y
x

with                    ∂x
∂r = cosϕ, ∂x

∂ϕ = −r sinϕ, ∂y
∂r = sinϕ, ∂y

∂ϕ = r cosϕ.

The corresponding functional determinant  (page 123)is

  ∂(x, y)
∂(r,ϕ) =

∂x
∂r

∂y
∂r

∂x
∂ϕ

∂y
∂ϕ

=
cosϕ sinϕ

− r sinϕ r cosϕ
= r (cosϕ)2 + r(sinϕ)2 = r.

Integrating over the full circle  in (4.19) is, in polar coordinat-{(x, y), x2 + y2 ≤ z}
es equivalent to integrating over the area  By (3.17), page 123,[0 ≤ r ≤ z, 0 ≤ ϕ ≤ 2π].
the integral (4.19) reduces to

             FZ(z) = ∫
0

z
∫
0

2π
1

2πσ2 e
− r2

2σ2 r dϕdr = 1
σ2 ∫

0

z
r e

− r2

2σ2 dr = 1 − e
− z2

2σ2 , z ≥ 0.

This is a Weibull-distribution with parameters  and , i.e., the randomβ = 2 θ = 2 σ
variable Z is Rayleigh-distributed. Hence, by formula (2.78), its mean value is

                                    �E(Z) = 2 σ Γ(1.5) ≈ 1.2533σ.
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4.2.3 Product of Two Random Variables

Let  be a random vector with joint probability density , and(X, Y) fX,Y(x, y)
Z = X Y.

The distribution function of   is given byZ

  FZ(z) = ∫∫
{(x,y); xy≤z}

fX,Y (x, y)dx dy

with (see Figure 4.8)
 {(x, y); xy ≤ z} = {−∞ < x ≤ 0, z

x ≤ y < ∞} {0 ≤ x < ∞, − ∞ < y ≤ z
x}.

Hence,

  FZ(z) = ∫−∞
0 ∫z/x

+∞ fX,Y (x, y)dy dx + ∫0
+∞ ∫−∞

z/x fX,Y (x, y)dy dx.

Differentiation with regard to z yields the probability density of :Z

fZ(z) = ∫−∞
0 ⎛

⎝−
1
x
⎞
⎠ fX,Y (x, z

x )dx + ∫0
∞ 1

x fX,Y (x, z
x )dx.

This representation can be simplified to

                    (4.20)fZ(z) = ∫−∞
+∞ 1

x fX,Y (x, z
x)dx, z ∈ (−∞,+∞).

For nonnegative X and Y,

FZ(z) = ∫0
+∞ ∫0

z/x fX,Y(x, y)dy dx, z ≥ 0,

                          (4.21)fZ(z) = ∫0
+∞ 1

x fX,Y (x, z
x )dx, z ≥ 0.

Example 4.12 The random vector  has the joint density(X, Y)
fX,Y(x, y) = 6 x2y, 0 ≤ x, y ≤ 1.

Since both X and Y are nonnegative,  formula  (4.21)  can  be  applied  to  determine  the
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density of : Since Z = X Y z/x ≤ 1,

fZ(z) = ∫z
1 1

x (6x2 ⋅ z
x )dx = 6z (1 − z), 0 ≤ z ≤ 1.

The calculation of the mean value of Z yields

  E(Z) = ∫0
1 z [6z(1 − z)]dz = 6 ⎡⎣

z3

3 − z4

4
⎤
⎦ 0

1
= 1

2 .

The marginal distribution densities of  are(X, Y)

  and   fX(x) = 3x3, 0 ≤ x ≤ 1, fY(y) = 2y, 0 ≤ y ≤ 1.

Hence,  so that X and Y are independent.                              �fX,Y(x, y) = fX(x) ⋅ fY(y)

4.2.4 Ratio of Two Random Variables

Let  be a random vector with joint probability density  and(X, Y) fX,Y (x, y),

Z = Y
X .

The distribution function of   is given byZ

FZ(z) = ∫∫
(x,y); y

x ≤ z
fX,Y (x, y)dx dy

with (Figure 4.9)

  (x, y); y
x ≤ z = {−∞ < x ≤ 0, zx ≤ y < ∞} {0 ≤ x < ∞, − ∞ < y ≤ zx}.

Hence 

FZ(z) = ∫−∞
0 ∫z x

+∞ fX,Y (x, y)dy dx + ∫0
+∞ ∫−∞

z x fX,Y (x, y)dy dx.

Differentiation with regard to  yields the probability density of Z:z

                                   (4.22)fZ(z) = ∫−∞
+∞ x fX,Y (x, zx)dx.
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In case of nonnegative  and Y,X

 FZ(z) = ∫0
+∞ ∫0

z x fX,Y(x, y)dy dx, z ≥ 0,

                                 (4.23)fZ(z) = ∫0
+∞ x fX,Y (x, zx)dx, z ≥ 0.

Example 4.13  The random vector  has the joint density(X, Y)

               (4.24)fX,Y(x, y) = λμ e−(λ x+μy), x ≥ 0, y ≥ 0; λ > 0, μ > 0.

The structure of this joint density implies that X and Y are independent and have
exponential distributions with parameters  and , respectively. Hence, the densityλ μ
of the ratio  isZ = Y/X

fZ(z) = ∫0
∞ xλμ e−(λ+μ z)x dx, z ≥ 0.

 slight transformation yieldsA

fZ(z) =
λμ
λ+μ z ∫0

∞ x (λ + μ z)e−(λ+μ z) xdx, z ≥ 0.

The integral is the mean value of an exponentially distributed random variable with
parameter  Therefore,λ + μ z.

                                 (4.25)fZ(z) =
λμ

(λ + μ z)2 , z ≥ 0,

   FZ(z) = 1 − λ
λ + μ z , z ≥ 0.

This is the Lomax distribution (page 93).                                                                     �

Example 4.14  A system has the random lifetime (= time to failure) X. After a failure
it is replaced with a new system. It takes Y time units to replace a failed system. Thus,
within a (lifetime-replacement) cycle, the random fraction during which the system is
operating, is

A = X
X + Y .

A is called the availability of the system (in a cycle). Determining the distribution
function of  can be reduced to determining the distribution function of the ratio A

 sinceZ = Y/X

  FA(t) = P(A ≤ t) = P⎛⎝
X

X+Y ≤ t⎞⎠ = 1 − P⎛⎝
Y
X < 1−t

t
⎞
⎠ .

Hence,

FA(t) = 1 − FZ
⎛
⎝

1−t
t
⎞
⎠ , 0 < t ≤ 1.

Differentiation with respect to t  yields the probability density of A:

fA(t) =
1
t 2 fZ

⎛
⎝

1−t
t
⎞
⎠ , 0 < t ≤ 1.
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Specifically, if the joint density of  is given by (4.24) then   is given by(X, Y) fZ(z)
(4.25)  that we again get a Lomax distribution:so

fA(t) =
λμ

[(λ−μ) t+μ]2 , FA(t) =
λ t

(λ−μ) t+μ , 0 ≤ t ≤ 1.

For  the mean value of A is (easily obtained by formula (2.52), page 64)λ ≠ μ,

   E(A) =
μ

μ − λ
⎡
⎣
⎢1 + λ

μ − λ
⎤
⎦
⎥ ln λ

μ .

In particular, let  Then the probability that the system availability assumesλ/μ = 1/4.
a value between 0.7 and 0.9 is

  P(0.7 ≤ A ≤ 0.9) = FA(0.9) − FA(0.7) = 0.9
4−3⋅0.9 −

0.7
4−3⋅0.7 = 0.324.

In view of  and  the assumption  implies that the meanE(X) = 1/λ E(Y) = 1/μ λ/μ = 1/4
lifetime of the system is on average four times larger than its mean replacement time.
Hence, one would expect that the mean availability of the system is  But the true0.75.
value is slightly lower: E(A) ≈ 0.717.
If , then A is uniformly distributed over  In this case,             �λ = μ [0, 1]. E(A) = 1/2.

4.2.5 Maximum of Random Variables

Let  be a random vector with joint density  and(X, Y) fX,Y(x, y)
Z = max(X, Y).

The random event ' ' occurs if and only if both X and Y assume values which doZ ≤ z
not exceed z. Hence (Figure 4.10),

  FZ(z) = P(Z ≤ z) = P(X ≤ z, Y ≤ z) = ∫−∞
z ∫−∞

z fX,Y(x, y)dxdy.

Example 4.15 The random vector  has a Marshall-Olkin distribution with joint(X, Y)
distribution function given by (3.27): For  and λ1 > 0, λ2 > 0, λ > 0, x, y ≥ 0,

      FX,Y(x, y) = 1 − e−(λ1+λ) x − e−(λ2+λ) y + e−λ1 x−λ2 y−λmax(x,y).
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so that
P(Z > z) = 1 − FZ(z) = 1 − FX,Y(z, z) = e−(λ1+λ) z + e−(λ2+λ) z − e−(λ1 +λ2 +λ) z.

Hence, by formula (2.52), page 64, the mean value of   isZ = max(X, Y)

                        (4.26)E(Z) = 1
λ1 + λ

+ 1
λ2 + λ

− 1
λ1 + λ2 + λ

.

As a practical application, if a system consists of two subsystems with respective life-
times X and Y, and the systems fails when both subsystems have failed, then its mean
lifetime is given by (4.26). In particular, in case of  independent, identically distribut-
ed lifetimes  and Y (i.e., :X λ = 0, λ1 = λ2)

E(Z) = 1.5
λ1

.

In this case, a 'spare' system increases the mean system life by the factor 1.5.          �

Now the random variables  are assumed to be independent with distribu-X1, X2, ..., Xn
tion functions LetFXi (z) = P(Xi ≤ z), i = 1, 2, ..., n.

                                     (4.27)Z = max{X1, X2, ..., Xn}.

Since the random event " " occurs if and only ifZ ≤ z
' ',X1 ≤ z, X2 ≤ z, ..., Xn ≤ z

and the events ' ' are independent, the distribution function of Z isXi ≤ z
                                   (4.28)FZ (z) = FX1 (z) ⋅ FX2 (z) . .. FXn (z).

Example 4.16 A system consists of n subsystems  All of them start oper-s1, s2, ..., sn.
ating at time point  and fail independently of each other. The system operates ast = 0
long as at least one of its subsystems is operating. Thus,  out of the n subsystemsn − 1
are virtually spare systems. Hence, if  denotes the lifetime of subsystem thenXi si,
the lifetime Z of the system is given by (4.27) and has distribution function (4.28). In
engineering reliability, systems like that are called parallel systems. Its failure behav-
ior is illustrated by Figure 4.11. Each of the n edges in the graph with parallel edges
depicted there symbolizes a subsystem. The system works if and only if there is at
least one 'operating edge', which connects entrance node en and exit node ex.
As a special case, let us assume that the lifetimes  are identically exponentially dis-Xi
tributed with parameter λ :

FXi (x) = 1 − e−λ x, λ > 0, i = 1, 2, ..., n.
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Then the system lifetime has distribution function  so thatFZ(z) = (1 − e−λ z)n, z ≥ 0,
the mean system lifetime is

  E(Z) = ∫0
∞ ⎡⎣1 − (1 − e−λ z)n ⎤⎦ dz.

The substitution yieldsx = 1 − e−λ z

E(Z) = 1
λ ∫0

1 1−xn

1−x dx = 1
λ ∫0

1 ⎡⎣1 + x + . .. + xn−1 ⎤⎦ dx.

Hence,                                     E(Z) = 1
λ
⎡
⎣1 +

1
2 +

. .. + 1
n ⎤⎦.

Because of the divergence of the harmonic series an arbitrary large mean sys-Σi=1
∞ 1/i ,

tem lifetime can be achieved by installing a sufficient number of subsystems.             �

4.2.6 Minimum of Random Variables

Let the random vector  have the joint density , and let (X, Y) fX,Y(x, y) Z = min(X, Y)
have distribution function  Then, by integrating over the hatchedFZ(z) = P(Z ≤ z).
area in Figure 4.12,

FZ(z) = ∫∫
{(x,y); x≤z, y≤z}

fX,Y(x, y)dxdy = ∫−∞
z ∫−∞

z fX,Y(x, y)dxdy.

Integrating over the non-hatched area yields
  FZ(z) = P(Z > z) = P(X > z, Y > z) = ∫z

∞ ∫z
∞ fX,Y(x, y)dxdy.

For independent X and Y,
 FZ(z) = FX(z) ⋅ FY(z) .

Example 4.17 A system consists of two subsystems with respective lifetimes X and Y.
The system fails as soon as the first subsystem fails. Then  is the meanZ = min(X, Y)
lifetime of the system. Let, for instance, the random vector  have the Gumbel-(X, Y)
distribution (3.28) with parameters  and parameter . Then,λ1 = λ2 = 1 λ, 0 ≤ λ ≤ 1

FZ(z) = P(Z > z) = e−2 z−λ z2 , z ≥ 0,

4 FUNCTIONS OF RANDOM VARIABLES                                                          177

0
x

Figure 4.12 Integration region for the minimum

z

z

y



and, by formula (2.52), the mean lifetime is

E(Z) = ∫0
∞ e−(2 z+λ z 2)dz.

Figure 4.13 shows the graph of the mean lifetime depending on  With increasingλ .
dependence between X and Y ( , the mean lifetime decreases almost linearlyλ → 1)
from 0.5 (independence) to about 0.38. (The correlation coefficient between X and Y
is given at page 138.)                                                                                                   �

Now let  be independent random variables andX1, X2, ..., Xn

  Z = min {X1, X2, ..., Xn}.

Then,  so thatP(Z > x) = P(X1 > z, X2 > z, ..., Xn > z)

                     (4.29)FZ (z) = P(Z > z) = FX1 (z) ⋅ FX2 (z). .. FXn (z).

Thus, the distribution function of the minimum of  independent random variables isn

                   (4.30)FZ (z) = P(Z ≤ z) = 1 − FX1 (z) ⋅ FX2 (z) . .. FXn (z).

Generalizing example 4.17, if a system, consisting of n independently operating sub-
systems  starts operating at time  and fails as soon as one of its sub-s1, s2, ..., sn, z = 0
systems fails, then its survival function is given by (4.29). In Figure 4.14, if the chain
between entrance node en and exit node ex of the graph is interrupted by a failed sub-
system, then the system as a whole fails. In reliability engineering, systems like this
are called series systems. If, in particular, the lifetimes of the subsystems are identic-
ally exponentially distributed with parameter , then and theλ FZ(z) = e−nλz, z ≥ 0,
corresponding mean system lifetime is  Every installation of another sub-E(Z) = 1/λn.
system decreases both the survival probablity and the mean lifetime of a series system.
For instance, if one subsystem survives the interval [0,1] with probability e−λ = 0.99,
then 100 of such subsystems in series survive this interval only with probability 

 Therefore, in technological designs, combinations of parallel and0.99100 ≈ 0.37.
series systems are preferred.                                                                                        �
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4.3 SUMS OF RANDOM VARIABLES

4.3.1 Sums of Discrete Random Variables

Mean Value of a Sum The random vector  with discrete components X and Y(X, Y)
has the joint distribution

{ri j = P(X = xi ∩ Y = yj; i, j = 0, 1, ...},

and the marginal distributions
pi = P(X = xi) = Σj=0

∞ ri j ,

qj = P(Y = yj) = Σi=0
∞ ri j .

Then the mean value of the sum  isZ = X + Y

E(Z) = Σi=0
∞ Σj=0

∞ (xi + yj) ri j

  = Σi=0
∞ xiΣj=0

∞ ri j +Σi=0
∞ yjΣj=0

∞ ri j

                   = Σi=0
∞ xi pi +Σj=0

∞ yj qj.

Thus,
                                    (4.31)E(X + Y) = E(X) + E(Y).

By induction, for any discrete random variables X1, X2, ..., Xn,
             (4.32)E(X1 + X2 + . .. + Xn) = E(X1) + E(X2) + . .. + E(Xn).

Distribution of a Sum  Let X and Y  be independent random variables with common
range   and probability distributionsR = {0, 1, ...}

{pi = P(X = i; i = 0, 1, ...} and {qj = P(Y = j; j = 0, 1, ...}.

Then,

P(Z = k) = P(X + Y = k) = Σi=0
k P(X = i)P(Y = k − i) .

Letting  yields for all  rk = P(Z = k) k = 0, 1, ...
rk = p0 qk + p1qk−1 + . .. + pk q0.

Thus, according to formula (2.114) at page 98, the discrete probability distribution
 is the convolution of the probability distributions of X and Y. The{rk; k = 0, 1, ...}

z-transforms  X and Y are defined by (2.110):of
 MX(z) = Σi=0

∞ pi zi,

 MY(z) = Σi=0
∞ qi zi.

By (2.116),
                                       (4.33)MZ(z) = MX(z) MY(z).
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    The z-transform  of the sum  of two independent discrete                MZ(z) Z = X + Y
    random variables X and Y with common range  is equal to the           R = {0, 1, ...}
    product of the z-transforms of X and Y.

By induction, if  with independent , thenZ = X1 + X2 + . .. + Xn Xi

                             (4.34)MZ(z) = MX1 (z) MX2 (z). .. MXn (z).

Example 4.18 Let  be a sum of independent random variables,Z = X1 + X2 + . .. + Xn
where  has a Poisson distribution with parameter i.e.,Xi λi; i = 1, 2, ..., n,

P(Xi = k) =
λ i

k

k! e−λi , k = 0, 1, ...

The z-transform of  is (page 91)Xi

                                          (4.35)MXi (z) = eλ i (z−1).

From (4.34),
MZ(z) = e(λ1+λ2+. .. +λn) (z−1).

The functional structure of  is the same as the one of  Thus, the sum ofMZ(z) MXi (z).
independent, Poisson distributed random variables has a Poisson distribution, the
parameter of which is the sum of the parameters of the Poisson distributions of these
random variables. (This way of reasoning is only possible, because, as pointed out in
section 2.5, to every probability distribution there belongs exactly one z-transform
and vice versa.)                                                                                                             

Example 4.19 Let  be a sum of independent random variables,Z = X1 + X2 + . .. + Xn
where  has a binomial distribution with parameters  and i.e.,Xi ni pi, i = 1, 2, ..., n,

P(Xi = k) = ⎛
⎝

ni
k
⎞
⎠ pi

k(1 − pi)ni−k, k = 0, 1, ..., ni.

Then (page 98), the z-transform of  isXi

MXi (z) = [piz + 1 − pi]ni .

Hence, the z-transform of the sum is

MZ(z) = Π
i=1

n
[piz + 1 − pi]ni .

Under the additional assumption that
pi = p, i = 1, 2, ..., n,

this representation of the -transform of Z simplifies toz

MZ(z) = [p z + 1 − p]n1+n2+. .. +nn .

Comparing this  with  shows that in case of  the sum Z has againMZ(z) MXi (z) pi = p
a binomial distribution, but with parameters p and .                       n1 + n2 + . .. + nn
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4.3.2   Sums of Continuous Random Variables

4.3.2.1 Sum of Two Random Variables
Distribution The random vector  have the joint density  Based on this(X, Y) fX,Y(x, y).
information, the distribution function  of the sum  has to beFZ(z) = P(Z ≤ z) Z = X + Y
determined.

Figure 4.15 illustrates the situation: Those realizations  of , which satisfy(x, y) (X, Y)
the condition  or , respectively, are in the hatched area. If the vectorx + x ≤ z y ≤ z − x

 assumes such a realization, then the random event ' ' occurs. Hence,(X, Y) X + Y ≤ z
 is given by the double integralFZ(z)

FZ(z) = ∫−∞
+∞ ∫−∞

z−x fX,Y(x, y)dydx.

Differentiation with regard to  yields the density of Z:z

fZ(z) =
d
dz ∫−∞

+∞ ∫−∞
z−x fX,Y(x, y)dydx = ∫−∞

+∞ d
dz ∫−∞

z−x fX,Y(x, y)dydx

so that                                                                     (4.36)fZ(z) = ∫−∞
+∞ fX,Y(x, z − x)dx.

If X and Y are nonnegative, then  is 0 for  and/or  In this case,fX,Y(x, y) x < 0 y < 0.
only such x and  can contribute to the integral in (4.36), which satisfy  andz − x x ≥ 0

 Hence,z − x ≥ 0.
                                    (4.37)fZ(z) = ∫0

z fX,Y(x, z − x)dx.

If X and Y are independent, then  so that in this case formulasfX,Y(x, y) = fX(x) ⋅ fY(y)
(4.36) and (4.37) become

                                 (4.38)fZ(z) = ∫−∞
+∞ fX(x) fY(z − x)dx,

                                    (4.39)fZ(z) = ∫0
z fX(x) fY(z − x)dx.

These integrals are the convolutions of  and  (formulas (2.125) and (2.126)).fX fY

   The density of the sum of two independent random variables X and Y is the             
   convolution of the densities of X and Y.
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By formula (2.127), the Laplace transform of the density of the sum of two independ-
ent random variables  and Y is equal to the product of their Laplace transforms:X

                                         (4.40)f Z(s) = f X(s) ⋅ f Y(s).

The distribution function of Z for independent X and Y one simply gets by integrating
the density  given by (4.38) and (4.39), respectively. A heuristic approach is thefZ(z)
following one: On condition  the distribution function of  isY = y Z = X + Y

FZ(Z ≤ z Y = y) = P(X + y ≤ z) = P(X ≤ z − y) = FX(z − y).

Since  is the 'probability' of the event ' ' (see comment after for-dFY(y) = fY(y)dy Y = y
mula (2.50), page 61),

                                   (4.41)FZ(z) = ∫−∞
+∞ FX(z − y) fY(y)dy,

or                                                                         (4.42)FZ(z) = ∫−∞
+∞ FX(z − y)dFY(y).

For nonnegative  and Y the formulas (4.41) and (4.42) becomeX

                                   (4.43)FZ(z) = ∫0
z FX(z − y) fY(y)dy,

                                     (4.44)FZ(z) = ∫0
z FX(z − y)dFY(y).

In the terminology used so far, the intergral in (4.41) is the convolution of the func-
tions  and  The integral (4.42), however, is called the convolution of the distri-FX fY.
bution functions  and  Of course, the roles of X and Y can be exchanged in for-FX FY.
mulas (4.36) to (4.44) since X + Y = Y + X.

Example 4.20  It is assumed that the random vector  has a uniform distribution(X, Y)
over the square [0 ≤ x ≤ T, 0 ≤ y ≤ T ], i.e.

fX,Y(x, y) =
⎧

⎩
⎨

1/T2, 0 ≤ x, y ≤ T
0, otherwise

.

By theorem 3.1, this assumption implies that X and Y are independent and in the inter-
val  uniformly distributed random variables. Hence, formula (4.39) is applicable[0, T ]
for determining the density of :Z = X + Y

 fZ(z) = ∫0
z fX,Y(x, z − x)dx =

⎧

⎩
⎨
⎪
⎪

∫0
z 1

T2 dx, 0 ≤ z ≤ T

∫z−T
T 1

T2 dx, T < z ≤ 2T
.

Therefore,

fZ(z) =
⎧

⎩
⎨
⎪
⎪

z
T2 , 0 ≤ z ≤ T
1

T2 (2T − z), T < z ≤ 2T
.

Figure 4.16 shows the graph of  It motivates the name triangular distribution.fZ(z).
But it is also called Simpson distribution. The corresponding distribution function is
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FZ(z) = ∫0
z fZ(u)du =

⎧

⎩

⎨
⎪

⎪

1
2
⎛
⎝

z
T
⎞
⎠

2
, 0 ≤ z ≤ T

z
T (2 −

z
2T) − 1, T < z ≤ 2T

.

The symmetry of the density with regard to  implies that  Hence,x = T E(Z) = T.
                                                  E(Z) = E(X) + E(Y).

Example 4.21 Let the random vector  have the joint density(X, Y)
fX,Y(x, y) = λμ e−(λ x+μy), x ≥ 0, y ≥ 0; λ > 0, μ > 0.

From example 4.13 we know that X and Y are independent and have exponential dis-
tributions with parameters  and respectively. Hence, formula (4.39) is applicableλ μ,
to determine the density of the sum :Z = X + Y

fZ(z) = ∫0
z λ e−λxμ e−μ(z−x) dx = λμ e−μz∫0

z e−(λ−μ) xdx.

Two cases have to be considered separately:

1) :                                    λ = μ fZ(z) =λ2z e−λ z, z ≥ 0.
This is an Erlang distribution with parameters  and  (page 75).λ n = 2

2) :                            λ ≠ μ fZ(z) =
λμ
λ−μ ⎡⎣e

−μ z − e−λ z⎤⎦, z ≥ 0.

The mean value of  is (Z = X + Y λ ≠ μ)

E(Z) = ∫0
∞ z fZ(z)dz = λμ

λ−μ
⎡⎣∫0
∞ z e−μzdz − ∫0

∞ z e−λzdz⎤⎦

                                        = 1
λ +

1
μ = E(X) + E(Y).

Mean Value of a Sum In the previous two examples, the mean value of a sum
proved to be equal to the sum of the mean values of the terms. This is generally true,
whether X and Y are independent or not (but  and  must be finite):E(X) E(Y)

E(X + Y) = ∫−∞
+∞ ∫−∞

+∞(x + y) fX,Y(x, y)dydx

= ∫−∞
+∞ x ∫−∞

+∞ fX,Y(x, y)dydx + ∫−∞
+∞ y ∫−∞

+∞ fX,Y(x, y)dxdy

   = ∫−∞
+∞ x ⎛⎝∫−∞

+∞ fX,Y(x, y)dy⎞⎠ dx + ∫−∞
+∞ y⎛⎝∫−∞

+∞ fX,Y(x, y)dx⎞⎠ dy.
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Now, by using properties (3.11) of the joint density,

             (4.45)E(X + Y) = ∫−∞
+∞ x fX(x)dx + ∫−∞

+∞ y fY(y)dy = E(X) + E(Y).

   The mean value of the sum of two random variables is equal to the sum of their      
    mean values.

Variance of a Sum To present the variance of the sum  in a convenientZ = X + Y
way, we need again the concept of the covariance between X and Y as defined by
(3.37) or (3.38) (page 135):

Cov(X, Y) = E([X − E(X)] ⋅ [Y − E(Y)]).
By definition (2.60) of the variance,

Var(Z) = E(Z − E(Z))2 = E(X + Y − E(X) − E(Y))2

       = E([X − E(X)] + [Y − E(Y)])2

= E(X − E(X))2 + 2E([Y − E(Y)]E([Y − E(Y)]) + E(Y − E(Y))2.
Hence, the variance of the sum is

                       (4.46)Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y).
If X and Y are independent, then . In this case,Cov(X, Y) = 0

                                (4.47)Var(X + Y) = Var(X) + Var(Y).

    The variance of the sum of two independent random variables is equal to the sum  
    of their variances.

Bivariate Normal Distribution Let the random vector  have a bivariate normal(X, Y)
distribution with parameters

μx, μy, σx, σy, and ρ; − ∞ < μx,μy < ∞, σx > 0, σy > 0, − 1 < ρ < 1.
Then  has the joint density (page 131)(X, Y)

fX,Y(x, y) = 1
2πσxσy 1−ρ2

exp − 1
2(1−ρ2)

⎛
⎝
(x−μx)2

σx
2 − 2ρ (x−μx)(y−μy)

σxσy +
(y−μy)2

σy
2

⎞
⎠ .

To determine the density  of  formula (4.36) has to be applied. LettingfZ(z) Z = X + Y,

u = x − μx and v = z − μx − μy

yields  in the formfZ(z)

    fZ(z) =
1

2πσxσy 1−ρ2 ∫
−∞

+∞
exp − 1

2(1−ρ2)
⎛
⎝

u2

σx
2 − 2ρ u(v−u)

σxσy + (v−u)2

σy
2

⎞
⎠ du.

The following transformation in the integrand of this formula requires some routine
effort, but will prove to be advantageous:

184                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



   u2

σx
2 − 2ρ u(v − u)

σxσy
+
(v − u)2

σy
2 =

σx
2 + 2ρσxσy + σy

2

σx
2σy

2 u2 − 2
σx + ρσy

σxσy
2 uv + 1

σy
2 v2

    =
⎛

⎝
⎜
⎜
⎜

σx
2 + 2ρσxσy + σy

2

σxσy
u −

σx + ρσy

σy σx
2 + 2ρσxσy + σy

2
v
⎞

⎠
⎟
⎟
⎟

2

+
1 − ρ2

σx
2 + 2ρσxσy + σy

2 v2.

Now this expression is inserted into the integrand and after having done this the fol-
lowing substitution is done:

t = 1
1 − ρ2

⎛

⎝
⎜
⎜
⎜

σx
2 + 2ρσxσy + σy

2

σxσy
u −

σx + ρσy

σy σx
2 + 2ρσxσy + σy

2
v
⎞

⎠
⎟
⎟
⎟

.

These transformations result in the following form for :fZ(z)

     fZ(z) = 1

2π σx
2 + 2ρσxσy + σy

2
exp

⎛

⎝
⎜− v2

2(σx
2 + 2ρσxσy + σy

2)

⎞

⎠
⎟ ∫
−∞

+∞
e−t2/2dt.

Since  the final result is∫−∞
+∞ e−t2/2dt = 2π ,

 (4.48)fZ(z) = 1

2π(σx
2 + 2ρσxσy + σy

2)
exp

⎛

⎝
⎜−

(z − μx − μy)2

2(σx
2 + 2ρσxσy + σy

2)

⎞

⎠
⎟ , −∞ < z < ∞.

Comparing  with the density (2.81) of the one-dimensional normal distributionfZ(z)
verifies the following corollary from (4.48):

    If the random vector (X,Y) has a two-dimensional normal distribution with             
    parameters

 μx, μy, σx, σy, and ρ; − ∞ < μx,μy < ∞, σx > 0, σy > 0, − 1 < ρ < 1,
    then the sum  has a one-dimensional normal distribution with parametersZ = X + Y

                 (4.49)E(Z) = μx + μy and Var(Z) = σx
2 + 2ρσxσy + σy

2.

The Laplace transform of any  distributed random variable is, by formulaN(μ,σ2)
(2.129), page 102,

f (s) = e−μs+ 1
2σ

2s2
.

If X and Y are independent, then the Laplace transform of Z is the product of the Lap-
lace transforms of  and Y:X

f Z(s) = e−μxs+ 1
2σx

2s2
⋅ e−μys+ 1

2σy
2s2

= e−(μx+μy) s+ 1
2 (σx

2+σy
2) s2

.
This proves once more that the sum  of two independent, normally distribut-Z = X + Y
ed random variables  and Y is normally distributed with parametersX

        (4.50)E(Z) = μx + μy and Var(Z) = σx
2 + σy

2, i.e. Z = N(μx + μy,σx
2 + σy

2).
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Example 4.22 Let X and Y be the annual profits Bobo makes from her investments in
equities and bonds, respectively. She has analyzed her profits over a couple of years,
and knows that the random vector  has a bivariate normal distribution with(X, Y)
parameters (in $, influence of inflation eliminated)

μx = 2160, μy = 3420, σx = 1830, σy = 2840, and ρ = −0.28.

(1) What probability distribution has Bobo's total profit Z = X + Y?
(2) What is the probability that her total 'profit' is actually negative?

(1) According to (4.46), Z has a normal distribution with parameters
μz = 5580, σz

2 = σx
2 + 2ρσxσy + σy

2 = 8 504 068
so that σz ≈ 2916.

(2)                                              P(Z < 0) = P⎛⎝
Z−5580

2916 < −5580
2916

⎞
⎠ ≈ Φ(−1.91) ≈ 0.028.

Continuation of Example 3.7 (page 131) The daily consumptions of tap water X
and Y of two neighboring towns have  bivariate normal distribution with parametersa

μx = μy = 16 [103 m3], σx = σy = 2 [103m3], and ρ = 0.5.

What is the probability that the total daily tap water consumption  of the twoZ = X + Y
towns exceeds the amount of , which is the maximal amount manageable36 [103 m3]
by the municipality?

 has a normal distribution with parametersZ

    μz = 32 [103 m3] and σz
2 = σx

2 + 2ρσxσy + σy
2 = 12 [106 m6]

so that  Hence,σz ≈ 3.464.

                     P(Z > 36) = P⎛⎝
Z − 32
3.464 > 36 − 32

3.464
⎞
⎠ ≈ Φ(−1.155) ≈ 0.124.

4.3.2.2 Sum of n  Random Variables≥ 2
In this section,  are random variables with respective distributionXi ; i = 1, 2, ..., n;
functions, densities, mean values, and variances

   Fi(xi), fi(xi), μi = E(Xi), and σi
2 = Var(Xi); i = 1, 2, ..., n.

The joint density of  is denoted as  All meanX = (X1, X2, ..., Xn) f X(x1, x2, ..., xn).
values and variances are assumed to be finite. The covariance between  and  isXi Xj
according to (3.37) defined as

Cov(Xi, Xj) = E([Xi − E(Xi)][Xj − E(Xj]).

The sum of the  is again denoted as and its distributionXi Z = X1 + X2 + . .. + Xn,
function and density as  and FZ(z) fZ(z).
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Mean Value of a Sum
 

           (4.51)E(Z) = E(X1 + X2 + . .. + Xn) = E(X1) + E(X2) + . .. + E(Xn).

    The mean value of the sum of n (discrete or continuous) random variables             
     is equal to the sum of the mean values of these random variables.

This can be proved analogously to formula (4.45) by making use of the relationship
(3.54) between  and the  or simply by induction starting with formula (4.45):fX fXi

If, for instance, the mean value  has to be determined, letE(X1 + X2 + X3)

 X = X1 + X2 and Y = X3

and apply (4.45) as follows:
 E(X1 + X2 + X3) = E(X) + E(Y)

                                       = E(X1 + X2) + E(X3)

                                             = E(X1) + E(X2) + E(X3).

Variance of a Sum The variance of the sum  of  random variables  Z = Σi=1
n Xi n Xi

results from its representation as
  Var(Z) = E(Z − E(Z))2 = E([X1 − E(X1)] + [X2 − E(X2)] + . .. + [Xn − E(Xn)])2.

Since
     and  Cov (Xi, Xi) = Var(Xi) Cov (Xi, Xj) = Cov (Xj, Xi),

the generalization of formula (4.46) is

            (4.52)Var⎛⎝Σi=1
n Xi

⎞
⎠ = Σi=1

n Var(Xi) + 2Σi,j=1;i<j
n Cov (Xi, Xj).

Thus, for uncorrelated ,Xi

      (4.53)Var(X1 + X2 + . .. + Xn) = Var(X1) + Var(X2) + . .. + Var(Xn).

    The variance of a sum of uncorrelated random variables is equal to the sum          
     of the variances of these random variables.

Let  be any sequence of finite real numbers. Then, by (2.54) and (2.61),α1,α2, . .. ,αn

                              (4.54)E⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi E(Xi),

 (4.55)Var⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi
2Var(Xi) + 2Σi,j=1, i<j

n αi αj Cov (Xi, Xj).

If the  are uncorrelated, the latter formula simplifies toXi

                         (4.56)Var⎛⎝Σi=1
n αi Xi

⎞
⎠ = Σi=1

n αi
2Var(Xi) .
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Now let us interpret a sequence  of independent, identically as X dis-{X1, X2, ..., Xn}
tributed random variables as a random sample taken from X, i.e., a random experiment
with outcome X is repeated n times. Mean value and variance of X and, hence, of all
the  are  and  Then formulas (4.54) and (4.56) simplify toXi E(X) = μ Var(X) = σ2.

                  (4.57)E⎛⎝Σi=1
n Xi

⎞
⎠ = nμ , Var⎛⎝Σi=1

n Xi
⎞
⎠ = nσ2.

Under the same assumptions, application of (4.54) and (4.56)  the arithmetic meanto

X = 1
n Σi=1

n Xi

yields with αi = 1/n

                                (4.58)E(X) = μ and Var(X) = σ2
n .

Note  Formulas (4.51) to (4.58) hold both for discrete and continuous random variables.

Definition 4.1 A function of a sample  taken fromθ = θ(X1, X2, ..., Xn) {X1, X2, ..., Xn}
a random variable X is called an unbiased estimator of a parameter  of X if θ

                                                         E(θ) = θ.

Parameters can, e.g., be ,  or  in case of the betaθ = μ = E(X) θ = σ2 = Var(X), θ = β
or Weibull distribution. The left formula of (4.58) shows that  is an unbiasedθ = X
estimator of  Verbally, when estimating the mean value of X by , onlyθ = μ = E(X). X
random deviations of  from  can be observed, no systematic ones. In addi-X μ = E(X)
tion, the right formula in (4.58) shows that with increasing number of measurements
the accuracy of  as estimator for  improves since  tends to 0 if X μ Var(X) n →∞.

After having done the n repetitions of the random experiment, a sequence of real
numbers  has been obtained, i.e.,  This sequence{x1, x2, ..., xn} Xi = xi; i = 1, 2, ..., n.
gives empirical estimators for  and : μ σ2

x = 1
n Σi=1

n xi, s2 = 1
n−1 Σi=1

n (xi − x)2.

Now, as announced after formula (3.48), page 143, we are in a position to justify the
factor  in the formula for 1

n−1 s2.

Theorem 4.2 Let  be a random sample from a random variable X with{X1, X2, ..., Xn}
 Then the random sample function0 < σ2 = Var(X) < ∞.

S2 = 1
n−1 Σi=1

n (Xi − X )2

is an unbiased estimator of σ2 = Var(X).

Proof  We have to prove  For this reason,  is written in the formE(S2) = σ2. S2

                                 (4.59)S2 = 1
n−1 Σi=1

n Xi
2 − n

n−1X 2.
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In what follows, use will be made of the independence of the  and their identicalXk
distribution as X:

 for E(Xi ⋅ Xj) = E(Xi) ⋅ E(Xj) = [E(X)]2 i ≠ j.

Then 

                                    (4.60)E⎛⎝Σi=1
n Xi

2 ⎞
⎠ = n E(X 2)

so that only the second moment of  has to be determined:X

E(X 2) = 1
n2 E⎛⎝Σi=1

n Xi
⎞
⎠

2
= 1

n2 E⎛⎝Σi,j=1
n Xi Xj

⎞
⎠

                   = 1
n2 E⎛⎝Σi=1

n Xi
2 ⎞
⎠ +

1
n2 E

⎛

⎝
⎜Σi,j=1

i≠j

n Xi Xj
⎞

⎠
⎟

              = 1
nE⎛⎝X

2 ⎞
⎠ +

n − 1
n E(X 2) .

Substituting  result and (4.60) into (4.59) givesthis

                                                     E(S2) = σ2.

Distribution of a Sum The density of the sum  of n independ-Z = X1 + X2 + . .. + Xn
ent, continuous random variables  is obtained by repeated application of (4.36),Xi
page 181. To do this in an efficient way, next the convolution symbol ' * ' will be intro-
duced: For any two integrable functions  f  and , their convolution is denoted asg

          (4.61)f ∗ g (z) = ∫−∞
+∞ f (z − x)g(x)dx = ∫−∞

+∞ g(z − x) f (x)dx = g ∗ f (z).

Thus, the convolution product is commutative, i.e.
f ∗ g (z) = g ∗ f (z),

just as the product of two real numbers: a ⋅ b = b ⋅ a.

The convolution of the densities  is obtained by repeated applicationfX1 , fX2 , ..., fXn

of (4.61): Firstly,  is calculated. Then the convolution of  with  fX1 ∗ fX2 fX3 fX1 ∗ fX2
is determined to obtain  and so on. The final result is the probabilityfX1 ∗ fX2 ∗ fX3
density of Z: 

                                (4.62)fZ(z) = fX1 ∗ fX2 ∗ . .. ∗ fXn (z).

In particular, if the  are identically distributed with density f , then  is the n-foldXi fZ
convolution of  f with itself or, equivalently, the n th convolution power  of   f.f ∗(n)(z)

 can be recursively obtained as follows:f ∗(n)(z)

                          (4.63)f ∗(i)(z) = ∫−∞
+∞ f ∗(i−1)(z − x) f (x)dx ,

i = 2, 3, ..., n ; f ∗(1)(x) ≡ f (x).
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For nonnegative random variables , this formula becomesXi

                        (4.64)f ∗(i)(z) = ∫0
z f ∗(i−1)(z − x) f (x)dx, z ≥ 0.

From (4.40), by induction: The Laplace transform of the density  of the sum of nfZ
independent random variables  is equal to the product of theZ = X1 + X2 + . .. + Xn
Laplace transforms of these random variables:

                                (4.65)L( fZ) = L( fX1 )L( fX2 ) . .. L( fXn ).

The convolution of the distribution functions  and  is defined by (4.42) asFX1 FX2

                           (4.66)FX1 ∗ FX2 (z) = ∫−∞
+∞ FX1 (z − y)dFX2 (y).

The repeated application of (4.66) yields the distribution function of the sum Z of the
n independent random variables in the formX1, X2, ..., Xn

                                (4.67)FZ(z) = FX1 ∗ FX2 ∗ . .. ∗ FXn (z).

In particular, if the  are independent and identically distributed with distributionXi
function F, then  is equal to the n th convolution power of F:FZ(z)

                                            (4.68)FZ(z) = F∗(n)(z).

 can be recursively obtained fromFZ(z)

                          (4.69)F∗(i)(z) = ∫−∞
+∞ F ∗(i−1)(z − x)dF(x) ;

 n = 2, 3, ...; F∗(0)(x) ≡ 1, F∗(1)(x) ≡ F(x).

If the  are nonnegative, then (4.69) becomesXi

                             (4.70)F∗(i)(z) = ∫0
z F ∗(i−1)(z − x)dF(x).

The convolution powers of any order n can explicitely be given for the Erlang distri-
bution and for the normal distribution.

Erlang Distribution Let the random variables  and  be independent and expo-X1 X2
nentially distributed with parameters  and :λ1 λ2

                                              fXi (x) = λi e−λ i x,

FXi (x) = 1 − e−λi x; x ≥ 0, i = 1, 2.

Formula (4.37) yields the density of  :Z = X1 + X2

  fZ(z) = ∫0
z λ2 e−λ2(z−x) λ1e−λ1x dx

               = λ1λ2e−λ2 z ∫0
z e−(λ1−λ2) x dx.

At this stage, two cases have to be treated separately:
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1) :                                                      (4.71)λ1 = λ2 = λ fZ(z) = λ2 z e−λ z, z ≥ 0.

This is the density of an Erlang distribution with parameters  and  (page 75).n = 2 λ

2) :λ1 ≠ λ2

   fZ(z) =
λ1λ2
λ1 − λ2

⎛
⎝e

−λ2 z − e−λ1 z ⎞
⎠ , z ≥ 0.

Now let  be independent, identically distributed exponential randomX1, X2, ..., Xn
variables with density  The Laplace transform of  f  is (page 101)f (x) = λ e−λ x; x ≥ 0.

f (s) = λ
s + λ .

Hence, by (4.65), the Laplace transform of the density of  isZ = X1 + X2 + . .. + Xn

f Z (s) = ⎛
⎝

λ
s + λ

⎞
⎠

n
.

The pre-image of this Laplace transform is

  fZ(z) = λ
(λz)n−1

(n − 1)! e−λz, z ≥ 0,

(Verify this by calculating the Laplace transform of .) This is the density of anfZ(z)
Erlang distribution with parameters n and  Hence, the density of an Erlang distribu-λ.
tion with parameters n and  is the  convolution power of the density of an expo-λ n th
nential distribution which is an Erlang distribution with the parametersf (x) = λ e−λ x,

 and n = 1 λ.

Normal Distribution Let  and  be two independent, normally distributed ran-X1 X2
dom variables:  Then we know from formula  (4.50)X1 = N(μ1,σ1

2), X2 = N(μ2,σ2
2).

that  is normally distributed with parameters  and Z = X1 + X2 μ1 + μ2 σ1
2 + σ2

2 :

Z = N(μ1 + μ2,σ1
2 + σ2

2).

By induction: the sum of n independent random variables ,Xi = N(μi,σi
2)

,Z = X1 + X2 + . .. + Xn

is normally distributed with parameters
          and                    E(Z) = μ1 + μ2 + . .. + μn Var(Z) = σ1

2 + σ2
2 + . .. + σn

2 ,

or, more concise,

                                     (4.72)Z = N⎛⎝Σi=1
n μi, Σi=1

n σi
2 ⎞
⎠ .

In terms of the density,

fZ(z) =
1

2π⎛⎝Σi=1
n σi

2 ⎞
⎠

exp

⎛

⎝

⎜
⎜

⎜
−
⎛
⎝z − Σi=1

n μi
⎞
⎠

2

2⎛⎝Σi=1
n σi

2 ⎞
⎠

⎞

⎠

⎟
⎟

⎟
, − ∞ < z < +∞.
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In terms of the convolution,
  fZ(z) = fX1 ∗ fX2 ∗ . .. ∗ fXn (z).

If the  are identically distributed as , then each  has densityXi X = N(μ,σ2) Xi

    f X(x) =
1

2π σ
e
−
(x − μ)2

2σ2 , − ∞ < x < +∞,

and  is the  convolution power of fZ n th fX :

fZ(z) = f ∗(n)(z) = 1
2πn σ

e
−
(x − nμ)2

2nσ2 , − ∞ < x < +∞.

Example 4.23 (1) The daily power consumption X and Y of two customers has a bi-
variate normal distribution with parameters

μx = 200, μy = 300, σx = 26, σy = 32 [in 103kWh], and ρ = 0.6.
Calculate a) the probability that the daily total consumption  of the two cus-Z = X + Y
tomers is between 450 and 550, and
b) the probability of the same event as under a), but on condition that X and Y are
independent.
(2) Determine the probability that the daily total consumption of 10 independent cus-
tomers, each of them has a  daily consumption of X as given under (1), is between
1950 and 2050.
(1) a) By (4.49), the daily total consumption of the two customers has mean value

E(Z) = 200 + 300 = 500
and variance/standard deviation

  Var(Z) = σx
2 + 2ρσxσy + σy

2 = 262 + 2 ⋅ 0.6 ⋅ 26 ⋅ 32 + 322 = 2698.4
so that 

Var(Z) = 51.95.
The desired probability is

P(450 ≤ Z ≤ 550) = Φ⎛
⎝

550 − 500
51.95

⎞
⎠ − Φ

⎛
⎝

450 − 500
51.95

⎞
⎠

                                    = Φ(0.92) − Φ(−0.92) = 2Φ(0.92) − 1
               = 0.664.

b) Since X and Y are independent,   Hence,ρ = 0.
     Var(Z) = σx

2 + σy
2 = 262 + 322 = 1700 and Var(Z) = 41.23 .

Therefore, the desired probability  obtained as follows:is
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 P(450 ≤ Z ≤ 550) = Φ⎛
⎝

550 − 500
41.23

⎞
⎠ − Φ

⎛
⎝

450 − 500
41.23

⎞
⎠

                                        = Φ(1.213) − Φ(−1.213) = 2Φ(1.213) − 1

            = 0.774 .

(2) According (4.72), the daily total consumption of 10 independent customers has a
normal distribution with parameters

   E(Z) = 10 ⋅ 200 = 2000, Var(Z) = 10 ⋅ 262 = 6760, Var(Z) = 82.22 .
Therefore, the desired probability is

 P(1950 ≤ Z ≤ 2050) = Φ⎛
⎝

2050 − 2000
82.22

⎞
⎠ − Φ

⎛
⎝

1950 − 2000
82.22

⎞
⎠

                                = Φ(0.608) − Φ(−0.608) = 2Φ(0.608) − 1

                                                                  = 0.456 .

Example 4.24 A bulk goods freighter has to be loaded with at least 2000 t of iron ore.
The ore arrives by goods wagons, whose load weights  are independentX1, X2, . ..
and have an distribution.N(50, 64)-
How many wagons are needed to make sure  that the freighter can be loaded with the
required minimum load with a probability of at least 0.99?
Let  n has to be determined as the smallest integer with pro-Zn = X1 + X2 + . .. + Xn.
perty This relation is equivalent toP(Zn ≥ 2000) ≥ 0.99.

                                        (4.73)P(Zn < 2000) ≤ 0.01.

By (4.72),  The corresponding standardization isZn = N(50n, 64n).

Yn = N(0, 1) = Zn − 50n
8 n

.

Hence, (4.73) can  written in the equivalent formbe

P(Zn < 2000) = P⎛
⎝⎜

Yn < 2000 − 50n
8 n

⎞
⎠⎟
= Φ

⎛
⎝⎜

2000 − 50n
8 n

⎞
⎠⎟
≤ 0.01.

The 0.01-percentile of the standard normal distribution is -2.32, i.e., 
  Φ(−2.32) = 0.01.

Hence, relation (4.73)  equivalent tois
2000 − 50n

8 n
≤ −2.32 or 50n − 2000

8 n
≥ 2.32.

By squaring and some simple algebra these relations are seen to be equivalent to
  or  (n − 40.069)2 ≥ 5.5 n ≥ 42.41.

Hence, at least 43 waggons are needed.                                                                      
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4.3.3   Sums of a Random Number of Random Variables

Frequently, sums of a random number of random variables have to be investigated.
For instance, the total claim size an insurance company is confronted with a year is
the sum of a random number of random individual claim sizes. The total repair cost a
machine causes a year is the sum of random number of random repair costs, the in-
crease of a population a year is determined by the random number of individuals pro-
ducing children and the random number of children produced by an individual, etc.

Wald's Identities Let  be a sequence of independent random variables,{X1, X2, ...}
which are identically distributed as X with  Let further N be a positive, in-E(X) < ∞.
teger-valued random variable, which is independent of all  Then mean valueX1, X2, ...
and variance of the sum  are given by Wald's identities:Z = X1 + X2 + . .. + XN

                                       (4.74)E(Z) = E(X) ⋅ E(N) ,

                          (4.75)Var(Z) = Var(X )E(N) + [E(X )]2Var(N).

The proof of these relations is easily done by conditioning:

   E(Z) = Σn=1
∞ E(X1 + X2 + . .. + XN N = n)P(N = n)

 = Σn=1
∞ E(X1 + X2 + . .. + Xn)P(N = n) = Σn=1

∞ E(nX)P(N = n)

= E(X) Σn=1
∞ n P(N = n) = E(X) ⋅ E(N).

This proves (4.74). To verify (4.75), the second moment of  is determined:Z

   E(Z2) = Σn=1
∞ E(Z2 N = n)P(N = n)

    = Σn=1
∞ E([X1 + X2 + . .. + Xn]2)P(N = n).

By making use  formula (2.62), page 67,of

 E(Z2) = Σn=1
∞ {Var(X1 + X2 + . .. + Xn) + [E(X1 + X2 + . .. + Xn)]2}P(N = n)

  = Σn=1
∞ {n Var(X) + n2 [E(X)]2}P(N = n)

  = Var(X) Σn=1
∞ n P(N = n) + [E(X)]2Σn=1

∞ n2P(N = n)

  = Var(X)E(N) + [E(X)]2 E(N 2).
Hence,

    Var(Z) = E(Z 2) − [E(Z)]2

    = Var(X )E(N) + [E(X )]2 E(N 2) − [E(X ) ]2[E(N)]2

   = Var(X )E(N) + [E(X )]2 Var(N) .

This is the identity (4.75).

Wald's identities (4.74) and (4.75) remain valid if the assumption that N is independ-
ent of all  is somewhat weakened by introducing the concept of a stopping time.Xi
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Definition 4.2 (stopping time) A positive, integer-valued random variable N is said
to be a stopping time for the sequence of independent random variables {X1, X2, ...}
if the occurrence of the random event ' ' is completely determined by the finiteN = n
sequence , and, therefore, independent of all            X1, X2, ..., Xn Xn+1, Xn+2, ..., n ≥ 1.

Note A random event A is said to be independent of a random variable X if the indicator varia-
ble of A is independent of  (see also example 3.14, page 146).X
Sometimes,  a  stopping  time  defined in this way is called a Markov time, and only a
finite Markov time is called a stopping time. (A random variable Y is said to be  finite
if  In this case, )P(Y < ∞) = 1. E(Y) < ∞.

The notation 'stopping time' can be motivated as follows: The  are observedX1, X2, ...
one after the other. As soon as the event ' ' occurs, the observation is stopped,N = n
i.e., the  will not be observed.Xn+1, Xn+2, ...

Theorem 4.3  Let  be a sequence of random variables, which are identi-{X1, X2, ...}
cally distributed as X with , and let N be a finite stopping time for thisE(X) < ∞
sequence. Then

                                                                                   (4.76)E(Z) = E(X) ⋅ E(N).

Proof  Let binary random variables  be defined as follows:Yi

Yi =
1 if N ≥ i
0 if N < i

, i = 1, 2, ... .

The event ' ' occurs if and only if no stopping has been done after the observa-Yi = 1
tion of the  random variables Since N is a stopping time,  isi − 1 X1, X2, ..., Xi−1. Yi
independent of the   Moreover, Xi, Xi+1, ... .

and E(Yi) = P(N ≥ i) E(Xi Yi) = E(Xi)E(Yi)

so that

E(Σi=1
N Xi) = E(Σi=1

∞ Xi Yi)

= Σi=1
∞ E(Xi)E(Yi) = E(X) Σi=1

∞ E(Yi)

= E(X) Σi=1
∞ P(N ≥ i).

Now formula (2.9) at page 46 implies (4.76).                                                               

Example 4.25 a) Let  if i th flipping a fair coin yields 'head' and  if theXi = 1 Xi = 0
outcome is 'tail'. The  are independent and identically distributed asXi

X =
1 if head occurs,
−1 if tail occurs.

Then, a finite stopping time for the sequence  isX1, X2, ...
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                          (4.77)N = min {n; X1 + X2 + . .. + Xn = 10}.

Since E(X) = 1/2,
E(X1 + X2 + . .. + XN) =

1
2 ⋅ E(N).

According to the definition of N,
 X1 + X2 + . .. + XN = 10

so that  E(N) = 20.

b) Let  if the i th flipping a fair coin yields 'head' and  otherwise. ThenXi = 1 Xi = −1
N given by (4.77) is again a finite stopping time for  A formal applicationX1, X2, ... .
of Wald's equation  yields

E(X1 + X2 + . .. + XN) = E(X) ⋅ E(N).
The left hand side of this equation is equal to 10. The right hand side contain the fac-
tor  Therefore, Wald's equation (4.76) is not applicable.                              E(X) = 0.

4.4 EXERCISES

4.1 In a game reserve, the random position  of a leopard has a uniform distribu-(X, Y)
tion in a semicircle with radius  (figure). Determine  and r = 10 km E(X) E(Y) .

4.2) From a circle with radius  and center (0,0) a point is randomly selected.R = 9
(1) Determine the mean value of the distance of this point to the nearest point at the
periphery of the circle.
(2) Determine the mean value of the geometric mean of the random variables X and
Y, i.e. E( X Y ).

4.3) X and Y are independent, exponentially with parameter  distributed randomλ = 1
variables. Determine
(1) E(X − Y),
(2) andE( X − Y ),
(3) distribution function and density of Z = X − Y.
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4.4) X and Y are independent random variables with
,  and let  and E(X) = E(Y) = 5 Var(X) = VarY) = 9, U = 2X + 3Y V = 3X − 2Y.

Determine E(U ), E(V ), Var(U ), Var(V ), Cov(U, V ), and ρ(U, V ).

4.5) X and Y are independent, in the interval [0,1] uniformly distributed random vari-
ables. Determine the densities of
(1) , and (2) Z = min(X, Y) Z = X Y.

4.6) X and Y are independent and -distributed. Determine the density  ofN(0, 1) fZ(z)

Z = X/Y .
Which type of probability distributions does  belong to?fZ(z)

4.7)  and  are independent and identically Cauchy distributed with parametersX Y
 and  they have densities (page 74)λ = 1 μ = 0, i.e.

fX(x) =
1
π

1
1+x2 , fY(y) =

1
π

1
1+y2 , − ∞ < x, y < +∞ .

Verify that the sum   has a Cauchy distribution as well.Z = X + Y

4.8) The joint density of the random vector  is(X, Y)
 f (x, y) = 6 x2y, 0 ≤ x, y ≤ 1.

Determine the distribution density of the product Z = X Y.

4.9) The random vector  has the joint density(X, Y)

fX,Y(x, y) = 2 e−(x+y) for 0 ≤ x ≤ y < ∞.
Determine the densities of Z = max(X, Y) and Z = min(X, Y).

4.10) The resistance values X, Y, and Z of 3 resistors connected in series are assumed
to be independent, normally distributed random variables with respective mean val-
ues 200, 300, and 500 , and standard deviations 5, 10, and 20 .[Ω] [Ω]
(1) What is the probability that the total resistance exceeds 1020 ?[Ω]
(2) Determine that interval  to which the total resistance belongs[1000 − ε, 1000 + ε]
with probability 0.95.

4.11) A supermarket employs 24 shopassistants. 20 of them achieve an average daily
turnover of $ 8000, whereas 4 achieve an average daily turnover of $ 10 000. The
corresponding standard deviations are $ 2400 and $ 3000, respectively. The daily
turnovers of all shopassistants are independent and have a normal distribution. Let Z
be the daily total turnover of all shop-assistants.
(1) Determine  and E(Z) Var(Z).
(2) What is the probability that the daily total turnover Z is greater than $ 190 000?
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4.12) A helicopter is allowed to carry at most 8 persons given that their total weight
does not exceed  The weights of the passengers are independent, identically620kg.
normally distributed random variables with mean value  and variance 76kg 324kg2.
(1) What are the probabilities of exceeding the permissible load with 7 and 8 passen-
gers, respectively?
(2) What would the maximum total permissible load have to be to ensure that with
probability 0.99 the helicopter will be allowed to fly 8 passengers?

4.13) Let X be the height of the woman and Y be the height of the man in married
couples in a certain geographical region. By analyzing a sufficiently large sample, a
statistician found that the random vector  has a joint normal distribution with(X, Y)
parameters

  E(X) = 168 cm, Var(X) = 64 cm2, E(Y) = 175 cm, Var(Y) = 100 cm2, ρ = 0.86.

(1) Determine the probability  that in married couples in this area a wife isP(X > Y)
taller than her spouse.
(2) Determine the same probability on condition that there is no correlation between
X and Y, and interprete the result in comparison to (1).
Hint If you do not want to use a statistical software package, make use of the fact that the de-
sired probability has structure  and apply formula (4.48), page185.P(X > Y) = P(X + (−Y) > 0)

4.14) A target, which is located at point (0,0) of the - coordinate system, is sub-(x, y)
ject to permanent shellfire. The random coordinates X and Y of the hitting point of a
shell are independent and identically as -distributed.N(0,σ2)
(1) Determine the distribution function  of the random distance Z of a hittingFZ(z)
shell (identified with its midpoint) to the target at (0,0). To what distribution type
belongs FZ(z)?
(2) Determine E(Z).
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CHAPTER 5

Inequalities and Limit Theorems

5.1 INEQUALITIES

5.1.1  Inequalities for Probabilities

Inequalities in probability theory are useful tools for estimating probabilities and mo-
ments of random variables if  their  exact  calculation is only possible with extremely
high effort or is even impossible in view of incomplete information on the underlying
probability distribution. In what follows, all occurring mean values and variances are
assumed to be finite.

Inequality of Chebyshev (also called ) For any ran-Bienaymé-Chebyshev inequality
dom variable X with mean value , variance  , and for any μ = E(X) σ2 = Var(X) ε > 0,

                                          (5.1)P( X − μ ≥ ε) ≤ σ2

ε2 .

To prove (5.1), assume for convenience that X has density  Then,f (x).

σ2 = ∫−∞
+∞(x − μ)2f (x)dx ≥ ∫

{x, x−μ ≥ε}
(x − μ)2f (x)dx

    ≥ ∫
{x, x−μ ≥ε}

ε2 f (x)dx = ε2P( X − μ ≥ ε).

This proves the two-sided Chebyshev inequality (5.1). The following one-sided Che-
byshev inequality is proved analogously:

P(X − μ ≥ ε) ≤ σ2

σ2 + ε2 .

Corollary By letting , one gets from formula (5.1) -rules:ε = nσ nσ
               (5.2)P( X − μ ≥ nσ) ≤ 1/n2 or P( X − μ < nσ) > 1 − 1/n2.

Example 5.1  The height X of trees in a forest stand has mean value  andμ = 20 m
standard deviation . To obtain an upper limit of the probability that the heightσ = 2 m
of a tree differs at least 4 m from Chebyshev's inequality (5.1) is applied:μ,

P( X − 20 ≥ 4) ≤ 4/16 = 0.250.
For the sake of comparison, assume that the height of trees in this forest stand has a
normal distribution. Then the exact probability that the height of a tree differs at least
4 m from  isμ



P( X − 20 ≥ 4) = P(X − 20 ≥ 4) + P(X − 20 ≤ −4) = 2Φ(−2) = 0.046 .
In this case Chebyshev's inequality gives a rather rough upper bound. On the other
hand, this inequality requires little input.                                                                     

Example 5.2 Let  be the outcomes of n Bernoulli trials (pages 49, 51),X1, X2, ..., Xn
with  i.e. p = 1/6,

 and Xi =
1 with probability 1/6,
0 with probability 5/6, X = Σi=1

n Xi.

X can be interpreted as the number of the occurrences of "6" when tossing a fair die n
times. By making use of the Chebyshev inequality, the smallest integer  withn = n0
property

  for all P⎛⎝
X
n − 1

6 ≥ 0.01⎞⎠ ≤ 0.05 n ≥ n0

has to be found. Note that  is the relative frequency of the occurrence of "6"X/n
when tossing the die n times. Since X has a binomial distribution with

 and μ = E(X) = np = n/6 Var(X) = np(1 − p) = 5n/36.

 has mean 1/6 and variance  This impliesX/n σ2 = Var(X/n) = 1
n2 Var(X) = 5

36 ⋅ n .

P⎛⎝
X
n − 1

6 ≥ 0.01⎞⎠ ≤
5

(0.01)2⋅36⋅n
≤ 0.05.

Hence,   so that                                                          5
(0.01)2⋅36⋅0.05

≤ n n0 ≥ 27778.

Inequalities of Gauss Let X be a continuous random variable with  and uni-μ = E(X)
modal density with mode  Then the Gauss inequalities arexm.

                          (5.3)P( X − μ ≥ ε) ≤ 4
9
σ2 + (μ − xm)2

(ε − μ − xm )2 , ε > 0.

                     (5.4)P( X − xm ≥ ε) ≤ 4
9ε2 [σ

2 + (μ − xm)2], ε > 0.

(5.3) is also called Camp-Meidell inequality.
For  in particular for symmetric densities with symmetry center the inequal-μ = xm, μ,
ities (5.3) and (5.4) are identical. In this case one obtains an improvement of the Che-
byshev inequality (but under the additional assumptions of the Gauss inequalities):

                                     (5.5)P( X − μ ≥ ε) ≤ (2σ/3ε)2 .

Corollary  By letting  and assuming unimodality with , one gets fromε = nσ μ = xm
formula (5.3) or (5.4) -rules:nσ

      (5.6)P( X − μ ≥ nσ) ≤ 4
9n2 or P( X − μ ≤ nσ) ≥ 1 − 4

9n2 ; n = 1, 2, ...
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Table 5.1 compares the lower bounds for the probabilities , which areP( X − μ ≤ nσ)
given by the  (5.2) and (5.6), respectively, with the exact probabilities of thenσ-rules
events ' ',  if X has a normal distribution X − μ ≤ nσ n = 1, 2, ..., 5, N(μ,σ2) .

P( X − μ ≤ nσ)    n = 1    n = 2     n = 3    n = 4    n = 5

 Chebyshev inequality      > 0  > 0.750  > 0.889  >0.938  > 0.960

 Gauss inequality  > 0.556  > 0.889  > 0.951  > 0.972  > 0.982

 Normal distribution  = 0.683  = 0.955  = 0.997  > 0.999  > 0.999

Table 5.1 Lower bounds (5.2) and (5.6) and exact values for normal distribution

Inequalities of Markov Type Let  be a nonnegative, strictly increasing func-y = h(x)
tion on   Then, for any  the general Markov inequality is[0,∞). ε > 0,

                                        (5.7)P( X ≥ ε) ≤
E(h X ))

h(ε)
.

(5.7) is proved as follows:

E(h( X )) = ∫−∞
+∞ h( y ) f (y)dy

≥ ∫+ε
+∞ h( y ) f (y)dy + ∫−∞

−ε h( y ) f (y)dy

≥ h( ε )∫+ε
+∞ f (y)dy + h( ε )∫−∞

−ε f (y)dy

= h(ε)P( X ≥ ε),

which is equivalent to (5.7). Letting  inequality (5.7) yields Markov'sh(x) = xa, a > 0,
inequality as such:

                                       (5.8)P( X ≥ ε) ≤
E( X a)
εa .

From (5.8) Chebyshev's inequality is obtained by letting  and replacing X witha = 2
X − μ.
If  Markov's inequality (5.7) yields an exponential inequality:h(x) = ebx, b > 0,

                                 (5.9)P( X ≥ ε) ≤ e−bε E ⎛
⎝e

b X ⎞
⎠ .

Markov's inequality (5.8) and the exponential inequality (5.9) are usually superior  to
Chebyshev's inequality,  since,  given X and , their right-hand sides can  be minimizedε
with respect to a and b. On the other hand, to determine the mean values in formulas
(5.8) and (5.9), the probability distribution of X needs to be known. But in this case
the exact value of the desired probability  can be calculated anyway. Hence,P( X ≥ ε)
application of (5.8) and (5.9) makes sense only if the expected values involved are
known from whatsoever source (expert opinions) or they are estimated based on a
sample taken from X, i.e., the random experiment with output X is independently re-
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peated n times to get a sequence of values of X:  For instance, the meanx1, x2, ..., xn.
value  occurring in (5.8) would have to be estimated by the arithmeticm = E( X a)
mean of the xi

n :
m = 1

n Σi=1
n xi

a .

If the variance  in (5.1) is unknown, it also has to be estimated from a sampleσ2

 The estimator is{x1, x2, ..., xn}.

s2 = 1
n−1 Σi=1

n (xi − x)2 with x = 1
n Σi=1

n xi .

Continuation of Example 5.1 Let us check whether the upper bound of Chebyshev's
inequality (5.1) can by improved by (5.8) if X has a normal distribution with mean  μ
and standard deviation  σ = 2.
For , the mean value  becomes (see page 79), a = 1 E( X − μ a)

E( X − μ ) = 2
π σ ≈ 0.798 ⋅ 2 = 1.596.

Hence, (5.8) yields

P( X − μ ≥ 4) ≤ E( X−μ )
4 = 1.596

4 = 0.399.

This is a worse result than the one given by Chebyshev's inequality (a = 2).
Now let  Then (see page 83, note that  has mean value 0)a = 4. X − μ

E( X − μ 4) = μ4 = E((X − μ)4) = 3σ4.

Hence, (5.8) yields

P( X − μ ≥ 4) ≤ E( X−μ 4)
ε4 = 3⋅24

44 = 48
256 = 0.1875.

This is a substantial improvement of the bound given by Chebyshev's inequality.    

5.1.2  Inequalities for Moments

Inequalities of Chebyshev  Let functions  and  be either both nonincreasingg(x) h(x)
or both nondecreasing. Then,

                              (5.10)E [g(X )]E[h(X )] ≤ E [g(X )h(X )].

If  is nonincreasing and h nondecreasing or vice versa, theng

E [g(X )]E [h(X )] ≥ E [g(X )h(X )].

As an important special case, let
 and  g(x) = xr h(x) = xs; r, s ≥ 0.

Then, from (5.10),
E( X r )E( X s ) ≤ E( X r+s ).
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Inequality of Schwarz
                               (5.11)[E( X Y )]2 ≤ E( X 2) E( Y 2).

Hölder's Inequality  Let r and s be positive numbers satisfying Then1
r +

1
s = 1 .

                            (5.12)E( X Y ) ≤ [E( X r)]1/r [E( Y s)]1/s.

For  Hölder's inequality implies the inequality of Schwarz.r = s = 2,

Inequality of Minkovski (Triangle Inequality)  For r ≥ 1,

                   (5.13)[E( X + Y r)]1/r ≤ [E( X r)]1/r + [E( Y r)]1/r.

Inequality of Jensen  Let  be a convex (concave) function. Then, for any X,h(x)

                                       (5.14)h(E(X)) ≤(≥) E(h(X )).

In particular, if X is nonnegative and  (convex for  and  concaveh(x) = xa a ≥ 1 a ≤ 0,
for  (convex), and  (concave), the respective inequal-0 ≤ a ≤ 1), h(x) = ex h(x) = ln x
ities of Jensen are

  [E(X)]a ≤ E(X a) for a > 1 or a < 0,

        [E(X)]a ≥ E(X a) for 0 < a < 1,

                                           (5.15)eE(X) ≤ E⎛⎝e
X ⎞
⎠ ,

ln E(X ) ≥ E(ln X ) .

Example 5.3 To get an impression on the sharpness of the inequalities of Schwarz
and Minkowski, let us consider a random vector  with joint density(X, Y)

fX,Y(x, y) = x + y, 0 ≤ x, y ≤ 1,

 marginal densities (see example 3.5, page 129)and

fX(x) = x + 1/2, fY(y) = y + 1/2 ; 0 ≤ x, y ≤ 1 .

Schwarz inequality: The second moment of X is

E(X 2) = ∫0
1 x2(x + 1/2)dx = 5/12.

For symmetry reasons,  as well. Thus, (5.11) yieldsE(Y 2) = 5/12

[E(X Y)]2 ≤ 0.174

so that the upper bound for  is 0.417. For the sake of comparison, the exactE(XY)
value of  is E(X Y)

E(X Y) = ∫0
1 ∫0

1 x y (x + y)dx dy = 2 ∫0
1 ∫0

1 x2 y dx dy = 0.333.
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Minkovsky inequality: For  inequality (5.13) is trivial (left- and right-hand sider = 1,
are equal). Let  Then (5.13) becomesr = 2.

E(X + Y )2 ≤ E(X 2) + E(Y )2 .

Since  an upper bound for  is 1.291:E(X 2) = E(Y2) = 5/12, E(X + Y)2

E(X + Y)2 ≤ 1.291.

For the sake of comparison:

E(X + Y)2 = ∫0
1 ∫0

1(x2 + 2x y + y2)(x + y)dx dy

= ∫0
1 ∫0

1 (x3 + 3x2y + 3xy2 + y3)dx dy

= ∫0
1 ⎛
⎝

1
4 + y + 3

2y2 + y3 ⎞
⎠ dy = 1

4 +
1
2 +

1
2 +

1
4 = 3

2 .

Hence,                                                                                       E(X + Y)2 = 1.225.

5.2 LIMIT THEOREMS

5.2.1  Convergence Criteria for Sequences of Random Variables

There are three large classes of limit theorems in probability theory: 1) The laws of
the large numbers, 2) the central limit theorem and its numerous modifications, and
3) the local limit theorems. The laws of the large numbers are essentially statements
on the convergence behavior of arithmetic means of random variables. They constit-
ute the theoretical foundation of statistical methods for the estimation of parameters
of probability distributions based on samples. They also have applications in simula-
tion procedures for the numerical solutions of stochastic and even deterministic prob-
lems. The central limit theorem justifies the application of the normal distribution as
distribution of random variables, which are known to arise by the additive superposi-
tion of numerous random influences. Local limit theorems investigate the conver-
gence of probability densities of continuous random variables and the convergence
of the probabilities  of discrete random variables X. P(X = xi)

Limit theorems in probability theory are subject to certain convergence criteria for
sequences of random variables, which next have to be introduced (even if in a more
or less heuristic way).

1) Convergence in Probability  A sequence of random variables  con-{X1, X2, ...}
verges in probability towards a random variable X if for all ε > 0,

                                   (5.16)lim
i→∞

P( Xi − X > ε) = 0.
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2) Convergence in Mean  A sequence of random variables  with{X1, X2, ...}
property

E( Xi ) < ∞ ; i = 1, 2, ...
converges in mean towards a random variable X if

                            (5.17)lim
n→∞

E( Xi − X ) = 0 and E( X ) < ∞.

3) Mean Square Convergence A sequence of random variables  with {X1, X2, ...}

E( Xi
2 ) < ∞ ; i = 1, 2, ...,

converges in mean square or in square mean towards a random variable  if X

                    (5.18)lim
n→∞

E( Xi − X 2) = 0 and E( X 2) < ∞.

4) Convergence with Probability 1  A sequence of random variables  {X1, X2, ...}
converges with probability 1 or almost sure towards a random variable  ifX

P( lim
i→∞

Xi = X) = 1.

5) Convergence in Distribution  Let the random variables  have the  distributionXi
functions  Then  converges towards a random varia-FXi (x) ; i = 1, 2, ... . {X1, X2, ...}
ble X with distribution function  in distribution if, for all points of continuity xFX(x)
of FX(x),

lim
i→∞

FXi (x) = lim
i→∞

P(Xi ≤ x) = P(X ≤ x) = FX(x).

Figure 5.1 shows the implications between the convergence critria. The integers refer
to the respective convergence criteria listed above.
Under additional assumptions, the opposite implications may be true as well (in what
follows, the notation  refers to the convergence criterion k above):Xn

k
→ X

1) If  is true with a finite constant c, then , i.e., in case of a constantXn
5
→ c Xn

1
→ c

limit, convergence in probability and convergence in distribution are equivalent.

2) If  is true, then there exists a subsequence  of the given se-Xn
1
→ X {Xn1 , Xn2 , ...}

quence  so that  for {X1, X2, ...} Xni
4
→ X i →∞.
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5.2.2   Laws of Large Numbers

5.2.2.1 Weak Laws of Large Numbers
There are weak and strong laws of large numbers. They essentially deal with the con-
vergence behavior of arithmetic means  for  whereXn n →∞,

      Xn =
1
n Σi=1

n Xi.

Definition 5.1 A sequence of random variables  satisfies the weak law of{X1, X2, ...}
large numbers if there exists a sequence of real numbers  so that the{a1, a2, ...}
sequence  converges in probability towards 0.                         {X1 − a1, X2 − a2, ...}

A direct consequence of the Chebyshev's inequality (5.1) is the following version of
the weak law of large numbers.

Theorem 5.1  Let  be a sequence of independent, identically distributed{X1, X2, ...}
random variables with finite mean  and variance  Then the sequence of arithmeticμ σ2.
means  converges in probability towards , i.e., for all {X1, X2, ...} μ ε > 0,

lim
n→∞

P⎛⎝ Xn − μ > ε⎞⎠ = 0.

Proof  In view of  Chebyshev's inequality (5.1) yieldsVar(Xn) = σ2/n,

                                      (5.19)P⎛⎝ Xn − μ > ε⎞⎠ ≤
σ2

nε2 .

Letting  proves the theorem.                                                                             n →∞

Bernoulli's Weak Law of the Large Numbers The first version of the weak law of
the large numbers can be found in Bernoulli (1713), the first textbook on probability
theory.  Jacob Bernoulli considered the limit behavior of the sequence {X1, X2, ...},
where the  are the indicator variables for the occurrence of a random event A in aXi
series of n  independent trials:

Xi =
1 if A occurs,
0 otherwise.

i = 1, 2, ...

The sum  is the number of occurrences of the random event A in this  Zn = Σi=1
n Xi

series, and the arithmetic mean

    pn(A) = Xn =
1
n Σi=1

n Xi

is the relative frequency of the occurrence of event A in a series of n trials. From sec-
tion 2.2.2, page 51, we know that  has a binomial distribution with parameters nZn
and  so thatp = P(A)

E(Zn) = n p and Var(Zn) = n p (1 − p).
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Therefore, the relative frequency  has mean valuepn(A)

    E(pn(A)) = 1
n Σi=1

n E(Xi) =
1
n (n P(A)) = P(A) = p

and variance

 Var (pn(A)) =
p (1−p)

n .

Now, applying (5.1) to the sequence  yields for all { p1(A), p2(A), ...} ε > 0,

   P( pn(A) − P(A) > ε) ≤
p (1−p)

n ε2 → 0 as n →∞.

This proves Bernoulli's weak law of the large numbers:

   The relative frequency  of the occurrence of the random event A in a series    pn(A)
   of n independent trials converges to  in probability as p = P(A) n →∞ :

lim
n→∞

pn(A) = P(A).

Two more variants of the weak law of the large numbers will be added.

Theorem 5.2 (Chebyshev)  Let  be a sequence of (not necessarily inde-{X1, X2, ...}
pendent) random variables  with finite means  On conditionXi μi = E(Xi); i = 1, 2, ... .

lim
i→∞

Var(Xi) = 0,

the sequence  converges in probability towards 0.                  {X1 − μ1, X2 − μ2, ...}

The following theorem does not need assumptions on variances. Instead, the pairwise
(not the complete, page 145) independence of the sequence  is required,{X1, X2, ...}
i.e.,  and  are independent for Xi Xj i ≠ j.

Theorem 5.3 (Chintchin)  Let  be a sequence of pairwise independent,{X1, X2, ...}
identically distributed random variables with finite mean . Then the correspondingμ
sequence of arithmetic means  converges in probability towards         X1, X2, ... μ.

5.2.2.2 Strong Laws of Large Numbers
These laws of the large numbers are called strong, since the almost sure convergence
implies the convergence in probability (Figure 5.1). Thus, almost sure convergence is
a stronger property than convergence in probability.

Definition 5.2 A sequence of random variables  satisfies the strong law{X1, X2, ...}
of the large numbers if there is a sequence of real numbers  so that the{ a1, a2, ...}
sequence  converges with probability 1 towards 0:{X1 − a1, X2 − a2, ...}

                                              P( lim
n→∞

(Xi − ai) = 0) = 1.

 5 INEQUALITIES AND LIMIT THEOREMS                                                         207



If a sequence of random variables satisfies the strong law of the large numbers with a
sequence of real numbers  then it satisfies the weak law of the large num-{ a1, a2, ...},
bers with the same sequence of real numbers. The converse is generally not true. Here
two versions of the strong law of the large numbers are given.

Theorem 5.4 (Kolmogorov)  Let   be a sequence of independent, identic-{X1, X2, ...}
ally distributed random variables with finite mean  Then the sequence of arithmeticμ.
means   converges with probability 1 towards                                       X1, X2, ... μ.

Theorems  implies that the sequence of relative frequencies 5.4 { p1(A), p2(A), ...}
also converges towards  with probability 1. Thus, Bernoulli's law of thep = P(A)
large numbers is both weak and strong. The following theorem abandons the
assumption of identically distributed random variables.

Theorem 5.5 (Kolmogorov) Let  be a sequence of independent random{X1, X2, ...}
variables with parameters  and   On conditionμi = E(Xi) σi

2 = Var(Xi); i = 1, 2, ...

Σi=1
∞ (σi/i)2 < ∞,

the sequence  with{Y1, Y2, ...}

Yn = Xn − 1
n Σi=1

n μi

converges with probability 1 towards 0.                                                                      

5.2.3  Central Limit Theorem

The central limit theorem provides theoretical reasons for the significant role of the
normal distribution in probability theory and its applications. Intuitively, it states that
a random variable, which arises from additive superposition of many random influenc-
es with  none of them being dominant, has approximately a normal distribution. The
simplest version of the central limit theorem is the following one:

Theorem 5.6 (Lindeberg and Lèvy)  Let  be the sum of nZn = X1 + X2 + . .. + Xn
independent, identically distributed random variables  with finite mean Xi E(Xi) = μ
and finite variance  and let  be the standardization of  Var(Xi) = σ2, Sn Zn, i.e.

Sn =
Zn − nμ
σ n

.

Then,                           lim
n→∞

P(Sn ≤ x) = 1
2π ∫

−∞

x
e−u2/2du = Φ(x),

where   is the distribution function of the standard normal distribution    Φ(x) N(0, 1).
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Corollary Under the conditions of theorem 5.6,  has for sufficiently large nZn
appro- ximately a normal distribution with mean value  and variance :nμ nσ2

                                         (5.20)Zn ≈ N(nμ, nσ2).
Thus,  is asymptotically normally distributed as  The fact that  has meanZn n →∞. Zn
value  and variance  follows from (4.57), page 188.nμ nσ2

As a rule of thumb, (5.20) gives satisfactory results if  Sometimes even n ≥ 20. n ≥ 10
is sufficient. The following theorem shows that the assumptions of theorem 5.6 can
be partially weakened.

Theorem 5.7 (Lindeberg and Feller)  Let  be the sum of in-Zn = X1 + X2 + . .. + Xn

dependent random variables  with densities  finite means  andXi fXi (x), μi = E(Xi),
finite variances  Let further  be the standardization of σi

2 = Var(Xi). Sn Zn :

   Sn =
Zn − E(Zn)

Var(Zn)
=

Zn − Σi=1
n μi

Σ i=1
n σi

2
.

Then the limit relation

                     (5.21)lim
n→∞

P(Sn ≤ x) = Φ(x) = 1
2π

∫
−∞

x
e−u2/2du

is uniformly true for all x and  has the propertiesVar(Zn)

  and           (5.22)lim
n→∞

Var(Zn) → ∞ lim
n→∞

max
i=1,2,...,n

⎛
⎝
⎜

σi

Var(Zn)

⎞
⎠
⎟ → 0

if and only if the Lindeberg condition

lim
n→∞

1
Var(Zn) Σi=1

n
∫

x, x−μi >ε Var(Zn)

(x − μi)2 fXi (x)dx = 0

is fulfilled for all                                                                                                  ε > 0.

The properties (5.22) imply that no term  in the sum dominates the rest and thatXi
for  the contributions of the  to the sum uniformly tend to 0. Under then →∞ Xi
assumptions of theorem 5.6, the  a priori have this property.Xi

Example 5.4  Weekdays a car dealer sells on average  one  car  (of a certain make) per
 days with a standard deviation of μ = 2.4 σ = 1.6.

1) What is the probability that the dealer sells at least 35 cars a quarter (75 weekdays)?
Let  be the time span between selling the  and the Xi; i = 1, 2, ..., X0 = 0 (i − 1) th i th
car. Then   is the time point, at which the n th car is sold (sel-Zn = X1 + X2 + . .. + Xn

ling times assumed to be negligibly small). Hence, the probability  has toP(Z35 ≤ 75)
be determined.
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If the  are assumed to be independent, thenXi

E(Z35) = 35 ⋅ 2.4 = 84 and Var(Z35) = 35 ⋅ 1.62 = 89.6.

 In view of (5.20),  has approximately an -distribution. Hence,Z35 N(84, 89.6)

P(Z35 ≤ 75) ≈ Φ⎛
⎝

75 − 84
9.466

⎞
⎠ = Φ(−0.95) = 0.171.

2) How many cars  the dealer does have to stock at least at the beginning of anmin
quarter to make sure that every customer can immediately buy a car with a probabili-
ty of not smaller than 0.95?

 is the smallest n with property thatn = nmin

P(Zn+1 > 75) ≥ 0.95.

Equivalently,  is the smallest n with propertynmin

     P(Zn+1 ≤ 75) ≤ 0.05 or Φ⎛
⎝⎜

75−2.4 (n+1)
1.6 n+1

⎞
⎠⎟
≤ 0.05.

Since the 0.05-percentile of an -distribution is  the latter inequal-N(0, 1) x0.05 = −1.64,
ity  equivalent is to

  75 − 2.4 (n + 1)
1.6 n + 1

≤ −1.64 or (n − 30.85)2 ≥ 37.7.

Hence,                                                                                                         nmin = 37.

Normal Approximation to the Binomial Distribution Any binomially with param-
eters n and p distributed random variable  can be represented as the sum of n in-Zn
dependent (0,1)-random variables of structure

Xi =
1 with probability p,
0 with probability 1 − p

, 0 ≤ p ≤ 1.

Thus,  so that the assumptions of central limit theorem 5.6 areZn = X1 + X2 + . .. + Xn

fulfilled with  and μ = p σ2 = n p (1 − p) :

                              (5.23)E(Zn) = np, Var(Zn) = np (1 − p) .

A corollary of theorem 5.6 is

Theorem 5.8 (Central limit theorem of Moivre-Laplace)  If the random variable X
has a binomial distribution with parameters  and p,  then, for all x,n

                             lim
n→∞

P
⎛

⎝
⎜⎜⎜

Zn − np
np(1 − p)

≤ x
⎞

⎠
⎟⎟⎟ =

1
2π

∫
−∞

x
e−u2/2du .

210                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



As a special case of formula (5.20),  has approximately a normal distribution:Zn

Zn ≈ N(n p, n p (1 − p)).
Thus,

P(i1 ≤ Zn ≤ i2) ≈ Φ
⎛

⎝
⎜⎜⎜

i2 +
1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟ − Φ

⎛

⎝
⎜⎜⎜

i1 −
1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟ ; 0 ≤ i1 ≤ i2 ≤ n.

(5.24)

P(Zn = i) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i ≈ Φ

⎛

⎝
⎜⎜⎜

i + 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟ − Φ

⎛

⎝
⎜⎜⎜

i − 1
2 − np

np(1 − p)

⎞

⎠
⎟⎟⎟ , 0 ≤ i ≤ n.

The term  is called continuity correction. It improves the accuracy of the approx-±1/2
imation, since a discrete distribution is approximated by a continuous one. Because
the distribution function of  has only jumps at integers i, there isZn

FZn (i) = FZn (i +
1
2), i = 0, 1, ..., n.

The approximation formulas (5.24) are the better the larger n is and the closer p is to
1/2. Because the normal distribution is used to approximate the distribution of a non-
negative random variable,  conditionthe

                                        (5.25)E(Zn) ≥ 3 Var(Zn)

should be satisfied (see page 79, there written as  to make sure the approx-μ ≥ 3σ)
imation yields satisfactory results. In view of (5.23), this condition is equivalent to

                                                (5.26)n > 9 1 − p
p .
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Figure 5.2 Approximation of the normal distribution to the binomial distribution



Thus, for  only 10 summands may be sufficient to get good approximations,p = 1/2,
whereas for  the number n required is at least 82. In practice the followingp = 0.1
rules of thumb will usually do:

E(Zn) = np > 35 and/or Var(Zn) = np(1 − p) > 10.

Continuation of Example 2.5 (page 52)  From a large delivery of calculators a sam-
ple of size   is taken. The delivery will be accepted if there are at most fourn = 100
defective calculators in the sample. The average rate of defective calculators from
the producer is known to be 2%.
1) What is the probability  that the delivery will be rejected (producer's risk)?Prisk
2) What is the probability  to accept the delivery although it contains 7% defec-Crisk
tive calculators (consumer's risk)?
1) The underlying binomial distribution has parameters  and  n = 100 p = 0.02 :

pi = P(Z100 = i) = ⎛
⎝

100
i
⎞
⎠ (0.02)i (0.98)100−i, i = 0, 1, ..., 100.

The random number  of defective calculators in the sample has mean value andZ100
standard deviation

  E(Z100) = 2 and Var(Z100) = 100 ⋅ 0.02 ⋅ 0.98 = 1.4 .

This gives for the exact value
Prisk = 1 − p0 − p1 − p2 − p3 − p4 = 0.051

the approximative value

  Prisk ≈ P(Zn ≥ 5) ≈ P⎛⎝
Zn−2
1.4 ≥ 5−2−0.5

1.4
⎞
⎠

  = 1 −Φ(1.786) ≈ 1 − 0.962
                                 = 0.038.

This approximative value is not satisfactory since p is too small. Condition (5.26) is
far from being fulfilled. 
2) In this case,  so thatp = 0.07

E(Z100) = 7 and Var(Z100) = 2.551.

This gives for  the approximative valueCrisk

Crisk = P(Z100 ≤ 4) = P⎛⎝
Zn−7
2.551 ≤ 4−7+0.5

2.551
⎞
⎠ = Φ(−1.176)

                            = 0.164.
The exact value is 0.163. 
Taking into account the continuity correction proved essential both for calculating
the  approximative values of  and                                                               Prisk Crisk.
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Normal Approximation to the Poisson Distribution From example 4.18 (page 180)
or from Theorem 7.7 (page 285) we know that the sum of independent, Poisson dis-
tributed random variables has a Poisson distribution, the parameter of which is the
sum of the parameters of the Poisson distributions of these random variables. This
implies that every Poisson with parameter  distributed random variable X can beλ
represented as a sum  of n independent, identically Poisson with parameter Zn λ/n
distributed random variables :Xi

                           (5.27)X = Zn = X1 + X2 + . .. + Xn, n = 1, 2, ...,

with

P(Xi = k) = (λ/n)k

k!
e−(λ/n); k = 0, 1, ...,

and                                   E(Xi) = Var(Xi) =
λ
n ; i = 1, 2, ..., n.

Random variables X (or, equivalently, their probability distributions), which can be represent-
ed for any integer  as the sum of n independent, identically distributed random variables,n > 1
are called infinitely divisible. Other probability distributions, which have this property, are the
normal, the Cauchy, and the gamma distribution.

X as given by the sum (5.27) is Poisson distributed with parameters
  and  E(X) = λ Var(X) = λ.

Since the sum representation (5.27) satisfies the assumptions of the central limit the-
orem 5.6,  has approximately the normal distributionX

  X ≈ N(λ,λ), FX(x) ≈ Φ
⎛

⎝
⎜ x − λ

λ

⎞

⎠
⎟

so that, using the continuity correction  as in case of the normal approximation to1/2
the binomial distribution,

   P(i1 ≤ X ≤ i2) ≈ Φ
⎛

⎝
⎜⎜⎜

i2 +
1
2 − λ

λ

⎞

⎠
⎟⎟⎟ − Φ

⎛

⎝
⎜⎜⎜

i1 −
1
2 − λ

λ

⎞

⎠
⎟⎟⎟ ,

(5.28)

         P(X = i) ≈ Φ
⎛

⎝
⎜⎜⎜

i + 1
2 − λ

λ

⎞

⎠
⎟⎟⎟ − Φ

⎛

⎝
⎜⎜⎜

i − 1
2 − λ

λ

⎞

⎠
⎟⎟⎟ .

Since the distribution of a nonnegative random variable is approximated by the nor-
mal distribution, analogously to (5.25)  the assumption,

E(X) = λ > 3 Var(X) = 3 λ

has to be made. Hence, the normal approximation to the Poisson distribution can only
be expected to yield good results if λ > 9.
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Continuation of Example 2.8 (page 56).  Let X be the random number of staff of a
company being on sick leave a day. Long-term observations have shown that X has a
Poisson distribution with parameter λ = E(X) = 10.
What is the probability that the number of staff being on sick leave a day is 9, 10, or
11?  The normal approximation to this probability is

    P(9 ≤ X ≤ 11) ≈ Φ
⎛

⎝
⎜⎜⎜

11 + 1
2 − 10

10

⎞

⎠
⎟⎟⎟ − Φ

⎛

⎝
⎜⎜⎜

9 − 1
2 − 10

10

⎞

⎠
⎟⎟⎟

= Φ(0.474) − Φ(−474) = 2Φ(0.474) − 1

= 0.364.
This value almost coincides with the exact one, which is 0.3639. Again, making use
of the continuity correction is crucial for obtaining a good result. The approximation
for , for instance, isp10

p10 =
1010

10!! e−10 ≈ Φ
⎛
⎝
⎜

10+ 1
2−10

10

⎞
⎠
⎟ − Φ

⎛
⎝
⎜

10− 1
2−10

10

⎞
⎠
⎟ = 2Φ(0.158) − 1

= 0.1255.
The exact value is 0.1251.                                                                                           

5.2.3  Local Limit Theorems

The central limit theorems investigate the convergence of distribution functions of
sums of random variables towards a limit distribution function. The local limit theo-
rems consider the convergence of probabilities  towards a limit probabilityP(Z = xi)
if Z is the sum of discrete random variables, or they deal with the convergence behav-
ior of the densities of sums of continuous random variables. This section presents
three theorems of this type without proof.

Theorem 5.9 (Local limit theorem of Moivre-Laplace)  The random variable X have
a binomial distribution with parameters  and p:n

P(X = i) = b(i ; n, p) = ⎛
⎝

n
i
⎞
⎠ pi(1 − p)n−i; i = 0, 1, ..., n.

Then,

  lim
n→∞

⎧

⎩
⎨
⎪
⎪

np(1 − p) b(i ; n, p) − 1
2π

exp
⎡

⎣
⎢
⎢
⎢
−1

2

⎛

⎝
⎜⎜⎜

i − np
np(1 − p)

⎞

⎠
⎟⎟⎟

2 ⎤

⎦
⎥
⎥
⎥

⎫

⎭
⎬
⎪
⎪
= 0.

The convergence is uniform with regard to                                             i = 0, 1, ..., n.
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Theorem 5.9 implies that for sufficiently large n an acceptable approximation for the
probability  isb(i ; n, p)

        (5.29)b(i ; n, p) ≈ 1
2π np(1 − p)

exp
⎡

⎣
⎢
⎢
⎢
−1

2

⎛

⎝
⎜⎜⎜

i − np
np(1 − p)

⎞

⎠
⎟⎟⎟

2 ⎤

⎦
⎥
⎥
⎥

.

Theorem 5.10 (Poisson approximation to the binomial distribution) If the parame-
ters n and p of the binomial distribution tend to  and 0, respectively, in such a way∞
that their product n p stays constant , thenλ λ > 0,

  lim
n→∞
p→0
n p=λ

b(i ; n, p) = λi

i !
e−λ; i = 0, 1, ... .

Proof From the definition of the binomial coefficient   (see formula (1.5)),(n
i )

      (5.30)b(i ; n, p)
b(i − 1; n, p)

= n − 1 + 1
i

⋅
p

1 − p =
np

i (1 − p)
− ⎛⎝1 −

1
i
⎞
⎠
⎛
⎝

P
1 − P

⎞
⎠ .

After having taken the limit, the  can no longer depend on n and p, but areb(i ; n, p)
only functions of i and , which are denoted as . From (5.30),λ h(i,λ)

  lim
n→∞
p→0
n p=λ

b(i ; n, p)
b(i − 1; n, p)

=
h(i,λ)

h(i − 1,λ)
= λ

i
, i = 1, 2, ...

Therefore, the limit probabilities of the binomial distribution satisfy

h(i,λ) = λ
i

h(i − 1,λ) : i = 1, 2, ...

For  and  this functional equation becomesi = 1 i = 2,

  and  h(1,λ) = λh(0,λ) h(2,λ) = λ
2 h(1,λ) = λ2

2 ! h(0,λ).

Induction yields

h(i,λ) = λi

i !
h(0,λ) .

The normalizing condition (2.6) at page 43 gives the still unknown constant :h(0,λ)

Σi=0
∞ h(i ;λ) = h(0,λ) Σi=0

∞ λi

i !
= h(0,λ) eλ = 1

so that  This completes the proof of the theorem:h(0,λ) = e−λ.

                                                                                      h(i,λ) = λi

i !
e−λ; i = 0, 1, ....

Note: The result of this theorem is formula (2.40) at page 57.
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Example 5.5 Let X have a binomial distribution with parameters   and n = 12 p = 0.4.
For the exact probability

p4 = ⎛
⎝

12
4
⎞
⎠ (0.4)4 (0.6)8 = 0.2128

the local limit theorem (5.29) yields the appoximative value

 p4 ≈
1

2π 12 × 0.4 × 0.6
exp

⎡

⎣
⎢⎢⎢−

1
2
⎛
⎝⎜

4−12×0.4
12×0.4×0.6

⎞
⎠⎟

2 ⎤

⎦
⎥⎥⎥ = 0.2104,

whereas  central limit theorem (5.24) provides the approximative valuethe

p4 ≈ Φ
⎛
⎝
⎜

4+ 1
2−12×0.4

12×0.4×0.6

⎞
⎠
⎟ − Φ

⎛
⎝
⎜

4− 1
2−12×0.4

12×0.4×0.6

⎞
⎠
⎟

          = Φ(−0.17680 −Φ(−0.7660) = 0.2149.

The Poisson approximation with  gives the worst result:np = 4.8

                                        p4 ≈
4.84

4! e−4.8 = 0.1820.

To formulate the next local limit theorem for sums of discrete random variables, the
following definition is needed:

Definition 5.3 A discrete random variable X, which for given real numbers a and b
with b >0, can only take on values of the form

                              (5.31)xk = a + kb ; k = 0,±1,±2, ...,
is called lattice distributed. The corresponding probability distribution of X is called
a lattice distribution. The largest constant b, which allows the representation of all
realizations of X by (5.31), is called the lattice constant of X or its probability distri-
bution. Specifically, a lattice distribution with  is an arithmetic distribution.      a = 0

Lattice distributed random variables obviously include all integer-valued random var-
iables as geometrically, binomially, and Poisson distributed random variables.

Theorem 5.11 (Gnedenko)  Let  be a sequence of independent, identi-{X1, X2, ...}
cally lattice distributed random variables with values (5.31), finite mean value ,μ
finite, positive variance  andσ2,

Pn(m) = P(X1 + X2 + . .. + Xn = na + mb); m = 0,±1,±2, ... .

Then the following limit relation is true uniformly in m if and only if b is the lattice
constant of the X1, X2, ... :

              lim
n→∞

⎧

⎩
⎨
⎪
⎪
σ n

b
Pn(m) − 1

2π
exp

⎡

⎣
⎢⎢⎢−

1
2
⎛
⎝⎜

an + mb − μn
σ n

⎞
⎠⎟

2 ⎤

⎦
⎥⎥⎥

⎫

⎭
⎬
⎪
⎪
= 0.
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Finally, a local limit theorem is given which deals with the convergence of the densi-
ty of sums of random variables.

Theorm 5.12  (Gnedenko)  Let  be a sequence of independent, identically{X1, X2, ...}
distributed, continuous random variables with bounded density, mean value  andμ = 0,
positive, finite variance  If  denotes the density ofσ2. fn(x)

1
σ n Σi=1

n Xi ,

then  converges uniformly in x to the density of the standard normal distribution:fn(x)

                                                      lim
n→∞

fn(x) = ϕ(x) = 1
2π

e−x2/2 , − ∞ < x < +∞ .

5.3 EXERCISES

5.1) On average, 6% of the citizens of a large town suffer from severe hypertension.
Let X be the number of people in a sample of n randomly selected citizens from this
town which suffer from this disease.
(1) By making use of Chebyshev's inequality find the smallest positive integer  nmin
with property

  for all n with  P( 1
n X − 0.06 ≥ 0.01) ≤ 0.05 n ≥ nmin.

(2) Find a positive integer  satisfying this relationship by using theorem 5.6.nmin

5.2) The measurement error X of a measuring device has mean value  andE(X) = 0
variance  The random outcomes of n independent measurements areVar(X) = 0.16.

, i.e., the  are independent, identically as X distributed random variab-X1, X2, ..., Xn Xi
les.
(1) By the Chebyshev's inequality, determine the smallest integer   with pro-n = nmin
perty that the arithmetic mean of n measurements differs from  by less thanE(X) = 0
0.1 with a probability of at least 0.99.
(2) On the additional assumption that X is continuous with unimodal density and  
mode , solve (1) by applying the Gauss inequality (5.4).xm = 0
(3) Solve (1) on condition that X = N(0, 0.16).

5.3) A manufacturer of TV sets knows from past experience that 4% of his products
do not pass the final quality check. 
(1) What is the probability that in the total monthly production of 2000 sets between
60 and 100 sets do not pass the final quality check?
(2) How many sets have at least to be produced a month to make sure that at least
2000 sets pass the final quality check with probability 0.9?
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5.4) The daily demand for a certain medication in a country is given by a random var-
iable X with mean value 28 packets per day and with a variance of 64. The daily de-
mands are independent of each other and distributed as X.
(1) What amount of packets should be ordered for a year with 365 days so that the
total annual demand does not exceed the supply with probability 0.99?
(2) Let be the demand at day , andXi i = 1, 2, ...

Xn =
1
n Σ

i=1

n
Xi.

Determine the smallest integer  so that the probability of the occurrence ofn = nmin
the event

Xn − 28 ≥ 0.02
does not exceed 0.05.

5.5) According to the order, the rated nominal capacitance of condensers in a large
delivery should be  Their actual rated nominal capacitances are, however,300μF.
random variables X with

 and E(X) = 300 Var(X) = 144.
(1) By means of Chebyshev's inequality determine an upper bound for the probability
of the event A that X does not differ from the rated nominal capacitance by more than
5%.

(2) Under the additional assumption that X is a continuous random variable with uni-
modal density and mode , solve (1) by means of the Gauss inequality (5.4).xm = 300

(3) Determine the exact probability on condition that
X = N(300, 144).

(4) A delivery contains 600 condensers. Their capacitances are independent and iden-
tically distributed as X. The distribution of X has the same properties as stated under
(2). By means of the Gauss inequality (5.4) give a lower bound for the probability
that the arithmetic mean of the capacitances of the condensers in the delivery differs
from  by less than 0.01.E(X) = 300

5.6) A digital transmission channel distorts on average 1 out of 10 000 bits during
transmission. The bits are transmitted independently of each other.
(1) Give the exact formula for the probability of the random event A that amongst 106

sent bits there are at least 80 bits distorted.
(2) Determine the probability of A by approximation of the normal distribution to the
binomial distribution.

5.7) Solve the problem of example 2.4 (page 51) by making use of the normal approx-
imation to the binomial distribution and compare with the exact result.
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5.8) Solve the problem of example 2.6 (page 54) by making use of the normal approx-
imation to the hypergeometric distribution and compare with the exact result.

5.9) The random number of asbestos particles per  in the dust of an industrial1mm3

area is Poisson distributed with parameter λ = 8.
What is the probability that in  of dust there are1cm3

(1) at least 10 000 asbestos  particles, and 
(2) between 8000 and 12 000 asbestos particles (including the bounds)?

5.10) The number of e-mails, which daily arrive at a large company, is Poisson dis-
tributed with parameter

λ = 22 400.
What is the probability that daily between between 22 300 and 22 500 e-mails arrive?

5.11) In 1kg of a tapping of cast iron melt there are on average 1.2 impurities.
What is the probability that in a 1000kg tapping there are at least 1400 impurities?
The spacial distribution of the impurities in a tapping is assumed to be Poisson.

5.12) After six weeks, 24 seedlings, which had been planted at the same time, reach
the random heights , which are independent, identically exponentiallyX1, X2, ..., X24
distributed as X with mean value μ = 32cm.
Based on the Gauss inequalities, determine
(1) an upper bound for the probability that the arithmetic mean

 X24 =
1

24 Σi=1

24
Xi

differs from  by more than 0.06 cm,μ
(2) a lower bound for the probability that the deviation of  from  does not exceedX24 μ
0.06cm.

5.13) Under otherwise the same assumptions as in exercise 5.12, only 6 seedlings had
been planted. Determine
(1) the exact probability that the arithmetic mean

 X6 =
1
6 Σi=1

6 Xi

exceeds  by more than 0.06 cm (Hint: Erlang distribution),μ = 32cm
(2) by means of the central limit theorem, determine a normal approximation to the
probability

P(X6 − 32 > 0.06).

Give reasons why the approximation may not be satisfactory.
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5.14) The continuous random variable X is uniformly distributed on  [0, 2].
(1) Draw the graph of the function

p(ε) = P( X − 1 ≥ ε)

in dependence of  , ε 0 ≤ ε ≤ 1.
(2) Compare this graph with the upper bound for the probability 

P( X − 1 ≥ ε)

given by the Chebyshev inequality, 0 ≤ ε ≤ 1.
(3) Try to improve the Chebyshev upper bound for

P( X − 1 ≥ ε)
by the Markov upper bound (5.8) for  and  a = 3 a = 4.
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PART  II

Stochastic Processes

CHAPTER 6

Basics of Stochastic Processes

6.1  MOTIVATION AND TERMINOLOGY 

A random variable X is the outcome of a random experiment under fixed conditions.
A change of these conditions will influence the outcome of the experiment, i.e. the
probability distribution of X will change. Varying conditions can be taken into ac-
count by considering random variables which depend on a deterministic parameter t:

. This approach leads to more general random experiments than the ones de-X = X(t)
fined in section 1.1. To illustrate such generalized random experiments, two simple
examples will be considered.

Example 6.1 a) At a fixed geographical point, the temperature is measured every day
at 12:00. Let  be the temperature measured on the  day of a year. The value of xi i th

 will vary from year to year and, hence, it can be considered a realization of a ran-xi
dom variable  . Thus,  is the (random) temperature measured on the  day ofXi Xi i th
a year at 12:00. Apart from random fluctuations of the temperature, the  also de-Xi
pend on a deterministic parameter, namely on the time, or, more precisely, on the day
of the year. However, if one is only interested in the temperatures  on theX1, X2, X3
first 3 days (or any other 3 consecutive days) of the year, then these temperatures are
at least approximately identically distributed. Nevertheless, indexing the daily tem-
peratures is necessary, because modeling the obviously existing statistical dependence
between the daily temperatures requires knowledge of the joint probability distribu-



tion of the random vector  This situation and the problems connected(X1, X2, X3).
with it motivate the introduction of the generalized random experiment daily meas-
urement of the temperature at a given geographical point at 12:00 during a year. The
random outcomes of this generalized random experiment are sequences of random
variables  with the  being generally neither independent nor{X1, X2, ..., X365} Xi
identically distributed. If on the  day temperature  has been measured, then thei th xi
vector  can be interpreted as a function , defined at discrete(x1, x2, ..., x365) x = x(t)
time points t,   for   Vector  is a real-t ∈ [1, 2, ..., 365] : x(t) = xi t = i. (x1, x2, ..., x365)
ization of the random vector (X1, X2, ..., X365).

b) If a sensor graphically records the temperature over the year, then the outcome of
the measurement is a continuous function of time t:  where  isx = x(t), 0 ≤ t ≤ 1, x(t)
realization of the random temperature  at time t at a fixed geographical location.X(t)
Hence it makes sense to introduce the generalized random experiment continuous
measurement of the temperature during a year at a given geographical location. It
will be denoted as {X(t), 0 ≤ t ≤ 1}.
A complete probabilistic characterization of this generalized random experiment re-
quires knowledge of the joint probability distributions  all possible random vectorsof

 (X(t1), X(t2), ..., X(tn)); 0 ≤ t1 < t2 < . .. < tn ≤ 1; n = 1, 2, ... .

This knowledge allows for statistically modelling the dependence between the X(ti)
in any sequence of random variables  It is quite obvious thatX(t1), X(t2), ..., X(tn).
for small time differences  there is a strong statistical dependence between ti+1 − ti

 and  But there may also be a dependence between  and  forX(ti) X(ti+1). X(ti) X(tk)
large time differences  due to the inertia of weather patterns over an area.      �tk − ti

Example 6.2 The deterministic parameter, which influences the outcome of a random
experiment, needs not be time. For instance, if at a fixed time point and a fixed obser-
vation point the temperature is measured along a vertical of length L to the earth's  
surface,  then  one  obtains  a function  which obviously depends onx = x(h), 0 ≤ h ≤ L,
the distance h of the measurement point to the earth's surface. But if the experiment
is repeated in the following years under the same conditions (same time, location,
and measurement procedure), then, in view of the occurrence of nonpredictable
influences, different functions  will be obtained. Hence, the temperature atx = x(h)
distance h is a random variable  and the generalized random experiment measur-X(h)
ing the temperature along a vertical of length L, denoted as  has{X(h), 0 ≤ h ≤ L},
outcomes, which are real functions of h: x = x(h), 0 ≤ h ≤ L.
In this situation, it also makes sense to consider the temperature in dependence of both
h and the time point of observation :  Then the observa-t x = x(h, t); 0 ≤ h ≤ L, t ≥ 0.
tion x depends on a vector of deterministic parameters:

x = x(θ), θ = (h, t).
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In this case, the outcomes of the corresponding generalized random experiment are
surfaces in the -space. However, this book only considers one-dimensional(h, t, x)
parameter spaces.

An already 'classical' example for illustrating the fact that the parameter need not be
time is due to Cramer, Leadbetter (1967): A machine is supposed to continuously
produce ropes of length  with a given nominal diameter of  Despite main-10 m 5 mm.
taining constant production conditions, minor variations of the rope diameter can
technologically not be avoided. Thus, when measuring the actual diameter x of a sin-
gle rope at a distance d from the origin, one gets a function  with  x = x(d) 0 ≤ d ≤ 10.
This function will randomly vary from rope to rope. This suggests the introduction of
the generalized random experiment continuous measurement of the rope diameter in
dependence on the distance d from the origin. If X(d) denotes the diameter of a ran-
domly selected rope at a distance d from the origin, then it makes sense to introduce
the corresponding generalized random experiment

{X(d), 0 ≤ d ≤ 10}
with outcomes  (Figure 6.1).                                                       �x = x(d) , 0 ≤ d ≤ 10

In contrast to the random experiments considered in chapter 1, the outcomes of which
are real numbers, the outcomes of the generalized random experiments, dealt with in
examples 2.1 and 2.2, are real functions. Hence, in the literature such generalized
random experiments are frequently called random functions. However, the terminol-
ogy stochastic processes is more common and will be used throughout the book. In
order to characterize the concept of a stochastic process more precisely, further nota-
tion is required: Let the random variable of interest X depend on a parameter t, which
assumes values from a set T: . To simplify the terminology and inX = X(t), t ∈ T
view of the overwhelming majority of applications, in this book the parameter t is
interpreted as time. Thus, X(t) is the random variable X at time t and T denotes the
whole observation time span. Further, let Z denote the set of all values the random
variables X(t) can assume for all t ∈ T.
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Figure 6.1 Random variation of the diameter of a nylon rope

d
0 1 2 3 4 5 6 7 8 9 10

x(d)



Stochastic Process A family of random variables  is called a stochastic{X(t), t ∈ T}
process with parameter space T and state space Z .

If T is a finite or countably infinite set, then  is called a stochastic  pro-{X(t), t ∈ T}
cess in discrete time or a discrete-time stochastic process. Such processes can be
written as a sequences of random variables  (example 6.1 a). On the{X1, X2, ...}
other hand, every sequence of random variables can be thought of a stochastic process
in discrete time. If T is an interval, then is a stochastic process in contin-{X(t), t ∈ T}
uous time or a continuous-time stochastic process. A stochastic process {X(t), t ∈ T}
is said to be discrete if its state space Z is a finite or a countably infinite set, and a sto-
chastic process  is said to be continuous if Z is an interval. Thus, there{X(t), t ∈ T}
are discrete stochastic processes in discrete time, discrete stochastic processes in con-
tinuous time, continuous stochastic processes in discrete time, and continuous stoch-
astic processes in continuous time. Throughout this book the state space Z is usually
assumed to be a subset of the real axis.
If the stochastic process  is observed over the whole time period T, i.e.{X(t), t ∈ T}
the values of X(t) are registered for all  then one obtains a real functiont ∈ T,

x = x(t), t ∈ T.
Such a function is called a sample path, a trajectory, or a realization of the stochastic
process. In this book the concept sample path is used. The sample paths of a stochas-
tic process in discrete time are, therefore, sequences of real numbers, whereas the
sample paths of stochastic processes in continuous time can be any functions of time.
The sample paths of a discrete stochastic process in continuous time are piecewise
constant functions (step functions). The set of all sample paths of a stochastic process
with parameter space T is, therefore, a subset of all functions over the domain T.
In engineering, science, and economics there are many time-dependent random phe-
nomena which can be modeled by stochastic processes: In an electrical circuit it is
not possible to keep the voltage strictly constant. Random fluctuations of the voltage
are for instance caused by thermal noise. If v(t) denotes the voltage measured at  time
point t, then  is a sample path of a stochastic process  where V(t)v = v(t) {V(t), t ≥ 0}
is the random voltage at time t (Figure 6.2). Producers of radar and satellite support-
ed communication systems have to take into account a phenomenon called  fading.
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This is characterized by random fluctuations in the energy of received signals caused
by the dispersion of radio waves as a result of inhomogeinities in the atmosphere and
by meteorological and industrial noise. Both meteorological and industrial noise cre-
ate electrical discharges in the atmosphere which occur at random time points with
randomly varying intensity. 'Classic' applications of stochastic processes in economics
are modeling the fluctuations of share prices, rendits, and prices of commodities over
time.  In operations research,  stochastic  processes  describe  the  development in time
of the 'states' of queueing, inventory, and reliability systems. In statistical quality con-
trol, they model the fluctuation of quality criteria over time. In medicine, the develop-
ment in time of 'quality parameters' of health as blood pressure and cholesterol level
as well as the spread of epidemics are typical examples of stochastic processes.
Important impulses for the development and application of stochastic processes came
from biology: stochastic models for population dynamics from cell to mammal level,
competition models (predator-prey), capture-recapture models, growth processes,
and many more.

6.2  CHARACTERISTICS AND EXAMPLES

From the mathematical point of view, the given heuristic explanation of a stochastic
process needs to be supplemented. Let  be the distribution function of X(t):Ft(x)

Ft(x) = P(X(t) ≤ x), t ∈ T.
The family of the one-dimensional distribution functions

{Ft(x), t ∈ T}
is the one- dimensional probability distribution of  In view of the statis-{X(t), t ∈ T}.
tical dependence, which generally exists between the  for any X(t1), X(t2), ..., X(tn)

, the family of the one-dimensional distribution functions  t1, t2, ..., tn {Ft(x), t ∈ T}
does not completely characterize a stochastic process (see examples  6.1 and 6.2).
A stochastic process  is only then completely characterized if for all pos-{X(t), t ∈ T}
itive integers  for all n-tuples  with  and for all vectorsn = 1, 2, ..., {t1, t2, ..., tn} ti ∈ T,

 with , the joint distribution function of  the random vector {x1, x2, ..., xn} xi ∈ Z
 is known:(X(t1), X(t2), ..., X(tn))

                   (6.1)Ft1,t2,...,tn (x1, x2, ..., xn) = P(X(t1) ≤ x1, X(t2) ≤ x2, ..., X(tn) ≤ xn).

The set of all these joint distribution functions defines the probability distribution of
the stochastic process. For a discrete stochastic process, it is generally simpler to cha-
racterize its probability distribution by the probabilities

P(X(t1) ∈ A1, X(t2) ∈ A2, ... , X(tn) ∈ An)

for all  with  andt1, t2, ..., tn ti ∈ T Ai ⊆ Z; i = 1, 2, ..., n; n = 1, 2, ... .
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Trend Function  Assuming the existence of  for all , the trend or trendE(X(t)) t ∈ T
function of the stochastic process  is the mean value of X(t) as a function{X(t), t ∈ T}
of t:

                                         (6.2)m(t) = E(X(t)), t ∈ T.

Thus, the trend function of a stochastic process describes its average development of
the process in time. If the densities  exist, thenft(x) = dFt(x) /dx

m(t) = ∫−∞
+∞ x ft(x)dx , t ∈ T .

Covariance Function  The covariance function of a stochastic process {X(t), t ∈ T}
is the covariance between the random variables  and X(t) as a function of s and t.X(s)
Hence, in view of (3.37) and (3.38) page 135,,

       (6.3)C(s, t) = Cov (X(s), X(t)) = E([X(s) −m(s)] [X(t) −m(t)]) ; s, t ∈ T,

or
                          (6.4)C(s, t) = E(X(s)X(t)) − m(s)m(t); s, t ∈ T.

In particular,
                                              (6.5)C(t, t) = Var(X(t)).

The covariance function is a symmetric function of s and t:
                                                (6.6)C(s, t) = C(t, s).

Since the covariance function  is a measure for the degree of the statistical de-C(s, t)
pendence between  and , one expects thatX(s) X(t)

                                             (6.7)lim
t−s →∞

C(s, t) = 0.

Example 6.3 shows that this need not be the case.

Correlation Function  The correlation function of  is the correlation{X(t), t ∈ T}
coefficient  between X(s) and X(t) as a function of s and t.ρ(s, t) = ρ(X(s), X(t))
According to (3.43),

                                 (6.8)ρ(s, t) = Cov (X(s), X(t))
Var(X(s) Var(X(t)

.

The covariance function of a stochastic process is also called autocovariance func-
tion  and  the correlation function autocorrelation function. This terminology avoids
mistakes, when dealing with covariances and correlations between  and  forX(s) Y(t)
different stochastic processes  and  The cross covariance{X(t), t ∈ T} {Y(t), t ∈ T}.
function between these two processes is defined as

  (6.9)C(s, t) = Cov (X(s), Y(t)) = E([X(s) −mX(s)] [Y(t) −mY(t)]) ; s, t ∈ T,

with  and  Correspondingly, the cross correlationmX(t) = E(X(t)) mY(t) = E(Y(t)).
function between the processes  and  is{X(t), t ∈ T} {Y(t), t ∈ T}
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                                (6.10)ρ(s, t) = Cov (X(s), Y(t))
Var(X(s) Var(Y(t)

.

As pointed out in section 3.1.3 (page 139), the advantage of the correlation coefficient
to the covariance is that it allows for comparing the (linear) dependencies between
different pairs of random variables. Being able to compare the dependency between
two stochastic processes by their cross-correlation function is important for processes,
which are more or less obviously dependent as, for instance, the development in time
of air temperature and air moisture or air temperature and  content of the air.CO2

Semi-variogram The semi-variogram or, shortly, variogram of a stochastic process
 is defined as{X(t), t ∈ T}

                                        (6.11)γ(s, t) = 1
2 E[(X(t) − X(s)]2

as a function of s and t;  The variogram is obviously a symmetric function ins, t ∈ T.
s and t: γ(s, t) = γ(t, s).
The concept of a variogram has its origin in geostatistics for describing properties of
random fields, i.e., stochastic processes, which depend on a multi-dimensionally
deterministic parameter , which refers to a location, but may also include time.t

Example 6.3 (cosine wave with random amplitude)  Let
X(t) = A cosωt ,

where A is a nonnegative random variable with  The process E(A) < ∞. {X(t), t ≥ 0}
can be interpreted as the output of an oscillator which is selected from a set of identi-
cal ones. (Random deviations of the amplitudes from a nominal value are technolog-
ically unavoidable.) The trend function of this process is

m(t) = E(A) cosωt.
By (6.4)  its covariance function is,

C(s, t) = E([A cosωs][A cosωt]) −m(s)m(t)

              = [E(A2) − (E(A))2](cosωs)(cos(ωt)).
Hence,

C(s, t) = Var(A)(cosωs)(cosωt).

Obviously, the process does not have property (6.7). Since there is a functional rela-
tionship between  and  for any s and t,  and  cannot tend to becomeX(s) X(t) X(s) X(t)
independent for . Actually, the correlation function  between X(s)t − s →∞ ρ(s, t)
and  is equal to 1 for all                                                                                 �X(t) (s, t).

The stochastic process considered in example 6.3 has a special feature: For a given
value a that the random variable A has assumed, the process develops in a strictly
deterministic way. That means, by only observing a sample path of such a process
over an arbitrarily small time interval, one can predict the further development of the
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sample path with absolute certainty. (The same comment refers to examples 6.6 and
6.7.) More complicated stochastic processes arise when random influences continu-
ously, or at least repeatedly, affect the phenomenon of interest. The following exam-
ple belongs to this category.

Example 6.4 (pulse code modulation)  A source generates symbols 0 or 1 independ-
ently with respective probabilities p and 1 - p. The symbol ' ' is transmitted by send-0
ing nothing during a time interval of length one. The symbol ' ' is transmitted by1
sending a pulse with constant amplitude a during a time unit of length one. The source
has started operating in the past. A stochastic signal (sequence of symbols) generated
in this way is represented by the stochastic process  with{X(t), t ∈ (−∞,+∞)}

                          (6.12)X(t) = Σ
n=−∞

+∞
An h(t − n) , n ≤ t < n + 1 ,

where the  are independent binary random variables defined byAn; n = 0,±1,±2, ...;

           An =
⎧

⎩
⎨

0 with probability p,
a with probability 1 − p,

and  is given byh(t)

                h(t) =
⎧

⎩
⎨

1 for 0 ≤ t < 1,
0 elsewhere.

For any t,

        X(t) = 0 with probability p,
a with probability 1 − p.

For example, the section of a sample path  plotted in Figure 6.3 is generatedx = x(t)
by the following partial sequence of a signal:

. .. 1 0 1 1 0 0 1 . .. .
The role of the function  is to keep  at level 0 or 1, respectively, in the inter-h(t) X(t)
vals  Note that the time point  coincides with the beginning of a new[n, n + 1). t = 0
transmission period. The process has a constant trend function:

m(t) ≡ a ⋅ P(X(t) = a) + 0 ⋅ P(X(t) = 0) = a(1 − p) .
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For n ≤ s, t < n + 1; n = 0,±1,±2, ...,

E(X(s)X(t)) = E(X(s)X(t) X(s) = a) ⋅ P(X(s) = a)

                  + E(X(s)X(t) X(s) = 0) ⋅ P(X(s) = 0)

                   = a2(1 − p).
Therefore,

Cov(X(s), X(t)) = a2(1 − p) − a2(1 − p)2 = a2p(1 − p) for n ≤ s, t < n + 1.

If  then  and  are independent ran-m ≤ s < m + 1 and n ≤ t < n + 1 with m ≠ n, X(s) X(t)
dom variables. Hence, the covariance function of  {X(t), t ∈ (−∞,+∞)} is

C(s, t) =
⎧

⎩
⎨

a2p(1 − p) for n ≤ s, t < n + 1; n = 0,±1,±2, ...
0 elsewhere

.

Although the stochastic process  analyzed in this example  has a rather simple struc-
ture, it is of considerable importance in physics, electrical engineering, and  commu-
nication; for more information, see e.g. Gardner (1989). A modification of the pulse
code modulation process is considered in example 6.8.   As  the  following  example  
shows,  the  pulse code modulation is a special shot noise process.                           �

Example 6.5 (shot noise process)  At time points  pulses of random intensity Tn, An
are induced. The sequences  and  are assumed to be discrete-{T1, T2, ...} {A1, A2, ...}
time stochastic processes with properties
1) With probability 1,  and T1 < T2 < . .. lim

n→∞
Tn = ∞,

2) E(An) < ∞; n = 1, 2, ... .
In communication theory, the sequence  is called a pulse pro-{(Tn, An); n = 1, 2, ...}
cess. (In section 7.1, it will be called a marked point process.)  The function h(t), the
response of  system to a pulse, has propertiesa

                           (6.13)h(t) = 0 for t < 0 and lim
t→∞

h(t) = 0.

The stochastic process  defined by{X(t), t ∈ (−∞,+∞)}

                                        (6.14)X(t) = Σn=1
∞ An h(t − Tn)

is called a shot noise process or just shot noise. It quantifies the additive superposition
of the responses of a system to pulses. The factors  are sometimes called am-An
plitudes of the shot noise process. In many applications, the  are independent, iden-An
tically distributed random variables, or, as in example 6.4, even constant.
If the sequences of the  and  are doubly infinite, Tn An

{Tn; n = 0,±1,±2, ...} and {An; n = 0,±1,±2, ...},

then the shot noise process  is defined as{X(t), t ∈ (−∞,+∞)}
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                                   (6.15)X(t) = Σn= -∞
n=+∞ An h(t − Tn).

A well-known physical phenomenon, which can be modeled by a shot noise process,
is the fluctuation of the anode current in vacuum tubes (tube noise). This fluctuation
is caused by random current impulses, which are initiated by emissions of electrons
from the anode at random time points (Schottky effect); see Schottky (1918). The
term shot noise has its origin in the fact that the effect of firing small shot at a metal
slab can be modeled by a stochastic process of structure (6.15). More examples of
shot noise processes are discussed in chapter 7, where special assumptions on the
underlying pulse process are made.                                                                             �

6.3  CLASSIFICATION OF STOCHASTIC PROCESSES

Stochastic processes are classified with regard to properties which reflect, e.g., their
dependence on time, the statistical dependence of their developments over disjoint
time intervals, and the influence of the history or the current state of a stochastic
process on its future evolvement. In the context of example 6.1: Has the date any
influence on the daily temperature at 12:00? (That need not be the case if the meas-
urement point is near to the equator.) Or, has the sample path of the temperature in
January any influence on the temperature curve in February? For reliably predicting
tomorrow's temperature at 12:00, is it sufficient to know the present temperature or
would knowledge of the temperature curve during the past two days allow a more
accurate prediction? What influence has time on trend or covariance function?
Special importance have those stochastic processes for which the joint distribution
functions (6.1) only depend on the distances between  and  i.e., only the relativeti ti+1,
positions of  to each other have an impact on the joint distribution of thet1, t2, ..., tn
random variables X(t1), X(t2), ..., X(tn).

Strong Stationarity  A stochastic process  is said to be strongly station-{X(t), t ∈ T}
ary or strictly stationary if for all  for any real , for all n-tuplesn = 1, 2, ..., τ

  with  and   (t1, t2, ..., tn) ti ∈ T ti + τ ∈ T; i = 1, 2, ..., n;
and for all n-tuples , the joint distribution function of the random vec-(x1, x2, ..., xn)
tor  has property(X(t1), X(t2), ..., X(tn))

            (6.16)Ft1, t2,..., tn (x1, x2, ..., xn) = Ft1+τ, t2+τ,..., tn+τ(x1, x2, ..., xn).

That means, the probability distribution of a strongly stationary stochastic process is
invariant against absolute time shifts. In particular, by letting  and proper-n = 1 t = t1,
ty (6.16) implies that  for all  with arbitrary but fixed t and x. ThatFt(x) = Ft+τ(x) τ
means   actually does not depend on t. Hence, for strongly stationary processesFt(x)
there exists a distribution function , which does not depend on t, so thatF(x)

                             (6.17)Ft(x) = F(x) for all t ∈ T and x ∈ Z.
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Hence, trend and variance function of  do not depend on t either:{X(t), t ∈ T}

                           (6.18)m(t) = E(X(t)) ≡ m, Var(X(t)) ≡ σ2

(given that the parameters m and  exist). The trend function of a strongly station-σ2

ary process is, therefore, a parallel to the time axis, and the fluctuations of its sample
paths around the trend function experience no systematic changes with increasing t.
What influence has the strong stationarity of a stochastic process on its covariance
function?
To answer this question, the special values  are sub-n = 2, t1 = 0, t2 = t − s, and τ = s
stituted in (6.16). This yields for all s < t,

F0, t−s(x1, x2) = Fs, t(x1, x2),

i.e. the joint distribution function of the random vector , and, therefore, the(Xs, Xt)
mean value of the product ,  depend only on the difference , and not onXs Xt τ = t − s
the absolute values of s and t. Hence, by formulas (6.4) and (6.18),  must haveC(s, t)
the same property:

C(s, t) = C(s, s + τ) = C(0, τ) = C(τ).

Thus, the covariance function of strongly stationary processes depends only on one
variable:

                          (6.19)C(τ) = Cov (X(s), X(s + τ)) for all s ∈ T.

Since the covariance function  of any stochastic process is symmetric in theC(s, t)
variables s and t, the covariance function of a strongly stationary process is a  sym-
metric function with symmetry center  i.e.  or, equivalently,τ = 0, C(τ) = C(−τ)

                                             (6.20)C(τ) = C( τ ) .

In practical situations it is generally not possible to determine the probability distribu-
tions of all possible random vectors in order to check whether{X(t1), X(t2), . .. , X(tn)}
a stochastic process is strongly stationary or not. But the user of stochastic processes
is frequently satisfied with the validity of properties (6.18) and (6.19). Hence, based
on these two properties, another concept of stationarity had been introduced. It is,
however, only defined for second-order processes:

Second-Order Process A stochastic process  is called a second-order{X(t), t ∈ T}
process if

                                    (6.21)E(X 2(t)) < ∞ for all t ∈ T.

The existence of the second moments of  as required by assumption (6.21) impliesX(t)
the existence of the covariance function  for all s and t, and, therefore, the exist-C(s, t)
ence of the variances  and mean values  for all  (see inequalityVar(X(t)) E(X(t)) t ∈ T
of Schwarz (5.11), page 195). (In deriving (6.20) we have implicitly assumed the
existence of the second moments  without referring to it.)E(X2(t))
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Weak Stationarity  A stochastic process   is  said to be weakly station-{X(t), t ∈ T}
ary if it is a second order process and has properties (6.18) and (6.19):

1)    for all m(t) = m t ∈ T.
2)    for all C(τ) = Cov(X(s), X(s + τ)) s ∈ T.

From (6.18) with t = 0 :
                                     (6.22)Var(X(0)) = C(0) = σ2.

The covariance function  of weakly stationary process has two characteristic pro-C(τ)
perties (without proof):
1) C(τ) ≤ σ2 for all τ,
2)  is positive semi-definite, i.e. for all n, all real numbers , and forC(τ) a1, a2, ..., an
all t1, t2, ..., tn; ti ∈ T,

Σi=1
n Σj=1

n aiajC(ti − tj) ≥ 0.

A strongly stationary process is not necessarily weakly stationary, since there are
strongly stationary processes, which are not second order processes. But, if a second
order process is strongly stationary, then, as shown above, it is also weakly stationary.
Weakly stationary processes are also called wide-sense stationary, covariance statio-
nary, or second-order stationary.
Further important properties of stochastic processes are based on properties of their
increments: 
The increment of a stochastic process  with respect to the interval {X(t), t ∈ T} [t1, t2)
is the difference X(t2) − X(t1).
Hence, the variogram  as defined by (6.11) is a half of the second moment of theγ(s, t)
increment X(t) − X(s).

Homogeneous Increments A stochastic process  is said to have homo-{X(t), t ∈ T}
geneous or stationary increments if for arbitrary, but fixed  the increment t1, t2 ∈ T

 has the same probability distribution for all values of  with pro-X(t2 + τ) − X(t1 + τ) τ
perty t1 + τ ∈ T, t2 + τ ∈ T.

An equivalent definition of processes with homogeneous increments is:
The stochastic process  has homogeneous increments if the probability{X(t), t ∈ T}
distribution of the increments   does not depend on t for any fixedX(t + τ) − X(t)

 τ; t, t + τ ∈ T.
Thus, the development in time of a stochastic process with homogeneous increments
in any interval of the same length is governed by the same probability distribution.
This motivates the term stationary increments.
A stochastic process with homogeneous (stationary) increments need not be station-  
ary in any sense.
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Taking into account (6.22), the variogram of a stochastic process with homogene-
ous increments has a simple structure:

            γ(s, s + τ) = 1
2 E[(X(s) − X(s + τ))2]

                                                                     = 1
2 E [((X(s) −m) − (X(s + τ) −m))2]

                        = 1
2 E[(X(s) − m)2 − 2 (X(s) −m) (X(s + τ) −m)) + (X(s + τ) −m)2]

                                                                                             = 1
2σ

2 −C(τ) + 1
2 σ2

so that
γ(τ) = σ2 − C(τ) .

Therefore, in case of a process with homogeneous increments, the variogram does
yield additional information on the process compared to the covariance function.

Independent Increments  A stochastic process  has independent incre-{X(t), t ∈ T}
ments if for all  and for all n-tuples  with   n = 2, 3, ... (t1, t2, ..., tn) t1 < t2 < . .. < tn,

,  the incrementsti ∈ T

X(t2) − X(t1), X(t3) − X(t2), . .. , X(tn) − X(tn−1)

are independent random variables.

The meaning of this concept is that the development of the process in an interval I has
no influence on the development of the process on intervals, which are disjoint to I.
Thus, when the price of a share is governed by a process with independent increments
and there was sharp increase in year n, then this information is worthless with regard
to predicting the development of the share price in year n+1.

Gaussian Process  A stochastic process  is a Gaussian process if the{X(t), t ∈ T}
random vectors  have a joint normal (Gaussian) distribution(X(t1), X(t2), ..., X(tn))
for all n-tuples   with   and (t1, t2, ..., tn) ti ∈ T t1 < t2 < . .. < tn; n = 1, 2, ... .

Gaussian processes have an important property:

   A Gaussian process is strongly stationary if and only if it is weakly stationary.

Gaussian processes will play an important role in Chapter 11. 

Markov Process  A stochastic process  has the Markov(ian) property if{X(t), t ∈ T}
for all   with  and and for any(n + 1)-tuples (t1, t2, ..., tn+1) ti ∈ T t1 < t2 < . .. < tn+1,
Ai ⊆ Z; i = 1, 2, ..., n + 1;

P(X(tn+1) ∈ An+1 X(tn) ∈ An, X(tn−1) ∈ An−1, ... , X(t1) ∈ A1)

                                                       (6.23)= P(X(tn+1) ∈ An+1 X(tn) ∈ An) .
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The Markov property can be interpreted  as follows: If  is a time point in thetn+1
future,  the present time poin,t and, correspondingly, are time pointstn t1, t2, ..., tn−1
in the past, then the future development of a process having the Markov property
does not depend on its evolvement in the past, but only on its present state. Stochas-
tic processes having the Markov property are called Markov processes.
A Markov process with finite or countably infinite parameter space T is called a dis-
crete-time Markov process. Otherwise it is called a continuous-time Markov process.
Markov processes with finite or countably infinite state spaces Z are called Markov
chains. Thus, a discrete-time Markov chain has both a discrete state space and a dis-
crete parameter space. Deviations from this terminology can be found in the literature.
Markov processes play an important role in all sorts of applications, mainly for four
reasons: 1) Many practical phenomena can be modeled by Markov processes. 2) The
input necessary for their practical application is generally more easy to provide than
the necessary input for other classes of stochastic processes. 3) Computer algorithms
are available for numerical evaluations. 4) Stochastic processes  with{X(t), t ∈ T}
independent increments and parameter space   always have the MarkovT = [0,∞)
property. The practical importance of Markov processes is illustrated by numerous
examples in chapters 8 and 9  .

Theorem 6.1 A Markov process is strongly stationary if and only if its one-dimen-
sional probability distribution does not depend on time, i.e., if there exists a distribu-
tion function F(x) with

                               �Ft(x) = P(X(t) ≤ x) = F(x) for all t ∈ T.

Thus, condition (6.17), which is necessary for any a stochastic process to be strongly
stationary, is necessary and sufficient for a Markov process to be strongly stationary.

Mean-Square Continuous  A second order process  is said to be mean{X(t), t ∈ T}
-square continuous at point  ift = t0 ∈ T

                             (6.24)lim
h→0

E([X(t0 + h) − X(t0)]2) = 0 .

The process  is said to be mean-square continuous in the region {X(t), t ∈ T} T0 ,
 if it is mean-square continuous at all points  T0 ⊆ T, t ∈ T0.

According to section 5.2.1 (page 205), the convergence used in (6.24) is called con-
vergence in mean square. There is a simple criterion for a second order stochastic
process to be mean-square continuous at : t0

    A second order process  is mean-square continuous at  if and only{X(t), t ∈ T} t0
    if its covariance function   is continuous at C(s, t) (s, t) = (t0, t0).

 a corollary from this statement:As

    A weakly stationary process is mean-square  continuous  in      {X(t), t ∈ (−∞,+∞)}
      if  and only if it is mean-square continuous at time point (−∞,+∞) t = 0.
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The following two examples make use of two formulas from trigonometry:

cosα cosβ = 1
2[cos(β − α) + cos(α + β)] ,

     cos(β − α) = cosα cosβ + sinα sinβ .

Example 6.6 (cosine wave with random amplitude and random phase)  In modify-
ing example 6.3, let

X(t) = A cos(ωt +Φ),

where A is a nonnegative random variable with finite mean value and finite variance.
The random parameter  is assumed to be uniformly distributed over  and in-Φ [0, 2π]
dependent of A. The stochastic process  can be thought of as the{X(t), t ∈ (−∞,+∞)}
output of an oscillator, selected from a set of oscillators of the same kind, which have
been turned on at different times (see, e.g., Helstrom (1989)). Since

E(cos(ωt +Φ)) = 1
2π ∫0

2π cos(ωt + ϕ)dϕ = 1
2π[sin(ωt + ϕ)]0

2π = 0,

the trend function of this process is identically zero:
m(t) ≡ 0.

Its covariance function is
C(s, t) = E{[A cos(ωs +Φ)][A cos(ωt +Φ)]}

= E(A2) 1
2π ∫0

2π cos(ωs + ϕ) cos(ωt + ϕ)dϕ

= E(A2) 1
2π ∫0

2π 1
2{cosω(t − s) + cos [ω(s + t) + 2ϕ]}dϕ .

The first integrand is a constant with respect to integration. Since the integral of the
second term is zero,  depends only on the difference C(s, t) τ = t − s :

C(τ) = 1
2 E(A2) cos wτ .

Thus, the process is weakly stationary.                                                                       �

Example  6.7  Let the stochastic process  be is defined by{X(t), t ∈ (−∞,+∞)}
X(t) = A cosωt + B sinωt ,

where A and B are two uncorrelated random variables satisfying
E(A) = E(B) = 0 and Var(A) = Var(B) = σ2 < ∞ .

Since  for all t,  is a second order process. ItsVar(X(t)) = σ2 < ∞ {X(t), t ∈ (−∞,+∞)}
trend function is identically zero:  Thus,m(t) ≡ 0 .

C(s, t) = E(X(s)X(t)).

For A and B being uncorrelated,  Hence,E(AB) = E(A)E(B).
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C(s, t) = E(A2cosωs cosωt + B2sinωs sinωt)

          +E(AB cosωs sinωt + AB sinωs cosωt)

    = σ2 (cosωs cosωt + sinωs sinωt)

        +E(AB) (cosωs sinωt + sinωs cosωt)

                          = σ2cosω(t − s) .
Thus, the covariance function depends only on the difference τ = t − s :

C(τ) = σ2cosωτ
so that the process  is weakly stationary.                                   �{X(t), t ∈ (−∞,+∞)}

Example 6.8 (randomly delayed pulse code modulation)  Based on the stochastic
process  defined in example 6.4, the stochastic process{X(t), t ∈ (−∞,+∞)}

 with  {Y(t), t ∈ (−∞,+∞)} Y(t) = X(t − Z)

is introduced, where Z is uniformly distributed over . When shifting the sample[0, 1]
paths of the process  Z time units to the right, one obtains the{X(t), t ∈ (−∞,+∞)}
corresponding sample paths of the process  For instance, shifting{Y(t), t ∈ (−∞,+∞)}.
the section of the sample path, shown in Figure 6.3,  time units to the right yieldsZ = z
the corresponding section of the sample path of the process  de-{Y(t), t ∈ (−∞,+∞)}
picted in Figure 6.4.
The trend function of the process  is{Y(t), t ∈ (−∞,+∞)}

m(t) ≡ a (1 − p).
To determine the covariance function, let  denote the random event thatB = B(s, t)

 and X(t) are separated by a switching point   ThenX(s) n + Z; n = 0,±1,±2, ... .

P(B) = t − s , P(B) = 1 − t − s .

The random variables X(s) and X(t) are independent if  and/or B occurs.t − s > 1
Therefore,

C(s, t) = 0 if t − s > 1 and/or B occurs.

If ,  and  are only then independent if B occurs. Hence, the covar-t − s ≤ 1 X(s) X(t)
iance function of  given  can be obtained as follows:{Y(t), t ∈ (−∞,+∞)} t − s ≤ 1
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C(s, t) = E(X(s)X(t) B)P(B) + E(X(s)X(t) B)P(B) −m(s)m(t)
      = E(X(s))E(X(t))P(B) + E([X(s)]2)P(B) −m(s)m(t)

           = [a(1 − p)]2 t − s + a2(1 − p)(1 − t − s ) − [a(1 − p)]2 .

Finally, with ,  the covariance function becomesτ = t − s

C(τ) =
⎧

⎩
⎨

a2p(1 − p)(1 − τ ) for τ ≤ 1
0 elsewhere

.

The process  is weakly stationary. Analogously to the transition{Y(t), t ∈ (−∞,+∞)}
from example 6.3 to example 6.6, stationarity is achieved by introducing a uniformly
distributed phase shift in the pulse code modulation of example 6.4.                         �

6.4 TIME SERIES IN DISCRETE TIME

6.4.1 Introduction

All examples in sections 6.2 and 6.3 dealt with stochastic processes in continuous
time. In this section, examples for discrete-time processes are considered, which are
typical in time-series analysis. The material introduced in the previous sections is
extended and supplemented with time-series specific terminology and techniques.
A time series is a realization (trajectory, sample path) of a stochastic process in dis-
crete time . The time (parameter) space T of this process is finite,{X(t1), X(t2), ...}
i.e.  or only a finite piece of a trajectory of a stochastic processT = {t1, t2, ..., tn},
with unbounded time space  has been observed. Thus, a time series isT = {t1, t2, ...}
simply a sequence of real numbers

x1, x2, ..., xn

with property that the underlying stochastic process has assumed value  at time :xi ti

X(ti) = xi = x(ti) ; i = 1, 2, ..., n.

Frequently it is assumed that the  are equidistant, i.e.,t1, t2, ..., tn

ti = iΔt ; i = 1, 2, ..., n.
If  the  underlying  stochastic  process  is  a  process  in  continuous time, it{X(t), t ∈ T}
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also can give rise to a time series in discrete time, simply by scanning the state of the
process at discrete (possibly equidistant) time points. As with stochastic processes,
the parameter 'time' in time series need not be the time. Time series occur in all areas,
where the development of economical, physical, technological, biological, etc. pheno-
mena is controlled by stochastic processes. Hence, with regard to application of time
series, it can be referred to the introduction of this chapter. Figures 6.1 and 6.2 are
actually time series plots. When analyzing time series, the emphasis is on numerical
aspects how to extract as much as possible information from the time series with
regard to trend, seasonal, and random influences as well as prediction and to a lesser
extent on theoretical implications regarding the underlying stochastic process.
In elementary time series analysis, the underlying stochastic process  is{X(t), t ∈ T}
assumed to have a special structure:  is given by the additive superposition ofX(t)
three components:

                                     (6.25)X(t) = T(t) + S(t) + R(t),

where  is the trend of the time series and  is a seasonal component. Both T(t) S(t) T(t)
and  are deterministic functions of t, whereas  is a random variable, which, inS(t) R(t)
what follows, is assumed to have mean value  for all t. The seasonal com-E(R(t)) = 0
ponent captures periodic fluctuations of the observations as they commonly arise
when observing e.g. meterological parameters as temperature and rainfall against the
time. This means that a single observation of the process  made at time t{X(t), t ∈ T}
has structure

                                   (6.26)x(t) = T(t) + S(t) + r(t) ,
where  is a realization of the random variable r(t) R(t).
As a numerical example for a time series, Table 6.1 shows the average of the daily
maximum temperatures per month  in Johannesburg over a time period of 24 months

 and Figure 6.6 the corresponding time series plot. The effect of a seasonal(in 0C)
component is clearly visible.
It may make sense to add other deterministic components to the model (6.25), for
instance, a component which takes into account short-time cyclic fluctuations of the
observations, e.g. systematic fluctuations of the temperature during a day or long-time
cyclic changes in the electromagnetic radiation of the sun due to the 33-year period
of sunspot fluctuations. It depends on what information is wanted. If the averages of
the daily maximum temperatures are of interest, then the fluctuations of the tempera-
ture during a day are not relevant. If the oxygen content in the water of a river is
measured against the time, then two additional components in (6.25), namely the
water temperature and the speed of the running water, should be included. This short
section is based on the model (6.25) for the structure of a time series.
The reader will have noticed that the term trend has slightly different meanings in
stochastic processes and in time series analysis:
a) The trend of a stochastic process  is the mean value   as{X(t), t ∈ T} m(t) = E(X(t))
a function of time. Hence, a stochastic process of structure (6.25) has trend function
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 Month i    1    2    3    4    5    6    7    8    9   10   11   12

26.3 25.6 24.3 22.1 19.1 16.5 16.4 19.8 22.8 25.0 25.3 26.1

 Month i   13   14   15   16   17   18   19   20   21   22   23   24

27.4 26.3 24.8 22.4 18.6 16.7 15.9 20.2 23.4 24.2 25.9 27.0

Table 6.1 Monthly average maximal temperature in Johannesburg

m(t) = T(t) + S(t),
since, by assumption, E(R(t)) ≡ 0.

b) In time series analysis, the trend gives information on the average develop-T(t)
ment of the observations in the longrun. More exactly, the trend of a time series can
principally be obtained by excluding all possible sources of variations of the observa-
tions (deterministic and random ones in model (6.25)). Later numerical methods are
proposed how to do this.
Note If  is a parallel to the t-axis, then the time series analysts say 'the time series has noT(t)
trend'. This terminology should not be extended to the trend functions  of stochastic pro-m(t)
cesses. A constant trend function is after all a trend function as well.

6.4.2 Smoothing of Time Series

Smoothing techniques are simple and efficient methods to partially or completely
'level out' deterministic and/or random fluctuations within observed time series, and
in doing this they provide information on the trend  of a time series. The ideaT(t)
behind smoothing is a technique, which is well-established in the theory of linear
systems, and which is denoted there as  filtration. Its basis is a linear  filter, which
transforms  a  given  time  series   of length  into a  sequence{xi} = {x0, x1, ..., xn} n + 1
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{yi} = {ya, ya+1, ..., yn−b}

of length  as follows:n + 1 − a − b

              (6.27)yk = Σ
i=k−a

k+b
wi−k xi ; k = a, a + 1, ..., n − b; 0 ≤ a, b ≤ n,

or
yk = w−a xk−a +w−a+1xk−a+1 + . .. +wb xk+b ; k = a, a + 1, ..., n − b.

The parameter  are the weights assigned to the respective observations  whereaswi xj,
the interval  determines the bandwidth of the filter. The weights will usually[−a, b]
be positive, but can also  negative. They must satisfy the normalizing conditionbe

                                                (6.28)Σi=−a
i=b wi = 1.

To illustrate the filter, let  Then (6.27) becomesa = b = 2.
  yk = w−2 xk−2 +w−1xk−1 +w0 xk + w1 xk+1 +w2 xk+2.

Thus,  is calculated as the sum of those weighted values, which the time seriesyk
 assumes at time points  It is obvious that in this{xi} k − 2, k − 1, k, k + 1, and k + 2.

way a 'smoother' sequence than  is generated, i.e.  will exhibit fewer fluctu-{xi} {yi}
ations, and its fluctuations will have on average smaller amplitudes than  Depend-{xi}.
ing on the aim of smoothing, bandwidth and weights have to be chosen accordingly.
If the aim is to level out periods of seasonal influence in order, e.g., to get information
on the trend of  then a large bandwidth must be applied. The weights  should{xi}, wi
generally be chosen in such a way that the influence of the  on the value of  de-xi yk
creases with increasing timely distance  of  to . tk − ti xi yk

Moving Averages A simple special case of (6.27) is to assume  anda = b

wi =
⎧

⎩
⎨
⎪
⎪

1
2b + 1

for i = −b,−b + 1, . .. , b − 1, b,

0 otherwise.

This case is denoted as M.A.(2b+1). The corresponding bandwidth is  and[−b,+b]
comprises  time points.2b + 1

Special cases: 1) If  then  is calculated from three observations (M.A.(3)):b = 1, yk

  yk =
1
3 [xk−1 + xk + xk+1].

2) If  then  is calculated from 5 observations (M.A.(5)):b = 2, yk

yk =
1
5 [xk−2 + xk−1 + xk + xk+1 + xk+2].

Frequently, the time point k is interpreted as the presence, so that time points smaller
than k belong to the past and time points greater than k to the future. Particularly inter-
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esting is the case when  is calculated from the present value and past values of yk {xi}.
This case is given by (6.27) with  For instance, with  and equal weights,b = 0. a = 2

  yk =
1
3 [xk + xk−1 + xk−2].

In this case it makes sense to interpret  as a prediction of the unknown value yk xk+1.

Smoothing  with  the  Discrete  Epanechnikov Kernel   The Epanechnikov kernel is
given by bandwidth  and weights[−b, b]

wi =
⎡

⎣
⎢1 − i2

(b + 1)2
⎤

⎦
⎥ c for i = 0, ± 1, ...,±b.

The factor  makes sure that condition (6.28) is fulfilled:c

c = ⎡
⎣
⎢1 +

b (4b + 5)
3(b + 1)

⎤
⎦
⎥
−1

.

For instance, if  then  and  is given byb = 2, c ≈ 0.257 yk

yk = w−2 xk−2 +w−1 xk−1 +w0 xk +w1 xk+1 + w2 xk+2

                    = [0.556 xk−2 + 0.889 xk−1 + xk + 0.889 xk+1 + 0.556 xk+2] c .

This filter is convenient for numerical calculations: 1) Its input is fully determined by
its bandwidth parameter b, and 2) the weights have the symmetry property  w−i = wi.
Moreover, the observation  has the strongest impact on  and the impact of thexk yk,

 on  becomes smaller with increasing distance of  to  The larger the param-xi yk ti tk.
eter b, the stronger is the smoothing effect.

Exponential (Geometrical) Smoothing  This type of smoothing uses all the 'past'
values and the "present" value of the given time series  to calculate {x0, x1, ..., xn} yk
from the observations  in the following way:xk, xk−1, ..., x0

 (6.29)yk = λ c(k) xk + λ (1 − λ)c(k) xk−1 + . .. + λ (1 − λ)k c(k) x0, k = 0, 1, ..., n,

where the parameter  satisfies   Hence, the weights areλ 0 < λ < 1.
w−i = λ (1 − λ)i c(k) for i = k, k − 1 , ..., 1, 0 .

The bandwidth limitation  depends on k, whereas  The factor a = a(k) = k + 1 b = 0.
 ensures that condition (6.28) is fulfilled (apply formula (2.18) with ):c(k) x = 1 − λ

                                       (6.30)c(k) = 1
1 − (1 − λ)k+1 .

Since  and smoothing starts with , andc(0) = 1/λ c(1) = 1/λ(2 − λ), y0 = x0

y1 =
1

2−λ x1 +
1−λ
2−λ x0 = 1

2−λ [x1 + (1 − λ) x0] .

A strong smoothing of  will be achieved with small values of  since in this case{xi} λ
even the  'more distant' values  have a nonnegligible effect on . To achieve the yk

6 BASICS OF STOCHASTIC PROCESSES                                                 241



k     2     4      6     8   10   12   14   16   18   20   22

λ = 0.2 2.778 1.694 1.355 1.202 1.120 1.074 1.046 1.029 1.018 1.012 1.007

λ = 0.4 1.563 1.149 1.049 1.017 1.006 1.002 1.001 1.000 1.000 1.000 1.000

Table 6.2 Convergence of c(k) towards 1 with increasing k

desired result, one should try  different values of  . As a rule of thumb, start with aλ
value between 0.1 and 0.3.

Table 6.2 shows that even for fairly small values of  the factor  tends to 1 ratherλ c(k)
fast. Therefore, in particular when smoothing large time series (which possibly  origi-
nated in the 'distant past'),  is frequently assumed to be true right from thec(k) = 1
beginning, i.e., for all  Under this assumption, equation (6.29) can bek = 0, 1, ... .
written in the recursive form

                  (6.31)yk = λ xk + (1 − λ) yk−1 ; y0 = x0, k = 1, 2, ..., n.
Table 6.3 gives some principal guidelines about the choice of   when smoothing.λ

Effect of the choice of λon: λ large λ small

 Smoothing         little         strong

 Weights of distant observations        small         large

 Weights of near observations        large         small

Table 6.3  Choice of   in exponential smoothingλ

Table 6.4 shows once more the original time series  from Table 6.1, the respec-{xi}
tive sequences  obtained by M.A.(3), by the Epanechnikov kernel (Ep) with {yi} b = 2,
and by exponential smoothing with  and (6.31), starting with  (Ex 0.6).λ = 0.6 y1 = x1
Figure 6.7 illustrates the results for exponential smoothing and for the Epanechnikov
approach. With the parameters selected, the sequences  essentially follow the{yi}
seasonal (periodic) fluctuations, but cleary, the original time series has been
smoothed.

Short-Time Forecasting The recursive equation (6.31) provides an easy and effi-
cient possibility for making short-time predictions: Since  only depends on theyk
observations  made at time points before or at time k,  can be considered anxi yk
estimate of the value the time series  will assume at time point  If this{xi} k + 1.
estimate is denoted as  equation (6.31) can be rewritten asxk+1,

xk+1 = λ xk + (1 − λ) xk−1 ; y0 = x0, k = 1, ..., n.

This equation contains all the information on the development of the time series up to
time point k, and gives an estimate of the value of the next observation at time k + 1.
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 Month i    1    2    3    4    5    6    7    8    9   10   11   12

xi 26.3 25.6 24.3 22.1 19.1 16.5 16.4 19.8 22.8 25.0 25.3 26.1

 M.A.3 25.4 24.0 21.8 19.2 17.3 17.6 19.7 22.5 24.4 25.5 26.3

 Ep b=2 23.6 22.6 19.5 18.3 18.5 20.0 22.1 24.0 25.4 26.1

 Ex 0,6 26.3 25.9 24.9 23.2 20.7 18.2 17.1 18.7 21.2 23.5 24.6 25.5

 Month i   13   14   15   16   17   18   19   20   21   22   23   24

xi 27.4 26.3 24.8 22.4 18.6 16.7 15.9 20.2 23.4 24.2 25.9 27.0

 M.A.3 26.6 26.2 24.5 21.9 19.2 17.1 17.6 19.8 22.6 24.5 25.7

 Ep b =2 26.2 25.6 24.1 21.8 19.5 18.3 18.5 20.0 22.1 24.2

 Ex 0.6 26.6 26.4 25.4 23.6 20.6 18.3 16.9 18.9 21.6 23.2 24.9 26.2

Table 6.4 Data from Table 6.1 and the effect of smoothing

6.4.3 Trend Estimation

To obtain information on the trend  of a time series by smoothing methods, theT(t)
bandwidths of the M.A. technique and of the Epanechnikov kernel must be sufficient-
ly large to be able to filter out seasonal (periodic) fluctuations. The time series given
by Table 6.1, as with most other meterological and many economical time series, has
a period of 12 months. Thus, good smoothing results can be expected with M.A.b with

 In case of exponential smoothing, the parameter  needs to be small enoughb ≥ 12. λ
to achieve good smoothing results. All these techniques require sufficiently long time
series with respect to the length of the periods of seasonal influences.
Smoothing techniques, however, do not yield the trend as a (continuous) function. But
they give an indication which type  of  continuous function  can be used to  model the
trend  best. In many cases, a linear trend function
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Figure 6.7 Time series plot for Tables 6.1 and 6.4
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                                            (6.32)T(t) = α + β t
will give a satisfactory fit, at least piecewise. Thus, when the original time series {xi}
has been smoothed to a time series without seasonal component  then the{yi),
problem of fitting a linear trend function to  is equivalent to determining the{yi}
empirical regression line to the values  According to formulas (3.46), page 143,{yi}.
estimates for the coefficients  and  areα β

            (6.33)α =
Σ
i=1

n
(yi − y) (ti − t)

Σ
i=1

n
(ti − t)2

=
Σ
i=1

n
yi ti − n y t

Σ
i=1

n
ti
2 − n t2

, β = y − α t ,

where the  just as the  belong to the time points  For estimations of more com-yi xi ti.
plicated trend functions, i.e. polynomial ones of higher order than 1, the use of a
statistical software package is recommended.
Removing the seasonal influences from a time series of structure (6.26) led to the
time series  The next step might be to eliminate the influence of the trend from{yi}.
the time series as well. In many cases this can be achieved, at least approximately, by
going over from the time series  to the time series  with{yi} {ri}

                                  (6.34)ri = yi − T(ti), i = 1, 2, ..., n,
where  is the value of the trend at time  (obtained by smoothing the sequenceT(ti) ti

).  Thus,  is the time series, which arises from the original{yi} {ri} = {r1, r2, ..., rn}
time series  by eliminating both seasonal influences and trend. Hence, fluctua-{xi}
tions within the sequence  are purely due to random influences on the develop-{ri}
ment of a time series. The sequence  is frequently assumed to be the trajectory of{ri}
a weakly stationary discrete-time stochastic process  The next{R(t1), R(t2), ..., R(tn)}.
section deals with some stationary discrete-time stochastic processes ,{R(t), t ∈ T}
which are quite popular in time series analysis as models for the random component
in time series.

Example 6.9 Let us again consider the time series of Table 6.1. This series is too
short for long-time predictions of the development of the monthly average maximum
temperatures in Johannesburg, but it is suitable as a numerical example. To eliminate
the seasonal fluctuations, the M.A.(13) technique is applied. Table 6.5 shows the re-
sults. For instance, the values  and  in the smoothed series   are y7 y18 {y7, y7, ..., y18}

y7 =
1

13 Σi=1
13 xi =

1
13 (26.3 + 25.6 + 24.3 + 22.1 + 19.1 + 16.5 + 16.4

                        + 19.8 + 22.8 + 25.0 + 25.3 + 26.1 + 27.4) = 22.8,

  y18 =
1

13 Σi=12
24 xi =

1
13(26.1 + 27.4 + 26.3 + 24.8 + 22.4 + 18.6 + 16.7

                             + 15.9 + 20.2 + 23.4 + 24.2 + 25.9 + 27.0) = 23.0.
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month i    7    8    9   10   11   12   13   14   15   16   17   18

yi  22.8  22.8  22.8  22.6  22.3  22.2  22.1  22.4  22.7  22.8  22.9  23.0

T(ti)  22.4  22.5  22.5  22.5  22.6  22.6  22.6  22.6  22.7  22.7  22.7  22.9

ri   0.4   0.3   0.3   0.1  -0.3  -0.4  -0.5  -0.2   0.0   0.1   0.2   0.1

Table 6.5 Results of a time series analysis for the data of Table 6.1

The time points  in Table 6.5 refer to the respective month, i.e. ,ti ti = i, i = 7, 8, ..., 18
so that

  and  y = 1
12 Σi=7

18 yi = 22, 6 t = 1
12 Σi=7

18 i = 12.5.

Table 6.5 supports the assumption that the trend of the time series  in the interval{xi}
 is a linear one. By (6.33), estimates of its slope and intercept are    [7, 18] α = 0.0308

and  Hence, the linear trend of this time series between  and  isβ = 22.215. t = 7 t = 18

                        (6.35)T(t) = 0.0308 t + 22.215 , 7 ≤ t ≤ 18.
Letting  yields the third row in Table 6.5 and the fourth row contains thet = 7, 2, ..., 18
effects  of the 'purely random component' . Figure 6.8 shows theri = yi − T(ti) R(t)
'smoothed values'  and the linear trend (6.35) obtained from these values.            yi

Some statistical procedures require as input time series which are sample paths of
(weakly) stationary stochastic processe (see section 6.4.4). If the time series  has{xi}
trend then the underlying stochastic process cannot be stationary. By replacing,T(t),
however, the original time series  with{xi}

  {yi = xi − T(ti); i = 1, 2, ..., n},

one frequently gets a time series, which is at least approximately the sample path of a
discrete-time stationary process. At least, the time series  has no trend.{yi}

For getting into theory and applications of time series, the text Chatfield (2012) is
recommended. Other recent books are e.g. Madsen (2008) and Prado, West (2010).
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6.4.4 Stationary Discrete-Time Stochastic Processes

This section deals with some discrete-time stochastic processes and their stationary
representations, which play an important role in time series analysis. They are de-
signed as models for the underlying mathematical structure of stochastic processes,
which generate the observed time series, or at least as models for their random com-
ponents. Knowledge of this structure is particularly essential for the prediction of not
yet observed values and for analyzing stochastic signals in communication theory.
The models are related to smoothing techniques, but now the  are no longer realxi
numbers observed over a time interval, but time-dependent random variables pointed
out before, discrete-time stochastic processes are actually sequences of random varia-
bles. Hence, in what follows they are written as  if the{..., X−2, X−1, X0, X1, X2, ...}
process started 'in the past', and  or  otherwise. {X0, X1, ...} {X1, X2, ...}

Purely Random Sequence Let  be a sequence of inde-{..., X−2, X−1, X0, X1, X2, ...}
pendent random variables, which are identically distributed as X with

                                    (6.36)E(X) = 0 and Var(X) = σ2.
The trend function of this sequence is identically equal to 0:

m(t) = 0; t = 0,±1,±2, ... .
The covariance function of the purely random sequence is

   C(s, t) =
⎧

⎩
⎨

0 for s ≠ t,
σ2 for s = t,

or, letting τ = t − s,

                                       (6.37)C(τ) =
⎧

⎩
⎨
σ2 for τ = 0,
0 for τ ≠ 0.

The purely random sequence is also called discrete white noise. If, in addition, the Xi
are normally distributed, then  is called a Gaussian{..., X−2, X−1, X0, X1, X2, ...}
discrete white noise. The purely random sequence is the most popular discrete-time
stochastic process for modelling a random noise, which superimposes an otherwise
deterministic time-dependent phenomenon. An example for this is the stochastic
process given by (6.25). Its components S(t) and T(t) are deterministic.

Sequence of Moving Averages of Order n. Notation: M.A.(n). Let the random var-
iable  be given byYt

Yt = Σi=0
n ci Xt−i ; t = 0,±1,±2, ... ;

where n is a positive integer,  are finite real numbers, and  is thec0, c1, ..., cn {Xt}
purely random sequence with parameters (6.36) for all . Thus, thet = 0,±1,±2, ...
random variable  is constructed from the 'present'  and from the n 'preceding'Yt Xt
random variables  This is again the principle of moving averagesXt−1, Xt−2,..., Xt−n.
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introduced in the previous section fo ther realizations of the . In view  (4.56),Xt of
page 187,

Var(Yt) = σ2Σ
i=0

n
ci

2 < ∞, t = 0,±1,±2, ...,

so that  is a second-order process. Its trend function is identically{Yt, t = 0,±1,±2, ... }
equal to 0:

m(t) = E(Yt) = 0 for t = 0,±1,±2, ... .

For integer-valued  and t,s

C(s, t) = E(YsYt) = E
⎛
⎝⎜
⎡

⎣
⎢ Σ

i=0

n
ci Xs−i

⎤

⎦
⎥ ⋅

⎡
⎣
⎢ Σ

k=0

n
ck Xt−k

⎤
⎦
⎥
⎞
⎠⎟

= E⎛
⎝⎜ Σi=0

n
Σ

k=0

n
ci ck Xs−i Xt−k

⎞
⎠⎟

.

Since  for  the double sum is 0 when  Other-E(Xs−i Xt−k) = 0 s − i ≠ t − k, t − s > n.
wise there exist i and k so that  In this case  becomess − i = t − k. C(s, t)

C(s, t) = E
⎛

⎝
⎜
⎜
⎜

Σ
0≤i≤n

0≤ t−s +i≤n

ci c t−s +i Xs−i
2
⎞

⎠
⎟
⎟
⎟

= σ2 Σ
i=0

n− t−s
ci c t−s +i .

Letting  the covariance function  becomesτ = t − s, C(s, t) = C(τ)

      (6.38)C(τ) =
⎧

⎩
⎨
σ2[c0c τ + c1c τ +1 + ⋅⋅⋅ + cn− τ cn ] for 0 ≤ τ ≤ n
0 for τ > n

.

Thus, the sequence of moving averages  is weakly stationary.{Yt, t = 0,±1,±2, ... }

Special case: Let  Then the sequence M.A.(n) becomesci =
1

n + 1 ; i = 0, 1, ..., n.

   Yt = 1
n + 1 Σi=0

n
Xt−i ; t = 0,±1 ,±2, ... ,

and the covariance function (6.38) simplifies to

      C(τ) =
⎧

⎩

⎨
⎪

⎪

σ2

n + 1
⎛
⎝1 −

τ
n + 1

⎞
⎠ for 0 ≤ τ ≤ n,

0 for τ > n .
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Sequence of Moving Averages of Unbounded Order. Notation: M.A.( ). Let∞

                                (6.39)Yt = Σ
i=0

∞
ciXt−i ; t = 0,±1,±2, ... ,

where  is the purely random sequence with parameters (6.36), and the  are real{Xt} ci
numbers.

Remark The random sequence  defined in this way is sometimes called a{Yt, t = 0,±1,±2, ... }
linear stochastic process.

To guarantee the convergence of the infinite series (6.39) in mean square, the  mustci

satisfy

                                                (6.40)Σ
i=0

∞
ci

2 < ∞ .

From (6.38), the covariance of the sequence M.A.( ) is∞

                         (6.41)C(τ) = σ2Σ
i=0

∞
ci c τ +i ; τ = 0,±1,±2, ... .

In particular, the variance of  isYt

Var(Yt) = C(0) = σ2Σ
i=0

∞
ci

2; t = 0,±1,±2, ... .

If the doubly infinite sequence of real numbers 

{..., c−2, c−1, c0, c1, c2, ...}

satisfies the condition

Σ
i=−∞

∞
ci

2 < ∞ ,

then the doubly infinite series of random variables
{..., Y−2, Y−1, Y0, Y1, Y2, ...}

defined by

                            (6.42)Yt = Σ
i=−∞

∞
ci Xt−i ; t = 0,±1,±2, ... ,

is also weakly stationary, and it has covariance function

C(τ) = σ2 Σ
i=−∞

∞
ci c τ +i ; τ = 0,±1,±2, ...

and variance

Var(Yt) = σ2 Σ
i=−∞

∞
ci

2; t = 0,±1,±2, ... .

In order to distinguish between the sequences of structure (6.39) and (6.42), they are
called one- and two-sided sequences of moving averages, respectively.
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Autoregressive Sequence of Order 1 (Notation: AR(1))  Let a and b be finite real
numbers with  Then a doubly infinite series  is recursively generated bya < 1. {Yt}
the equation

                         (6.43)Yt = a Yt−1 + b Xt ; t = 0,±1,±2, ...,
where  is the purely random sequence with parameters (6.36). (Note the analogy{Xt}
to the recursive equation (6.31).) Thus, the 'present' state  depends directly on theYt
preceding one  and on a random noise term  with mean value 0 and varianceYt−1 bXt

 The n-fold application of (6.43) yieldsb2σ2.

                                      (6.44)Yt = anYt−n + b Σ
i=0

n−1
aiXt−i.

This formula shows that the influence of a past state  on the present state  onYt−n Yt
average decreases as the distance n between  and  increases. Hence it can beYt−n Yt
anticipated that the solution of the recurrent equation (6.43) is a stationary process.
This stationary solution is obtained by letting n tend to infinity in (6.44): Since there
holds  lim

n→∞
an = 0 ,

                             (6.45)Yt = b Σ
i=0

∞
aiXt−i, t = 0,±1,±2, ... .

The doubly infinite random sequence  generated in this way is{Yt ; t = 0,±1,±2, ...}
called a first-order autoregressive sequence or an autoregressive sequence of order 1
(shortly: AR(1)). This sequence is a special case of the random sequence defined by
(6.38), since letting there  makes the sequences (6.38) and (6.45) formallyci = bai

identical. Moreover, condition (6.40) is fulfilled:

b2Σ
i=0

∞
(ai)2 = b2Σ

i=0

∞
a2 i = b2

1 − a2 < ∞.

Thus, an autoregressive sequence of order 1 is a weakly stationary sequence. Its co-
variance function is given by formula (6.41) with ci = b ai :

C(τ) = (bσ)2Σ
i=0

∞
aia τ +i = (bσ)2 a τ Σ

i=0

∞
a2i

so that

C(τ) = (bσ)2

1 − a2 a τ ; τ = 0,±1,±2, ... .

Autoregressive Sequence of Order r (Notation: AR(r))  In generalization of the re-
cursive equation (6.43), let for a given sequence of real numbers  witha1, a2, ..., ar
finite  and finite integer r random variables  be generated byai Yt

                   (6.46)Yt = a1Yt−1 + a2Yt−2 + . .. + arYt−r + bXt,

where  is a purely random sequence with parameters (6.36). The sequence{Xt}
 is called an autoregressive sequence of order r.{Yt ; t = 0,±1,±2, ... }
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It is interesting to investigate whether analogously to the previous example a weakly
stationary sequence

                           (6.47)Yt = Σi=0
∞ ci Xt−i ; t = 0,±1,±2, ... ,

exists, which is solution of (6.46).  Substituting (6.47) into (6.46) yields a linear alge-
braic system of equations for the unknown parameters ci :

              c0 = b
 c1 − a1c0 = 0
            c2 − a1c1 − a2c0 = 0

. ..

                        cr − a1cr−1 − . .. − ar c0 = 0
          ci − a1ci−1 − . .. − arci−r = 0 ; i = r + 1, r + 2, . .. .

It can be shown that a nontrivial solution  of this system exists, which{c0, c1, . .. }
satisfies condition (6.40) if the absolute values of the solutions  of the al-y1, y2, ..., yr
gebraic equation 

                                  (6.48)yr − a1 yr−1 − . .. − ar−1 y − ar = 0

are all less than 1, i.e., they are within the unit circle. (Note, this is solely a property
of the sequence   In this case, the  sequence  givena1, a2, ..., ar.) {Yt ; t = 0,±1,±2, ...}
by (6.47) is a weakly stationary solution of (6.46).

Special Case r = 2  Let   and  be the solutions ofy1 y2

                                         (6.49)y2 − a1 y − a2 = 0
with  and  Then, without proof, the covariance function of the cor-y1 < 1 y2 < 1.
responding weakly stationary autoregressive sequence of order 2 is
for y1 ≠ y2

       (6.50)C(τ) = C(0)
(1 − y1

2) y2
τ +1 − (1 − y2

2) y1
τ +1

(y2 − y1)(1 + y1 y2)
; τ = 0,±1,±2, ...,

and for y1 = y2 = y0

              (6.51)C(τ) = C(0)
⎛

⎝
⎜1 +

1 − y0
2

1 + y0
2 τ

⎞

⎠
⎟ y0

τ ; τ = 0,±1,±2, ...,

where the variance  both in (6.50) and (6.51) isC(0) = Var(Yt)

C(0) = 1 − a2

(1 + a2)⎡⎣(1 − a2)2 − a1
2 ⎤⎦

(bσ)2.

If the solutions of (6.49)  complex, say,are

  y1 = y0 eiω and y2 = y0 e−iω
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with real numbers  and , then the covariance function assumes a more conven-y0 ω
ient form than (6.50):

C(τ) = C(0) α y0
τ sin(ω τ + β) ; τ = 0,±1,±2, ...,

where

α = 1
sinβ

and β = arctan
⎛

⎝
⎜

1 + y0
2

1 − y0
2 tanω

⎞

⎠
⎟ .

If  then this representation of  is identical to (6.51).y1 = y2 = y0, C(τ)

Example 6.10 Consider an autoregressive sequence of order  given by2

Yt = 0.6Yt−1 − 0.05Yt−2 + 2Xt; t = 0,±1,±2, ... .

with   It is obvious that the influence of  on  is small compar-σ2 = Var(Xt) = 1. Yt−2 Yt
ed to the influence of  on  The corresponding algebraic equation (6.49) isYt−1 Yt.

y2 − 0.6 y + 0.05 = 0.

The solutions are  and  The absolute values of  and  are smal-y1 = 0.1 y2 = 0.5. y1 y2
ler than 1 so that the random sequence, generated by (6.46), is weakly stationary. Its
covariance is obtained from (6.50):

C(τ) = 7.017 (0.5) τ − 1.063 (0.1) τ ; τ = 0,±1,±2, ... .

As expected, with increasing , i.e, with increasing timely distance betweenτ = t − s
 and ,  the covariance is decreasing. The variance has for all  the valueYt Ys t

                                            Var(Yt) = C(0) = 5.954.

Autoregressive Mean Average (r, s)-Models. (Notation: ARMA(r, s)). Let the ran-
dom sequence  be generated by{Yt ; t = 0,±1,±2, ...}

                                   (6.52)Yt = +a1Yt−1 + a2Yt−2 + . .. + arYt−r

 +b0 Xt + b1 Xt−1 + . .. + bs Xt−s ,

where  is the purely random sequence with parameters (6.36). It can be shown{Xt}
that (6.52) also generates a stationary random sequence  if the absolute values of{Yt}
the solutions of the algebraic equation (6.48) are less than 1.

The practical work with ARMA-models and its special cases is facilitated by the use
of statistical software packages. Important problems are: Estimation of the parameters

 and  in (6.46) and (6.52),  estimation of trend functions, detection and quantifica-ai bi
tion of possible cyclic, seasonal, and other systematic influences. In particular, reliable
predictions are only possible if structure and properties of the random component

 as stationarity, Markov property, and other properties not taken into{R(t), t ∈ T}
account in this short section are known.
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6.5   EXERCISES

6.1) A stochastic process  has the one-dimensional distribution{X(t), t > 0}

{Ft(x) = P(X(t) ≤ x) = 1 − e−(x/t)2 , x ≥ 0, t > 0}.
Is this process weakly stationary?

6.2) The one-dimensional distribution of a stochastic process  is{X(t), t > 0}

Ft(x) = P(X(t) ≤ x) = 1
2π t σ ∫

−∞

x
e
− (u−μ t)2

2σ2 t du

with μ > 0, σ > 0; x ∈ (−∞ + ∞) .
Determine its trend function  and, for  and , sketch the functionsm(t) μ = 2 σ = 0.5

y1(t) = m(t) + Var(X(t)) and y2(t) = m(t) − Var(X(t)) .

6.3) Let , where A and  are independent, non-negative randomX(t) = A sin(ω t +Φ) Φ
variables with  uniformly distributed over  and Φ [0, 2π] E(A) < ∞.

(1) Determine trend, covariance, and correlation function of {X(t), t ∈ (−∞,+∞)}.
(2) Is the stochastic process  weakly and/or strongly stationary?{X(t), t ∈ (−∞,+∞)}

6.4) Let where A(t) and  are independent, non-negativeX(t) = A(t) sin(ω t +Φ) Φ
random variables for all t, and let be uniformly distributed over Φ [0, 2π].

Verify: If  is a weakly stationary process, then the stochastic pro-{A(t), t ∈ (−∞,+∞)}
cess  is also weakly stationary.{X(t), t ∈ (−∞,+∞)}

6.5) Let  be a sequence of real numbers, and  be a{a1, a2, ..., an} {Φ1,Φ2, ...,Φn}
sequence of independent random variables, uniformly distributed over [0, 2π].

Determine covariance and correlation function of the process {X(t), t ∈ (−∞,+∞)}
given by

X(t) = Σi=1
n ai sin(ω t +Φ i) .

6.6)* A modulated signal (pulse code modulation)  is given by{X(t), t ∈ (−∞,+∞)}

X(t) = Σ−∞
+∞ An h(t − n) ,

where the   are independent and identically distributed random variables whichAn
can only take on values  and  and have mean value 0. Further, let−1 +1

h(t) = 1 for 0 ≤ t < 1/2
0 elsewhere

.
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(1) Sketch a possible sample path of the stochastic process {X(t), t ∈ (−∞,+∞)}.

(2) Determine the covariance function of this process.
(3) Let  where the random variable Z  has a uniform distribution overY(t) = X(t − Z),

.[0, 1]
Is  a weakly stationary process?{Y(t), t ∈ (−∞,+∞)}

6.7) Let  be two independent, weakly{X(t), t ∈ (−∞,+∞)} and {Y(t), t ∈ (−∞,+∞)}
stationary stochastic  processes, whose trend functions are identically 0 and which
have the same covariance function .C(τ)
Verify: The stochastic process  with{Z(t), t ∈ (−∞,+∞)}

Z(t) = X(t) cosωt − Y(t) sinωt
is weakly stationary.

6.8) Let , where  is uniformly distributed over the interval X(t) = sinΦ t Φ [0, 2π].
Verify: (1) The discrete-time stochastic process  is weakly, but not{X(t); t = 1, 2, ...}
strongly stationary
(2) The continuous-time stochastic process  is neither weakly nor strong-{X(t), t ≥ 0}
ly stationary.

6.9) Let  and  be two independent stochastic{X(t), t ∈ (−∞,+∞)} {Y(t), t ∈ (−∞,+∞)}
processes with trend and covariance functions

 and mX(t), mY(t) CX(s, t), CY(s, t),

respectively. Further, let 
U(t) = X(t) + Y(t) and V(t) = X(t) − Y(t) , t ∈ (−∞,+∞).

Determine the covariance functions of the stochastic processes {U(t), t ∈ (−∞,+∞)}
and {V(t), t ∈ (−∞,+∞)}.

6.10) The following table shows the annual, inflation-adjusted profits of a bank in the
years between 2005 to 2015 [in $106].

Year 1 (2005)    2    3    4    5     6     7     8     9    10    11

Profit xi    0.549 1.062 1.023 1.431 2.100 1.809 2.250 3.150 3.636 3.204 4.173

(1) Determine the smoothed values  obtained by applying M.A.(3).{yi}
(2) Based on the  determine the trend function (assumed to be a straight line).yi,
(3) Draw the original time series plot, the smoothed version based on the  and theyi,
trend function in one and the same Figure.
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6.11) The following table shows the production figures  of cars of a company overxi
a time period of 12 years (in 103).

 Year i    1    2   3    4    5    6    7    8    9   10   11   12

xi  3.08  3.40  4.00  5.24  7.56 10.68 13.72 18.36 23.20 28.36 34.68 40.44

(1) Draw a time series plot. Is the underlying trend function linear?
(2) Smooth the time series  by the Epanechnikov kernel with bandwidth {xi} [−2,+2].
(3) Smooth the time series  by exponential smoothing with parameter  {xi} λ = 0.6
and predict the output for year 13 by the recursive equation (6.31).

6.12) Let  where  is theYt = 0.8Yt−1 + Xt ; t = 0,±1,±2, ..., {Xt ; t = 0,±1,±2, ...}
purely random sequence with parameters  and  E(Xt) = 0 Var(Xt) = 1.
Determine the covariance function and sketch the correlation function of the autore-
gressive sequence of order 1 {Yt ; t = 0,±1,±2, ...}.

6.13) Let an autoregressive sequence of order 2  be given by{Yt ; t = 0,±1,±2, ...}
Yt − 1.6Yt−1 + 0.68Yt−2 = 2Xt ; t = 0,±1,±2, ...,

where  is the same purely random sequence as in the previous{Xt ; t = 0,±1,±2, ...}
exercise.
(1) Is the the sequence  weakly stationary?{Yt ; t = 0,±1,±2, ...}
(2) Determine its covariance and correlation function.

6.14) Let an autoregressive sequence of order 2  be given by{Yt ; t = 0,±1,±2, ...}
Yt − 0.8Yt−1 − 0.09Yt−2 = Xt ; t = 0,±1,±2, ... .

where  is the same purely random sequence as in exercise (6.12).{Xt ; t = 0,±1,±2, ...}
(1) Check whether the sequence  is weakly stationary. If yes,{Yt ; t = 0,±1,±2, ...}
then determine its covariance function and its correlation function.
(2) Sketch its correlation function and compare its graph with the one obtained in ex-
ercise (6.12).
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CHAPTER 7

Random Point Processes

7.1 BASIC CONCEPTS

A point process is a sequence of real numbers  with properties{t1, t2, ...}

                                    (7.1)t1 < t2 < . .. and lim
i→∞

ti = +∞ .

That means, a point process is a strictly increasing sequence of real numbers, which
does not have a finite limit point. In practice, point processes occur in numerous situ-
ations: arrival time points of customers at service stations (workshops, filling stations,
supermarkets, ...), failure time points of machines, time points of traffic accidents,
occurrence of natural disasters, occurrence of supernovas,... . Generally, at time point

 a certain event happens. Hence, the  are called event times. With regard to the ar-ti ti
rival of customers at service stations, the  are also called arrival times. If not statedti
otherwise, the assumption  is made.t1 ≥ 0
Although the majority of applications of point processes refer to sequences of time
points, there are other interpretations as well. For instance, sequences  can{t1, t2, ...}
be generated by the location of potholes at a road. Then  denotes the distance of theti
i th pothole from the beginning of the road. Or, the location is measured, at which a
beam, which is randomly directed at a forest stand, hits trees. (This is the base of the
Bitterlich method for estimating the total number of trees in a forest stand.) All these
applications deal with finite lengths (time or other). To meet assumption (7.1), they
have to be considered finite samples from the respective point processes.

A  point  process  can equivalently be represented by the sequen  of  its{t1, t2, ...} ce
interevent (interarrival) times

{ y1, y2, ...} with yi = ti − ti−1; i = 1, 2, ...; t0 = 0.

Counting Process  Frequently, the event times are of less interest than the number of
events, which occur in an interval  This number is denoted as :(0, t], t > 0. n(t)

n(t) = max {n, tn ≤ t}.

For obvious reasons,  is said to be the counting process belonging to the{n(t), t ≥ 0}
point process  Here and in what follows, it is assumed that more than one{t1, t2, ...}.
event cannot occur at a time. Point processes with this property are called simple. The
number of events, which occur in an interval , is(s, t] s < t,

 n(s, t) = n(t) − n(s).



To be able to count the number  of events which occur in an arbitrary subset An(A)
of   the indicator function of the event  '  belongs to A'  is introduced:[0,∞) ti

                                         (7.2)Ii(A) =
1 if ti ∈ A
0 otherwise

.

Then,
n(A) = Σi=0

∞ Ii(A) .

Example 7.1 Let a finite sample from a point process be given:
S = {2, 4, 10, 18, 24, 31, 35, 38, 40, 44, 45, 51, 57, 59}.

These figures indicate the times (in seconds) at which within a time span of a minute
cars pass a speed check point. In particular, in the interval A = (30, 45]

  n(30, 45) = n(45) − n(30) = 11 − 5 = 6
cars passed this check point. Or, in terms of the indicator function of the event

,A = (30 , 45]

I31(A) = I35(A) = I38(A) = I40(A) = I44(A) = I45(A) = 1,

    for Ii(A) = 0 i ∈ S \ A.
Hence,

                                �n(30, 45) = Σi=0
∞ Ii(A) = Σi=0

60 Ii(A) = 6.

Recurrence Times  The  forward recurrence time of a point process  with{t1, t2, ...}
respect to time point  is defined ast

                 (7.3)a(t) = tn+1 − t for tn ≤ t < tn+1; n = 0, 1, ..., t0 = 0.
Hence,  is the time span from t (usually interpreted as the 'presence') to the occur-a(t)
rence of the next event. A simpler way of characterizing  isa(t)

                                             (7.4)a(t) = tn(t)+1 − t .

 is the largest event time before t and  is the smallest event time after t.tn(t) tn(t)+1

The backward recurrence time  with respect to time point t isb(t)
                                              (7.5)b(t) = t − tn(t) .

Thus,  is the time which has elapsed from the last event time before t to time t.b(t)

Marked Point Processes Frequently, in addition to their arrival times, events come
with another piece of information. For instance: If  is the time point the i th custom-ti
er arrives at a supermarket, then the customer will spend there a certain amount of
money . If  is the failure time point of a machine, then the time (or cost)  ne-mi ti mi
cessary for repairing the machine may be assigned to . If  denotes the time of theti ti

 bank robbery in a town, then the amount  the robbers got away with is of in-i th mi
terest. If  is the arrival time of the  claim at an insurance company, then the sizeti i th
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 of this claim is important to the company. If  is the time of the  supernova inmi ti i th
a century, then its light intensity  is of  interest to astronomers, and so on. Thismi
leads to the concept of a marked point process: Given a point process  a{t1, t2, ...},
sequence of two-dimensional vectors

                                          (7.6){(t1, m1), (t2, m2), ...}

with  being element of a mark space M is called a marked point process. In mostmi
applications, as in the four examples above, the mark space M is a subset of the real
axis   with the respective units of measurements attached.(−∞, + ∞)

Random Point Processes  Usually the event times are random variables. A sequence
of random variables  with{T1, T2, ...}

  and                               (7.7)T1 < T2 < . .. P( lim
i→∞

Ti = +∞) = 1

is a random point process. By introducing the random interevent (interarrival) times
Yi = Ti − Ti−1; i = 1, 2, ...; T0 = 0,

a random point process can equivalently be defined as a sequence of positive random
variables  with property{Y1, Y2, ...}

P( lim
n→∞Σi=0

n Yi = ∞) = 1.

With the terminology introduced in section 6.1, a random point process is a discrete-
time stochastic process with state space   Thus, a point process (7.1) is aZ = [0,+∞).
sample path (realization) of a random point process. A random point process is called
simple if at any time point t not more than one event can occur.

Recurrent Point Processes  A random point process  is said to be recur-{T1, T2, ...}
rent if its corresponding sequence of interarrival times  is a sequence of{Y1, Y2, ...}
independent, identically distributed random variables. The most important recurrent
point processes are homogeneous Poisson processess and renewal processes (sections
7.2 and 7.3).

Random Counting Processes  Let
N(t) = max {n, Tn ≤ t}

be the random number of events occurring in the interval  Then the continuous-(0, t].
time stochastic process   with state space  is called the ran-{N(t), t ≥ 0} Z = {0, 1, ...}
dom counting process belonging to the random point process  Any count-{T1, T2, ...}.
ing process  has properties{N(t), t ≥ 0}
1) N(0) = 0,
2) N(s) ≤ N(t) for s ≤ t ,
3) For any s, t  with  the increment  is equal to the num-0 ≤ s < t, N(s, t) = N(t) −N(s)
ber of events which occur in (s, t].

7 RANDOM POINT PROCESSES                                                                            257



Conversely, every stochastic process  in continuous time having these{N(t), t ≥ 0}
three properties is the counting process of a certain random point process  {T1, T2, ...}.
Thus, from the statistical point of view  the stochastic processes,

,  ,  and  {T1, T2, ...} {Y1, Y2, ...} {N(t), t ≥ 0}

are equivalent. For that reason, a random point process is frequently defined as a con-
tinuous-time stochastic process  with properties 1 to 3. Note that{N(t), t ≥ 0}

N(t) = N(0, t).
The most important characteristic of a counting process  is the probabil-{N(t), t ≥ 0}
ity distribution of its increments , which determines for all inter-N(s, t) = N(t) − N(s)
vals  the probabilities[s, t), s < t,

 pk(s, t) = P(N(s, t) = k); k = 0, 1, ... .

The mean numbers of events in  is(s, t]
                     (7.8)m(s, t) = m(t) −m(s) = E(N(s, t)) = Σk=0

∞ k pk(s, t).
With                                              pk(t) = pk(0, t),

the trend function of the counting process  is{N(t), t ≥ 0}
                             (7.9)m(t) = E(N(t)) = Σk=0

∞ k pk(t), t ≥ 0.

A random counting process is called simple if the underlying point process is simple.
Figure 7.1 shows a possible sample path of a simple random counting process.

Note  In what follows the attribute 'random' is usually omitted if it is obvious from the notation
or the context that random point processes or random counting processes are being dealt with.

Definition 7.1 (stationarity)  A random point process  is called station-{T1, T2, ...}
ary if its sequence of interarrival times  is strongly stationary (section 6.3,{Y1, Y2, ...}
page 230), that is if for any sequence of integers  with propertyi1, i2, ..., ik

  1 ≤ i1 < i2 < . .. < ik, k = 1, 2, ...
and for any  the joint distribution functions of the following two randomτ = 0, 1, 2, ...,
vectors coincide:

  and                          z{Yi1 , Yi2 , ..., Yik} {Yi1+τ, Yi2+τ, ..., Yik+τ}.
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It is an easy exercise to show that if the sequence  is strongly stationary,{Y1, Y2, ...}
the corresponding counting process  has homogeneous increments and{N(t), t ≥ 0}
vice versa. This implies the following corollary from definition 7.1:

Corollary  A point process  is stationary if and only if its corresponding{T1, T2, ...}
counting process  has homogeneous increments.{N(t), t ≥ 0}

Therefore, the probability distribution of any increment  of a stationary pointN(s, t)
process depends only on the difference τ = t − s :

               (7.10)pk(τ) = P(N(s, s + τ) = k); k = 0, 1, ...; s ≥ 0, τ > 0.
Thus, for a stationary point process,

             (7.11)m(τ) = m(s, s + τ) = m(s + τ) −m(s) for all s ≥ 0, τ ≥ 0.

For having increasing sample paths, neither the point process  nor its cor-{T1, T2, ...}
responding counting process  can be strongly or weakly stationary as de-{N(t), t ≥ 0}
fined in section 6.3. In particular, since only simple point processes are considered,
the sample paths of are step functions with jump heights equal to 1.{N(t), t ≥ 0}

Remark  Sometimes it is more convenient or even necessary to define random point
processes  doubly infinite sequencesas

{..., T−2, T1, T0, T1, T2, ...},

which tend to infinity to the left and to the right with probability 1. Then their sample
paths are also doubly infinite sequences:  and only the incre-{..., t−2, t1, t0, t1, t2, ...}
ments of the corresponding counting process over finite intervals are finite.

Intensity of Random Point Processes For stationary point processes, the mean num-
ber of events occurring in  is called the intensity of the process and will be de-[0, 1]
noted as  By making use of notation (7.9),λ.

                                    (7.12)λ = m(1) = Σk=0
∞ k pk(1).

In view of the stationarity,  is equal to the mean number of events occurring in anyλ
interval of length 1:

λ = m(s, s + 1), s ≥ 0.
The mean number of events occurring in any interval  of length  is(s, t] τ = t − s

m(s, t) = λ (t − s) = λτ.
Given a sample path  of a stationary random point process,  is estimated{t1, t2, ...} λ
by the number of events occurring in  divided by the length of this interval:[0, t]

λ = n(t)/t .

In example 7.1, an estimate of the intensity of the underlying point process (assumed
to be stationary) is λ = 14 /60 ≈ 0.233.
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In case of a nonstationary point process, the role of the constant intensity  is takenλ
over by an intensity function  This function allows to determine the mean num-λ(t).
ber of events  occurring in an interval  For any m(s, t) (s, t] : s, t with 0 ≤ s < t,

m(s, t)) = ∫s
t λ(x)dx.

Specifically, the mean number of events in  is the trend function of the corre-[0, t]
sponding counting process:

                                 (7.13)m(t) = m(0, t) = ∫0
t λ(x)dx , t ≥ 0.

Hence, for Δt → 0,
                                     (7.14)Δm(t) = λ(t) Δt + o(Δt) ,

so that for small  the product  is approximately the mean number of eventsΔt λ(t) Δt
occurring in  Another interpretation of (7.14) is: If  is sufficiently small,(t, t + Δt]. Δt
then is approximately equal to the probability of the occurrence of an event inλ(t) Δt
the interval  Hence, the intensity function  is the arrival rate of events[t, t + Δt]. λ(t)
at time t. (For Landau's order symbol , see equation (2.100), page 89.)o(x)

Random Marked Point Processes  Let  be a random point process with{T1, T2, ...}
random marks  assigned to the event times . Then the sequenceMi Ti

                                     (7.15){(T1, M1), (T2, M2), ...}

is called a random marked point process. Its (2-dimensional) sample paths are given
by (7.6). The shot noise process  considered in example 6.5 is{(Tn, An); n = 1, 2, ...}
a special marked point process.
Random marked point processes are dealt with in full generality in Matthes et al.
(1974); see also Stigman (1995).

Compound Stochastic Processes  Let   be a marked point{(T1, M1), (T2, M2), ...}
process and  be the counting process belonging to the point process{N(t), t ≥ 0}

 The stochastic process  defined by{T1, T2, ...}. {C(t), t ≥ 0}

C(t) =
⎧

⎩
⎨
⎪
⎪

0 for 0 ≤ t < T1

Σi=1
N(t)

Mi for t ≥ T1

is called a compound, cumulative, or aggregate stochastic process, and C(t) is called
a compound random variable. According to the underlying point process, there are
e.g. compound Poisson processes and compound renewal processes. If  {T1, T2, ...}
is a claim arrival process and  the size of the i th claim, then  is the total claimMi C(t)
amount in . If  is the time of the i th breakdown of a machine, and  is the[0, t) Ti Mi
corresponding repair cost, then  is the total repair cost in C(t) [0, t).
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7.2  POISSON PROCESSES

7.2.1     Homogeneous Poisson Processes

7.2.1.1  Definition and Properties
In the theory of stochastic processes, and maybe even more in its applications, the
homogeneous Poisson process is just as popular as the exponential distribution in
probability theory. Moreover, there is a close relationship between the homogeneous
Poisson process and the exponential distribution (theorem 7.2).

Definition 7.2 (homogeneous Poisson process)  A counting process  is a{N(t), t ≥ 0}
homogeneous Poisson process with intensity  if it has propertiesλ, λ > 0,
1) N(0) = 0,
2)  is a stochastic process with independent increments, and{N(t), t ≥ 0}
3) its increments  have a Poisson distribution with pa-N(s, t) = N(t) −N(s), 0 ≤ s < t,
rameter :λ(t − s)

                                     (7.16)P(N(s, t) = i) = (λ(t − s))i

i!
e−λ(t−s); i = 0, 1, .... ,

or, equivalently, introducing the length  of the interval  for all τ = t − s [s, t], τ > 0,

                                                         (7.17)P(N(s, s + τ) = i) = (λτ)i

i!
e−λτ; i = 0, 1, ... .

                                                                                              z

Formula (7.16) implies that the homogeneous Poisson process has homogeneous
increments. Thus, the corresponding  Poisson point process  is stationary{T1, T2, ...}
in the sense of definition 7.1

Theorem 7.1 A counting process  with  is a homogeneous Pois-{N(t), t ≥ 0} N(0) = 0
son process with intensity  if and only if it has the following properties:λ
a)  has homogeneous and independent increments.{N(t), t ≥ 0}
b) The process is simple, i.e. .P(N(t, t + h) ≥ 2) = o(h)
c) .P(N(t, t + h) = 1) = λh + o(h)

Proof  To prove that definition 7.2 implies properties a), b,) and c),  it  is only neces-
sary to show that a homogeneous Poisson process satisfies properties b) and c).
b) The simplicity of the Poisson process easily results from (7.17):

P(N(t, t + h) ≥ 2) = e−λh Σ
i=2

∞ (λh)i

i!
= λ2h2e−λhΣ

i=0

∞ (λh)i

(i + 2)!
≤ λ2h2 = o(h).
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c) Another application of (7.17) and the simplicity  the Poisson process imply thatof

 P(N(t, t + h) = 1) = 1 − P(N(t, t + h) = 0) − P(N(t, t + h) ≥ 2)

                       = 1 − e−λh + o(h) = 1 − (1 − λh) + o(h)
                   = λh + o(h).

Conversely, it needs to be shown that a stochastic process with properties a), b), and
c) is a homogeneous Poisson process. In view of the assumed homogeneity of the
increments, it is sufficient to prove the validity of (7.17) for . Lettings = 0

pi(t) = P(N(0, t) = i) = P(N(t) = i) ; i = 0, 1, ...

it is to show that

                                                 (7.18)pi(t) =
(λt)i

i!
e−λt; i = 0, 1, ... .

From a),
p0(t + h) = P(N(t + h) = 0) = P(N(t) = 0, N(t, t + h) = 0)

             = P(N(t) = 0)P(N(t, t + h) = 0) = p0(t)p0(h) .

In view of  b) and c), this result implies
p0(t + h) = p0(t)(1 − λh) + o(h)

or, equivalently,
p0(t + h) − p0(t)

h
= −λp0(t) + o(h).

Taking the limit as  yieldsh → 0

.p0(t) = −λp0(t)

Since , the solution of this differential equation isp0(0) = 1

p0(t) = e−λ t, t ≥ 0,
so that (7.18) holds for .i = 0

Analogously, for i ≥ 1,
pi(t + h) = P(N(t + h) = i)

= P(N(t) = i, N(t + h) −N(t) = 0) + P(N(t) = i − 1, N(t + h) −N(t) = 1)

+Σk=2
i P(N(t) = k, N(t + h) −N(t) = i − k) .

Because of c), the sum in the last row is  Using properties a) and b),o(h).

pi(t + h) = pi(t)p0(h) + pi−1(t)p1(h) + o(h)

= pi(t) (1 − λh) + pi−1(t) λh + o(h),
or, equivalently,

262                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



pi(t + h) − pi(t)
h

= −λ [pi(t) − pi−1(t)] + o(h).

Taking the limit as  yields a system of linear differential equations in the :h → 0 pi(t)
pi (t) = −λ [pi(t) − pi−1(t)]; i = 1, 2, ... .

Starting with  the solution (7.18) is obtained by induction.                    �p0(t) = e−λt,

The practical importance of theorem 7.1 is that the properties a), b), and c) can be
ver- ified without any quantitative investigations, only by qualitative reasoning based
on  the  physical  or  other nature of  the  process. In particular, the  simplicity of  the
homo- geneous Poisson process implies that the occurrence of more than one event
at the same time point has probability 0.

Note Throughout this chapter, those events, which are generated by a Poisson process, will be
called Poisson events.

Let  be the point process, which belongs to the homogeneous Poisson{T1, T2, ...}
process  i.e.  is the random time point at which the n th Poisson event{N(t), t ≥ 0}, Tn
occurs. The obvious relationship

  if and only if                                     (7.19)Tn ≤ t N(t) ≥ n
implies

                                     (7.20)P(Tn ≤ t) = P(N(t) ≥ n) .
Therefore,  has the distribution functionTn

                                      (7.21)FTn (t) = P(N(t) ≥ n) = Σ
i=n

∞ (λt)i

i!
e−λt ; n = 1, 2, ... .

Differentiation of  with respect to t yields the density of :FTn (t) Tn

fTn (t) = λ e−λtΣ
i=n

∞ (λt)i−1

(i − 1)!
− λe−λtΣ

i=n

∞ (λt)i

i!
.

On the right-hand side of this equation, all terms but one cancel:

                                             (7.22)fTn (t) = λ
(λt)n−1

(n − 1)!e−λt; t ≥ 0, n = 1, 2, ... .

Thus,  has an Erlang distribution with parameters n and  (page 75). In particular,Tn λ
 has an exponential distribution  with parameter , and the interarrival (interevent)T1 λ

times are independent and identically distributedYi = Ti − Ti−1; i = 1, 2, ...; T0 = 0,
as  Moreover,T1.

Tn = Σi=1
n Yi.

These results yield the most simple and, at the same time, the most important charac-
terization of the homogeneous Poisson process:
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Theorem 7.2  Let  be a counting process and  be the corres-{N(t), t ≥ 0} {Y1, Y2, ...}
ponding sequence of interarrival times. Then  is a homogeneous Poisson{N(t), t ≥ 0}
process with intensity  if and only if the  are independent, exponentiallyλ Y1, Y2, ...
with parameter  distributed random variables.                                                          �λ

The random counting process  is statistically equivalent to both its corre-{N(t), t ≥ 0}
sponding point process  of event times and the sequence of interarrival{T1, T2, ...}
times  Hence,  and  are also called Poisson pro-{Y1, Y2, ....}. {T1, T2, ...} {Y1, Y2, ...}
cesses.

Example 7.2  From previous observations it is known that the number of traffic acci-
dents N(t) in an area over the time interval  can be modeled by a homogeneous[0, t)
Poisson process  On an average, there is one accident within 4 hours, i.e.{N(t), t ≥ 0}.
the intensity of the process is λ = 0.25 [h−1].
(1) What is the probability p of the event (time unit: hour)

"at most one accident in [0, 10), at least two accidents in [10, 16), and no
 accident in [16, 24)"?

This probability is
p = P(N(10) −N(0) ≤ 1, N(16) −N(10) ≥ 2, N(24) −N(16) = 0).

In view of the independence and the homogeneity of the increments of {N(t), t ≥ 0},
 can be determined as follows:p

p = P(N(10) −N(0) ≤ 1)P(N(16) −N(10) ≥ 2)P(N(24) −N(16) = 0)

= P(N(10) ≤ 1)P(N(6) ≥ 2)P(N(8) = 0) .

Now,
P(N(10) ≤ 1) = P(N(10) = 0) + P(N(10) = 1)

= e−0.25⋅10 + 0.25 ⋅ 10 ⋅ e−0.25⋅10 = 0.2873,

P(N(6) ≥ 2) = 1 − e−0.25⋅6 − 0.25 ⋅ 6 ⋅ e0.25⋅6 = 0.4422,

P(N(8) = 0) = e−0.25⋅8 = 0.1353.

Hence, the desired probability is
p = 0.0172 .

(2) What is the probability that the second accident occurs not before 5 hours?
Since the random time to the occurrence of the second accident, has an ErlangT2,
distribution with parameters  and n = 2 λ = 0.25,

P(T2 > 5) = 1 − FT2 (5) = e−0.25⋅5(1 + 0.25 ⋅ 5)

so that                                                                                         �P(T2 > 5) = 0.6446 .
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The following examples make use of the hyperbolic sine and cosine functions:

sinh x = ex − e−x

2 , cosh x = ex + e−x

2 , x ∈ (−∞,+∞) .

Example 7.3 (random telegraph signal )  A random signal  has structureX(t)

                                      (7.23)X(t) = Y (−1)N(t), t ≥ 0,
where  is a homogeneous Poisson process with intensity  and Y is a{N(t), t ≥ 0} λ
binary random variable with

P(Y = 1) = P(Y = −1) = 1/2 ,

which is independent of N(t) for all t. Signals of this structure are called random tele-
graph signals. Random telegraph signals are basic modules for generating signals of
more complicated structure. Obviously,  or  and Y determines theX(t) = 1 X(t) = −1,
sign of . Figure 7.2 shows a sample path  of the process  onX(0) x = x(t) {X(t), t ≥ 0}
condition  and Y = 1 Tn = tn; n = 1, 2, ... .

 is a weakly stationary process. To see this, firstly note that{X(t), t ≥ 0}
  for all X(t) 2 = 1 < ∞ t ≥ 0.

Hence,  is a second-order process. With{X(t), t ≥ 0}
I(t) = (−1)N(t) ,

its trend function is   Since m(t) = E(X(t)) = E(Y)E(I(t)). E(Y) = 0,
m(t) ≡ 0.

It remains to show that the covariance function  of this process depends onlyC(s, t)
on  This requires knowledge of the probability distribution of I(t):t − s .
A transition from  to  or, conversely, a transition from  toI(t) = −1 I(t) = +1 I(t) = +1

 occurs at those time points, at which Poisson events occur:I(t) = −1

P(I(t) = 1) = P(even number of jumps in (0, t])

               = e−λt Σ
i=0

∞ (λt)2i

(2i)!
= e−λtcosh λt.
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Analogously,
P(I(t) = −1) = P(odd number of jumps in [0, t])

= e−λt Σ
i=0

∞ (λt)2i+1

(2i + 1)!
= e−λt sinh λt .

Hence the mean value of  isI(t)

E[I(t)] = 1 ⋅ P(I(t) = 1) + (−1) ⋅ P(I(t) = −1)

           = e−λt [cosh λt − sinh λt] = e−2λt.
Since

C(s, t) = Cov [X(s), X(t)]

= E[(X(s)X(t))] = E[Y I(s)Y I(t)]

     = E[Y2 I(s) I(t)] = E(Y2)E[I(s) I(t)]

and  the covariance function of  has structureE(Y 2) = 1, {X(t), t ≥ 0}

C(s, t) = E[I(s) I(t)] .

In order to evaluate , the joint distribution of  has to be determined:C(s, t) (I(s), I(t))
From (1.22), page 24, and the homogeneity of the increments of assum-{N(t), t ≥ 0},
ing s < t,

p1,1 = P(I(s) = 1, I(t) = 1) = P(I(s) = 1)P( I(t) = 1 I(s) = 1)

= e−λscosh λs P(even number of jumps in (s, t])

= e−λscosh λs e−λ(t−s)cosh λ(t − s)

= e−λtcosh λs cosh λ(t − s) .
Analogously,

 p1,−1 = P(I(s) = 1, I(t) = −1) = e−λt coshλs sinh λ(t − s) ,

p−1,1 = P(I(s) = −1, I(t) = 1) = e−λt sinh λs sinh λ(t − s) ,

p−1,−1 = P(I(s) = −1, I(t) = −1) = e−λt sinh λs cosh λ(t − s) .
Now

E[I(s)I(t)] = p1,1 + p−1,−1 − p1,−1 − p−1,1,

so that
C(s, t) = e−2λ(t−s), s < t.

Since the roles of  and t can be changed,s

C(s, t) = e−2λ t−s .

Hence, the random telegraph signal  is a weakly stationary process.     �{X(t), t ≥ 0}
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Theorem 7.3  Let  be a homogeneous Poisson process with intensity {N(t), t ≥ 0} λ .
Then the random number of Poisson events, which occur in the interval  on con-(0, s]
dition that exactly n events occur in    has a binomial distri-(0, t], s < t ; i = 0, 1, ..., n ;
bution with parameters  and n.p = s/t

Proof In view of the homogeneity and independence of the increments of the Poisson
process {N(t), t ≥ 0},

P(N(s) = i N(t) = n) = P(N(s) = i, N(t) = n)
P(N(t) = n)

=
P(N(s) = i, N(s, t) = n − i)

P(N(t) = n)

   =
P(N(s) = i)P(N(s, t) = n − i)

P(N(t) = n) =

(λs)i

i! e−λs [λ(t−s)]n−i

(n−i)! e−λ(t−s)

(λs)n

n! e−λt

                                     (7.24)= ⎛
⎝

n
i
⎞
⎠
⎛
⎝

s
t
⎞
⎠

i ⎛
⎝1 −

s
t
⎞
⎠

n−i
; i = 0, 1, ..., n.

This proves the theorem.                                                                                             �

7.2.1.2  Homogeneous Poisson Process and Uniform Distribution
Theorem 7.3  implies  that  on condition ' '  the  random time  to the first andN(t) = 1 T1
only event occurring in  is uniformly distributed over this interval, since, from[0, t]
(7.24), for s < t,

P(T1 ≤ s T1 ≤ t) = P(N(s) = 1 N(t) = 1) = s
t .

This relationship between the homogeneous Poisson process and the uniform distri-
bution is a special case of a more general result. To prove it, the joint probability
density of the random vector  is needed.(T1, T2, ..., Tn)

Theorem 7.4  The joint probability density of the random vector  is(T1, T2, ..., Tn)

                           (7.25)f (t1, t2, ..., tn) =
⎧

⎩
⎨
λne−λtn for 0 ≤ t1 < t2 < . .. < tn
0 elsewhere

.

Proof  For , the joint distribution function of   is0 ≤ t1 < t2 (T1, T2)

P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1 P(T2 ≤ t2 T1 = t) fT1 (t)dt .

By theorem 7.2, the interarrival times
Yi = Ti − Ti−1; i = 1, 2, ...,

are independent, identically distributed random variables, which have an exponential
distribution with parameter λ.
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Hence, since ,T1 = Y1

P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1 P(T2 ≤ t2 T1 = t ) λe−λtdt .

Given ' ', the random eventsT1 = t
' '  and  ' 'T2 ≤ t2 Y2 ≤ t2 − t

are equivalent. Thus, the desired two-dimensional distribution function is

F(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) = ∫0
t1(1 − e−λ(t2−t)) λ e−λtdt

= λ ∫0
t1(e−λt − e−λ t2 )dt.

Therefore,
F(t1, t2) = 1 − e−λt1 − λt1e−λt2 , t1 < t2.

Partial differentiation yields the corresponding two-dimensional probability density

f (t1, t2) =
⎧

⎩
⎨
λ2e−λt2 for 0 ≤ t1 < t2
0 elsewhere

.

The proof of the theorem is now easily completed by induction.                                �

The formulation of the following theorem requires a result from the theory of ordered
samples: Let  be a random sample taken from X, i.e. the  are in-{X1, X2, ..., Xn} Xi
dependent, identically as X distributed random variables. The corresponding ordered
sample is denoted as

(X1
∗, X2

∗, . .. , Xn
∗), 0 ≤ X1

∗ ≤ X2
∗ ≤ . .. ≤ Xn

∗.

Given that X has a uniform distribution over  the joint probability density of[0, x],
the random vector  is{X1

∗, X2
∗, ..., Xn

∗}

            (7.26)f ∗(x1
∗, x2

∗, ..., xn
∗) =

⎧

⎩
⎨
⎪
⎪

n!/ xn, 0 ≤ x1
∗ < x2

∗ < . .. < xn
∗ ≤ x,

0 , elsewhere.

For the sake of comparison: The joint probability density of the original (unordered)
sample  is{X1, X2, ..., Xn}

                     (7.27)f (x1, x2, ..., xn) =
⎧

⎩
⎨

1/ xn, 0 ≤ xi ≤ x ,
0 , elsewhere .

Theorem 7.5  Let  be a homogeneous Poisson process with intensity {N(t), t ≥ 0} λ ,
and let  be i th event time;  Given  the ran-Ti i = 1, 2, ...; T0 = 0. N(t) = n; n = 1, 2, ...,
dom vector  has the same joint probability density as an ordered ran-{T1, T2, ..., Tn}
dom sample taken from a uniform distribution over [0, t].
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Proof  By definition, for disjoint, but otherwise arbitrary subintervals  of[ti, ti + hi]
, the joint probability density of  on condition  is[0, t] {T1, T2, ..., Tn} N(t) = n

f (t1, t2, ..., tn N(t) = n)

= lim
max(h1,h2,...,hn)→0

P(ti ≤ Ti < ti + hi; i = 1, 2, ..., n N(t) = n)
h1h2. .. hn

.

Since the event ' ' is equivalent to N(t) = n Tn ≤ t < Tn+1,

P(ti ≤ Ti < ti + hi; i = 1, 2, ..., n N(t) = n)

=
P(ti ≤ Ti < ti + hi, i = 1, 2, ..., n ; t < Tn+1)

P(N(t) = n)

=
∫
t

∞

∫
tn

tn+hn

∫
tn−1

tn−1+hn−1

... ∫
t1

t1+h1

λn+1 e−λxn+1 dx1. .. dxn dxn+1

(λt)n

n! e−λt

  =
h1h2. .. hn λne−λt

(λt)n

n! e−λt
=

h1h2. .. hn
tn n!.

Hence, the desired conditional joint probability density is

        (7.28)f (t1, t2, ..., tn N(t) = n) =
⎧

⎩
⎨
⎪
⎪

n!
tn , 0 ≤ t1 < t2 < . .. < tn ≤ t,

0 , elsewhere.

Apart from the notation of the variables, this is the joint density (7.26).                    �

The relationship between homogeneous Poisson processes and the uniform distribu-
tion proved in this theorem motivates the common phrase that a homogeneous
Poisson process is a purely random process, since on condition  the eventN(t) = n,
times  are 'purely randomly' distributed over T1, T2, ..., Tn [0, t].

Example 7.4 (shot noise)  Shot noise processes have been formally introduced in
example 6.5 (page 229). Now an application is discussed in detail:
In the circuit, depicted in Figure 7.3, a light source is switched on at time  At = 0.
current pulse is initiated in the circuit as soon as the cathode emits a photoelectron
due to the light falling on it. Such a current pulse can be quantified by a function h(t)
with properties
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                               (7.29)h(t) ≥ 0, h(t) = 0 for t < 0 and ∫0
∞ h(t)dt < ∞.

Let  be the sequence of random time points, at which the cathode emitsT1, T2, ...
photoelectrons and  be the corresponding counting process. Then the{N(t), t ≥ 0}
total current flowing in the circuit at time  ist

                                       (7.30)X(t) = Σi=1
∞ h(t − Ti) .

In view of the properties (7.29) of h(t),  can also be written in the formX(t)

X(t) = Σi=1
N(t)

h(t − Ti) .

In what follows,  is assumed to be a homogeneous Poisson process with{N(t), t ≥ 0}
parameter  For determining the trend function of this shot noise  noteλ. {X(t), t ≥ 0},
that according to theorem 7.5, on condition ' ', the  are uniform-N(t) = n T1, T2, ..., Tn
ly distributed over  Hence,[0, t].

E(h(t − Ti) N(t) = n) = 1
t ∫0

t h(t − x)dx = 1
t ∫0

t h(x)dx .

Therefore,

E(X(t) N(t) = n) = E⎛⎝ Σi=1
n h(t − Ti) N(t) = n⎞⎠

= Σi=1
n E(h(t − Ti) N(t) = n) = ⎛

⎝
1
t ∫0

t h(x)dx⎞⎠ n .

The total probability rule  yields(1.7)

E(X(t)) = Σn=0
∞ E(X(t) N(t) = n)P(N(t) = n)

= 1
t ∫0

t h(x)dx Σ
n=0

∞
n (λ t)n

n! e−λt

= ⎛
⎝

1
t ∫0

t h(x)dx⎞⎠ E(N(t)) = ⎛
⎝

1
t ∫0

t h(x)dx⎞⎠ (λ t) .
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Therefore, the trend function of this shot noise process is

                                          (7.31)m(t) = λ ∫0
t h(x)dx .

In order to obtain its covariance variance function, the mean value  has toE(X(s)X(t))
be determined:

E(X(s)X(t)) = Σi,j=1
n E[h(s − Ti)h(t − Tj)]

= Σi=1
n E(h(s − Ti)h(t − Ti))

+ Σ
i,j=1, i≠j

∞
E⎡⎣h(s − Ti)h(t − Tj)⎤⎦.

Since, on condition ' ', the  are uniformly distributed over ,N(t) = n T1, T2, ..., Tn [0, t]

E(h(s − Ti)h(t − Ti) N(t) = n) = 1
t ∫0

t h(s − x)h(t − x)dx .

For s < t,

E(h(s − Ti)h(t − Ti) N(t) = n) = 1
t ∫0

s h(x)h(t − s + x)dx .

By theorem 7.5, on condition ' ' the  are independent. Hence,N(t) = n T1, T2, ..., Tn

E(h(s − Ti)h(t − Tj) N(t) = n) = E(h(s − Ti) N(t) = n)E(h(t − Tj) N(t) = n)

= ⎛
⎝

1
t ∫0

s h(s − x)dx⎞⎠
⎛
⎝

1
t ∫0

t h(t − x)dx⎞⎠

= ⎛
⎝

1
t ∫0

s h(x)dx⎞⎠
⎛
⎝

1
t ∫0

t h(x)dx⎞⎠ .

Thus, for s < t,

E(X(s)X(t) N(t) = n) = ⎛
⎝

1
t ∫0

s h(x)h(t − s + x)dx⎞⎠ n

+ ⎛⎝
1
t ∫0

s h(x)dx⎞⎠
⎛
⎝

1
t ∫0

t h(x)dx⎞⎠ (n − 1)n .

Applying once more the total probability rule,

E(X(s)X(t)) = ⎛
⎝

1
t ∫0

s h(x)h(t − s + x)dx⎞⎠E(N(t))

+ ⎛⎝
1
t ∫0

s h(x)dx⎞⎠
⎛
⎝

1
t ∫0

t h(x)dx⎞⎠ ⎡⎣E(N 2(t)) − E(N(t))⎤⎦ .

Making use of equations (7.31) and (6.4), page 226, as well as

E(N(t)) = λ t and E(N 2(t)) = λ t (λt + 1),
yields the covariance function:

C(s, t) = λ ∫0
s h(x)h(t − s + x)d x, s < t .

7 RANDOM POINT PROCESSES                                                                            271



More generally, for any s and t,  can be written in the formC(s, t)

                           (7.32)C(s, t) = λ ∫0
min(s,t) h(x)h( t − s + x)d x.

Letting  yields the variance of s = t X(t) :

Var(X(t)) = λ ∫0
t h2(x)d x .

If s tends to infinity in such a way that  stays constant, trend and covarianceτ = t − s
function become

 m = λ ∫0
∞ h(x)dx ,

                                   (7.33)C(τ) = λ ∫0
∞ h(x)h( τ + x)dx .

These two formulas are known as Cambell's theorem. They imply that, for large t,
the shot noise process  is approximately weakly stationary. For more{X(t), t ≥ 0}
general formulations of this theorem see Brandt et. al. (1990) and Stigman (1995).
If the current impulses induced by photoelectrons have random intensities  thenAi,
the total current flowing in the circuit at time  ist

X(t) = Σi=1
N(t)

Ai h(t − Ti) .

If the  are identically distributed as A with  independent of each other,Ai E(A2) < ∞,
and independent of all , then determining  trend and covariance function of thisTk
generalized shot noise  does not give rise to principally new problems:{X(t), t ≥ 0}

                                      (7.34)m(t) = λE(A)∫0
t h(x)dx ,

                     (7.35)C(s, t) = λE(A2)∫0
min(s,t) h(x)h( t − s + x)d x.

If the process of inducing current impulses by photoelectrons has already been oper-
ating for an unboundedly long time (the circuit was switched on a sufficiently long
time ago), then the underlying shot noise process  is given by{X(t), t ∈ (−∞,+∞)}

X(t) = Σ−∞
+∞ Ai h(t − Ti) .

In this case the process is a priori stationary.                                                              �

Example 7.5  Customers arrive at a service station (service system, queueing system)
according to a homogeneous Poisson process  with intensity . Hence,{N(t), t ≥ 0} λ
the arrival of a customer is a Poisson event. The number of servers in the system is as-
sumed to be so large that an incoming customer always will find an available server.
Therefore, the service system can be modeled as having an infinite number of servers.
The service times of all customers are assumed to be independent random variables,
which are identically distributed as Z.
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Let  be the distribution function of Z, and X(t) be the random numberG(t) = P(Z ≤ t)
of customers in the system at time t,  The aim is to determine the state prob-X(0) = 0.
abilities  of the system:pi(t)

pi(t) = P(X(t) = i); i = 0, 1, ...; t ≥ 0.

A customer arriving at time x is still in the system at time  with probabilityt, t > x,
i.e. its service has not yet been finished by t. Given the arrival1 −G(t − x), N(t) = n,

times  of the n customers in the system are, by theorem 7.4, independentT1, T2, ..., Tn
and uniformly distributed over  For calculating the state probabilities, the order[0, t].
of the  is not relevant. Thus, the probability that any of the n customers, who arriv-Ti
ed in  is still in the system at time t is[0, t],

 p(t) = ∫0
t (1 −G(t − x)) 1

t dx = 1
t ∫0

t (1 −G(x))dx.

Since, by assumption, the service times are independent of each other,

P(X(t) = i N(t) = n) = ⎛
⎝

n
i
⎞
⎠ [p(t)]

i[1 − p(t)]n−i; i = 0, 1, ..., n .

By the total probability rule (1.24),

pi(t) = Σ
n=i

∞
P(X(t) = i N(t) = n) ⋅ P(N(t) = n)

             = Σ
n=i

∞ ⎛
⎝

n
i
⎞
⎠ [p(t)]

i[1 − p(t)]n−i ⋅
(λ t)n

n! e−λt.

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Thus, from example 2.24, page 93, if there the parameter  is replaced with λ λ t,
the state probabilities of the system are

 pi(t) =
[λ t p(t)]i

i!
e−λ t p(t); i = 0, 1, ... .

Hence,  has a Poisson distribution with parameterX(t)
E(X(t)) = λ t p(t)

so that the trend function of  becomes{X(t), t ≥ 0}

m(t) = λ ∫0
t (1 −G(x))dx , t ≥ 0.

For  the trend function tends tot →∞

                                        (7.36)lim
t→∞

m(t) = E(Z)
E(Y) ,

where  is the mean interarrival time and  the mean service time of aE(Y) = 1/λ E(Z)
customer:

E(Z) = ∫0
∞(1 −G(x))dx.
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By letting the stationary state probabilities of the system becomeρ = E(Z)/E(Y) ,

                           (7.37)pi = lim
t→∞

pi(t) =
ρi

i !
e−ρ; i = 0, 1, ... .

If Z has an exponential distribution with parameter , thenμ

m(t) = λ ∫0
t e−μx dx = λ

μ(1 − e−μt).

In this case,                                                                                                    �ρ = λ/μ.

7.2.2   Nonhomogeneous Poisson Processses

In this section a stochastic process is investigated, which, except for the homogeneity
of its increments, has all the other properties listed in theorem 7.1. Abandoning the
assumption of homogeneous increments implies that a time-dependent intensity func-
tion   takes over the role of  This leads to the concept of a nonhomogene-λ = λ(t) λ .
ous Poisson process. As proposed in section 7.1, the following notation will be used:

N(s, t) = N(t) − N(s), 0 ≤ s < t.

Definition 7.3  A counting process  with  is called a nonhomo-{N(t), t ≥ 0} N(0) = 0
geneous Poisson process with intensity function  if it has propertiesλ(t)

(1)  has independent increments,{N(t), t ≥ 0}

(2) P(N(t, t + h) ≥ 2) = o(h),
(3)                                                                               zP(N(t, t + h) = 1) = λ(t)h + o(h).

Three problems will be considered:
1) Computation of the probability distribution of its increments :N(s, t)

pi(s, t) = P(N(s, t) = i); 0 ≤ s < t, i = 0, 1, ... .

2) Computation of the probability density of the random event time  (time point atTi
which the i-th Poisson event occurs).
3) Computation of the joint probability density of (T1, T2, ..., Tn); n = 1, 2, ... .

1) In view of the assumed independence of the increments, for h > 0,

 p0(s, t + h) = P(N(s, t + h) = 0)

= P(N(s, t) = 0, N(t, t + h) = 0)

 = P(N(s, t) = 0) ⋅ P(N(t, t + h) = 0)

 = p0 (s, t) [1 − λ(t)h + o(h)].
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Thus,   
p0(s, t + h) − p0(s, t)

h
= −λ(t)p0(s, t) + o(h)

h
.

Letting  yields a partial differential equation of the first order:h → 0
∂
∂t p0(s, t) = −λ(t)p0(s, t).

Since  or, equivalently, , the solution isN(0) = 0 p0(0, 0) = 1

                                      (7.38)p0(s, t) = e−[Λ(t)−Λ(s)] ,
where

                                      (7.39)Λ(x) = ∫0
x λ(u)du ; x ≥ 0.

Starting with  the probabilities  for  can be determined by induc-p0(s, t), pi(s, t) i ≥ 1
tion:

                                  (7.40)pi(s, t) =
[Λ(t)−Λ(s)] i

i!
e−[Λ(t)−Λ(s)]; i = 0, 1, 2, ... .

In particular, the absolute state probabilities
pi(t) = pi(0, t) = P(N(t) = i)

of the nonhomogeneous Poisson process at time t are

                           (7.41)pi(t) =
[Λ(t)] i

i!
e−Λ(t); i = 0, 1, 2, ... .

Hence, the mean number of Poisson events  occurring in the inter-m(s, t) = E(N(s, t))
val is(s, t], s < t,

                                (7.42)m(s, t) = Λ(t) − Λ(s) = ∫s
t λ(x)dx .

In particular, the trend function  of  ism(t) = m(0, t) {N(t), t ≥ 0}

m(t) = Λ(t) = ∫0
t λ(x)dx, t ≥ 0.

2) Let  be the distribution function and  the probability den-FT1 (t) = P(T1 ≤ t) fT1 (t)
sity of the random time  to the occurrence of the first Poisson event. ThenT1

p0(t) = p0(0, t) = P(T1 > t) = 1 − FT1 (t) .

From (7.38),
p0(t) = e−Λ(t).

Hence,
         (7.43)FT1 (t) = 1 − e−Λ(t), fT1 (t) = λ(t)e

−Λ(t), t ≥ 0.
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A comparison of (7.43) with formula (2.98) (page 88) shows that the intensity func-
tion  of the nonhomogeneous Poisson process  is identical to the fail-λ(t) {N(t), t ≥ 0}
ure rate belonging to  SinceT1.

FTn (t) = P(Tn ≤ t) = P(N(t) ≥ n),

the distribution function of the n th event time  isTn

                         (7.44)FTn (t) = Σ
i=n

∞ [Λ(t)]i

i!
e−Λ(t) , n = 1, 2, ... .

Differentiation with respect to t yields the probability density of :Tn

                 (7.45)fTn (t) =
[Λ(t)]n−1

(n − 1)! λ(t) e−Λ(t); t ≥ 0 , n = 1, 2, ... .

Equivalently,

fTn (t) =
[Λ(t)]n−1

(n − 1)! fT1 (t); t ≥ 0 , n = 1, 2, ... .

By formula (2.52), page 64, and formula (7.44), the mean value of  isTn

                                                      (7.46)E(Tn) = ∫
0

∞
e−Λ(t)

⎛

⎝
⎜ Σ

i=0

n−1 [Λ(t)]i

i!
⎞

⎠
⎟ dt .

Hence, the mean time
E(Yn) = E(Tn) − E(Tn−1)

between the  and the n th event is(n − 1) th

             (7.47)E(Yn) = 1
(n − 1)! ∫0

∞ [Λ(t)]n−1 e−Λ(t) dt ; n = 1, 2, ... .

Letting  and  yields the corresponding characteristics for theλ(t) ≡ λ Λ(t) ≡ λ t
homogeneous Poisson process, in particular .E(Yn) = 1/λ

3) The conditional probability  is equal to the probability that atP(T2 ≤ t2 T1 = t1)
least one Poisson event occurs in   Thus, from (7.40),(t1, t2], t1 < t2.

                    (7.48)FT2 (t2 t1) = 1 − p0(t1, t2) = 1 − e−[Λ(t2)−Λ(t1)].

Differentiation with respect to  yields the corresponding probability density:t2

fT2 (t2 t1) = λ(t2) e−[Λ(t2)−Λ(t1)] , 0 ≤ t1 < t2.

By (3.19), page 128, the joint probability density of   is(T1, T2)

f (t1, t2) =
⎧

⎩
⎨
λ(t1) fT1 (t2) for t1 < t2
0, elsewhere

.
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Starting with , one inductively obtains the joint density of  f (t1, t2) (T1, T2, ..., Tn) :

 (7.49)f (t1, t2, ..., tn) =
⎧

⎩
⎨
λ(t1 )λ(t2). .. λ(tn−1) fT1 (tn) for 0 ≤ t1 < t2 < . .. < tn ,
0, elsewhere.

This result includes as a special case formula (7.25).

As with the homogeneous Poisson process, the nonhomogeneous Poisson counting
process the corresponding point process  of Poisson event{N(t), t ≥ 0}, {T1, T2, ...}
times, and the sequence of interevent times  are statistically equivalent{Y1, Y2, ...}
stochastic processes.

Example 7.6   From historical observations it is known that the number of cars arriv-
ing for petrol at a particular filling station weekdays between 5:00 and 11:00 a.m.
can be modeled by a nonhomogeneous Poisson process  with intensity{N(t), t ≥ 0}
function (Figure 7.4)

λ(t) = 10 + 35.4 (t − 5) e−(t−5)2/8, 5 ≤ t ≤ 11.

1) What is the mean number of cars arriving for petrol weekdays between 5:00 and
11:00? According to (7.42), this mean number is

E(N(5, 11)) = ∫5
11 λ(t)dt = ∫0

6 ⎛
⎝10 + 35.4 t e−t2/8 ⎞

⎠ dt

= ⎡
⎣10 t − 141.6 e−t2/8 ⎤

⎦ 0

6
= 200.

2) What is the probability that at least 90 cars arrive for petrol weekdays between
6:00 and 8:00  The mean number of cars arriving between 6:00 and 8:00 is?

∫6
8 λ(t)dt = ∫1

3(10 + 35.4 t e−t2/8)dt

= ⎡
⎣10 t − 141.6 e−t2/8 ⎤

⎦ 1

3
= 99.
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Hence, the random number of cars  arriving between 6:00 andN(6, 8) = N(8) −N(6)
8:00 has a Poisson distribution with parameter  so that the desired probability is99

P(N(6, 8) ≥ 90) = Σ
n=90

∞ 99n

n! e−0.99.

By using the normal approximation to the Poisson distribution (page 213):

Σ
n=90

∞ 99n

n! e−0.99 ≈ 1 −Φ
⎛

⎝
⎜ 90 − 99

99

⎞

⎠
⎟ ≈ 1 − 0.1827.

Therefore,
                                           P(N(6, 8) ≥ 90) = 0.8173.

7.2.3  Mixed Poisson Processes

Mixed Poisson processes had been introduced by J. Dubourdieu (1938) for modeling
claim number processes in accident and sickness insurance. In view of their flexibili-
ty, they are now a favorite point process model for many other applications. A recent
monograph on mixed Poisson processes is Grandell (1997).
Let  be a homogeneous Poisson process with intensity  To explicitly{N(t), t ≥ 0} λ .
express the dependence of this process on in this section the notation λ , {Nλ(t), t ≥ 0}
for the process  is adopted. The basic idea of Dubourdieu was to consid-{N(t), t ≥ 0}
er  a realization of a positive random variable L, which is called the (random) struc-λ
ture or mixing parameter. Correspondingly, the probability distribution of L is called
the structure or mixing distribution (section 2.4, pages 92 and 94).

Definition 7.4  Let L be a positive random variable with range  Then the count-RL.
ing process  is said to be a mixed Poisson process with structure param-{NL(t), t ≥ 0}
eter L if it has the following properties:

(1)  has independent, homogeneous increments for all {NL L=λ(t), t ≥ 0} λ ∈ RL.

(2)                                  P(NL L=λ(t) = i) =
(λ t)i

i !
e−λ t for all λ ∈ RL, i = 0, 1, ... .

Thus, on condition  the mixed Poisson process is a homogeneous PoissonL = λ,
process with parameter :λ

{NL L=λ(t), t ≥ 0} = {Nλ(t), t ≥ 0}.

The absolute state probabilities  of the mixed Poisson process atpi(t) = P(NL(t) = i)
time t are

                        (7.50)P(NL(t) = i) = E
⎛
⎝⎜
(L t)i

i !
e−L t ⎞

⎠⎟
; i = 0, 1, ... .
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If L is a discrete random variable with  thenP(L = λk) = πk ; k = 0, 1, ...;

                           (7.51)P(NL(t) = i) = Σ
k=0

∞ (λk t)i

i !
e−λk t πk .

In applications, a binary structure parameter  is particularly important. In this case,L

                  (7.52)P(NL(t) = i) =
(λ1 t)i

i !
e−λ1 t π +

(λ2 t)i

i !
e−λ2 t (1 − π)

for 0 ≤ π ≤ 1, λ1 ≠ λ2.

The basic results, obtained in what follows, do not depend on the probability distri-
bution of L. Hence, for convenience, throughout this section the assumption is made
that L is a continuous random variable with density  Then,fL(λ).

pi(t) = ∫
0

∞ (λ t)i

i !
e−λ t fL(λ)dλ ; i = 0, 1, ... .

Obviously, the probability  is the Laplace transform of p0(t) = P(NL(t) = 0) fL(λ)
with parameter  (page 99):s = t

p0(t) = f L (t) = E(e−L t) = ∫0
∞ e−λ t fL(λ)dλ .

The i th derivative of  isp0(t)

d ip0(t)
d it

= p0
(i)(t) = ∫0

∞(−λ) ie−λ t fL(λ)dλ .

Therefore, all state probabilities of a mixed Poisson process can be written in terms
of p0(t) :

                 (7.53)pi(t) = P(NL(t) = i) = (−1)i t i

i !
p0
(i)(t) ; i = 1, 2, ....

Mean value and variance of  are (compare with the parameters of the mixedNL(t)
Poisson distribution given by formulas (2.108), page 94):

               (7.54)E(NL(t)) = t E(L), Var (NL(t)) = t E(L) + t 2Var(L) .

The following theorem lists two important properties of mixed Poisson processes.

Theorem 7.6  (1) A mixed Poisson process  has homogeneous incre-{NL(t), t ≥ 0}
ments.
(2) If L is not a constant (i.e. the structure distribution is not degenerate), then the
increments of the mixed Poisson process  are not independent.{NL(t), t ≥ 0}

Proof (1) Let  Then, for any nonnegative integers0 = t0 < t1 < . .. < tn; n = 1, 2, ... .
i1, i2, ..., in,

7 RANDOM POINT PROCESSES                                                                            279



P(NL(tk−1 + τ, tk + τ) = ik; k = 1, 2, ..., n)

= ∫0
∞ P(Nλ(tk−1 + τ, tk + τ) = ik; k = 1, 2, ..., n) fL(λ)dλ

= ∫0
∞ P(Nλ(tk−1, tk) = ik; k = 1, 2, ..., n) fL(λ)dλ

= P(NL(tk−1, tk) = ik; k = 1, 2, ..., n).

(2) Let  Then,0 ≤ t1 < t2 < t3.

P(NL(t1, t2) = i1, NL(t2, t3) = i2)

  = ∫0
∞ P(Nλ(t1, t2) = i1, Nλ(t2, t3) = i2) fL(λ)dλ

= ∫0
∞ P(Nλ(t1, t2) = i1) P(Nλ(t2, t3) = i2) fL(λ)dλ

 ≠ ∫0
∞ P(Nλ(t1, t2) = i1) fL(λ)dλ ∫0

∞ P(Nλ(t2, t3) = i2) fL(λ)dλ

= P(NL(t1, t2) = i1)P(NL(t2, t3) = i2) .

This proves the theorem if the mixing parameter L is a continuous random variable.
If L is discrete, the same pattern applies.                                                                      

Multinomial Criterion  Let  Then, for any nonneg-0 = t0 < t1 < . .. < tn; n = 1, 2, ... .
ative integers  with i1, i2, ..., in i = i1 + i2 + . .. + in ,

P(NL(tk−1, tk) = ik; k = 1, 2, ..., n NL(tn) = i)

                      (7.55)= i !
i1! i2!. .. in!

⎛
⎝

t1
tn
⎞
⎠

i1 ⎛
⎝

t2 − t1
tn

⎞
⎠

i2 . .. ⎛
⎝

tn − tn−1
tn

⎞
⎠

in
.

Interestingly, this conditional probability does not depend on the structure distribu-
tion (compare to theorem 7.5). Although the derivation of the multinomial criterion
is elementary, it is not done here (Exercise 7.17).

As an application of the multinomial criterion (7.55), the joint distribution of the in-
crements  and  will be derived:NL(0, t) = NL(t) NL(t, t + τ)

P(NL(t) = i, NL(t, t + τ) = k)

= P(NL(t) = i NL(t + τ) = i + k)P(NL(t + τ) = i + k)

=
(i + k)!
i ! k!

⎛
⎝

t
t + τ

⎞
⎠

i⎛
⎝

τ
t + τ

⎞
⎠

k
∫
0

∞ [λ(t + τ)]i+k

(i + k) !
e−λ (t+τ) fL(λ)dλ .

Hence, the joint distribution is for i, k = 0, 1, ... ,

     (7.56)P(NL(0, t) = i, NL(t, t + τ) = k) = t i τk

i ! k! ∫0
∞ λi+k e−λ (t+τ) fL(λ)dλ .
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Since a mixed Poisson process has dependent increments, it is important to get infor-
mation on the nature and strength of the statistical dependence between two neigh-
boring increments. As a first step into this direction, the mean value of the product of
the increments  and  has to be determined. From for-NL(t) = NL(0, t) NL(t, t + τ)
mula (7.56),

E([NL(t)] [NL(t, t + τ)]) = Σ
i=1

∞
Σ

k=1

∞
i k t i τk

i ! k! ∫0
∞ λi+k e−λ (t+τ) fL(λ)dλ

= t τ ∫
0

∞
λ2Σ

i=0

∞ (λ t)i

i ! Σ
k=0

∞ (λ τ)k

k !
e−λ (t+τ) fL(λ)dλ

= t τ ∫0
∞ Σi=0

∞ λ2 eλ teλ τe−λ (t+τ) fL(λ)dλ

= t τ ∫0
∞ λ2 fL(λ)dλ

so that
                            (7.57)E([NL(t)] [NL(t, t + τ)]) = t τ E(L2) .

Hence, in view of formula (6.4), page 226,

Cov (NL(τ), NL(τ, τ + t)) = t τVar (L) .

Thus, two neighboring increments of a mixed Poisson process are positively corre-
lated. Consequently, a large number of events in an interval will on average induce a
large number of events in the following interval ('large' relative to the respective
lengths of these intervals). This property of  a  stochastic  process is also called  posi-
tive contagion.

 A mixed Poisson process with a gamma distributed structure parame-Pólya Process
ter  is called a  process (or -Lundberg process).L Pólya Pólya
Let the gamma density of  beL

fL(λ) =
βα

Γ(α) λ
α−1 e−βλ, λ > 0, α > 0, β > 0.

Then, proceeding as in example  (page 95) yields2.24

P(NL(t) = i) = ∫0
∞ (λ t)i

i !
e−λ t βα

Γ(α) λ
α−1e−βλ dλ

=
Γ(i + α)
i !Γ(α)

tiβα

(β + t)i+α .

Hence,

        (7.58)P(NL(t) = i) = ⎛
⎝

i − 1 + α
i

⎞
⎠
⎛
⎝

t
β + t

⎞
⎠

i ⎛
⎝

β
β + t

⎞
⎠

α
; i = 0, 1, ...
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Thus, the one-dimensional distribution of the  process  is a nega-Pólya {NL(t), t ≥ 0}
tive binomial distribution with parameters  and  In particular, forr = α p = t /(β + t).
an exponential structure distribution ,  has a geometric distribution with(α = 1) NL(t)
parameter p = t /(t + β).

To determine the n-dimensional distribution of the  process the multinomial cri-Pólya
terion (7.55) and the absolute state distribution (7.58) are used:

For and  0 = t0 < t1 < . .. < tn; n = 1, 2, ... i0 = 0,

P(NL(tk) = ik; k = 1, 2, ..., n)

= P(NL(tk) = ik; k = 1, 2, ..., n NL(tn) = in )P(NL(tn) = in)

= P(NL(tk−1, tk) = ik − ik−1; k = 1, 2, ..., n NL(tn) = in) P(NL(tn) = in)

= in!
Πk=1

n (ik − ik−1)!
Π
k=1

n ⎛
⎝

tk − tk−1
tn

⎞
⎠

ik−ik−1 ⎛
⎝

in − 1 + α
in

⎞
⎠
⎛
⎝

tn
β + tn

⎞
⎠

in ⎛
⎝

β
β + tn

⎞
⎠

α
.

After some algebra, the n-dimensional distribution of the  process becomesPolýa

P(NL(tk) = ik; k = 1, 2, ..., n)

   (7.59)= in!
Πk=1

n (ik − ik−1)!
⎛
⎝

in − 1 + α
in

⎞
⎠
⎛
⎝

β
β + tn

⎞
⎠

α
Π
k=1

n ⎛
⎝

tk − tk−1
β + tn

⎞
⎠

ik−ik−1
.

For the following three reasons its is not surprising that the  process is increas-Pólya
ingly used for modeling real-life point processes, in particular customer flows:
1) The finite dimensional distributions of this process are explicitly available.
2) Dependent increments occur more frequently than independent ones.
3) The two free parameters  and  of this process allow its adaptation to a wide var-α β
iety of data sets.

Example 7.7 An insurance company analyzed the incoming flow of claims and found
that the arrival intensity  is subject to random fluctuations, which can be modeledλ
by the probability density  of a gamma distributed random variable L with meanfL(λ)
value  and variance  (unit: working hour). The parametersE(L) = 0.24 Var(L) = 0.16

 and  of this gamma distribution are obtained fromα β
E(L) = 0.24 = α /β, Var(L) = 0.16 = α /β2.

Hence,  and  Thus, L has densityα = 0.36 β = 1.5.

 fL(λ) =
(1.5)0.36

Γ(0.36) λ
−0.64 e−(1.5) λ, λ > 0.
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In time intervals, in which the arrival rate was nearly constant, the flow of claims be-
haved like a homogeneous Poisson process. Hence, the insurance company modeled
the incoming flow of claims by a  process  with the one-dimen-Pólya {NL(t), t ≥ 0}
sional probability distribution

 P(NL(t) = i) = ⎛
⎝

i − 0.64
i

⎞
⎠
⎛
⎝

t
1.5 + t

⎞
⎠

i ⎛
⎝

1.5
1.5 + t

⎞
⎠

0.36
; i = 0, 1, ... .

By (7.54), mean value and variance of  areNL(t)
E(NL(t)) = 0.24 t, Var (NL(t)) = 0.24 t + 0.16 t 2.

As illustrated by this example, the  process (as any other mixed Poisson process)Pólya
is a more appropriate model  than a homogeneous Poisson process with intensity

 for fitting claim number developments, which exhibit an increasing variabi-λ = E(L)
lity with increasing t.                                                                                                     

Doubly Stochastic Poisson Process  The mixed Poisson process generalizes the
homogeneous Poisson process by replacing its parameter  with a random variableλ
L. The corresponding generalization of the nonhomogeneous Poisson process leads
to the concept of a doubly stochastic Poisson process. A doubly stochastic Poisson
process  can be thought of as a nonhomogeneous Poisson process{NL(⋅)(t), t ≥ 0}
the intensity function  of which has been replaced with a stochastic processλ(t)

 called intensity process. Thus, a sample path of a doubly stochastic Pois-{L(t), t ≥ 0}
process  can be generated as follows:{NL(⋅)(t), t ≥ 0}

1) A sample path  of a given intensity process  is simulated{λ(t), t ≥ 0} {L(t), t ≥ 0}
according to the probability distribution of {L(t), t ≥ 0}.
2) Given  the process  evolves like a nonhomogeneous{λ(t), t ≥ 0}, {NL(⋅)(t), t ≥ 0}
Poisson process with intensity function λ(t).

Thus, a doubly stochastic Poisson process  is generated by two inde-{NL(⋅)(t), t ≥ 0}
pendent 'stochastic mechanisms'.

The absolute state probabilities of the doubly stochastic Poisson process at time  aret

        (7.60)P(NL(⋅)(t) = i) = 1
i !

E⎛⎝
⎡⎣∫0

t L(x)dx⎤⎦
i
e−∫0

t L(x)dx ⎞
⎠ ; i = 0, 1, ... .

In this formula, the mean value operation ' ' eliminates the randomness generated byE
the intensity process in [0, t].

The trend function of  is{NL(⋅)(t), t ≥ 0}

m(t) = E⎛⎝∫0
t L(x)dx⎞⎠ = ∫0

t E(L(x))dx , t ≥ 0.

A nonhomogeneous Poisson process with intensity function  can beλ(t) = E(L(t))
used as an approximation to the doubly stochastic Poisson process {NL(⋅)(t), t ≥ 0}.
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The doubly stochastic Poisson process becomes
1. the homogeneous Poisson process if  is equal to a constant  for all L(t) λ t > 0,
2. the nonhomogeneous process if  is a deterministic function L(t) λ(t), t ≥ 0,
3. the mixed Poisson process if  is a random variable L, which does not dependL(t)
on t.

The two 'degrees of freedom', a doubly stochastic Poisson process has, make this pro-
cess a universal point process model. The term 'doubly stochastic Poisson process'
was introduced by R. Cox, who was the first to investigate this class of point proces-
ses. Hence, these processes are also called Cox processes. For detailed treatments
and applications in engineering, insurance, and in other fields see Snyder (1975) and
Grandell (1997).

7.2.4    Superposition and Thinning of Poisson Processes

7.2.4.1  Superposition
Assume that a service station recruits its customers from n independent sources. For
instance, a branch of a bank serves customers from n different towns, or a car work-
shop repairs and maintains n different makes of cars, or the service station is a water-
ing place in a game reserve, which is visited by n different species of animals.  Each  
town, each make of cars, and each species generates its own arrival process. Let

{Ni(t), t ≥ 0}; i = 1, 2, ..., n,

be the corresponding counting processes. Then, the total number of customers arriv-
ing at the service station in  is[0, t]

N(t) = N1(t) +N2(t) + . .. +Nn(t) .

 can be thought of as the counting process of a marked point process,{N(t), t ≥ 0}
where the marks indicate from which source the customers come.
On condition  that  is  a homogeneous Poisson process with parameter{Ni(t), t ≥ 0}

  what type of counting process is λi; i = 1, 2, ..., n, {N(t), t ≥ 0}?

From example 4.18 (page 180) it is known that the z-transform of  isN(t)

  MN(t)(z) = e−(λ1+λ2+ . .. +λn) t (z−1).

Therefore,  has a Poisson distribution with parameterN(t)
(λ1 + λ2 + . .. + λn) t.

Since the counting processes  have homogeneous and independent incre-{Ni(t), t ≥ 0}
ments, their additive superposition  also has homogeneous and independ-{N(t), t ≥ 0}
ent increments. This proves the following theorem.
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Theorem 7.7 The additive superposition  of n independent, homogen-{N(t), t ≥ 0}
eous Poisson processes  with intensities   is a homo-{Ni(t), t ≥ 0} λi; i = 1, 2, ..., n ;
geneous Poisson process with intensity

                                              λ = λ1 + λ2 + . .. + λn.

Quite analogously, if  are independent nonhomogeneous Poisson pro-{Ni(t), t ≥ 0}
cesses with intensity functions ; then their additive superpositionλi(t) i = 1, 2, ..., n ;

 is a nonhomogeneous Poisson process with intensity function{N(t), t ≥ 0}
λ(t) = λ1(t) + λ2(t) + . .. + λn(t).

7.2.4.2 Thinning
There are many situations, in which not superposition, but the opposite operation,
namely thinning or splitting, of a Poisson process occurs. For instance, a cosmic par-
ticle counter registers only -particles and ignores other types of particles, a reinsur-α
ance company is only interested in claims, the size of which exceeds, say, one million
dollars, or a game ranger counts only the number of rhinos, which arrive at a water-
ing place per day. Formally, a marked point process  arrives{(T1, M1), (T2, M2), ...}
and only events with special marks will be taken into account. It is assumed that the
marks  are independent of each other and independent of   and thatMi {T1, T2, ...},
they are identically distributed as

M =
m1 with probability 1 − p
m2 with probability p

,

i.e., the mark space only consists of two elements:  In this case, thereM = {m1, m2}.
are two different types of Poisson events: type 1-events (attached with mark ) andm1
type 2-events (attached with mark m2).

Of what kind is the arising point process  if only type 1-events are counted?
Let  be the first event time with mark . If , then there is surely no type 2-Y m2 t < T1
event in , and if , then there are exactly n events in  and[0, t] Tn ≤ t < Tn+1 [0, t]

 is the probability that none of them is a type -event. Hence,(1 − p)n 2

P(Y > t) = P(0 < t < T1) + Σn=1
∞ P(Tn ≤ t < Tn+1) (1 − p)n.

Since P(Tn ≤ t < Tn+1) = P(N(t) = n),

 P(Y > t) = e−λt + Σ
n=1

∞ ⎛
⎝
(λ t)n

n! e−λt ⎞
⎠ (1 − p)n

         = e−λt + e−λt Σ
n=1

∞ [λ (1−p) t]n

n! = e−λt + e−λt ⎡⎣eλ(1−p) t − 1⎤⎦.

Hence,
                                      (7.61)P(Y > t) = e−λ p t, t ≥ 0.
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Hence, the interevent times between type 2-events have an exponential distribution
with parameter  Moreover, in view of our assumptions, these interevent times arepλ.
independent. By changing the roles of type 1- and type 2-events, theorem 7.2 implies
theorem 7.8:

Theorem 7.8  Consider a homogeneous Poisson process  with intensity{N(t), t ≥ 0}
 and two types of Poisson events 1 and 2, which occur independently with respec-λ

tive probabilities  and . Then  can be represented in the form1 − p p N(t)
N(t) = N1(t) +N2(t),

where  and  are two independent homogeneous Poisson{N1(t), t ≥ 0} {N2(t), t ≥ 0}
processes with  and which count only type 1- and type 2-events, respec-(1 − p) λ pλ ,
tively.                                                                                                                           

From this theorem one obtains by induction the following corollary, which is the ana-
logue to theorem 7.7:

Corollary Let  be a marked point process with the marks {(T1, M1), (T2, M2), ...} Mi
being independent of each other and identically distributed as M:

P(M = mi) = pi ; i = 1, 2, ..., n , Σn=1
∞ pi = 1.

The underlying point process  is assumed to be Poisson with intensity  {T1, T2, ...} λ .
If only events with mark  are counted, then the arising point process is a Poissonmi
process with intensity λpi , i = 1, 2, ..., n.

Nonhomogeneous Poisson Process Now the situation is partially generalized by
assuming that the underlying counting process  is a nonhomogeneous{N(t), t ≥ 0}
Poisson process with intensity function  The Poisson event occurring at timeλ(t). i th

 comes with a random mark   where the   are independent andTi Mi , {M1, M2, ...}
have the following probability distribution:

Mi =
m1 with probability 1 − p(t)
m2 with probability p(t)

given that Ti = t ; i = 1, 2, ... .

Note that the  are no longer identically distributed. Again, an event coming withMi
mark  is called a type i-event, mi i = 1, 2 .
Let  be the time to the first occurrence of a type - event,  its distri-Y 2 G(t) = P(Y ≤ t)
bution function, and  Then the relationshipG(t) = 1 −G(t).

P(t < Y ≤ t + Δt Y > t) = p(t) λ(t) Δt + o(Δt)
implies

1
G(t)

⋅
G(t + Δt) −G(t)

Δt = p(t) λ(t) + o(Δt)
Δt .

Letting  tend to 0 yieldsΔt
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G (t)
G(t)

= p(t) λ(t).

By integration,

                               (7.62)G(t) = e−∫0
t p(x) λ(x)dx , t ≥ 0.

If  then (7.62) becomes (7.61).p(x) ≡ p,

Theorem 7.9  Given a nonhomogeneous Poisson process  with intensity{N(t), t ≥ 0}
function  and two types of events 1 and 2, which occur independently with respec-λ(t)
tive probabilities  and  if t is an event time. Then  can be represented1 − p(t) p(t) N(t)
in the form

N(t) = N1(t) + N2(t),

where  and  are independent nonhomogeneous Poisson{N1(t), t ≥ 0} {N2(t), t ≥ 0}
processes with intensity functions which count only type(1 − p(t))λ(t) and p(t)λ(t),
1- or type 2-events, respectively.                                                                                 

7.2.5   Compound Poisson Processes

Let  be a marked point process, where  is a Pois-{(Ti, Mi); i = 1, 2, ...} {Ti; i = 1, 2, ...}
son point process with corresponding counting process  Then the stoch-{N(t), t ≥ 0}.
astic process  defined by{C(t), t ≥ 0}

C(t) = Σ
i=0

N(t)
Mi

with  is called a compound (cumulative, aggregate) Poisson process.M0 = 0

Compound Poisson processes occur in many situations:

1) If  is the time point at which the i th customer arrives at an insurance companyTi
and  is its claim size, then  is the total claim amount the company is confrontedMi C(t)
with in the time interval .[0, t]

2) If  is the time of the i th breakdown of a machine and  the corresponding re-Ti Mi
pair cost, then  is the total repair cost in . C(t) [0, t]

3) If  is the time point the i th shock occurs and  the amount of (mechanical)Ti Mi
wear, which this shock contributes to the degree of wear of an item, then  is theC(t)
total wear the item has experienced up to time t. (For the brake discs of a car, every
application of the brakes is a shock, which increases their degree of mechanical wear.
For the tires of the undercarriage of an aircraft, every takeoff and every touchdown is
a shock, which diminishes their tread depth.)

7 RANDOM POINT PROCESSES                                                                            287



In what follows,  is assumed to be a homogeneous Poisson process with{N(t), t ≥ 0}
intensity . If the  are independent and identically distributed as M and independ-λ Mi
ent of then  has the following properties:{T1, T2, ...}, {C(t), t ≥ 0}

1)  has independent and homogeneous increments.{C(t), t ≥ 0}

2) The Laplace transform of  isC(t)

                                       (7.63)Ct(s) = eλ t [M(s)−1] ,

where                                              M(s) = E (e−s M)

is the Laplace transform of M. The proof of (7.63) is straightforward: By (2.118) at
page 99, 

    Ct(s) = E⎛⎝e
−s C(t) ⎞

⎠ = E⎛⎝e
−s (M0+M1+M2+. .. +MN(t) ⎞

⎠

                           = Σ
n=0

∞
E⎛⎝e−s (M0+M1+M2+. .. +Mn ⎞

⎠ P(N(t) = n)

                                      = Σ
n=0

∞
E⎛⎝e

−s M⎞
⎠

n (λt)n

n! e−λt = e−λ t Σ
n=0

∞ [λ t M(s) ]n

n!

                                    = eλ t [M(s)−1] .

From , all the moments of  can be obtained by making use of (2.119). InCt(s) C(t)
particular, mean value and variance of  areC(t)

                    (7.64)E(C(t)) = λ t E(M ), Var(C(t)) = λ t E(M 2).

Hint These formulas can also be derived by formulas (4.74) and (4.75), page 194.

Now the compound Poisson process is considered on condition that M has a Bernoulli
distribution:

M =
1 with probability p
0 with probability 1 − p

.

Then  as a sum of independent and Bernoulli distributed randomM1 +M2 + . .. + Mn
variables is binomially distributed with parameters  and p (page 49). Hence,n

P(C(t) = k) = Σ0=1
n P(M0 + M1 + . .. +Mn = k N(t) = n)P(N(t) = n)

                 = Σ
n=0

∞ ⎛
⎝

n
k
⎞
⎠ pk (1 − p)n−k (λt)n

n! e−λt .

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Hence, by example 2.24 (page 93),  has a Poisson distribution with parame-C(t)
ter λp t :

 P(C(t) = k) = (λp t)n

n! e−λ p t; k = 0, 1, ... .

288                              APPLIED PROPABILITY AND STOCHASTIC PROCESSES



Corollary If the marks of a compound Poisson process  have a Bernoulli{C(t), t ≥ 0}
distribution with parameter p, then arises by thinning a homogeneous{C(t), t ≥ 0}
Poisson process with parameter λ.

If the underlying counting process  is a nonhomogeneous Poisson process{N(t), t ≥ 0}
with intensity function  and integrated intensity function thenλ(t) Λ(t) = ∫0

t λ(x)dx,
(7.63) and (7.64) become in this order

Ct(s) = eΛ(t) [M(s)−1] ,
                                         (7.65)E(C(t)) = Λ(t)E(M ),

     Var(C(t)) = Λ(t)E(M 2).

Again, these formulas are an immediate consequence of (4.74) and (4.75).

7.2.6    Applications to Maintenance

The nonhomogeneous Poisson process is an important mathematical tool for model-
ing and optimizing the maintenance of technical systems with respect to cost and reli-
ability criteria by applying proper maintenance policies (strategies). Maintenance
policies prescribe when to carry out (preventive) repairs, replacements, inspections,
or other maintenance measures. Repairs after system failures usually only tackle the
causes which triggered off the failures. A minimal repair performed after a failure
enables the system to continue its work but it does not affect the failure rate (2.56)
(page 88) of the system. In other words, after a minimal repair the failure rate of the
system has the same value as immediately before a failure. For example, if a failure
of a complicated electronic system is caused by a defective plug and socket connec-
tion, then removing this cause of failure can be considered a minimal repair.  Preven-
tive replacements (renewals) and preventive repairs are not initiated by system fail-
ures, but they are carried out to prevent or at least to postpone future failures. Preven-
tive minimal repairs make no sense with regard to the survival probability of systems.

Minimal Repair Policy Every system failure is (and can be) removed by a minimal
repair.

Henceforth it is assumed that all renewals and repairs take only negligibly small times
and that, after completing a renewal or a repair, the system immediately resumes its
work. The random lifetime  of the system has probability density f (t), distribu-T = T1
tion function F(t), survival probability , and failure rate λ(t).F(t) = 1 − F(t)

Theorem 7.10  A system  is subject to a minimal repair policy. Let  be the time atTi
which its i th failure (minimal repair) takes place. Then the sequence  is a{T1, T2, ...}
nonhomogeneous Poisson process, the intensity function of which is given by the
failure rate  of the system.λ(t)
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Proof The first failure of the system, which starts working at time , occurs at thet = 0
random time  with densityT = T1

f T1 (t) = λ(t) e−Λ(t); t ≥ 0.
The same density one gets from (7.45) or (7.49) for  Now let us assume that an = 1.
failure (minimal repair) occurs at time point  Then the failure probability ofT1 = t1.
the system in  with  is nothing else than the conditional failure probabil-[t1, t2) t1 < t2
ity of a system, which has survived the interval  (in either case the system has[0, t1]
failure rate  at time ). Hence, by formula (2.98):λ(t1) t1

P(T2 < t2 T1 = t1) = 1 − e−[Λ(t2+t1)−Λ(t1) ] .

But this is formula (7.48) and just as there it can be concluded that the joint density
of the random vector  is given by (7.49) with  Finally, induction yields(T1, T2) n = 2.
that the joint density of the random vector  is for all  given(T1, T2, ..., Tn) n = 1, 2, ...
by (7.49), where  is the failure rate of the system.                                                 λ(t)

The minimal repair policy provides the theoretical fundament for analyzing a number
of more sophisticated maintenance policies including preventive replacements. To
justify preventive replacements, the assumption has to be made that the underlying
system is aging, i.e. its failure rate is increasing (pages 87 89).−
The criterion for evaluating the efficiency of maintenance policies will be the average
maintenance cost per unit time over an infinite time span. To establish this criterion,
the time axis is partitioned into replacement cycles, i.e. into the times between two
neighboring replacements. Let  be the random length of the i th replacement cycleLi
and  the total random maintenance cost (replacement + repair cost) in the i th re-Ci
placement cycle. It is assumed that the  are independent and identically distributedLi
as L. This assumption implies that a replaced system is as good as the previous one
('as good as new') from the point of view of its lifetime. The  are assumed to beCi
independent, identically distributed as C, and independent of the . Then the main-Li
tenance cost per unit time over an infinite time span is

K = lim
n→∞

Σi=1
n Ci

Σi=1
n Li

= lim
n→∞

1
n Σi=1

n Ci
1
n Σi=1

n Li
.

The strong law of the large numbers implies

                                                 (7.66)K =
E(C)
E(L) .

For the sake of brevity, K is referred to as the (long-run) maintenance cost rate. Thus,
the maintenance cost rate is equal to the mean maintenance cost per cycle divided by
the mean cycle length. In what follows,  denotes the cost of a preventive  replace-cp
ment, and  is the cost of a minimal repair;  constants.cm cp, cm

Policy 1 A system is preventively replaced at fixed times . Failures betweenτ, 2τ, ...
replacements are removed by minimal repairs.
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This policy reflects the common approach of preventively overhauling complicated
systems after fixed time periods whilst in between only the absolutely necessary re-
pairs are done. With this policy, all cycle lengths are equal to  so that in view of  τ
(7.65) the mean cost per cycle is equal to  Hence, the correspondingcp + cmΛ(τ) .
maintenance cost rate is

K1(τ) =
cp + cmΛ(τ)

τ .

A replacement interval  which minimizes  satisfies the conditionτ = τ∗, K1(τ),
τ λ(τ) − Λ(τ) = cp/cm .

If  tends to infinity as  then there exists a unique solution  of thisλ(t) t →∞, τ = τ∗
equation. The corresponding minimal maintenance cost rate is

K1(τ∗) = cm λ(τ∗) .

Policy 2 A system is replaced at the first failure which occurs after a fixed time  τ.
Failures which occur between replacements are removed by minimal repairs.

This policy makes use fully of the system lifetime so that, from this point of view, it
is preferable to policy 1. The partial uncertainty, however, about the times of replace-
ments leads to larger replacement costs than with policy 1. The replacement is no lon-
ger purely preventative so that its cost are denoted as  Thus, in practice the mainte-cr.
nance cost rate of policy 2 may actually exceed the one of policy 1 if  is sufficientlycr
larger than the  used in policy 1. The residual lifetime  of the system after timecp Tτ
point , when having survived interval , has according to (2.93) mean valueτ [0, τ]

                                       (7.67)μ(τ) = 1
F(τ) ∫τ

∞
Fτ(x)dx.

The mean maintenance cost per cycle is , and the mean replacement cyclecr + cmΛ(τ)
length is  so that the corresponding maintenance cost rate isτ + μ(τ)

K2(τ) =
cr + cmΛ(τ)
τ + μ(τ) .

An optimal  satisfies the necessary condition  i.e.,τ = τ∗ dK2(τ)/dτ = 0,
⎡⎣Λ(τ) +

cr
cm − 1⎤⎦ μ(τ) = τ .

Example 7.8  Let the system lifetime T have a Rayleigh distribution with failure rate
 The corresponding mean residual lifetime of the system after having sur-λ(t) = 2t/θ2.

vived  is[0, τ]

μ(τ) = θ π e(τ /θ)2 ⎡
⎣
⎢1 −Φ⎛

⎝
2
θ τ⎞⎠

⎤
⎦
⎥ .

If  , and   the optimal parameters areθ = 100 [h−1], cm = 1 cr = 5,

                                     τ∗= 180 [h], K2(τ∗) = 0.0402.
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Policy 3 The first  failures are removed by minimal repairs. At the time point n − 1 Tn
of the n th failure, a replacement is carried out.

The random cycle length is  Hence, the maintenance cost rate isL = Tn .

 K3(n) =
cr + (n − 1) cm

E(Tn)
,

where the mean cycle length  is given by (7.46). By analyzing the behavior ofE(Tn)
the difference , an optimal  is seen to be the smallest integerK3(n) −K3(n − 1) n = n∗

 satisfyingn
                 (7.68)E(Tn) − [n − 1 + cr /cm]E(Yn+1) ≥ 0; n = 1, 2, ...,

where the mean time  between the (n-1) th and the n th minimal repair is givenE(Yn)
by formula (7.47). 

Example 7.9 Let the system lifetime T have a Weibull distribution:

                      (7.69)λ(t) = β
θ
⎛
⎝

t
θ
⎞
⎠
β−1

, Λ(t) = ⎛
⎝

t
θ
⎞
⎠
β

, β > 1.

Under this assumption condition (7.68) becomes
βn − [n − 1 + cr/cm] ≥ 0 .

Hence, if cr > cm,

n ∗ = 1
β−1

⎛
⎝

cr
cm − 1⎞⎠ + 1,

where  is the largest integer being less or equal to x. (If  then ) If thex x < 0, x = 0.
aging process of the system proceeds fast (  large), then  is small.                        β n∗

7.2.7 Applications To Risk Analysis

Random point processes are key tools for quantifying the financial risk in virtually all
branches of industry. This section uses the terminology for analyzing the financial
risk in the insurance industry. A risky situation for an insurance company arises if it
has to pay out a total claim amount, which exceeds its total premium income plus
initial capital. To be able to establish the corresponding mathematical risk model, next
the concept of a risk process has to be introduced: An insurance company starts its
business at time  Claims arrive at random time points  and come witht = 0. T1, T2, ...
the respective random claim sizes  Thus, the insurance company is sub-M1, M2, ... .
jected to a random marked point process

{(T1, M1), (T2, M2), ...},

called risk process. The two components of the risk process are the claim arrival pro-
cess  and the claim size process  Let  be the{T1, T2, ...} {M1, M2, ...}. {N(t), t ≥ 0}
random counting process, which belongs to the claim arrival process. Then the total
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claim size , the company is faced with in the interval , is a compound randomC(t) [0, t]
variable of structure

                               (7.70)C(t) =
⎧

⎩
⎨
⎪
⎪

Σi=1
N(t)

Mi if N(t) ≥ 1,
0 if N(t) = 0.

The compound Poisson process
{C(t), t ≥ 0}

is the main ingredient of the risk model to be analyzed in this section.
To equalize the loss caused by claims and to eventually make a profit, an insurance
company imposes a premium on its clients. Let  be the total premium income ofκ(t)
the insurance company in  In case  the company has made a profit of[0, t]. C(t) < κ(t),

 κ(t) −C(t)
in the interval  (not taking into account staff and other running costs of the[0, t]
company). 
With an initial capital or an initial reserve x, which the company has at its disposal at
the start, the risk reserve at time  is defined ast

                                          (7.71)R(t) = x + κ(t) −C(t)
The corresponding (stochastic) risk reserve process is  If the sample{R(t), t ≥ 0}.
path of  becomes negative at a time point  the financial expenses of{R(t), t ≥ 0} tr,
the company in  exceed its available capital of   at the time point  [0, tr] x + κ(tr) tr.
This leads  the definition of the ruin probability p(x) of the company:to

                 (7.72)p(x) = P(there is a positive, finite t so that R(t) < 0).

Correspondingly, the non-ruin probability or survival probability of the company is
q(x) = 1 − p(x) .

These probabilities refer to an infinite time horizon. The ruin probability of the com-
pany with regard to a finite time horizon  isτ

p(x, τ) = P(there is a finite t with 0 < t ≤ τ so that R(t) < 0).

The ruin probabilities  and  decrease with increasing initial capital x.p(x) p(x, τ)
Since ruin can only occur at the arrival time points of claims (Figure 7.5),   andp(x)

 can also be defined in the following way:p(x, τ)

                (7.73)p(x) = P(there is a positive, finite integer n so that R(Tn) < 0).
p(x, τ) = P(there is a positive, finite integer n with Tn ≤ τ so that R(Tn) < 0),

where  is understood to be  i.e. the value of the risk reserve processR(Tn) R(Tn + 0),
at time point  includes the effect of the  th claim.Tn n

Note In the actuarial literature, claim sizes are frequently denoted as  the initial capital asUi,
u, and the ruin probability as ψ(u).
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In this section, the problem of determining the ruin probability is dealt with under the
so-called 'classical assumptions:'
1)  is a homogeneous Poisson process with parameter {N(t), t ≥ 0} λ.
2) The claim sizes   are independent, identically as M distributed randomM1, M2, ...
variables. They are independent of the T1, T2, ... .
3) The premium income is a linear function in t:  The constant parameter κ(t) = κ t. κ
is called the premium rate.
4) The time horizon is infinite (τ = ∞).
Under asumptions 1 and 2, risk analysis is subjected to a homogeneous portfolio, i.e.
claim sizes are independent, differences in the claim sizes are purely random, and the
arrival rate of claims is constant. For instance, consider a portfolio which only includ-
es policies covering burgleries in houses. If the houses are in a demarcated area, have
about the same security standards and comparable valuables inside, then this portfolio
may be considered a homogeneous one. Generally, an insurance company tries to es-
tablish its portfolios in such a way that they are approximately homogeneous. Regard-
less of the terminology adopted, the subsequent risk analysis will not apply to an
insurance company as a whole, but to its basic operating blocks, the homogeneous
portfolios.
By assumption 1 and theorem 7.2, the interarrival times between neighboring claims
are independent and identical as Y distributed random variables, where Y has an ex-
ponential distribution with parameter  The mean claim size is denoted as λ = 1/μ. ν :

  and                                        (7.74)μ = E(Y) v = E(M).
By (7.64), under the assumptions 1 and 2, the trend function of the total claim size
process  is a linear function in time:{C(t), t ≥ 0}

                                                                                (7.75)E(C(t) = ν
μ t, t ≥ 0.

This justifies assumption 3, namely a linear premium income in time.
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In the longrun, an insurance company, however large its initial capital may be, can-
not be successful if the average total claim cost in any interval  exceeds the[0, t]
premium income in . Hence, in what follows the assumption[0, t]

                                                (7.76)κμ − ν > 0
is made. This inequality requires that the average premium income between the arrival
of two neighboring claims is larger than the mean claim size. The difference  κμ − ν
is called safety loading and will be denoted as :σ

σ = κμ − v .
Let distribution function and density of the claim size  be

B(y) = P(M ≤ y) and b(y) = dB(y) /dy .

Derivation of an Integro-Differential Equation for q(x)  To derive an integro-dif-
ferential equation for the survival probability, consider what may happen in the time
interval [0,Δt] :

1) No claim arrives in  Under this condition, the survival probability is[0,Δt].
q(x + κΔt).

This is because at the end of the interval  the capital of the company has in-[0,Δt]
creased by  units. So the 'new' initial capital at time point  is κΔt Δt x + κΔt.
2) One claim arrives in  and the risk reserve remains positive. Under this condi-[0,Δt]
tion, the survival probability is

∫0
x+κΔt q(x + κΔt − y)b(y)dy .

To understand this integral, remember that ' ' can be interpreted as the 'probab-b(y)dy
ility' that the claim size is equal to  (see comment after formula (2.50) at page 61).y

3) One claim arrives in  and the risk reserve becomes negative (ruin occurs).[0,Δt]
Under this condition, the survival probability is 0.

4) At least two claims arrive in  Since the Poisson process is simple, the pro-[0,Δt].
bability of this event is o(Δt).

To get the unconditional survival probability, the conditional survival probabilities
 have to be multiplied by the probabilities of their respective conditions and1 − 4

added. By theorem 7.1, the probability that there is one claim in , is[0,Δt]
P(N(0,Δt) = 1) = λΔt + o(Δt),

and, correspondingly, the probability that there is no claim in  is[0,Δt]
.P(N(0,Δt) = 0) = 1 − λΔt + o(Δt)

Therefore, given the initial capital ,x

q(x) = [1 − λΔt + o(Δt)]q(x + κΔt)

+ [λΔt + o(Δt)] ∫0
x+κΔt q(x + κΔt − y)b(y)dy + o(Δt).
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From this, letting  by some simple algebra,h = κΔt,

q(x + h) − q(x)
h

= λ
κ q(x + h) − λ

κ ∫0
x+h q(x + h − y)b(y)dy + o(h)

h
.

Assuming that  is differentiable, letting  yieldsq(x) h → 0

                           (7.77)q (x) = λ
κ ⎡⎣q(x) − ∫0

x q(x − y)b(y)dy⎤⎦.

A solution can be obtained in terms of Laplace transforms, since the integral in (7.77)
is the convolution of q(x) and b(y): Let  and  be the Laplace transforms ofq(s) b(s)
q(x) and b(y), respectively. Then, applying the Laplace transformation to (7.77),
using its properties (2.123) and (2.127) (page 100) and replacing  with  yields aλ 1/μ
simple algebraic equation for q(s)

s q(s) − q(0) = 1
μκ ⎡

⎣q(s) − q(s)b(s)⎤⎦ .

Solving for  givesq(s)

                                   (7.78)q(s) = 1
s − 1

κμ [1 − b(s)]
q(0).

This representation of  involves the survival probability of the company  onq(s) q(0)
condition that it has no initial capital.

Example 7.10  Let the claim size M have an exponential distribution with mean value
 Then M has densityE(M) = v.

b(y) = 1
νe−y/v, y ≥ 0,

so that

b(s) = ∫0
∞ e−s y 1

ν e−(1/ν) ydy = 1
ν s + 1 .

Inserting  in (7.78) gives the Laplace transform of the survival probability:b(s)

q(s) = νs + 1
μκs (νs + 1) − ν s q(0) μκ .

 introducing the coefficientBy

                                 (7.79)α =
μκ − ν
μκ = σ

μκ , 0 < α < 1,

 simplifies toq(s)

q(s) = ⎡
⎣⎢

1
s + α /ν

+ 1
νs ⋅ 1

s + α /ν
⎤
⎦⎥

q(0) .

Retransformation yields (Table 2.5, page 105)

                            (7.80)q(x) = ⎡
⎣e

−α
ν x + 1

α − 1
α e−

α
ν x ⎤
⎦ q(0).
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If the company has infinite initial capital, then it can never experience ruin. Therefore,
 so that, from (7.80), survival and ruin probability without initial capital areq(∞) = 1

                                     (7.81)q(0) = α and p(0) = 1 − α.
This gives the final formulas for the survival- and ruin probability:

                   (7.82)q(x) = 1 − (1 − α) e−
α
ν x, p(x) = (1 − α) e−

α
ν x .

Figure 7.6 shows the graph of the ruin probability in dependence on the initial capital
 for  and  In both cases,  From (7.79) one getsx [$104] α = 0.1 α = 0.2. ν = 0.4 [$104].

that for  the safety loading is , and for  it is               α = 0.1 σ = 0.04 α = 0.2 σ = 0.1.

- Lundberg Approximation  If the explicit retransformation of  as givenCramér q(s)
by (7.78) is not possible for a given claim size distribution, then the -LundbergCramér
approximation for the ruin probability  is an option to get reliable information onp(x)
the ruin probability if the initial capital x is large compared  the mean claim size:to

                                           (7.83)p(x) ≈ α
r γ e−r x,

where the Lundberg-coefficient r is defined  solution of the equationas

                                     (7.84)1
μκ ∫0

∞ er y B(y)d y = 1,

and the parameter  is given byγ

γ = 1
μκ ∫0

∞ y er y B(y)d y.

Note that in view of (7.84)    can be interpreted as the probability density1
μκ er y B(y)

of a nonnegative random variable, and the parameter  is the mean value of this ran-γ
dom variable (for a proof of (7.83) see, e.g., Grandell (1991)).
A solution r of equation (7.84) exists if the probability density of the claim size  b(y)
has a 'short tail' to the right, which implies that large values of the claim size occur
fairly seldom.

7 RANDOM POINT PROCESSES                                                                            297

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 1

Figure 7.6 Comparison of ruin probabilities for example 7.10 

p(x)

x [$104]



It is interesting to compare the exact value of the ruin probability under an exponen-
tial claim size distribution (7.82) with the corresponding approximation (7.83)  For:

B(y) = 1 − e−(1/ν) y, y ≥ 0,
equation (7.84) becomes

∫0
∞ e−(1/ν−r) y d y = 1

1
ν − r

= μκ

so that  The corresponding parameter  is r = α/ν . γ

γ = 1
μκ ∫0

∞ y e−(1/ν−r) y d y = 1
μκ(1/ν − r) ∫0

∞ y (1/ν − r)e−(1/ν−r) y d y

   = 1
μκ (1/ν − r)2 .

After some simple algebra:
     αr γ = 1 − α .

By comparing (7.82) and (7.83):
   

   The -Lundberg approximation gives the exact value of the ruin probabilityCramér
   i f  the claim sizes are exponentially distributed.

Lundberg Inequality Assuming the existence of the Lundberg exponent r as defined
by equation (7.84), the ruin probability is bounded by e−r x :

                                               (7.85)p(x) ≤ e−r x.
This is the famous Lundberg inequality. A proof will be given in chapter 10, page
490, by applying martingale techniques.

Both F. Lundberg and H.  did their pioneering research in collective risk analysis in theCramér
first third of the twentieth century; see Lundberg (1964).

Example 7.11  As in example 7.10, let , but M is assumed to have aν = 0.4 [$104]
Rayleigh distribution:

B(y) = P(M > y) = e− (y /θ)2
, y ≥ 0.

Since  the parameter  must be equal to  Again theν = E(M) = θ π/4 = 0.4, θ 0.8 / π .
case  is considered, i.e.  and  The correspondingα = 0.1 μκ = 4/9 = 0.4 σ = 2/45 = 0.04.

Lundberg exponent is solution of which gives 9
4 ∫0

∞ er y e−π(y / 0.8)2
d y = 1,

  and  r = 0.398 γ = 9
4 ∫0

∞ y e0.398 y e−π(y / 0.8)2
d y = 0.2697.

Figure 7.7 shows the graphs of the approximation (7.83) and theCramér-Lundberg
upper bound (7.85) for the ruin probability p(x) in dependency  the initial capital x:of
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 p(x) ≈ 0.9316 ⋅ e−0.398⋅x, p(x) ≤ e−0.398⋅x, x ≥ 0.

Although (7.83) yields best results only for large x, the graph of the approximation is
everywhere lower than the upper bound (7.85). The dotted line shows once more the
exact ruin probability for exponentially distributed claim sizes with the same mean
and values as in Figure 7.6. Obviously, the distribution type of the claim size hasα−
a significant influence on  under otherwise the same assumptions.                       p(x)

7.3  RENEWAL PROCESSES

7.3.1 Definitions and Examples

The motivation for this chapter is a simple maintenance policy: A system is replaced
on every failure by a statistically equivalent new one in negligible time and, after that,
the new system (or the 'renewed system') immediately starts operating. In this context,
the replacements of failed systems are also called renewals. The sequence of the sys-
tem lifetimes after renewals generates  renewal process:

Definition 7.5  An ordinary renewal process is a sequence of nonnegative, independ-
ent, and identically distributed random variables                                     {Y1, Y2, ...}.

Thus,  is the time between the  and the i th renewal; Renewal processes doYi (i − 1) th
not only play an important role in engineering, but also in the natural, economical,
and social sciences. They are a basic stochastic tool for modeling particle counting,
population development, and arrivals of customers at a service station. In the latter
context, is the random time between the arrival of the  and the i th custom-Yi (i − 1) th
er. Renewal processes are particularly important in actuarial risk analysis, namely for
modeling the arrival of claims at an insurance company, since they are a straightfor-
ward generalization of homogeneous Poisson processes. In this section a terminology
is adopted, which refers to the 'simple maintenance policy'.
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If  the  observation  of  a  renewal process starts at time   and  the  process  had beent = 0
operating for a while before that time point, then the lifetime of the system operating
at time  is a 'residual lifetime' as introduced in section 2.3.4 (page 86) and will,t = 0
therefore, usually not have the same probability distribution as the lifetime of a sys-
tem after a renewal.  Hence  it makes sense to define a generalized renewal process
by assuming that only the are identically distributed. This leads to    Y2, Y3, ...

Definition 7.6  Let  be a sequence of nonnegative, independent random{Y1, Y2, ...}
variables with property that  has distribution functionY1

F1(t) = P(Y1 ≤ t),
whereas the random variables  are identically distributed as Y with distribu-Y2, Y3, ...
tion function

F(t) = P(Y ≤ t) .
Then  is called a delayed renewal process.                                               {Y1, Y2, ...}

The random time point at which the  renewal takes place isn th
Tn = Σi=1

n Yi ; n = 1, 2, ... .

The random point process  is called the process of the time points of re-{T1, T2, ...}
newals. The time intervals between two neighboring renewals are renewal cycles.
The corresponding counting process , defined by{N(t), t ≥ 0}

, N(t) =
⎧

⎩
⎨

max (n; Tn ≤ t)
0 for t < T1

is called renewal counting process. Note that  is the random number of renewalsN(t)
in , i.e., a possible renewal at time point  is not counted. The relationship(0, t] t = 0

  if and only if                                    (7.86)N(t) ≥ n Tn ≤ t

implies
                              (7.87)FTn (t) = P(Tn ≤ t) = P(N(t) ≥ n).

Because of the independence of the the distribution function  is the convo-Yi, FTn (t)
lution of  with the  convolution power of F (page 190): F1(t) (n − 1) th

                     (7.88)FTn (t) = F1 ∗ F∗(n−1)(t), F∗(0)(t) ≡ 1, t ≥ 0 ; n = 1, 2, ...

If the densities
 f1(t) = F1(t) and f (t) = F (t)

exist, then the density of  isTn

                     (7.89)fTn (t) = f1 ∗ f∗(n−1)(t), f∗(0)(t) ≡ 1, t ≥ 0; n = 1, 2, ...
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Using (7.87) and
P(N(t) ≥ n) = P(N(t) = n) + P(N(t) ≥ n + 1),

the probability distribution of  is seen to beN(t)

                        (7.90)P(N(t) = n) = FTn (t) − FTn+1 (t), FT0 (t) ≡ 1; n = 0, 1, ....

Example 7.12 Let  be an ordinary renewal process with property that the{Y1, Y2, ...}
renewal cycle lengths  have an exponential distribution with parameter Yi λ :

F(t) = P(Y ≤ t) = 1 − e−λt, t ≥ 0.

Then, by theorem 7.2, the corresponding counting process  is the homo-{N(t), t ≥ 0}
geneous Poisson process with intensity  In particular, by (7.21),  has an Erlangλ. Tn
distribution with parameters n and :λ

                                    FTn (t) = P(Tn ≤ t) = e−λ t Σ
i=n

∞ (λ t)i

i !
.

Apart from the homogeneous Poisson process, there are two other important ordinary
renewal processes for which the convolution powers of the renewal cycle length dis-
tributions explicitely exist so that the distribution functions of the renewal time points

 can be given:Tn

1) Erlang Distribution  The renewal cycle length Y have an Erlang distribution with
parameters m and  Then  is the sum of mn independent, identically distributedλ. Tn
exponential random variables with parameter . Therefore,  has an Erlang distribu-λ Tn
tion with parameters  and mn λ :

                  (7.91)F∗(n)(t) = P(Tn ≤ t) = e−λt Σ
i=mn

∞ (λt)i

i!
, t ≥ 0.

This result is of general importance, since the probability distribution of any nonneg-
ative random variable can be arbitrarily accurately approximated by an Erlang distri-
bution by proper choice of the parameters of this distribution.

2) Normal Distribution  Let the renewal cycle length Y have a normal distribution
with parameters  and , . The assumption  is necesssary for makingμ σ μ > 3σ μ > 3σ
sure that the cycle lengths are practically nonnegative. (Renewal theory, however, has
been extended to negative 'cycle lengths' as well.) Since the sum of independent, nor-
mally distributed random variables is again normally distributed, where the parame-
ters of the sum are obtained by summing up the parameters of the summands (formula
(4.72), page 191),  has distribution functionTn

                      (7.92)F∗(n)(t) = P(Tn ≤ t) = Φ⎛
⎝⎜

t − nμ
σ n

⎞
⎠⎟

, t ≥ 0.
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This result has a more general potential for applications: Since  is the sum of n in-Tn
dependent, identically distributed random variables, then, by the central limit theorem
(theorem 5.6),  has approximately the distribution function (7.92) if n is sufficient-Tn
ly large:

 if Tn ≈ N(nμ,σ2n) n ≥ 20.

Example 7.13 The distribution function of  can be used to solve the spare partTn
problem: How many spare parts (spare systems) are necessary for making sure that
the renewal process can be maintained over the interval  with probability [0, t] 1 − α ?
This requires to determine the smallest integer  satisfyingn

1 − FTn (t) = P(N(t) ≤ n) ≥ 1 − α .

For instance, let  and  If  and , thenμ = E(Y) = 8 σ2 = Var(Y) = 25. t = 200 1 − α = 0.99

1 − FTn (200) = 1 −Φ⎛
⎝

200−8 n
5 n

⎞
⎠ ≥ 1 − α = 0.99

is equivalent to
z0.01 = 2.32 ≤ 8 n−200

5 n .

Thus, at least  spare parts have to be in stock to ensure that with probabil-nmin = 34
ity 0.99 every failed part can be replaced by a new one over the interval . In(0, 200]
view of  the application of the normal approximation to the distribution ofnmin ≥ 20,

 is justified.                                                                                                               Tn

7.3.2    Renewal Function

7.3.2.1  Renewal Equations
The mean number of renewals which occur in a given time interval is of great practi-
cal and theoretical importance.

Definition 7.7  The mean value of the random number  of renewals occurring in N(t)
 as a function of t is called renewal function.                                                      (0, t]

Thus, with the terminology and the notation introduced in section 6.2, the renewal
function is the trend function of the renewal counting process :{N(t), t ≥ 0}

m(t) = E(N(t)), t ≥ 0.
To be, however, in line with the majority of publications on renewal theory, in what
follows, the renewal functions belonging to an ordinary and a delayed renewal process
are denoted as  and , respectively. If not stated otherwise, it is assumedH(t) H1(t)
throughout section 7.3 that the densities of Y and  exist:Y1

                             (7.93)dF(t) = f(t)dt and dF1(t) = f1(t)dt.
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In this case, the first derivatives of  and  also exist:H1(t) H(t)

h1(t) =
dH1(t)

dt
, h(t) = dH(t)

dt
.

The functions  and  are the renewal densities of a delayed and of an ordi-h1(t) h(t)
nary renewal process, respectively. From (2.9) (page 46), a sum representation of the
renewal function is

                          (7.94)H1(t) = E(N(t)) = Σn=1
∞ P(N(t) ≥ n).

In view of (7.87) and (7.94),

                             (7.95)H1(t) = Σn=1
∞ F1 ∗ F∗(n−1)(t) .

In particular, the renewal function of an ordinary renewal process is

                                      (7.96)H(t) = Σn=1
∞ F∗(n)(t) .

By differentiation of (7.95) and (7.96) with respect to t, one obtains sum represen-
tations of the respective renewal densities:

h1(t) = Σn=1
∞ f1 ∗ f∗(n−1)(t) , h(t) = Σn=1

∞ f∗(n)(t) .

Remark  These sum representations allow a useful probabilistic interpretation of the renewal
density: For  sufficiently small,Δt

h1(t) Δt or h(t) Δt ,
respectively, are approximately the probabilities of the occurrence of a renewal in the interval

 (Compare to the remark after formula (2.50), page 61.)[t, t + Δt].

By (7.95) and the definition of the convolution power of distribution functions,

H1(t) = Σn=0
∞ F1 ∗ F∗(n)(t)

= F1(t) + Σn=1
∞ ∫0

t F1 ∗ F∗(n−1)(t − x) dF(x)

 = F1(t) + ∫0
t Σn=1

∞ ⎛
⎝F1 ∗ F∗(n−1)(t − x)⎞⎠ dF(x) .

Again by (7.95), the integrand is equal to  Hence,  satisfiesH1(t − x). H1(t)

                                               (7.97)H1(t) = F1(t) + ∫0
t H1(t − x)dF(x) .

By assumption (7.93), the integral in (7.97) is the convolution  of the renewalH1 ∗ f
function  with  In particular, the renewal function  of an ordinary renewalH1 f . H(t)
process satisfies  integral equationthe

                                               (7.98)H(t) = F(t) + ∫0
t H(t − x)dF(x) .
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A heuristic derivation of formula (7.98) can be done by conditioning with regard to
the time point of the first renewal: Given the first renewal occurs at time x, the mean
number of renewals in  is[0, t]

[1 +H(t − x)], 0 < x ≤ t.

Since the first renewal occurs at time x with 'probability' , taking intodF(x) = f (x)dx
account all possible values of x in [0,t] yields (7.98). The same argument yields an
integral equation for the renewal function of a delayed renewal process:

                             (7.99)H1(t) = F1(t) + ∫0
t H(t − x)dF1(x) .

This is because after the first renewal at time x the process develops in  as an ordi-(x, t]
nary renewal process. Since the convolution is a commutative operation, the renewal
equations can be rewritten. For instance, integral equation (7.97)  equivalent tois

                           (7.100)H1(t) = F1(t) + ∫0
t F(t − x)dH1(x) .

The equations (7.97) (7.100) are called renewal equations. −
By differentiating the renewal equations (7.97) to (7.99) with respect to t, one obtains
analogous integral equations for  and :h1(t) h(t)

                                                (7.101)h1(t) = f1(t) + ∫0
t h1(t − x) f (x)d x,

                                                     (7.102)h(t) = f (t) + ∫0
t h(t − x) f (x)d x,

                                (7.103)h1(t) = f1(t) + ∫0
t h(t − x) f1(x)d x.

Generally, solutions of the renewal equations including equations (7.101) to (7.103)  
can only be obtained by numerical methods. Since, however, all these integral equa-
tions involve convolutions, it is easily possible to find their solutions in the image
space of the Laplace transformation. To see this, let inh1(s), h(s), f 1(s), and f (s)
this order be the Laplace transforms of and  Then, by (2.127),h1(t), h(t), f1(t), f (t).
applying the Laplace transformation to (7.101) and (7.102) yields algebraic equations
for  and :h1(s) h(s)

h1(s) = f 1(s) + h1(s) ⋅ f (s), h(s) = f (s) + h(s) ⋅ f (s) .

The solutions are

                         (7.104)h1(s) =
f 1(s)

1 − f(s)
, h(s) = f (s)

1 − f (s)
.

Thus, for ordinary renewal processes there is a one-to-one correspondence between
the renewal function and the probability distribution of the cycle length. By (2.120),
the Laplace transforms  the corresponding renewal functions of are

                      (7.105)H1(s) =
f 1(s)

s (1 − f (s))
, H(s) = f (s)

s (1 − f (s))
.
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Integral Equations of Renewal Type  The renewal equations (7.97) to (7.100) and
other, equivalent ones derived from these belong to the broader class of integral equa-
tions of renewal type. A function  is said to satisfy an integral equation of renewalZ(t)
type if for any function , which is integrable on , and for any probabilitya(t) [0,∞)
density  of a nonnegative random variable,f(x)

                              (7.106)Z(t) = a(t) + ∫0
t Z(t − x) f(x)dx.

A function  satisfying (7.106) need not be the trend function of a renewal count-Z(t)
ing process; see example 7.17. As proved in Feller (1971), the general solution of the
integral equation (7.106) has the unique structure

Z(t) = g(t) + ∫0
t g(t − x)h(x)dx,

where  is the renewal density of the ordinary renewal process belonging to h(t) f (x).

Example 7.14  Let The Laplace transform of  f (t) isf1(t) = f (t) = λ e−λ t, t ≥ 0.

f (s) = λ
s + λ .

By the right equation in (7.105),

H(s) = λ
s + λ

⎛
⎝s −

λ s
s + λ

⎞
⎠ = λ

s2 .

The corresponding preimage (Table 2.5, page 105) is   Thus, an ordinaryH(t) = λ t.
renewal process has exponentially with parameter  distributed cycle lengths if andλ
only if its renewal function is given by                                                       H(t) = λ t.

Example 7.15  Let the cycle length of an ordinary renewal process be a mixture of
 exponential distributions:two

 f (t) = pλ1 e−λ1t + (1 − p)λ2e−λ2t

with With its three free parameters, this distribution0 ≤ p ≤ 1, λ1 > 0, λ2 > 0, t ≥ 0.
can be expected to provide a good fit to many lifetime data sets. The Laplace trans-
form of  f (t) is

f (s) = pλ1
s + λ1

+
(1 − p) λ2

s + λ2
.

Hence, the right formula of (7.104) yields the Laplace transform of the corresponding
renewal density

h(s) =

pλ1
s + λ1

+
(1 − p )λ2
s + λ2

1 −
pλ1

s + λ1
−

(1 − pλ2
s + λ2

.

From this, by identical transformations,
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 h(s) = [pλ1 + (1 − p) λ2 ] s + λ1λ2
(s + λ1)(s + λ2) − [pλ1 + (1 − p)λ2] s − λ1λ2

                    =
[pλ1 + (1 − p) λ2 ] s + λ1λ2

s2 + (1 − p) λ1s + pλ2s

    =
pλ1 + (1 − p)λ2

s + (1 − p)λ1 + pλ2
+

λ1λ2
s [s + (1 − p)λ1 + pλ2]

.

Retransformation is easily done by making use of Table 2.5 (page 105)

                                                                                     h(t) = λ1λ2
(1 − p)λ1 + pλ2

+ ⎡
⎣
⎢pλ1 + (1 − p)λ2 −

λ1λ2
(1 − p)λ1 + pλ2

⎤
⎦
⎥ e−[(1−p)λ1+pλ2]t , t ≥ 0.

After  algebra,some

h(t) = λ1λ2
(1 − p)λ1 + pλ2

+ p(1 − p) (λ1 − λ2)2

(1 − p)λ1 + λ2 p e−[(1−p)λ1+pλ2]t , t ≥ 0.

Integration yields  renewal function:the

               H(t) = λ1λ2
(1 − p)λ1 + pλ2

t

 +p (1 − p) ⎛⎝
λ1 − λ2

(1 − p)λ1 + λ2 p
⎞
⎠

2
⎛
⎝1 − e−[(1−p)λ1+pλ2]t ⎞⎠ .

Mean value  and variance  of the renewal cycle length Y areμ = E(Y) σ2 = Var(Y)

μ =
p
λ1

+
1 − p
λ2

=
(1 − p)λ1 + pλ2

λ1λ2
,

  σ2 =
p
λ1

2 +
1 − p
λ2

2 =
(1 − p)λ1

2 + pλ2
2

λ1
2 λ2

2 .

With these parameters, the representation  the renewal function can be simplified:of

H(t) = t
μ +

⎛

⎝
⎜ σ

2

μ2 − 1
⎞

⎠
⎟ ⎛⎝1 − e−[(1−p)λ1+pλ2] t ⎞

⎠ , t ≥ 0.

For  and  this representation of  reduces to               λ1 = λ2 = λ p = 1 H(t) H(t) = λ t.

More explicit formulas for the renewal function of ordinary renewal processes exist
for the following two classes of cycle length distributions:
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1) Erlang Distribution  Let the cycle lengths be Erlang distributed with parameters
m and  Then, by (7.87) and (7.91),λ .

                                      (7.107)H(t) = e−λt Σ
n=1

∞
Σ

i=mn

∞ (λt)i

i !
.

In particular,

                                                      (homogeneous Poisson process)m = 1 : H(t) = λ t

m = 2 : H(t) = 1
2
⎡
⎣⎢
λ t − 1

2 + 1
2 e−2λt ⎤

⎦⎥

m = 3 : H(t) = 1
3
⎡

⎣
⎢⎢⎢λ t − 1 + 2

3
e−1,5λt sin

⎛

⎝
⎜

3
2 λ t + π

3
⎞

⎠
⎟
⎤

⎦
⎥⎥⎥

m = 4 : H(t) = 1
4
⎡
⎣⎢
λ t − 3

2 + 1
2e−2λ t + 2 e−λ t sin ⎛⎝λ t + π

4
⎞
⎠
⎤
⎦⎥

.

2) Normal Distribution Let the cycle lengths be normally distributed with mean val-
ue µ and variance ,    From (7.87) and (7.92),σ2 μ > 3σ2.

                                     (7.108)H(t) = Σ
n=1

∞
Φ
⎛
⎝⎜

t − nμ
σ n

⎞
⎠⎟

.

This sum representation is very convenient for numerical computations, since already
the sum of the first few terms approximates the renewal function with sufficient accu-
racy.
As shown in example 7.14  an ordinary renewal process has renewal function,

  if and only if  H(t) = λ t = t /μ f (t) = λe−λt, t ≥ 0,

where  An interesting question is, whether for given F(t) a delayed renewalμ = E(Y).
process exists which also has renewal function .H1(t) = t /μ

Theorem 7.11  Let  be a delayed renewal process with cycle lengths{Y1, Y2, ...}
 being identically distributed as Y. If Y has finite mean value  and distri-Y2, Y3, ... μ

bution function , then  has renewal functionF(t) = P(Y ≤ t) {Y1, Y2, ...}

                                               (7.109)H1(t) = t /μ

if and only if the length of the first renewal cycle  has density , whereY1 f1(t) ≡ fS(t)

                                   (7.110)fS(t) =
1
μ (1 − F(t)) , t ≥ 0 .

Equivalently,  has renewal function (7.109) if and only if has distribu-{Y1, Y2, ...} Y1
tion function  withF1(t) ≡ FS(t)

                              (7.111)FS(t) =
1
μ ∫0

t (1 − F(x))dx, t ≥ 0 .
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Proof  Let  and  be the respective Laplace transforms of  and  Byf (s) f S(s) f (t) fS(t).
applying the Laplace transformation to both sides of (7.110),

f S(s) =
1
μ s (1 − f (s)) .

Replacing in the left equation of (7.105)  with  yields the Laplace trans-f 1(s) f S(s)
form of the corresponding renewal function H1(t) = HS(t) :

HS(s) = 1/(μ s2) .

Retransformation of  gives the desired result: .                               HS(s) HS(t) = t /μ

The first two moments of  areS

                           (7.112)E(S) =
μ2 + σ2

2μ and E(S2) =
μ3
3μ ,

where .σ2 = Var(Y) and μ3 = E(Y3)

The random variable S with density (7.110) plays an important role in characterizing
stationary renewal processes (section 7.3.5). 

7.3.2.2  Bounds on the Renewal Function
Generally, integral equations of renewal type have to be solved by numerical methods.
Hence, bounds on H(t), which only require information on one or more numerical pa-
rameters of the cycle length distribution, are of special interest. This section presents
bounds on the renewal function of ordinary renewal processes.

1) Elementary Bounds  By definition of Tn ,

max
1≤i≤n

Yi ≤ Σi=1
n Yi = Tn .

Hence, for any t with ,F(t) < 1

F∗(n)(t) = P(Tn ≤ t) ≤ P(max
1≤i≤n

Yi ≤ t) = [F(t)]n .

Summing from  on both sides of this inequality, the sum representation ofn = 1 to ∞
the renewal function (7.96) and the geometric series (2.16) at page 48 yield

 F(t) ≤ H(t) ≤ F(t)
1 − F(t) .

The left-hand side of this inequality is the first term of the sum (7.96). These bounds
are only useful for small t .

2) Marshall-Bounds  Let andF = {t ; t ≥ 0, F(t) < 1}, μ = E(Y), F(t) = 1 − F(t),

a0 = inf
t∈F

F(t) − FS(t)
F(t)

, a1 = sup
t∈F

F(t) − FS(t)
F(t)

,
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where  is given by (7.111). Then,FS(t)

                                    (7.113)t
μ + a0 ≤ H(t) ≤ t

μ + a1.

The derivation of these bounds is straightforward and very instructive: According to
the definition of  and a0 a1,

a0 F(t) ≤ F(t) − FS(t) ≤ a1 F(t) .

Convolution of both sides with  leads toF∗(n)(t)

a0 ⎡⎣F∗(n)(t) − F∗(n+1)(t)⎤⎦ ≤ F∗(n+1)(t) − FS ∗ F∗(n)(t) ≤ a1 ⎡⎣F∗(n)(t) − F∗(n+1)(t)⎤⎦.

In view of (7.96) and theorem 7.11, summing up from  on both sides ofn = 0 to ∞
 inequality proves (7.113). Sincethis

for all 
F(t) − FS(t)

F(t)
≥ −FS(t) ≥ −1 t ≥ 0,

formula (7.113) implies a simpler lower bound on :H(t)

H(t) ≥ t
μ − FS(t) ≥

t
μ − 1 .

Let be the failure rate belonging to :λS(t) = fS(t) /FS(t) FS(t)

λS(t) =
F(t)

∫t
∞ F(x)dx

.

Then  and  can be rewritten as follows:a0 a1

  a0 =
1
μ inf

t∈F

1
λS(t)

− 1 and a1 =
1
μ sup

t∈F

1
λS(t)

− 1.

Thus, (7.113) becomes

               (7.114)t
μ + 1

μ inf
t∈F

1
λS(t)

− 1 ≤ H(t) ≤ t
μ + 1

μ sup
t∈F

1
λS(t)

− 1.

Since
   inf

t∈F
λ(t) ≤ inf

t∈F
λS(t) and sup

t∈F
λ(t) ≥ sup

t∈F
λS(t) ,

the bounds (7.114) can be simplified:

                 (7.115)t
μ + 1

μ inf
t∈F

1
λ(t) − 1 ≤ H(t) ≤ t

μ + 1
μ sup

t∈F

1
λ(t) − 1.

3) Lorden's Upper Bound  If   and , thenμ = E(Y) μ2 = E(Y2)

                                       (7.116)H(t) ≤ t
μ +

μ2
μ2 − 1 .
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4) Brown's Upper Bound  If  is IFR, then (7.116) can be improved:F(t)

H(t) ≤ t
μ +

μ2
2μ2 − 1 .

5) Barlow and Proschan Bounds  If  is IFR, thenF(t)

                         (7.117)t

∫0
t F(x)dx

− 1 ≤ H(t) ≤ t F(t)

∫0
t F(x)dx

.

Example 7.16  Let
F(t) = (1 − e−t )2, t ≥ 0 ,

be the distribution function of the cycle length Y of an ordinary renewal process. In
this case,  andμ = E(Y) = 3/2

FS(t) =
1
μ ∫t

∞ F(x)dx = 2
3
⎛
⎝2 −

1
2 e−t ⎞

⎠ e−t, t ≥ 0 .

Therefore, the failure rates belonging to  F(t) and  are (Figure 7.8)FS(t)

λ(t) = 2(1 − e−t)
2 − e−t , λS(t) = 2 2 − e−t

4 − e−t , t ≥ 0 .

Both failure rates are strictly increasing in  and have propertiest

λ(0) = 0, λ(∞) = 1 and λS(0) = 2/3, λS(∞) = 1 .

Hence, the respective bounds (7.114) and (7.115)  (Figure 7.9)are

2
3 t − 1

3 ≤ H(t) ≤ 2
3 t and 2

3 t − 1
3 ≤ H(t) ≤ ∞.
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In this case, the upper bound in (7.115) contains no information on the renewal func-
tion. Figure 7.9 compares the bounds (7.114) with the exact graph of the renewal
function given in example 7.15 The deviation of the lower bound from H(t) is negli-
gibly small for                                                                                                     t ≥ 3.

7.3.3  Asymptotic Behavior

This section investigates the behavior of the renewal counting process {N(t), t ≥ 0}
and its trend function H(t) as  The results allow the construction of estimatest →∞.
of the renewal function and of the probability distribution of N(t) if t is sufficiently
large. Throughout this section, it is assumed that both  and  areμ1 = E(Y1) μ = E(Y)
finite. Some of the key results require that the cycle length Y or, equivalently, its dis-
tribution function, is nonarithmetic (see definition 5.3, page 216), i.e., that there is no
positive constant b with property that the possible values of Y are multiples of b. A
continuous random variable is always nonarithmetic.
A simple consequence of the strong law of the large numbers is

                                      (7.118)P⎛⎝ lim
t→∞

N(t)
t = 1

μ
⎞
⎠ = 1.

To avoid technicalities, the verification of (7.118) is done for an ordinary renewal
process: The inequality  implies thatTN(t) ≤ t < TN(t)+1

TN(t)

N(t) ≤
t

N(t) <
TN(t)+1

N(t) =
TN(t)+1

N(t)+1
N(t)+1

N(t)

, equivalently, thator

1
N(t) Σi=1

N(t)
Yi ≤

t
N(t) <

⎡
⎣⎢

1
N(t)+1 Σi=1

N(t)+1
Yi
⎤
⎦⎥

N(t)+1
N(t) .

Since by assumption   tends to infinity as  Hence, theoremμ = E(Y) < ∞, N(t) t →∞.
5.4 yields the desired result (7.118). For  being the mean distance between two re-μ
newals, this result is quite intuitive.

The following theorem considers the corresponding limit behavior of the mean value
of  As with the subsequent theorems 7.13 and 7.14, no proof is  given.N(t).

Theorem 7.12 (elementary renewal theorem)  renewal function satisfiesThe

                                                    lim
t→∞

H1(t)
t = 1

μ .

Corollary For large t,
 H1(t) ≈ t /μ .
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The theorem shows that for  the influence of the first renewal interval witht →∞
possibly  fades away. (For this property to be valid, the assumption   μ1 ≠ μ μ1 < ∞
had to be made.) In terms of the renewal density, the analogue to theorem 7.12 is

lim
t→∞

h1(t) =
1
μ .

Note that (7.118) does not imply theorem 7.12. The following theorem was called  
fundamental or key renewal theorem  by its  discoverer W. L. Smith.

Theorem 7.13  (fundamental renewal theorem)  If F(t) is nonarithmetic and g(t) an
integrable function on , then[0,∞)

                                  lim
t→∞∫0

t g(t − x)dH1(x) =
1
μ ∫0

∞ g(x)dx.

The fundamental renewal theorem (or key renewal theorem, theorem of Smith) has
proved  useful tool for solving many problems in stochastic modeling. Witha

               g(x) =
⎧

⎩
⎨

1 for 0 ≤ x ≤ h,
0 elsewhere,

the fundamental renewal theorem implies

Blackwell's renewal theorem: If F(t) is nonarithmetic, then, for any ,h > 0

                                  (7.119)lim
t→∞

[H1(t + h) − H1(t)] =
h
μ .

Whereas the elementary renewal theorem refers to 'a global transition' into the station-
ary regime, Blackwell's renewal theorem refers to the corresponding 'local behavior'
in a time interval of length h.

Theorem 7.14 gives another variant of the fundamental renewal theorem. It refers to
the integral equation of renewal type (7.106).

Theorem 7.14  Let  be an integrable function on  and  a probability den-a(x) [0,∞) f(x)
sity. If a function  satisfies the renewal type equationZ(t)

                               (7.120)Z(t) = a(t) + ∫0
t Z(t − x) f(x)dx ,

then

                                            lim
t→∞

Z(t) = 1
μ ∫0

∞ a(x)dx .

As mentioned previously, the function  in (7.130) need not be a renewal function.Z(t)
Proofs of the now 'classic' theorems 7.12 to 7.14 can be found in Tijms (1994).
In the following example, theorem 7.14 is used to sketch the proof the Cramer-Lund-
berg approximation for the ruin probability (7.83); for details see Grandell (1991).

312                             APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Example 7.17  integro-differential equation (7.77)The

q (x) = λ
κ ⎡⎣q(x) − ∫0

x q(x − y)b(y)dy⎤⎦

for the survival probability  of an insurance company can be transformed by in-q(x)
tegration on both sides and some routine manipulations to an integral equation for the
ruin probability  p(x) = 1 − q(x)

                          (7.121)p(x) = a0(x) + ∫0
x p(x − y)g0(y)dy

with
 and  a0(x) = 1 − α − 1

μκ ∫0
x B(y)dy g0(y) =

1
μκ B(y) ,

where  is given by (7.79). Equation (7.121) is not of type (7.120), since  isα g0(y)
only an 'incomplete' probability density:

1
μκ ∫0

∞ B(y)dy = ν
μκ = 1 − α < 1.

For this reason, equation (7.121) is multiplied by the factor  whicher x = er(x−y) ⋅ ery,
transforms equation (7.121) into an integral equation for pr(x) = erxp(x) :

                         (7.122)pr(x) = a(x) + ∫0
x pr(x − y)g(y)dy,

where ,  and r is such that  is a probability densi-a(x) = erxa0(x) g(y) = eryg0(y), g(y)
ty, i.e.,

∫0
∞ g(y)dy = 1

μκ ∫0
∞ eryB(y)dy = 1.

This is the definition of the Lundberg-exponent r according to (7.84). Now (7.132) is
a renewal type equation and theorem 7.14 can be applied  With:

γ = ∫0
∞ y g(y)dy = 1

μκ ∫0
∞ y eryB(y)dy and ∫0

∞ a(x)dx = α
r ,

theorem 7.14 yields
 lim

x→∞
pr(x) = lim

x→∞
erxp(x) = α

γ r

so that for large x
                                               p(x) ≈ α

γ re−rx .

Theorem 7.15  If F(t) is nonarithmetic and  thenσ2 = Var(Y) < ∞,

                          (7.123)lim
t→∞

⎛
⎝H1(t) −

t
μ
⎞
⎠ =

σ2

2μ2 −
μ1
μ + 1

2.

Proof  The renewal equation (7.99) is equivalent to

                            (7.124)H1(t) = F1(t) + ∫0
t F1(t − x)dH(x).

If  then, by theorem 7.11 this integral equation becomesF1(t) ≡ FS(t),
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                               (7.125)t
μ = FS(t) + ∫0

t FS(t − x)dH(x).

By subtracting integral equation (7.125) from integral equation (7.124),

H1(t) −
t
μ = FS(t) − F1(t) + ∫0

t FS(t − x)dH(x) − ∫0
t F1(t − x)dH(x) .

Applying  fundamental renewal theorem yieldsthe

lim
t→∞

⎛
⎝H1(t) −

t
μ
⎞
⎠ =

1
μ ∫0

∞ FS(x)d(x) − 1
μ ∫0

∞ F1(x)d(x).

Now the desired results follows from (2.52) and (7.112).                                           

For ordinary renewal processes  (7.123) simplifies to,

                             (7.126)lim
t→∞

⎛
⎝H1(t) −

t
μ
⎞
⎠ =

1
2
⎛

⎝
⎜ σ

2

μ2 − 1
⎞

⎠
⎟ .

Corollary Under the assumptions of theorem 7.15, the fundamental renewal theorem
implies the elementary renewal theorem.

Theorem 7.16  For an ordinary renewal process, the integrated renewal function has
property

lim
t→∞

⎧

⎩
⎨∫0

t H(x)dx −
⎡

⎣
⎢ t2

2μ +
⎛

⎝
⎜
μ2

2μ2 − 1
⎞

⎠
⎟ t
⎤

⎦
⎥
⎫

⎭
⎬ =

μ2
2

4μ3 −
μ3

6μ2

with                                                                                μ2 = E(Y2) and μ3 = E(Y3).
For a proof see, for instance, Tijms (1994). The following theorem is basically a
consequence of the central limit theorem; for details see Karlin, Taylor (1981).

Theorem 7.17  The random number  of renewals in  satisfiesN(t) [0, t]

                                        lim
t→∞

P
⎛

⎝
⎜⎜⎜

N(t) − t/μ

σ tμ−3
≤ x

⎞

⎠
⎟⎟⎟
= Φ(x).

Corollary For t sufficiently large, N(t) is approximately normally distributed with
mean value  and variance :t /μ σ2t /μ3

                                     (7.127)N(t) ≈ N(t /μ, σ2t /μ3).

Hence, theorem 7.17 can be used to construct approximate intervals, which contain
N(t) with a given probability: If  is sufficiently large, thent

        (7.128)P⎛⎝
t
μ − zα/2 σ tμ−3 ≤ N(t) ≤ t

μ + zα/2 σ tμ−3 ⎞
⎠ = 1 − α .

As usual,  is the  of the standard normal distribution.zα/2 (1 − α/2)−percentile
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Example 7.18  Let  Since t = 1000, μ = 10, σ = 2, and α = 0.05. z0.025 ≈ 2,

                                           P(96 ≤ N(t) ≤ 104) = 0.95 .

Knowledge of the asymptotic distribution of N(t) makes it possible, without knowing
the exact distribution of Y, to approximately answer a question which already arose
in section 7.3.1: How many spare systems (spare parts) are necessary for guarantee-
ing that the (ordinary) renewal process can be maintained over an interval  with[0, t]
a given probability of  Since with probability  approximately1 − α ? 1 − α

N(t)−t/μ

σ tμ−3
≤ zα ,

for large t the required number  is approximately equal tonmin

                                   (7.129)nmin ≈
t
μ + zα σ tμ−3 .

The same numerical parameters as in example 7.13 are considered:
t = 200, μ = 8, σ2 = 25, and α = 0.01.

Since z0.01 = 2.32,

  nmin ≥
200
8 + 2.32 ⋅ 5 200 ⋅ 8−3 = 32.25.

Thus, 33 spare parts are at least needed to make sure that with probability 0.99 the
renewal process can be maintained over a period of 200 time units. Remember, for-
mula (7.92) applied in example 7.13 yielded                                              nmin = 34.

7.3.4   Recurrence Times

For any point processes, recurrence times have been defined by (7.3) and (7.5). In
particular, if  is a renewal process and  is the corresponding{Y1, Y2, ...} {T1, T2, ...}
process of renewal time points, then its (random)  forward recurrence time A(t) is

A(t) = TN(t)+1 − t

and its (random) backward recurrence time B(t) is
B(t) = t − TN(t).

With the interpretation of renewal processes adopted in this chapter,  is the  resi-A(t)
dual lifetime and  the age of the system operating at time t in the sense of termi-B(t)
nology introduced in section 2.3.4 (Figure 7.10). The stochastic processes

, ,   and {Y1, Y2, ...} {T1, T2, ...} {N(t), t ≥ 0}, {A(t), t ≥ 0}, {B(t), t ≥ 0}

are statistically equivalent, since there is a one to one correspondence between their
sample paths, i.e., each of these five processes can be used to define a renewal process
(Figure 7.11).
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Let
and  FA(t)(x) = P(A(t) ≤ x) FB(t)(x) = P(B(t) ≤ x)

be the distribution functions of the forward and the backward recurrence times. Then,
for making use of (7.95),0 < x < t,

FA(t)(x) = P(TN(t)+1 − t ≤ x)

= Σn=0
∞ P(TN(t)+1 ≤ t + x, N(t) = n)

= F1(t + x) − F1(t) + Σn=1
∞ P(Tn ≤ t < Tn+1 ≤ t + x)

= F1(t + x) − F1(t) + Σn=1
∞ ∫0

t [F(x + t − y) − F(t − y)]dFTn (y)

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]Σn=1

∞ dFTn (y)

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]Σn=1

∞ d(F1 ∗ F∗(n−1)(y))

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]d ⎛⎝Σn=1

∞ F1 ∗ F∗(n−1)(y)⎞⎠

= F1(t + x) − F1(t) + ∫0
t [F(x + t − y) − F(t − y)]dH1(y) .

This representation of  can be simplified by combining it with (7.100). The re-FA(t)
sult is

             (7.130)FA(t)(x) = F1(t + x) − ∫0
t F(x + t − y)dH1(y); x, t ≥ 0.

Differentiation yields the probability density of :A(t)

             (7.131)fA(t)(x) = f1(t + x) + ∫0
t f (x + t − y)h1(y)dy; x, t ≥ 0.
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The probability that the system, which is working at time t, does not fail in  is(t, t + x]
FA(t)(x) = 1 − FA(t)(x).

 is sometimes called interval reliability.FA(t)(x)

For determining the mean value of the forward recurrence time of an ordinary renew-
al process,  is written in the formA(t)

A(t) = Σi=1
N(t)+1

Yi − t ,

where the  are independent and identically distributed as  with Y1, Y2, ... Y μ = E(Y ).
Wald's identity (4.74) at page 194 cannot be applied to obtain  since E(A(t)), N(t) + 1
is surely not independent of the sequence  However,  is a stoppingY1, Y2, ... . N(t) + 1
time for the sequence Y1, Y2, ... :

' ' = ' ' = ' .'N(t) + 1 = n N(t) = n − 1 Y1 + Y2 + . .. + Yn−1 ≤ t < Y1 + Y2 + . .. + Yn

Thus, the event ' ' is independent of all  so that, by defini-N(t) + 1 = n Yn+1, Yn+2, ...
tion 4.2,  is a stopping time for the sequence  Hence, the mean val-N(t) + 1 Y1, Y2, ...
ue of  can be obtained from (4.76) at page 195 with :A(t) N = N(t) + 1

E(A(t)) = μ [E(N(t) + 1)] − t.
Thus, the mean forward recurrence time of an ordinary renewal process is

E(A(t)) = μ [H(t) + 1] − t .
The probability distribution of the backward recurrence time is obtained as follows:

FB(t)(x) = P(t − x ≤ TN(t))

= Σn=1
∞ P(t − x ≤ Tn, N(t) = n)

= Σn=1
∞ P(t − x ≤ Tn ≤ t < Tn+1)

= Σn=1
∞ ∫t−x

t F(t − u)dFTn (u)

= ∫t−x
t F(t − u)d ⎛⎝Σn=1

∞ F1 ∗ F∗(n) ⎞
⎠

= ∫t−x
t F(t − u)dH1(u) .

Hence, the distribution function of  isB(t)

.                (7.132)FB(t)(x) =
⎧

⎩
⎨
⎪
⎪

∫
t−x

t
F(t − u)dH1(u) for 0 ≤ x ≤ t

1 for t > x

Differentiation yields the probability density of :B(t)

                     (7.133)fB(t)(x) =
⎧

⎩
⎨

F(x)h1(t − x) for 0 ≤ x ≤ t,
0 for t < x.
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One easily verifies that the forward and backward recurrence times of an ordinary re-
newal process, whose cycle lengths are exponentially distributed with parameter ,λ
are also exponentially distributed with parameter λ :

fA(t)(x) = fB(t)(x) = λ e−λ x for all t ≥ 0.

In view of the memoryless property of the exponential distribution (example 2.21,
page 87), this result is not surprising.
A direct consequence of the fundamental renewal theorem is that , as definedFS(t)
by (7.111), is the limiting distribution function of both backward and forward recur-
rence time as t tends to infinity:

                                  (7.144)lim
t→∞

FA(t)(x) = lim
t→∞

FB(t)(x) = FS(x), x ≥ 0.

Paradox of Renewal Theory  In  view  of  the  definition  of  the  forward  recurrence
time, one may suppose that the following equation is true:

lim
t→∞

E(A(t)) = μ /2 .

However, according to (7.134) and (7.112),

lim
t→∞

E(A(t)) = ∫0
∞ FS(t)dt = E(S) =

μ2 + σ2

2μ >
μ
2 .

This 'contradiction' is known as the paradox of renewal theory. The intuitive explana-
tion of this phenomenon is that on average the 'reference time point' t is to be found
more frequently in longer renewal cycles than in shorter ones.

7.3.5  Stationary Renewal Processes

By definition 7.1, a renewal process  is stationary if for all  and{Y1, Y2, ...} k = 1, 2, ...
sequence of integers  with  and any  theany i1, i2, ..., ik 1 ≤ i1 < i2 < . .. < ik τ = 0, 1, ...

joint distribution functions of the vectors
(Yi1 , Yi2 , ..., Yik ) and (Yi1+τ, Yi2+τ, ..., Yik+τ)

coincide,   According to the corollary after definition 7.1,  isk = 1, 2, ... . {Y1, Y2, ...}
stationary if and only if the corresponding renewal counting process  has{N(t), t ≥ 0}
homogeneous increments. A third way of defining the stationarity of a renewal pro-
cess  makes use of the statistical equivalence between  and{Y1, Y2, ...} {Y1, Y2, ...}
the corresponding processes  or , respectively.{A(t), t ≥ 0} {B(t), t ≥ 0}

   A renewal process is stationary if and only if the process of its forward (backward )
   recurrence times  ( ) is strongly stationary.{A(t), t ≥ 0} {B(t), t ≥ 0}

The stochastic process in continuous time  is a Markov process. This is{B(t), t ≥ 0}
quite intuitive, but a strict proof will not be given here. By theorem 7.1, a Markov
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process  is strongly stationary if and only if its one-dimensional distribu-{X(t), t ∈ T}
tion functions  do not depend on t. Hence, a renewal process isFt(x) = P(X(t) ≤ x)
stationary if and only if there is a distribution function  so thatF(x)

FA(t)(x) = P(A(t) ≤ x) = F(x) for all x ≥ 0 and t ≥ 0.

Theorem 7.18 yields a simple criterion for the stationarity of renewal processes:

Theorem 7.18 Let  be nonarithmetic and  Then a delay-F(x) = P(Y ≤ x) μ = E(Y) < ∞.
ed renewal process given by  and F(x) is stationary if and only ifF1(x)

                                              (7.135)H1(t) = t /μ .
Equivalently,  as a consequence of theorem 7.11,  a delayed renewal process is station-
ary if and only if

   for all                     (7.136)F1(x) = FS(x) =
1
μ ∫0

x F(y)dy x ≥ 0.

Proof  If (7.136) holds, then (7.135) as well, so that, from (7.130),

FA(t)(x) =
1
μ ∫0

t+x F(y)dy − 1
μ ∫0

t F(x + t − y)dy

= 1
μ ∫0

t+x F(y)dy − 1
μ ∫x

t+x F(y)dy

= 1
μ ∫0

x F(y)dy .

Hence,  does not depend on t.FA(t)(x)

Conversely, if  does not depend on t, then (7.134) impliesFA(t)(x)

FA(t)(x) ≡ FS(x) for all t .

This completes the proof of the theorem.                                                                    

As a consequence from theorem 7.87 and the elementary renewal theorem: After a
sufficiently large time span (transient response time) every renewal process with non-
arithmetic distribution function F(t) and finite mean cycle length  behaves asμ = E(Y)
a stationary renewal process.

7.3.6  Alternating Renewal Processes

So far it has been assumed that renewals take only negligibly small amounts of time.
In order to be able to model practical situations, in which this assumption is not ful-
filled, the concept of a renewal process has to be generalized in the following way:
The renewal time of the system after its i th failure is assumed to be a positive random
variable  Immediately after a renewal the system starts operating. In thisZi; i = 1, 2, ... .
way, a marked point process  is generated, where  as before{(Yi, Zi); i = 1, 2, ...} Yi
denotes the lifetime of the system after the i th renewal.
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Definition 7.8 (alternating renewal process)  If  and  are two{Y1, Y2, ...} {Z1, Z2, ...}
independent sequences of independent, nonnegative random variables, then the mark-
ed point process  is said to be an alternating renewal process{(Y1, Z1), (Y2, Z2), ...}
if the  and the  have the meanings given above.                                                  Yi Zi

The random variables

S1 = Y1; Sn = Σi=1
n−1(Yi + Zi) + Yn; n = 2, 3, ...,

are the time points, at which failures occur and the random variables

Tn = Σi=1
n−1(Yi + Zi); n = 1, 2, ...

are the time points at which a new system starts operating. If an operating system is
assigned a '1' and a failed system  '0', a binary indicator variable of the system state isa

                       (7.137)X(t) = 0 if t ∈ [Sn, Tn), n = 1, 2, ...,
1 elsewhere.

Obviously, an alternating renewal process can equivalently be defined by the stochas-
tic process in continuous time  with X(t) given by (7.137) (Figure 7.12).{X(t), t ≥ 0}
In what follows, all  and  are assumed to be distributed as Y and Z with distribu-Yi Zi
tion functions  and , respectively. By agreement,FY(y) = P(Y ≤ y) FZ(z) = P(Z ≤ z)

P(X(+0) = 1) = 1.

Analogously to the concept of a delayed renewal process, the alternating renewal pro-
cess can be generalized by assigning to the random lifetime  a probability distribu-Y1
tion different from that of Y. This way of generalization and some other possibilities
will not be discussed here, although no principal difficulties would arise.
Let  and  be the respective numbers of failures and renewals in  SinceNf (t) Nr(t) (0, t].

 and  are sums of independent random variables,Sn Tn

        (7.138)FSn (t) = P(Sn ≤ t) = P(Nf (t) ≥ n) = FY ∗ (FY ∗ FZ)∗(n−1)(t),

             (7.139)FTn (t) = P(Tn ≤ t) = P(Nr(t) ≥ n) = (FY ∗ FZ)∗(n)(t) .

Analogously to (7.95) and (7.96), sum representations of the mean values
 and Hf (t) = E(Nf (t)) Hr(t) = E(Nr(t))
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are
Hf (t) = Σn=1

∞ FY ∗ (FY ∗ FZ)∗(n−1)(t) ,
and

Hr(t) = Σn=1
∞ (FY ∗ FZ)∗(n)(t) .

 and  are referred to as the renewal functions of the alternating renewal pro-Hf (t) Hr(t)
cess. Since  can be interpreted as the renewal function of a delayed renewalHf (t)
process, whose first system lifetime is distributed as Y, whereas the following 'system
lifetimes' are identically distributed as  it satisfies renewal equation (7.97) withY + Z

F1(t) ≡ FY(t) and F(t) = FY ∗ FZ(t).

Analogously,  can be interpreted as the renewal function of an ordinary renewalHr(t)
process whose cycle lengths are identically distributed as  Therefore,  sat-Y + Z. Hr(t)
isfies renewal equation (7.98) with  replaced by F(t) FY ∗ FZ(t).

Let  be the residual lifetime of the system if it is operating at time t. ThenRt

P(X(t) = 1, Rt > x)

is the probability that the system is working at time t and does not fail in the interval
 This probability is called interval availability or interval reliability, and it is(t, t + x].

denoted as  It can be obtained as follows:Ax(t).

Ax(t) = P(X(t) = 1, Rt > x)

= Σn=0
∞ P(Tn ≤ t, Tn + Yn+1 > t + x)

= FY(t + x) + ∫0
t P( t + x − u < Y)dΣn=1

∞ (FY ∗ FZ)∗(n)(u).

Hence,
                   (7.140)Ax(t) = FY (t + x) + ∫0

t FY (t + x − u)dHr(u) .

Note  In this section 'A' does no longer refer to forward recurrence time.

Let A(t) be the probability that the system is operating (available) at time t: 
                                       (7.141)A(t) = P(X(t) = 1).

This important characteristic of an alternating renewal process is obtained from
(7.140) by letting there :x = 0

                                      (7.142)A(t) = FY(t) + ∫0
t FY(t − u)dHr(u) .

A(t) is called availability of the system,  system availability, or, more exactly, point
availability of the system, since it refers to a specific time point t. It is equal to the
mean value  the indicator variable of the system state:of

E(X(t)) = 1 ⋅ P(X(t) = 1) + 0 ⋅ P(X(t) = 0) = P(X(t) = 1) = A(t).

7 RANDOM POINT PROCESSES                                                                            321



The average availability of the system in the interval  is[0, t]

A(t) = 1
t ∫0

t A(x)dx .

The random total operating time U(t) of the system in the interval  is[0, t]

                                       (7.143)U(t) = ∫0
t X(x)dx .

By changing the order  integrationof

E(U(t)) = E⎛⎝∫0
t X(x)dx⎞⎠ = ∫0

t E(X(x))dx .

Thus,
E(U(t)) = ∫0

t A(x)dx = t A(t) .

The following theorem provides information on the limiting behavior of the interval
reliability and the point availability as  A proof of the assertions need not bet →∞.
given, since they are immediate consequences of theorem 7.13.

Theorem 7.19  If  and the distribution function   of theE(Y) + E(Z) < ∞ (FY ∗ FZ)(t)
sum  is nonarithmetic, then

Ax = lim
t→∞

Ax(t) = 1
E(Y) + E(Z) ∫x

∞ FY(u)du ,

                        (7.144)A = lim
t→∞

A(t) = lim
t→∞

A(t) = E(Y)
E(Y) + E(Z) .

 is said to be the long-run or stationary interval availability (reliability) with re-Ax
gard to an interval of length x, and A is called the long-run or stationary availability.
Clearly,  If, analogously to renewal processes, the time between two neigh-A = A0.
boring time points at which a new system starts operating is called a renewal cycle,  
then the long-run availability is equal to the mean share of the operating time of a sys-
tem in the mean renewal cycle length. Equation (7.144) is also valid if within renewal
cycles  and  depend on each other.Yi Zi

Example 7.19  Life- and renewal times have exponential distributions  densitieswith

fY (y) = λ e−λ y, y ≥ 0, and fZ(z) = μe−μ z, z ≥ 0.

The Laplace transforms  these densities and ofof

F(y) = e−λy, y ≥ 0,

are

f Y (s) = λ
s + λ , f Z (s) =

μ
s + μ , and L{FY , s} = 1

s + λ .
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Application  the Laplace transform to the integral equation (7.142) yieldsof

         (7.145)A(s) = L{FY , s} + L{FY , s} ⋅ hr (s) = 1
s + λ

⎡
⎣1 + hr(s)⎤⎦.

By (2.127), the Laplace transform of the convolution  is( fY ∗ fZ)(t)

L{ fY ∗ fZ, s} = f Y(s) ⋅ f Z(s) =
λμ

(s + λ) (s + μ) .

From the second equation  (7.104)of

   hr (s) =
λμ

s (s + λ + μ) .

By inserting  into (7.145) and expanding  into partial fractions,hr(s) A(s)

A(s) = 1
s + λ + λ

s (s + λ) −
λ

s (s + λ + μ) .

Retransformation (  Table 2.5, page 105) yields the point availabilityuse

A(t) =
μ

λ + μ + λ
λ + μ e−(λ+μ) t , t ≥ 0 .

Since
E(Y) = 1/λ and E(Z) = 1/μ,

taking in  the limit as  verifies  relationship (7.144). On the other hand, ifA(t) t →∞
 as derived in example 4.14 (page 174),λ ≠ μ,

E⎛⎝
Y

Y + Z
⎞
⎠ =

μ
μ − λ

⎛
⎝1 +

λ
μ − λ ln λ

μ
⎞
⎠ .

For instance, if  thenE(Z) = 0.25 E(Y),

A =
E(Y)

E(Y) + E(Z) = 0.800

and
   E⎛⎝

Y
Y + Z

⎞
⎠ = 0.717.

Hence, in general,

                                       E⎛⎝
Y

Y + Z
⎞
⎠ ≠

E(Y)
E(Y) + E(Z) .

Usually, numerical methods have to be applied to determine interval and point avail-
ability when applying formulas (7.140) and (7.142). This is again due to the fact that
there are either no explicit or rather complicated representations of the renewal func-
tion for most of the common lifetime distributions. These formulas can, however, be
applied for obtaining approximate values for interval and point availability if they are
used in conjunction with the bounds and approximations for the renewal function
given in sections 7.3.2.2 and 7.3.3.

7 RANDOM POINT PROCESSES                                                                            323



7.3.7 Compound Renewal Processes

7.3.7.1 Definition and Properties
Compound stochastic processes arise by additive superposition of random variables
at random time points  (For motivation, see section 7.2.5.).

Definition 7.9  Let  be a random marked point process with{(T1, M1), (T2, M2), ...}
property that  is the sequence of renewal time points of a renewal process{T1, T2, ...}

 and let  be the corresponding renewal counting process.{Y1, Y2, ...}, {N(t), t ≥ 0}
Then the stochastic process  defined by{C(t), t ≥ 0}

                             (7.146)C(t) =
⎧

⎩
⎨
⎪
⎪

Σi=1
N(t)

Mi if N(t) ≥ 1
0 if N(t) = 0

is called a compound (aggregate, cumulative) renewal process, and  is called aC(t)
compound random variable.                                                                                         

The compound Poisson process defined in section 7.2.5 is a compound renewal pro-
cess with property that the renewal cycle lengths  are inde-Yi = Ti − Ti−1, i = 1, 2, ...,
pendent and identically exponentially distributed (theorem 7.2).
A compound renewal process is also called a renewal reward process, in particular,
if  is a 'profit' of any kind made at the renewal time points. In most applications,Mi
however,  is a 'loss', for instance, replacement cost, repair time, or claim size. ButMi
it  also can represent a 'loss' or 'gain', which accumulates over the i th renewal cycle
(maintenance cost, profit by operating the system). In any case,  is the total lossC(t)
(gain), which has accumulated over the interval  The sample paths of a com-(0, t].
pound renewal process are step functions. Jumps occur at times  and the respectiveTi
jump heights are  (Figure 7.13).Mi

In this section, compound renewal processes are considered under the following as-
sumptions:
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1)  is a renewal counting process, which belongs to an ordinary renewal{N(t), t ≥ 0}
process .{Y1, Y2, ...}
2) The sequences  and  are independent of each other and{M1, M2, ...} {Y1, Y2, ...}
consist each of independent, nonnegative random variables, which are identically
distributed as M and Y, respectively.  and  are allowed to depend on each otherMi Yj
if i.e., if they refer to the same renewal cycle.i = j,

3) The mean values of  and M are finite and positive.Y

Under these assumptions, Wald's equation (4.74) yields the trend function of the com-
pound renewal process :{C(t), t ≥ 0}

                                 (7.147)m(t) = E(C(t)) = E(M)H(t) ,

where  is the renewal function, which belongs to the underlying renew-H(t) = E(N(t))
al process  Formula (7.147) and theorem 7.12, the elementary renewal{Y1, Y2, ....}.
theorem,  imply an important asymptotic property of the trend function of compound
renewal processes:

                                     (7.148)lim
t→∞

E(C(t))
t =

E(M)
E(Y) .

Equation (7.148) means that the average long-run (stationary) loss or profit per unit
time is equal to the average loss or profit per unit time within a renewal cycle. The
'stochastic analog' to (7.148) is: With probability 1,

                                         (7.149)lim
t→∞

C (t)
t =

E(M)
E(Y) .

To verify (7.149)  consider the obvious relationship,

Σi=1
N(t)

Mi ≤ C(t) ≤ Σi=1
N(t)+1

Mi .
From this,

⎛
⎝

1
N(t) Σi=1

N(t)
Mi

⎞
⎠

N(t)
t ≤

C(t)
t ≤ ⎛

⎝
1

N(t) + 1 Σi=1
N(t)

Mi
⎞
⎠

N(t) + 1
t .

Now the strong law of the large numbers (theorem 5.4) and (7.118) imply (7.149).
The relationships (7.148) and (7.149) are called renewal reward theorems.

Distribution of C(t)  If M has distribution function , then, given , theG(t) N(t) = n
compound random variable C(t) has distribution function

P(C(t) ≤ x N(t) = n) = G∗(n)(x) ,

where  is the n th convolution power of  Hence, by the total probabil-G∗(n)(x) G(t).
ity rule,

              (7.150)FC(t)(x) = P(C(t) ≤ x) = Σn=1
∞ G∗(n)(x)P(N(t) = n) ,
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where the probabilities  are given by (7.90). (With the terminology ofP(N(t) = n)
section 2.4,  is a mixture of the probability distribution functions FC(t) G∗(1), G∗(2), ....
If Y has an exponential distribution with parameter , then  has distribution func-λ C(t)
tion

     (7.151)FC(t)(x) = e−λt Σ
n=0

∞
G∗(n)(x) (λt)n

n! ; G∗(0)(x) ≡ 1, x > 0, t > 0 .

If, in addition, M has a normal distribution with  thenE(M) ≥ 3 Var(M) ,

    (7.152)FC(t)(x) = e−λt
⎡

⎣
⎢⎢⎢
1 + Σ

n=1

∞
Φ
⎛

⎝
⎜

x − n E(M)

n Var(M)

⎞

⎠
⎟
(λt)n

n!

⎤

⎦
⎥⎥⎥

; x > 0, t > 0 .

The distribution function  for being composed of convolution powers of G andFC(t),
F, is usually not tractable and useful for numerical applications. Hence, much effort
has been put into constructing bounds on  and into establishing asymptotic ex-FC(t)
pansions. For surveys, see, e.g. Rolski et al. (1999) and Willmot, Lin (2001). The fol-
lowing result of Gut (1990) is particularly useful.

Theorem 7.20  If 
                                                (7.153)γ2 = Var {E(Y)M − E(M)Y } > 0,

then

lim
t→∞

P
⎛

⎝
⎜⎜⎜

C(t) − E(M)
E(Y) t

[E(Y)]−3/2 γ t
≤ x

⎞

⎠
⎟⎟⎟
= Φ(x) ,

where  is the distribution function of the standardized normal distribution.       Φ(x)

This theorem implies that for large t the compound variable  has approximately aC(t)
normal distribution with mean  and variancevalue

  and E(M)
E(Y) t [E(Y)]−3 γ2 t,

respectively:

                                                 (7.154)C(t) ≈ N⎛⎝
E(M)
E(Y) t, [E(Y)]−3 γ2 t⎞⎠ .

If M and Y are independent, then the parameter  can be written in the followingγ2

form:
                                          (7.155)γ2 = [E(Y)]2 Var(M) + [E(M)]2 Var(Y ) .

In this case, in view of assumption 3, condition (7.153) is always fulfilled. Condition
(7.153) actually only excludes the case  , i.e. linear dependence between Y andγ2 = 0
M. The following examples present applications of theorem 7.20.
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Example 7.20  For an alternating renewal process  the total re-{(Yi, Zi); i = 1, 2, ...},
newal time in  is given by (a possible renewal time running at time t is neglected)(0, t]

C(t) = Σi=1
N(t)

Zi ,
where

N(t) = max
n

{n, Tn < t}.

(Notation and assumptions as in section 7.3.6.) Hence, the development of the total
renewal time is governed by a compound stochastic process. In order to investigate
the asymptotic behaviour of C(t) as  by means of theorem 7.20, M has to bet →∞
replaced with Z and Y with . Consequently, if t is sufficiently large, then C(t)Y + Z
has approximately a normal distribution with parameters

and   E(X(t)) = E(Z)
E(Y) + E(Z) t Var(X(t)) =

γ2

[E(Y) + E(Z)]3 t .

Because of the independence of  and Z,Y

γ2 = Var[Z E(Y + Z) − (Y + Z)E(Z)]

= Var[Z E(Y) − Y E(Z)]

= [E(Y)]2Var(Z) + [E(Z)]2Var(Y) > 0

so that assumption (7.153) is satisfied  In particular, let (all parameters in hours).

                    E(Y) = 120 , Var(Y) = 40, and E(Z) = 4 , Var(Z) = 2 .
Then,

  and  γ2 = 1202 ⋅ 4 + 16 ⋅ 1600 = 83 200 γ = 288.4.
Consider for example the total renewal time in the interval  The prob-[0, 104 hours].
ability that  does not exceed a nominal value of 350 hours isC(104)

   P(C(104) ≤ 350) = Φ
⎛
⎝
⎜

350− 4
124 104

124−3/2 ⋅288.4⋅ 104

⎞
⎠
⎟ = Φ(1.313) .

Hence,
                                           P(C(104) ≤ 350) = 0.905.

Example 7.21 (normal approximation to risk processes)  Let the sequence of the
claim interarrival times   be an ordinary renewal process. This includes theY1, Y2, ...
homogeneous Poisson arrival process, to which section 7.2.7 is restricted. Otherwise,
assumptions 2 to 4 (page 294 ) and the notation introduced there will be retained.
Then, by theorem 7.20, if t is sufficiently large compared to , the total claimμ = E(Y)
size arising in  has approximately a normal distribution with mean value  and[0, t] ν

μ t
variance :μ−3γ2t
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                                     (7.156)C(t) ≈ N⎛⎝
ν
μ t, μ−3γ2t⎞⎠ ,

where
γ2 = μ2Var(M) + ν2Var(Y).

The random profit  the insurance company has made in  is given byG(t) [0, t]
G(t) = κt −C(t).

By (7.156),  has approximately a normal distribution with parametersG(t)

E(G(t)) = (κ − ν
μ) t and Var(G(t)) = μ−3γ2t .

Note that the situation considered here refers to the situation that, when being 'in red
numbers' (ruin has happened), the company continues operating until it reaches a pro-
fitable time period and so on. In case of a positive safety loading the company will
leave 'loss periods' with probability 1.
As a numerical special case, let us consider a risk process  with{(Y1, M1), (Y2, M2), ...}

μ = E(Y) = 2 [h], Var(Y ) = 3 [h2],

ν = E(M) = 900 [$], Var(M) = 360 000 [$2].

(1) What minimal premium per hour  has the insurance company to take in so thatκα
it will achieve a profit of at least  within  hours with probability $106 103 α = 0.95?
Since γ = 1967.2 ,

P(G(104) ≥ 106) = P(C(t) < 104(κ 0.95 − 100))

= Φ⎛
⎝⎜
(κ 0.95 − 100) − 450

2−1.5 ⋅ 19.672
⎞
⎠⎟

.

Since the 0.95-percentile of the standardized normal distribution is  thez0.95 = 1.64,
desired premium per hour  satisfies equationκ0.95

κ 0.95 − 550
6.955 = 1.64 .

Hence, κ0.95 = 561 [$/h].
This result does not take into account the fact that in reality the premium size has an
influence on the claim flow.

(2) Let the premium income of the company be  Thus, the company hasκ = 460 [$/h].
a positive safety loading of  Given an initial capital of  what isσ = 10 [$]. x = 104 [$],
the probability of the company to be in the state of ruin at time t = 1000 [h]?
This probability is given by

P(G(103) < −10−4) = Φ
⎛

⎝
⎜
−104 − (460 − 450)103

2−1.5 ⋅ 1967.2 ⋅ 1000

⎞

⎠
⎟

                                       = Φ(−0.910) = 0.181.
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7.3.7.2  First Passage Time
Example 7.21 motivates the investigation of the random time  at which the com-L(x),
pound renewal process  (  not necessarily a cost criterion) exceeds a{C(t), t ≥ 0} C(t)
given nominal value x for the first time:

                                    (7.157)L(x) = inf
t
{t, C(t) > x}.

If, for instance, x is the critical wear limit of an item, then crossing level x is common-
ly referred to as the occurrence of a drift  failure. Hence, in this case it is justified to
denote L as the lifetime of the system (Figure 7.14).

Since the  are nonnegative random variables, the compound renewal processMi
 has nondecreasing sample paths. In such a case, the following relation-{C(t), t ≥ 0}

ship between the distribution function of the first passage time L(x) and the distribu-
tion function of the compound random variable ) is obvious (Figure 7.14):C(t)

                                     (7.158)P(L(x) ≤ t) = P(C(t) > x).

Specifically, if  is the homogeneous Poisson process, then, from for-{N(t), t ≥ 0}
mulas (7.151) and (7.158),

P(L(x) > t) = e−λt Σ
n=0

∞
G∗(n)(x) (λt)n

n! ; t ≥ 0,

with  fixed. The probability distribution of L(x) is generally not explicitlyx, x > 0,
available. Hence the following theorem (Gut (1990)) is important for applications,
since it provides information on the asymptotic behavior of the distribution of L(x) as

 The analogy of this theorem to theorem 7.20 is obvious.x →∞.

Theorem 7.21  If   thenγ2 = μ2Var(M) + ν2Var(Y) > 0 ,

lim
x→∞

P
⎛

⎝
⎜⎜⎜

L(x) − E(Y)
E(M) x

[E(M)]−3/2 γ x
≤ t

⎞

⎠
⎟⎟⎟
= Φ(t) ,

where  is the distribution function of the standardized normal distribution.         Φ(t)
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Actually, in view of our assumption that the compound process  has non-{C(t), t ≥ 0}
decreasing sample paths, condition (7.158) implies that theorems 7.20 and 7.21 are
equivalent.
A consequence of theorem 7.21 is that, for large x, the first passage time  hasL = L(x)
approximately  normal distribution with parametersa

   and   E(L(x)) = E(Y)
E(M) x Var(L(x)) = [E(M)]−3γ2 x ,

i.e.

                      (7.159)L(x) ≈ N⎛⎝
E(Y)
E(M) x , [E(M)]−3γ2 x⎞⎠ , x > 0.

The probability distribution given by (7.159) is called Birnbaum-Saunders distribu-
tion.

Example 7.22  Mechanical wear of an item is caused by shocks. (For instance, for
the brake discs of a car, every application of the brakes is a shock.) After the i th shock
the degree of wear of the item increases by  units. The  are supposedMi M1, M2, ...
to be independent random variables, which are identically normally distributed as  M
with parameters

E(M) = 9.2 and Var(M) = 2.8 [in 10−4mm ].

The initial degree of wear of the item is zero. The item is replaced by an equivalent
new one if the total degree of wear exceeds a critical level of 0.1 mm.

(1) What is the probability  that the item has to be replaced before or at thep100
occurrence of the 100 th shock?  The degree of wear after 100 shocks is

C100 = Σi=1
100 Mi

and has approximately the distribution function (unit of x: )10−4mm

P(C100 ≤ x) = Φ
⎛

⎝
⎜⎜⎜

x − 9.2 ⋅ 100
2.82 ⋅ 100

⎞

⎠
⎟⎟⎟ = Φ

⎛
⎝

x − 920
28

⎞
⎠ .

Thus, the item survives the first  shocks with probability100
p100 = P(C100 ≤ 1000) = Φ(2.86).

Hence, p100 = 0.979.

(2) In addition to the parameters of M, the random cycle Y is assumed to have mean
value and variance

E(Y) = 6 and Var(Y) = 2 [hours].

What is the probability that the nominal value of  is not exceeded within the0.1 mm
time interval  (hours)?[0, 600]
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To answer this question, theorem 7.21  can  be applied since  is sufficiently0.1 mm
large in comparison to the shock parameter  Provided M and Y are independ-E(M).
ent, the parameter  is  Hence,γ γ = 0.0024916.

P(L(0.1) > 600) = 1 −Φ
⎛

⎝
⎜⎜⎜

600 − 6
9.2 103

(9.2)−3/2 ⋅ 2491.6 ⋅ 0.1

⎞

⎠
⎟⎟⎟

   = 1 − Φ(−1.848) .

Thus, the desired probability is                                            P(L(0.1) > 600) = 0.967.

Example 7.23 Let the risk process  have the parameters{(Y1, M1), (Y2, M2), ...}

  μ = E(Y) = 5 [h], Var(Y) = 25 [h2],

      ν = E(M) = 1000 [$], Var(M) = 640 000 [$2].

What is the probability that the total claim reaches level  before or at timea = 106 [$]
point t = 5500 [h]?

a) Since because of (7.159),γ = 6403,

P(L(106 ≤ 5500) ≤ Φ

⎛

⎝

⎜
⎜
⎜

5500 − 5 ⋅ 106

1000
1000−1.5 ⋅ 6403 ⋅ 106

⎞

⎠

⎟
⎟
⎟
= Φ(2.4694)

so that
P(L(106 ≤ 5500) = 0.993.

b) Now the same question is answered by making use of (7.156) and (7.158):

P(L(106) ≤ 5500) = P(C(5500) > 106)

          = 1 − P(C(5500) ≤ 106)

= 1 −Φ
⎛

⎝
⎜
⎜
⎜

106 − 1000 ⋅ 5500
5

5−1.5 ⋅ 6403 ⋅ 5500

⎞

⎠
⎟
⎟
⎟
= 1 − Φ(−2.354)

so that
P(L(106) ≤ 5500) = P(C(5500) > 106) ≈ 0.991.

Taking into account the piecewise constant sample paths of the compound process
there is an excellent correspondence between the results obtained under{C(t), t ≥ 0},

a) and b).                                                                                                                     
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7.4 EXERCISES

Sections 7.1 and 7.2
7.1) The occurrence of catastrophic accidents at Sosal & Sons follows a homogene-
ous Poisson process with intensity  a year.λ = 3
(1) What is the probability  that at least two catastrophic accidents will occur inp≥2
the second half of the current year?
(2) Determine the same probability given that two catastrophic accidents have occurr-
ed in the first half of the current year.

7.2) By making use of the independence and homogeneity of the increments of a
homogeneous Poisson process with intensity , show that its covariance function isλ
given by

C(s, t) = λmin(s, t) .

7.3) The number of cars which pass a certain intersection daily between 12:00 and
14:00 follows a homogeneous Poisson process with intensity  per hour. Amongλ = 40
these there are 2.2% which disregard the stop sign. The car drivers behave independ-
ently with regard to ignoring stop signs.

(1) What is the probability that at least two cars disregard the stop sign between 12:30
and 13:30?
(2) A car driver, who ignores the stop sign at this interection, causes an accident there
with probability 0.05. What is the probability of one or more accidents at this inter-
section between 12:30 and 13:30, caused by a driver, who ignores the stop sign?

7.4) A Geiger counter is struck by radioactive particles according to a homogeneous
Poisson process with intensity  per 12 seconds. On average, the Geiger counterλ = 1
only records 4 out of 5 particles.

(1) What is the probability  that the Geiger counter records at least 2 particles  a  p≥2
minute?
(2) What are mean value and variance of the random time Y between the occurrence
of two successively recorded particles?

7.5) The location of trees in an even, rectangular forest stand of size  200m × 500m
follows a homogeneous Poisson distribution with intensity  per  Theλ = 1 25m2.
diameters of the stems of all trees at a distance of 130cm to the ground is assumed to
be 24cm. From outside, a shot is vertically fired at a 500m side of the forest stand
(parallel to the ground at level 130cm). What is the probability that a bullet with
diameter 1cm hits no tree?
Hint With regard to the question, the location of a tree is fully determined by the coordinates
of the center of the cross-section of its stem at level 130cm.
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7.6) An electronic system is subject to two types of shocks, which occur independently
of each other according to homogeneous Poisson processes with intensities

  and  per hour,λ1 = 0.002 λ2 = 0.01
respectively. A shock of type 1 always causes a system failure,  whereas  a  shock  of
type 2 causes a system failure with probability 0.4.
What is the probability that the system fails within 24 hours due to a shock?

7.7) A system is subjected to shocks of types 1, 2, and 3, which are generated by
independent homogeneous Poisson processes with respective intensities per hour  

and  A type 1-shock causes a system failure with pro-λ1 = 0.2, λ2 = 0.3, λ3 = 0.4.
bability 1, a type 2-shock causes a system failure with probability 0.4, and shock of
type 3 causes a system failure with probability 0.2. The shocks occur permanently,
whether the system is operating or not.
(1) On condition that three shocks arrive in the interval  determine the[0, 10 h],
probability that the system does not experience a failure in this interval.
(2) What is the (unconditional) probability that the system fails in  due to a[0, 10 h]
shock?

7.8) Claims arrive at a branch of an insurance company according a homogeneous
Poisson process with an intensity of  per working hour. The claim size Z hasλ = 0.4
an exponential distribution so that 80% of the claim sizes are below $100 000,
whereas 20% are equal or larger than $100 000.
(1) What is the probability that the fourth claim does not arrive in the first two work-
ing hours of a day?
(2) What is the mean size of a claim?
(3) Determine approximately the probability that the sum of the sizes of 10 consecu-
tive claims exceeds $800 000.

7.9) Consider two independent homogeneous Poisson processes 1 and 2 with respec-
tive intensities  and  Determine the mean value of the random number of eventsλ1 λ2.
of process 2, which occur between any two successive events of process 1.

7.10) Let   be a homogeneous Poisson process with intensity λ.{N(t), t ≥ 0}
Prove that for an arbitrary, but fixed, positive h the stochastic process  (X(t), t ≥ 0}
defined by  is weakly stationary.X(t) = N(t + h) −N(t)

7.11) Let a homogeneous Poisson process have intensity λ, and let  be the timeTi
point at which the i th Poisson event occurs. For , determine and sketch thet →∞
covariance function  of the shot noise process  given byC(τ) {X(t), t ≥ 0}

  with X(t) = Σi=1
N(t)

h(t − Ti) h(t) = sin t for 0 ≤ t ≤ π
0, elsewhere

.
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7.12) Statistical evaluation of a large sample justifies to model the number of cars
which arrive daily for petrol between 0:00 and 4:00 a.m. at a particular filling station
by an inhomogeneous Poisson process  with intensity function{N(t), t ≥ 0}

λ(t) = 8 − 4 t + 3 t2 [h−1], 0 ≤ t ≤ 4 .

(1) How many cars arrive on average between 0:00 and 4:00 a.m.?
(2) What is the probability that at least 40 cars arrive between 2:00 and 4:00?

7.13) Let  be an inhomogeneous Poisson process with intensity function{N(t), t ≥ 0}
λ(t) = 0.8 + 2 t, t ≥ 0.

Determine the probability that at least 500 Poisson events occur in [20, 30].

7.14)* Let  be a nonhomogeneous Poisson process with trend function{N(t), t ≥ 0}
 and arrival time point  of the i th Poisson event.Λ(t) Ti

Given show that the random vector  has the same probabilityN(t) = n, (T1, T2, ..., Tn)
distribution as n ordered, independent and identically distributed random variables
with distribution function

                 F(x) =
⎧

⎩
⎨
⎪
⎪

Λ(x)
Λ(t) for 0 ≤ x < t,
1, t ≤ x.

Hint  Compare to theorem 7.5 (page 268).

7.15) Clients arrive at an insurance company according to a mixed Poisson process
the structure parameter L of which has a uniform distribution over the interval [0, 1].
(1) Determine the state probabilities of this process at time t.
(2) Determine trend and variance function of this process.
(3) For what values of  and  are trend and variance function of a  arrivalα β Pólya
process identical to the ones obtained under (2) ?

7.16) A system is subjected to shocks of type 1 and type 2, which are generated by
independent  processes  and  with respectivePólya {NL1 (t), t ≥ 0} {NL2 (t), t ≥ 0}
trend and variance functions
                            E(NL1 (t)) = t , Var(NL1 (t)) = t + 0.5 t2,

  E(NL2 (t)) = 0.5 t , Var(NL2 (t)) = 0.5 t + 0.125 t2

(time unit: hour). A shock of any type causes a system failure with probability 1.
What is the probability that the system fails within 2 hours due to a shock?

7.17)* Prove the multinomial criterion (formula 7.55, page 280).
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7.18) An insurance company has a premium income of $106 080 per day. The claim
sizes are iid random variables and have an exponential distribution with variance

.  On average, 2 claims arrive per hour according to a homogeneous Pois-4 ⋅ 106 [$2]
son process. The time horizon is assumed to be infinite.
(1) What probability distribution have the interarrival times between two neighboring
claims?
(2) Calculate the company's ruin probability if its initial capital is  x = $20 000.
(3) What minimal initial capital should the company have to make sure that its ruin
probability does not exceed 0.01?

7.19) Pramod is setting up an insurance policy for low-class cars (homogeneous
portfolio) over an infinite time horizon. Based on previous statistical work, he expects
that claims will arrive according to a homogeneous Poisson process with intensity

, and that the claim size will be iid distributed as an exponentially distri-λ = 0.8 [h−1]
buted random variable M with mean value  He reckons with a totalν = E(M) = $ 3000.
premium income of  $ 2800 [h−1].
(1) Given that these assumptions are correct, has Pramod a chance to be financially
successful with this portfolio over an infinite period of time?
(2) What is the minimal initial capital   Pramod has to invest to make sure that thex0
lower bound for the survival probability of this portfolio derived from the Lundberg
inequality is 0.96?
(3) For the sake of comparison, determine the exact value of the survival probability
of this company for an initial capital of x0/3.

7.20) The lifetime L of a system has a Weibull-distribution with distribution function
F(t) = P(L ≤ t) = 1 − e−0.1t3 , t ≥ 0.

(1) Determine its failure rate  and its integrated failure rate λ(t) Λ(t).
(2) The system is maintained according to Policy 1 (page 290, bottom) over an infinite
time span. The cost of a minimal repair is  and the cost of a preventivecm = 40 [$],
replacement is  cp = 2000 [$].

Determine the cost-optimum replacement interval  and the corresponding minimalτ∗
maintenance cost rate K1(τ∗).

7.21) A system is maintained according to Policy 3 (page 292, top) over an infinite
time span. It has the same lifetime distribution and minimal repair cost parameter as
in exercise 7.20. As with exercise 7.20, let cr = 2000.
(1) Determine the optimum integer  and the corresponding maintenance costn = n∗,
rate K3(n∗).
(2) Compare  to  (exercise 7.20) and try to intuitively explain the result.K3(n∗) K1(τ∗)
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Sections 7.3 and 7.4
Note Exercises 7.22 to 7.31 refer to ordinary renewal processes. The functions  and f(t) F(t)
denote density and distribution function; the parameters  and  are mean value and secondμ μ2
moment of the cycle length Y. N(t) is the (random) renewal counting function, and H(t)
denotes the corresponding renewal function.

7.22) A system starts working at time  Its lifetime has approximately a normalt = 0.
distribution with mean value  hours and standard deviation  hours.μ = 125 σ = 40
After a failure, the system is replaced with an equivalent new one in negligible time,
and it immediately takes up its work. All system lifetimes are independent.
(1) What is the minimal number of systems, which must be available, in order to be
able to maintain the replacement process over an interval of length 500 hours with
probability 0.99?
(2) Solve the same problem on condition that the system lifetime has an exponential
distribution with mean value μ = 125.

7.23) (1) Use the Laplace transformation to find the renewal function H(t) of an ordi-
nary renewal process whose cycle lengths have an Erlang distribution with param-
eters  and n = 2 λ .
(2) For  sketch the exact graph of the renewal function and the bounds (7.117)λ = 1,
in the interval  Make sure the bounds (7.117) are applicable.0 ≤ t ≤ 6.

7.24) An ordinary renewal function has the renewal function  DetermineH(t) = t/10.
the probability P(N(10) ≥ 2).

7.25) A system is preventively replaced by an identical new one at time points τ, 2τ, ...
If failures happen in between, then the failed system is replaced by an identical new
one as well. The latter replacement actions are called emergency replacements. This
replacement policy is called block replacement. The costs for preventive and emer-
gency replacements are  and respectively. The lifetime L of a sys-cp ce, 0 < cp < ce,
tem is assumed to have distribution function

F(t) = P(L ≤ t) = (1 − e−λt)2, t ≥ 0.
(1) Determine the renewal function  of the ordinary renewal process with cycleH(t)
length distribution function F(t).
(2) Based on the renewal reward theorem (7.148), give a formula for the long-run
maintenance cost rate  under the block replacement policy.K(τ)
(3) Determine an optimal  with regard to  for τ = τ∗ K(τ) λ = 0.1, ce = 180, cp = 100.

(4) Under otherwise the same assumptions, determine the cost rate if the system is
only replaced after failures and compare it with the one obtained under (3).
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7.26) Given the existence of the first three moments of the cycle length Y of an ordi-
nary renewal process, verify the formulas (7.112).

7.27) (1) Verify that the probability  satisfiesp(t) = P(N(t) is odd)

p(t) = F(t) − ∫0
t p(t − x) f (x)dx, f (x) = F (x) .

(2) Determine this probability if the cycle lengths are exponential with parameter λ .

7.28)* Verify that the second moment of N(t), denoted as  satisfiesH2(t) = E(N2(t)),
the integral equation

H2(t) = 2H(t) − F(t) + ∫0
t H2(t − x) f (x)dx .

Hint Verify the equation directly or by applying the Laplace transformation.

7.29) The times between the arrivals of successive particles at a counter generate an
ordinary renewal process. Its random cycle length Y has distribution function  andF(t)
mean value  After having recorded 10 particles, the counter is blocked for μ = E(Y). τ
time units. Particles arriving during a blocked period are not registered.
What is the distribution function of the time from the end of a blocked period to the
arrival of the first particle after this period if τ → ∞ ?

7.30) The cycle length distribution of an ordinary renewal process is given by the dis-
tribution function  (Rayleigh distribution). F(t) = 1 − e−t2 , t ≥ 0

(1) What is the statement of theorem 7.13 if g(x) = (x + 1)−2, x ≥ 0 ?

(2) What is the statement of theorem 7.15?

7.31) Let be A(t) the forward and B(t) the backward recurrence times of an ordinary
renewal process at time t. For  determine functional relationships between  x > y/2,

 and the conditional probabilitiesF(t)

(1) P(A(t) > y − t B(t) = t − x), 0 ≤ x < t < y,

(2) P(A(t) ≤ y B(t) = x), 0 ≤ x < t, y > 0.

7.32) Let   be the typical cycle of an alternating renewal process, where Y and Z(Y, Z)
have an Erlang distribution with joint parameter  and parameters  and λ n = 2 n = 1,
respectively. For  determine the probability that the system is in state 1 att →∞,
time t and that it stays in this state over the entire interval  (process[t, t + x], x > 0
states as introduced in section 7.3.6).

7.33) The time intervals between successive repairs of a system generate an ordinary
renewal process  with typical cycle length Y. The costs of repairs are{Y1, Y2, ...}
mutually independent and independent of {Y1, Y2, ...}.
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Let M be the typical repair cost and
  and  μ = E(Y) = 180 [days] σ = Var(Y) = 30,

ν = E(M) = 200 [$] and Var(M) = 40.

Determine approximately the probabilities that
(1) the total repair costs arising in  do not exceed and[0, 3600 days] $ 4500,
(2) a total repair cost of $ 3000 is not exceeded before 2200 days.

7.34) (1) Determine the ruin probability  of an insurance company with an initialp(x)
capital of  and operating parametersx = $ 20 000

,   and  1/μ = 2 [h−1] ν = $ 800 κ = 1700 [$/h].
(2) Under otherwise the same conditions, draw the the graphs of the ruin probability
for  and  in dependence on  over the interval x = 20 000 x = 0 κ 1600 ≤ κ ≤ 1800.
(3) With the numerical parameters given under (1), determine the upper bound  e−rx

for  given by the Lundberg inequality (7.85).p(x)
(4) Under otherwise the same conditions, draw the graph of  with  ine−rx x = 20 000
dependence on  over the interval  and compare to the correspond-κ 1600 ≤ κ ≤ 1800
ing graph obtained under (2). 
Note For problems (1) to (4), the model assumptions made in example 7.10 apply.

7.35) Under otherwise the same assumptions as made in example 7.10, determine the
ruin probability if the random claim size M has density

b(y) = λ2y e−λy, λ > 0, y ≥ 0.
This is an Erlang-distribution with parameters  and λ n = 2.

7.36) Claims arrive at an insurance company according to an ordinary renewal pro-
cess  The corresponding claim sizes  are independent and{Y1, Y2, ...}. M1, M2, ...
identically distributed as M and independent of  Let the  be distributed{Y1, Y2, ...}. Yi
as Y; i.e., Y is the typical interarrival interval. Then  is the typical interarrival(Y, M)
cycle. From historical observations it is known that

μ = E(Y) = 1 [h], Var(Y) = 0.25, ν = E(M) = $800, Var(M) = 250.000.
Find approximate answers to the following problems:
(1) What minimum premium per unit time  has the insurance company to takeκmin,α
in so that it will make a profit of at least  within 20 000 hours with probability$106

α = 0.99?
(2) What is the probability that the total claim reaches level  within $105 135 h?

Note Before possibly reaching its goals, the insurance company may have experienced one or
more ruins with subsequent 'red number periods'.
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CHAPTER 8

Discrete-Time Markov Chains

8.1  FOUNDATIONS AND EXAMPLES

This chapter is subjected to discrete-time stochastic processes  with dis-{X0, X1, ...}
crete state space Z which have the Markov property. That is, on condition Xn = xn
the random variable  is independent of all  However, withoutXn+1 X0, X1, ..., Xn−1.
this condition,  may very well depend on all the other Xn+1 Xi, i ≤ n.

Definition 8.1  Let  be a stochastic process in discrete time with discrete{X0, X1, ...}
state space Z. Then  is a discrete-time Markov chain if for all vectors{X0, X1, ...}

 with  and for all , x0, x1, ..., xn+1 xk ∈ Z n = 1, 2, ...
     (8.1)P(Xn+1 = xn+1 Xn = xn, ..., X1 = x1, X0 = x0) = P(Xn+1 = xn+1 Xn = xn).

     

Condition (8.1) is called the Markov property. It can be interpreted as follows: If time
time point  is the present, then  is a time point in the future, and the timet = n t = n + 1
points  are in the past. Thus,t = n − 1, ..., 1, 0

    The future development of a discrete-time Markov chain depends only on its          
     present state, but not on its evolution in the past.

For the special class of stochastic processes considered in this chapter, definition 8.1
is equivalent to the definition of the Markov property via (6.23) at page 233. It usual-
ly requires much effort to check by statistical methods, whether a particular stochast-
ic process has the Markov property (8.1). Hence one should first try to confirm or to
reject this hypothesis by considering properties of the underlying technical, physical,
economical, or other practical background. For instance, the final profit of a gambler
usually depends on his present profit, but not on the way the gambler has obtained it.
If it is known that at the end of the n th month a manufacturer has sold a total of

 personal computers, then for predicting the total number of computers Xn = xn Xn+1
sold a month later knowledge about the number of computers sold within the first n
months will make no difference. A car driver checks the tread depth of his tires after
every 5000 km. For predicting the tread depth after a further 5000 km, the driver will
only need the present tread depth, not how the tread depth has evolved to its present
level. For predicting, however, the future concentration of noxious substances in the
air, it has been proved necessary to take into account not only the present value of
the concentration, but also the past development leading to this value. In this chapter
it will be assumed that the state space of the Markov chain is  orZ = {0, ± 1, ± 2, ...}
a subset of it. Generally, states will be denoted as i, j, k, ... .



Transition Probabilities  The conditional probabilities

pi j(n) = P(Xn+1 = j Xn = i); n = 0, 1, ...

are the one-step transition probabilities of the Markov chain. A Markov chain is
called homogeneous if it has homogeneous increments. Thus, a Markov chain is
homogeneous if and only if its one-step transition probabilities do not depend on n:

pi j(n) = pi j for all n = 0, 1, ... .

Note This chapter only deals with homogeneous Markov chains. For the sake of brevity, the
attribute homogeneous is generally omitted.

The one-step transition probabilities are combined in the matrix of the one-step tran-
sition probabilities (shortly: transition matrix) P:

   P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

p00 p01 p02 . ..
p10 p11 p12 . ..

.

..
.
..

.

.. . ..
pi 0 pi1 pi 2 . ..

.

..
.
..

.

.. . ..

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

 is the probability of a transition from state i  to state  j  in one step (or, equival-pi j
ently, in one time unit, in one jump). With probability  the Markov chain remainspii
in state i for another time unit. The one-step transition probabilities have some obvi-
ous properties:

                                (8.2)pi j ≥ 0, Σ
j∈Z

pi j = 1; i, j ∈ Z .

The m-step transition probabilities of a Markov chain are defined as

                          (8.3)pi j
(m) = P(Xn+m = j Xn = i) ; m = 1, 2, ... .

Thus,  is the probability that the Markov chain, starting from state i, will be aft-pi j
(m)

er m steps in state  j. However, in between the Markov chain may already have arriv-
ed at state j. Note that pi j = pi j

(1).

It is convenient  introduce the notationto

                                  (8.4)pi j
(0) = δi j =

⎧

⎩
⎨

1 if i = j,
0 if i =/ j .

 defined in this way is called the Kronecker symbol.δi j

The following relationship between the multi-step transition probabilities of a dis-
crete-time Markov chain is called the
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Chapman-Kolmogorov equations:

                           (8.5)pi j
(m) = Σ

k∈Z
pi k
(r) pk j

(m−r); r = 0, 1, ..., m.

The proof is easy: Conditioning with regard to the state, which the Markov chain
assumes after r steps,  and making use of the Markov property yields0 ≤ r ≤ m,

 pi j
(m) = P(Xm = j X0 = i) = Σ

k∈Z
P(Xm = j, Xr = k X0 = i)

= Σ
k∈Z

P(Xm = j Xr = k, X0 = i)P(Xr = k X0 = i )

= Σ
k∈Z

P(Xm = j Xr = k)P(Xr = k X0 = i )

= Σ
k∈Z

pi k
(r) pk j

(m−r) .

This proves formula (8.5).

It simplifies notation, when introducing the matrix of the m-step transition probabil-
ities of the Markov chain:

P(m) = ⎛
⎝
⎛
⎝pi j

(m) ⎞
⎠
⎞
⎠ ; m = 0, 1, ... .

Then the Chapman-Kolmogorov equations can be written  the elegant formin

   P(m) = P(r) P(m−r) ; r = 1, 2, ..., m.
This relationship implies that

P(m) = Pm.
Thus, the matrix of the m-step transition probabilities is equal to the m-fold product
of the matrix of the one-step transition probabilities.

A probability distribution  of  is said to be an initial distribution of the Mar-p(0) X0
kov chain:

                                         (8.6)p(0) = pi
(0) = P(X0 = i), i ∈ Z, Σ

i∈Z
pi
(0) = 1 .

A Markov chain is completely characterized by its transition matrix P and an initial
distribution  In order to prove this one has to show that, given P and  all itsp(0). p(0),
finite-dimensional probabilities can be determined: By the Markov property, for any
finite set of states  i0, i1, ..., in,

P(X0 = i0, X1 = i1, ..., Xn = in)

= P(Xn = in X0 = i0, X1 = i1, ..., Xn−1 = in−1) ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1)

                    = P(Xn = in Xn−1 = in−1) ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1)

= pin−1in ⋅ P(X0 = i0, X1 = i1, ..., Xn−1 = in−1).
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The second factor in the last line is now treated in the same way. Continuing in this
way yields

             (8.7)P(X0 = i0, X1 = i1, ..., Xn = in) = pi0

(0) ⋅ pi0i1 ⋅ pi1i2 ⋅ . .. ⋅ pin−1in .

This proves the assertion. The absolute or one-dimensional state probabilities of the
Markov chain after m steps are denoted as

pj
(m) = P(Xm = j), j ∈ Z .

The set  is the absolute probability distribution of the Markov chainpj
(m), j ∈ Z

after m steps,  Given an initial distribution by them = 0, 1, ... . p(0) = { pi
(0), i ∈ Z},

total probability rule,

                                                    (8.8)pj
(m) = Σ

i∈Z
pi
(0) pi j

(m) , m = 1, 2, ... .

Definition 8.2  An initial distribution  is called stationary if{πi = P(X0 = i); i ∈ Z}
it satisfies the system of linear equations

                                     (8.9)πj = Σ j∈Z πi pi j ; j ∈ Z,

                                                        (8.10)1 = Σ j∈Z πi.

   
It can be shown by induction that, starting with a stationary initial distribution, the
absolute state distributions of the Markov chain for any number m of steps coincide
with the stationary initial distribution, i.e., for all j ∈ Z,

                                             (8.11)pj
(m) = Σ

i∈Z
πi pi j

(m) = πj , m = 1, 2, ...

In this case, the Markov chain is said to be in a (global) state of equilibrium, and the
probabilities  are also called equilibrium state probabilities of the Markov chain.πi
If a stationary initial distribution exists, then the structure (8.7) of the n-dimensional
state probabilities of the Markov chain verifies theorem 6.1: 

     A  homogeneous Markov chain is strictly stationary if and only if its                       
     one-dimensional) absolute state probabilities do not depend on time.

Markov chains in discrete time virtually occur in all fields of science, engineering,
operations research, economics, risk analysis, and finance. In what follows, this will
be illustrated by some examples.

Example 8.1 (unbounded symmetric random walk)  A particle moves along the real
axis in one step from an integer-valued coordinate i either to  or to  withi + 1 i − 1
equal probabilities. The steps occur independently of each other. If   is the startX0
position of the particle and  its  position after n steps, then  is a dis-Xn {X0, X1, ...}
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crete-time Markov chain with state space  and -step transitionZ = {0,±1,±2, . .. } one
probabilities

pi j =
1/2 for j = i + 1 or j = i − 1
0 otherwise

.

It is quite intuitive that the unbounded symmetric random walk cannot have a station-
ary initial distribution. An exact argument will be given later.                                  

Example 8.2  (random walk with reflecting barriers Ehrenfest's diffusion model )−
For a given positive integer z, the state space of a Markov chain is Z = {0, 1, . .. , 2z}.
A particle moves from position i to position  j in one step with probability

                                               (8.12)pi j =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

2z−i
2z for j = i + 1,
i

2z for j = i − 1,
0 otherwise.

Thus, the greater the distance of the particle from the central point z of Z, the greater
the probability that the particle moves in the next step into the direction of the central
point. Once the particle has arrived at one of the end points  or  it willx = 0 x = 2 z,
return in the next step with probability 1 to position  or  respectively.x = 1 x = 2 z − 1,
(Hence the terminology reflecting barriers.) If the particle is at  then the prob-x = z,
abilities of moving to the left or to the right in the next step are equal, namely 1/2. In
this sense, the particle is at  in an equilibrium state. This situation may bex = z
thought of as caused by a force, which is situated at the central point. Its attraction to
a particle linearly increases with the particle's distance from this point.
A stationary state distribution exists and satisfies the corresponding system of linear
equations (8.9):

π0 = π1 p10 ,
πj = πj−1 pj−1, j + πj+1 pj+1, j; j = 1, 2, ..., 2z − 1 ,

π2z = π2z−1 p2z−1, 2 z .

The solution, taking into account the normalizing condition (8.10), is

πj = ⎛
⎝

2 z
j
⎞
⎠ 2−2 z ; j = 0, 1, ..., 2 z .

As expected, state z has the greatest stationary probability.
P. and T. Ehrenfest (1907) came across this random walk with reflecting barriers
when investigating the following diffusion model: In a closed container there are
exactly 2z molecules of a particular type. The container is separated into two equal
parts by a membrane, which is permeable to these molecules. Let  be the randomXn
number of molecules in one part of the container after n transitions of any molecule
from one part of the container to the other one. If  denotes the initial number ofX0
molecules in the specified part of the container, then they observed that the random
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sequence  behaves approximately as a Markov chain with transition pro-{X0, X1, ...}
babilities (8.12). Hence, the more molecules are in one part of the container, the more
they want to move into the other part. In other words, the system tends to the equilib-
rium state, i.e. to equal numbers of particles in each part of the container.                

Example 8.3 (random walk with two absorbing barriers) The movement of a particle
within the state space  is controlled by a discrete-time MarkovZ = {0, 1, . .. , z}, z > 1,
chain  with transition probabilities{X0, X1, ...}

  pi j =
⎧

⎩

⎨
⎪

⎪

p for j = i + 1 , 1 ≤ i ≤ z − 1,
q for j = i − 1 , 1 ≤ i ≤ z − 1,
0 otherwise.

Hence,  and  are absorbing states ('barriers'), i.e., if the particle arrives atx = 0 x = z
state 0 or at state z, it cannot leave these states anymore:  The matrixp00 = 1, pzz = 1.
of the one-step transition probabilities is

            P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1 0 0 0 0 . .. 0
q 0 p 0 0 . .. 0
0 q 0 p 0 . .. 0
0 0 q 0 p 0 . ..
0 0 0 q 0 p 0
.
..

.

..
.
..

.

..
.
..

.

..
.
..

0 0 0 0 0 0 1

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

This random walk cannot have a stationary initial distribution, since given any initial
distribution the Markov chain will arrive at an absorbing barrier with probability 1 in
finite time.

Absorption It is an interesting and important exercise to determine the probabilities
of absorption of the particle at  and  respectively. Let  be the probabil-x = 0 x = z, a(n)
ity of absorption at  if the particle starts moving from   On condi-x = 0 x = n, 0 < n < z.
tion that the particle moves from n to the right, its absorption probability at  isx = 0

 if . On condition that the particle moves from n to the left, the ab-a(n + 1) n + 1 < z
sorption probability at  is  if .  Hence, in view of the formula ofx = 0 a(n − 1) n − 1 ≥ 0
total probability (1.24),  satisfies the system of linear equationsa(n)

                (8.13)a(n) = p ⋅ a(n + 1) + q ⋅ a(n − 1) ; n = 1, 2, . .. , z − 1.
The boundary conditions are

                                            (8.14)a(0) = 1, a(z) = 0.
Replacing  in (8.13) with  yields the following algebraic system ofa(n) p a(n) + q a(n)
equations for the  a(n) :

              (8.15)[a(n) − a(n + 1)] = q
p [a(n − 1) − a(n)], n = 1, 2, ..., z − 1.
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Starting with  repeated application of (8.15) yieldsn = 1,

                          a(0) − a(1) = [1 − a(1)]
    a(1) − a(2) = (q/p) [1 − a(1)]

 a(2) − a(3) = (q/p)2 [1 − a(1)]
                                                     (8.16).
..

                  a(z − 1) − a(z) = (q/p)z−1 [1 − a(1)] .

By taking into account the boundary conditions (8.14),

       Σn=1
z [a(n − 1) − a(n)]

  8.17)= [1 − a(1)] + [a(1) − a(2)] + . .. + [a(z − 2) − a(z − 1)] + [a(z − 1) − 0] = 1.

Using the finite geometrical series (2.18) at page 48, equations (8.16) yield for p ≠ q

Σ
n=1

z
[a(n − 1) − a(n)] = [1 − a(1)] Σ

n=1

z
(q/p)n−1 = [1 − a(1)] 1 − (q/p)z

1 − q/p
= 1.

Solving this equation for  givesa(1)

      a(1) = (q/p)z − q/p
(q/p)z − 1

.

Starting with  and  the systems of equations (8.16) or (8.13), respective-a(0) = 1 a(1),
ively, provide the complete set of absorption probabilities at state :0

                    (8.18)a(n) = (q/p)z − (q/p)n

(q/p)z − 1
, n = 1, 2, ..., z, p ≠ q.

If equations (8.16) showthat  all the differences  are equalp = q = 1/2, a(n − 1) − a(n)
to  Hence, equation (8.17) implies1 − a(1).

a(n) = 1 − n
z = z − n

z , n = 0, 1, ..., z, p = 1/2.

The absorption probabilities  of the particle at state z, when starting from state n,b(n)
are given by

b(n) = 1 − a(n), n = 0, 1, 2, ..., z.

Time till absorption  Let  be the mean time till the particle reaches one of them(n)
absorbing states 0 or z, when starting from state  If the first jump goesn, 1 ≤ n ≤ z − 1.
from the starting point n to the right, then the mean time till absorption is 1 +m(n + 1).
When the first jump goes to the left, then the meantime till absorption is .1 +m(n − 1)
Hence, the  satisfy the system of equationsm(n)

            (8.19)m(n) = p [1 +m(n + 1)] + q [1 +m(n − 1)] ; n = 1, 2, ..., z − 1,

with the boundary conditions
 m(0) = m(z) = 0.
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(8.19) is equivalent to

[m(n) −m(n + 1)] = q
p [m(n − 1) −m(n)], n = 1, 2, ..., z − 1.

Since this system is formally identical to (8.15), it can be solved analogously. Taking
into account the boundary conditions  its solution ism(0) = m(z) = 0,

                   (8.20)m(n) = 1
p − q

⎡
⎣
⎢z
⎛
⎝⎜

1 − (q/p)n

1 − (q/p)z
⎞
⎠⎟ − n⎤

⎦
⎥ if p ≠ q ,

                          m(n) = n (z − n) if p = q = 1/2

for  Table 8.1 shows some numerical results. In particular for large z,n = 1, 2, ..., z − 1.
even small changes in p have a significant impact on the absorption probabilities. 

Gambler's ruin: The random walk with two absorbing barriers has a famous inter-
pretation: A gambler has an initial capital of  After each game his capital has$n.
increased by $1 with probability p (win) or decreased by $1 (loss) with probability q.
The gambler has decided to stop gambling when having lost the initial capital or
when having reached a total capital of  When following this strategy,$z, 0 < n < z.
the gambler will lose all of his initial capital with probability  given by (8.18) ora(n)
will walk away with a total capital of z with probability                b(n) = 1 − a(n).

Example 8.4 (electron orbits) Depending on its energy, an electron circles around
the atomic nucleus in one of the countably infinite sets of trajectories . The{1, 2, ...}
one-step transition from trajectory i to trajectory j occurs with probability

pi j = ai e−b i−j , b > 0 .

Hence, the two-step transition probabilities are

pi j
(2) = aiΣk=1

∞ ak e−b( i−k + k−j ) .

The  cannot be chosen arbitrarily. In view of (8.2), they must satisfy the conditionai

ai
⎛
⎝ e−b(i−1) + e−b(i−2) + . .. + e−b ⎞

⎠ + aiΣk=0
∞ e−b k = 1,
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z   10
p (5)

80

0.50
0.51
0.52

0.500 0.500 0.500

0.401 0.599 0.961
0.550 0.168

0.039

0.500

0.8320.450

Table 8.1 Probabilities and mean times to absorption for example 8.3

25 1600
24.9

24.7 922
1328

(5) (5) (40) (40) (40)a ab bm m



or, equivalently,

   ai
⎛
⎝⎜
e−b 1 − e−b(i−1)

1 − e−b + 1
1 − e−b

⎞
⎠⎟
= 1.

Therefore,

ai =
eb − 1

1 + eb − e−b(i−1) ; i = 1, 2, ... .

The structure of the  implies that  for all                                pi j ai = pi i i = 1, 2, ... .

Example 8.5 (dynamics of traffic accidents)  Let  denote the number of trafficXn
accidents over a period of n weeks in a particular area, and let  be the correspond-Yi
ing number in the  week. Then, i th Xn = Σi=1

n Yi .
The  are assumed to be independent and identically distributed as a random varia-Yi
ble Y with probability distribution  Then  is{qk = P(Y = k); k = 0, 1, ...}. {X1, X2, ...}
a Markov chain with state space  and transition probabilitiesZ = {0, 1, ...}

                                   pi j =
⎧

⎩
⎨

qk if j = i + k ; k = 0, 1, ...,
0 otherwise.

Example 8.6 (reproduction of diploid cells)  Chromosomes determine the hereditary
features of higher organisms. Essentially they consist of strings of genes. The position
of a gene within a chromosome is called its locus. The different types of genes, which
can be found at a locus, are called alleles. The chromosomes of mammals occur in
pairs (two strings of chromosomes 'in parallel'). For example, mammals have these
diploid chromosomes. If, in the diploid case, the possible alleles are g and G, then at
a locus the combinations (g,g), (g, G), or (G,G) are possible. Such a combination is
called a genotype. Note that (g, G) = (G, g).
Consider a one-sex population with an infinite (very large) number of individuals.
All of them have genotype (g,g), (g, G), or (G,G). Each individual is equally likely to
pair with any other member of the population, and, when pairing, each individual ran-
domly gives one of its alleles to its offspring. Genotypes (g,g) and (G,G) can only
contribute g or G, respectively, whereas (g, G) contributes g or G with probability 1/2
each to the offspring.
Let  with  be the probabilities that an individual, ran-α0, β0, and γ0 α0 + β0 + γ0 = 1
domly selected from the first generation, belongs to genotype (g,g), (g, G), or (G,G),
respectively. By the formula of the total probability, a randomly chosen allele from
the first generation is of type  with probabilityg

P1(g) = P1(g gg) α0 + P1(g gG) β0 + P1(g GG) γ0 = α0 + β0/2,

since P1(g gg) = 1, P1(g gG) = 1/2, and P1(g GG) = 0.

By changing the roles of g and G,
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P1(G) = P1(G GG) γ0 + P1(G gG) β0 + P1(G gg) α0 = γ0 + β0/2 .

Hence, a randomly selected individual of the second generation has genotype (g,g),
(g,G), or (G,G) with respective probabilities  given byα,β, and γ

α = (α0 + β0/2)2,
                                 (8.21)β = 2 (α0 + β0/2) (γ0 + β0/2 ),

γ = (γ0 + β0/2 )2,

since  Thus, the respective probabilities that a randomly from the sec-α + β + γ = 1.
ond generation chosen allele is of type  or G areg

P2(g) = α + β/2 = (α0 + β0/2)2 + (α0 + β0/2) (γ0 + β0/2 ) = α0 + β0/2 = P1(g),

  P2(G) = γ + β/2 = (γ0 + β0/2)2 + (α0 + β0/2) (γ0 + β0/2 ) = γ0 + β0/2 = P1(G).

Corollary Under the assumption of random mating, the respective percentages of the
population belonging to genotype (g,g), (g, G), or (G,G) stay at  levels  α[100%],

 and  in all successive generations.β [100%], γ [100%]

In the literature on population genetics, this result is known as the Hardy-Weinberg
law; see Hardy (1908). A relationship between this law and discrete-time Markov
chains is readily established: Let  be the genotype of a randomly from the secondX2
generation chosen individual, and  be the genotypes of its offspring in theX3, X4, ...
following generations. Then the state space of the Markov chain  is{X2, X3, ...}

Z = {z1 = gg, z2 = gG, z3 = GG}
with the absolute state probabilities

α = P(Xi = z1), β = P(Xi = z2), γ = P(Xi = z3), i = 2, 3, ... .

The one-step transition probabilities , are determined by conditioningpi j i, j = 1, 2, 3,
with regard to the genotype M of the randomly selected mate, e.g.:

  p11 = (p11 M = z1) ⋅ P(M = z1) + (p11 M = z2) ⋅ P(M = z2) + (p11 M = z3) ⋅ P(M = z3)

          = 1 ⋅ α + β/2 + 0 ⋅ γ = α + β/2.

  p12 = (p12 M = z1) ⋅ P(M = z1) + (p12 M = z2) ⋅ P(M = z2) + (p12 M = z3) ⋅ P(M = z3)

            = 0 + β/2 + γ = γ + β/2.

    p13 = 1 − p11 − p12 = 1 − α − β/2 − γ − β/2 = 0.

     p21 = (p21 M = z1) ⋅ P(M = z1) + (p21 M = z2) ⋅ P(M = z2) + (p21 M = z3) ⋅ P(M = z3)

         = α/2 + β/4 + 0 ⋅ γ = α/2 + β/4.

    p22 = α/2 + β/2 + γ/2 = 1/2 (since α + β + γ = 1).

      p23 = 1 − p21 − p22 = 1 − α/2 − β/4 − 1/2 = β/4 + γ/2.
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The complete one-step transition matrix of the Markov chain  is{X2, X3, ...}

                        (8.22)
⎛

⎝
⎜
⎜
⎜

α + β/2 γ + β/2 0
α/2 + β/4 1/2 β/4 + γ/2

0 α + β/2 γ + β/2

⎞

⎠
⎟
⎟
⎟

.

In view of its property to  generate the same absolute state probabilities in all genera-
tions following the first one,

π = {π1 = α, π2 = β, π3 = γ}

is a stationary initial distribution of the homogeneous Markov chain  This{X2, X3, ...}.
can be verified by showing that  satisfies the system of linear equations (8.9) if theπ
transition probabilities  are given by the matrix (8.22) (exercise 8.8).                  pi j

Example 8.7 (sequence of moving averages)  Let  be a sequence of{Yi; i = 0, 1, ...}
independent, identically distributed binary random variables with 

P(Yi = 1) = P(Yi = −1) = 1/2 .

Moving averages  are defined as follows (see also page 240):Xn

Xn = 1
2(Yn + Yn−1) ; n = 1, 2, ... .

 has range  and probability distributionXn {−1, 0, + 1}

P(Xn = −1) = 1
4 , P(Xn = 0) = 1

2 , P(Xn = +1) = 1
4 .

Since  and  are independent for the corresponding matrix of the m-stepXn Xn+m m > 1,

transition probabilities  ispi j
(m) = P(Xn+m = j Xn = i)

-1      0     +1 

P(m) =
−1

0
+1

⎛

⎝
⎜
⎜
⎜

1/4 1/2 1/4
1/4 1/2 1/4
1/4 1/2 1/4

⎞

⎠
⎟
⎟
⎟

.

The matrix of the one-step transition probabilities  ispi j = P(Xn+1 = j Xn = i)

P(1) = P =
⎛

⎝
⎜
⎜
⎜

1/2 1/2 0
1/4 1/2 1/4
0 1/2 1/2

⎞

⎠
⎟
⎟
⎟

.

Since
P(1) ⋅ P(1) ≠ P(2),

the Chapman-Kolmogorov equations do not hold. Therefore, the sequence of moving
averages  cannot be a Markov chain.                                                        {X1, X2, ...}
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8.2    CLASSIFICATION OF STATES

8.2.1  Closed Sets of States

A subset  of the state space Z of a Markov chain is said to be closed ifC

                      for all                                       (8.23)Σ
j∈C

pi j = 1 i ∈ C.

If a Markov chain is in a closed set of states, then it cannot leave this set since (8.23)
is equivalent to  Furthermore, (8.23) implies  thatpi j = 0 for all i ∈ C, j ∉ C .

                                            (8.24)pi j
(m) = 0 for all i ∈ C, j ∉ C and m ≥ 1.

For  formula (8.24) can be proved as follows: From (8.5),m = 2

pi j
(2) = Σ

k∈C
pi k pk j + Σ

k∉C
pi k pk j = 0 ,

since  implies  in the first sum and  in the second sum. Nowj ∉ C pk j = 0 pi k = 0
formula (8.24) follows inductively from the Chapman-Kolmogorov equations.

A closed set of states is called minimal if it does not contain a proper closed subset.
In particular, a Markov chain is said to be irreducible if its state space Z is minimal.
Otherwise the Markov chain is reducible.

A state i is said to be absorbing if  Thus, if a Markov chain has arrived in atpi i = 1.
absorbing state, it cannot leave this state anymore. Hence, an absorbing state is a

 closed set of states. Absorbing barriers of a random walk (example 8.3) areminimal
absorbing states.

Example 8.8  Let  be the state space of a Markov chain with tran-Z = {1, 2, 3, 4, 5}
sition matrix 

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0.2 0 0.5 0.3 0
0.1 0 0.9 0 0
0 1 0 0 0

0.4 0.1 0.2 0 0.3
0 0 0 0 1

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

It is helpful to illustrate the possible transitions between the states of a Markov chain
by transition graphs. The nodes of these graphs represent the states of the Markov
chain. A directed edge from node i to node j exists if and only if , that is if api j > 0
one-step transition from state i to state  j is possible. The corresponding one-step tran-
sition probabilities are attached to the edges. Figure 8.1 shows that  is not{1, 2, 3, 4}
a closed set of states since condition (8.24) is not fulfilled for . State 5 is absorb-i = 4
ing  so  that {5}  is  a  minimal  closed  set  of  states.  This Markov chain is, therefore,
reducible.                                                                                                                     
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8.2.2  Equivalence Classes

State  j is said to be accessible from state i (symbolically: )  if  there exists ani ⇒ j
 such that  The relation ' ' is transitive:m ≥ 1 pi j

(m) > 0. ⇒

If  and  there exist  and  with  and  Hence, i ⇒ k k ⇒ j, m > 0 n > 0 pi k
(m) > 0 pk j

(n) > 0.

  pi j
(m+n) = Σ

r∈Z
pi r
(m) pr j

(n) ≥ pi k
(m) pk j

(n) > 0.

Consequently,  imply , i.e., the transitivity of  ' .'i ⇒ k and k ⇒ j i ⇒ j ⇒

The set  consisting of all those states which are accessible from i isM(i) = {k, i ⇒ k}
closed. To prove this assertion it is to show that  imply .k ∈ M(i) and j ∉ M(i) k ⇒/ j
The proof is carried out indirectly: If under the assumptions stated , then  k ⇒ j i ⇒ k
and the transitivity would imply . But this contradicts the definition of .i ⇒ j M(i)
If  both   and  hold, then i and j are said to communicate (symbolically:i ⇒ j j ⇒ i

). Communication ' ' is an equivalence relation since it satisfies the threei ⇔ j ⇔
characteristic properties:

(1)  .                                                                                                       reflexivityi ⇔ i
(2)  If  , then .                                                                         commutativityi ⇔ j j ⇔ i
(3)  If  and , then .                                                           associativityi ⇔ j j ⇔ k i ⇔ k

Properties (1) and (2) are an immediate consequence of the definition of   To” ⇔ ”.
verify property (3), note that  and  imply the existence of m and n so thati ⇔ j j ⇔ k

 and , respectively. Hence, by (8.5),pi j
(m) > 0 pj k

(n) > 0

pi k
(m+n) = Σ

r∈Z
pi r
(m) pr k

(n) ≥ pij
(m) pj k

(n) > 0.

Likewise, there exist M and N  with
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p k i
(M+N) ≥ pkj

(M) pj i
(N) > 0

so that the associativity is proved.
The equivalence relation ' ' partitions state space Z into disjoint, but not necessar-⇔
ily closed classes in the following way: Two states i and  j belong to the same class if
and only if they communicate. In what follows, the class containing state i is denoted
as C(i). Clearly, any state in a class can be used to characterize this class. All proper-
ties of states introduced in what follows will be class properties, i.e. if state i has one
of these properties, all states in C(i) have this property as well.
A state i is called essential if any state   j which is accessible from i has the property
that i is also accessible from  j. In this case, C(i) is called an essential class.
A state i is called inessential  if it is not essential. In this case, C(i) is called an ines-
sential class. If i is inessential, then there exists a state j for which   and . i ⇒ j j ⇒/ i
It is easily verified that essential and inessential are indeed class properties. In ex-
ample 8.8, the states 1, 2, 3 and 4 are inessential since state 5 is accessible from each
of these states but none of the states 1, 2, 3 or 4 is accessible from state 5.
 

Theorem 8.1 (1) Essential classes are minimal closed classes. (2) Inessential classes
are not closed.

Proof  (1) The assertion is a direct consequence of the definition of essential classes.
(2) If i is inessential,  then there is a state  j with .  Hence,  i ⇒ j and j ⇒/ i j ∉ C(i).

Assuming  is closed implies that  for all   and  C(i) pk j
(m) = 0 m ≥ 1, k ∈ C(i) j ∉ C(i).

Therefore,  cannot be closed. (According to the definition of the relation   C(i) i ⇒ j,
there exists a positive integer m with                                                           pi j

(m) > 0.)

Let  be the probability that the Markov chain, starting from state i, is in statepi
(m)(C)

set C after m time units:

pi
(m)(C) = Σ j∈C pi j

(m).

Furthermore, let  and  be the sets of all essential and inessential states of aCw Cu
Markov chain. The following theorem asserts that a Markov chain with finite state
space, which starts from an inessential state, will leave the set of inessential states
with probability 1 and never return (for a proof see e.g. Chung (1960)). This theorem
justifies the notation essential and inessential states. However, depending on the
transition probabilites, the Markov chain may in the initial phase return more or less
frequently to the set of inessential states if it has started there.

Theorem 8.2  Let the state space set Z be finite. Then,

                                                                    lim
m→∞

pi
(m)(Cu) = 0.
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8.2.3  Periodicity

Let  be the greatest common divisor of those indices  for which  di m ≥ 1 pii
(m) > 0.

Then  is said to be the period of state i. Ifdi

 for all ,pii
(m) = 0 m > 0

then the period of i is defined to be infinite. A state i is said to be aperiodic if  .di = 1

If i has period ,  then  holds if and only if m can be represented in the formdi pi i
(m) > 0

 Hence, returning to state i is only possible after such a num-m = n ⋅ di; n = 1, 2, ... .
ber of steps which is a multiple of . The following theorem shows that the period isdi
a class property.

Theorem 8.3  All states of a class have the same period.

Proof  Let . Then there exist integers m and n with  Ifi ⇔ j pi j
(m) > 0 and pj i

(n) > 0.

the inequality  holds for a positive integer r, then, from (8.5),pi i
(r) > 0

            pj j
(n+r+m) ≥ pj i

(n) pi i
(r) pi j

(m) > 0.

Since this inequality also holds if r is replaced with :pi i
(2 r) ≥ pi i

(r) ⋅ pi i
(r) > 0, 2 r

  pj j
(n+2 r+m) > 0 .

Thus,  divides the difference  Since this holds for all rdj (n + 2r +m) − (n + r +m) = r .
for which ,   must divide . Changing the roles of i and  j shows that pi i

(r) > 0 dj di di
also divides  . Thus, , which completes the proof.                                         dj di = dj

Example 8.9  A Markov chain has state space  and transition matrixZ = {0, 1, ..., 6}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

1/3 2/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0
1 0 0 0 0 0 0
0 1/3 0 1/3 1/3 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1/2 1/2
0 0 0 0 1/2 0 1/2

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

Clearly, {0, 1, 2} is a closed set of essential states. State 4 is absorbing, so {4} is an-
other closed set. Having once arrived in a closed set of states the Markov chain can-
not leave it anymore. {3, 5, 6} is a set of inessential states. When starting in one of
its sets of inessential states, the Markov chain will at some stage leave this set and
never return. All states in {0, 1, 2} have period 1.                                                      
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Theorem 8.4 (Chung (1960))  The state space Z of an irreducible Markov chain with
period   can be partitioned into disjoint subsets  in such a way thatd > 1 Z1, Z1, ..., Zd
from any state  a transition can only be made to a state  (By agree-i ∈ Zk j ∈ Zk+1.
ment,  if )                                                                                               j ∈ Z1 i ∈ Zd.

Example 8.10 Theorem 8.4 is illustrated by a discrete-time Markov chain with state
space  and transition matrixZ = {0, 1, ..., 5}

  P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

0 0 2/5 3/5 0 0
0 0 1 0 0 0
0 0 0 0 1/2 1/2
0 0 0 0 2/3 1/3

1/2 1/2 0 0 0 0
1/4 3/4 0 0 0 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

This Markov chain has period  One-step transitions between the states are pos-d = 3.
sible in the order   The three-stepZ1 = {0, 1} → Z2 = {2, 3} → Z1 = {4, 5} → Z1.
transition matrix  isP(3) = P3

                    P(3) =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

2/5 3/5 0 0 0 0
3/8 5/8 0 0 0 0
0 0 31/40 9/40 0 0
0 0 3/4 1/4 0 0
0 0 0 0 11/20 9/20
0 0 0 0 21/40 19/40

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

8.2.4 Recurrence and Transience

This section deals with the return of a Markov chain to an initial state. Such returns   
are controlled by the  first-passage time probabilities

fi j
(m) = P(Xm = j; Xk ≠ j; k = 1, 2, ..., m − 1 X0 = i) ; i, j ∈ Z .

Thus,   is the probability that the Markov chain, starting from state i, makes itsfi j
(m)

first transition into state j after m steps. Recall that  is the probability that thepi j
(m)

Markov chain, starting from state i, is in state j after m steps, but it may have been in
state  j in between. For m = 1,

fi j
(1) = pi j

(1).

The total probability rule yields a relationship between the m-step transition probabil-
ities and the first-passage time probabilities

354                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



  pi j
(m) = Σ

k=1

m
fi j
(k) pj j

(m−k) ,

where, by convention

pi j
(0) = 1 for all j ∈ Z.

Thus, the first-passage time probability can be determined recursively from the fol-
lowing formula

                    (8.25)fi j
(m) = pi j

(m) − Σ
k=1

m−1
fi j
(k) pj j

(m−k) ; m = 2, 3, ... .

The random variable  with probability distribution  is a  first-Yi j fi j
(m); m = 1, 2, ...

passage time. Its mean value is

 μi j = E(Yi j) = Σm=1
∞ m fi j

(m).

The  probability  ever making a transition into state j if the process starts in state i isof

                                         (8.26)fi j = Σm=1
∞ fi j

(m) .

In particular,  is the probability of ever returning to state i. This motivates the in-fi i
troduction of the following concepts:

   A state i is said to be recurrent if  and transient if fi i = 1 fi i < 1.

Clearly, if state i is transient, then   But, if i is recurrent, then  is alsoμii = ∞. μii = ∞
possible. Therefore, recurrent states are subdivided as follows:

    A recurrent state i is said to be positive recurrent if  and null recurrent        μii < ∞
    if  An aperiodic and positive recurrent state is called ergodic.μii = ∞.

The random time points
Ti,n ; n = 1, 2, ...,

at which the n th return into starting state i occurs, are renewal points within a Markov
chain. By convention,  The time spans between neighboring renewal pointsTi,0 = 0.

Ti,n − Ti,n−1 ; n = 1, 2, ...

are called recurrence times. They are independent and identically distributed as Yi i.
Therefore, the sequence of recurrence times constitutes an ordinary renewal process.
Let

Ni(t) = max(n; Ti,n ≤ t) and Ni(∞) = lim
t→∞

Ni(t)

with  corresponding mean values

Hi(t) = E(Ni(t)) and Hi(∞) = lim
t→∞

Hi(t).
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Theorem 8.5  State i is recurrent if and only if
(1)  orHi(∞) = ∞ ,

(2) Σm=1
∞ pi i

(m) = ∞.

Proof  (1) If i is recurrent, then   for   The limit  isP(Ti,n = ∞) = 0 n = 1, 2, ...⋅ Ni(∞)
finite if and only if there is a finite n with  Therefore,Ti,n = ∞.

P(Ni(∞) < ∞) ≤ Σi=1
∞ P(Ti,n = ∞) = 0 .

Thus, assumption  implies  with probability 1 so that .fi i = 1 Ni(∞) = ∞ Hi(∞) = ∞
On the other hand, if   then the Markov chain will not return to state i withfi i < 1,
positive probability  In this case  has a geometric distribution with mean1 − fi i. Ni(∞)
value

  E(Ni(∞)) = Hi(∞) =
fii

1 − fii
< ∞.

Both results together prove part (1) of the theorem.

(2) Let the indicator variable for the random event that the Markov chain is in state i
at time  bet = m

   Im,i =
⎧

⎩
⎨

1 for Xm = i,
0 for Xm ≠ i,

m = 1, 2, ... .

Then,
Ni(∞) = Σm=1

∞ Im,i .

Hence,

Hi(∞) = E⎛⎝ Σm=1
∞ Im,i

⎞
⎠

       = Σm=1
∞ E(Im,i )

             = Σm=1
∞ P(Im,i = 1 )

  = Σm=1
∞ pii

(m) .

Now assertion (2) follows from (1).                                                                            

By adding up both sides of (8.25) from  to  and changing the order of summa-m = 1 ∞
tion according to formula (2.115) at page 99, theorem 8.5 implies the

Corollary  If state  j is transient, then, for any i ∈ Z,

Σm=1
∞ pi j

(m) < ∞ ,

and, therefore,

                                             (8.27)lim
m→∞

pi j
(m) = 0 .
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Theorem 8.6  Let i be a recurrent state and  Then state  j is recurrent, too.i ⇔ j.

Proof  By definition of the equivalence relation " ", there are integers m and ni ⇔ j
with

   pi j
(m) > 0 and pj i

(n) > 0.

By (8.5),
pj j

n+r+m ≥ pj i
(n) pi i

(r) pi j
(m)

so that

Σr=1
∞ pj j

n+r+m ≥ pi j
(m) pj i

(n)Σr=1
∞ pi i

(r) = ∞ .

The assertion is now a consequence of theorem 8.5.                                                   

Corollary  Recurrence and transience are class properties. Hence, an irreducible Mar-
kov chain is either recurrent or transient. In particular, an irreducible Markov chain
with finite state space is recurrent.

It is easy to see that an inessential state is transient. Therefore, each recurrent state is
essential. But not each essential state is recurrent. This assertion is proved by the fol-
lowing example.

Example 8.11 (unbounded random walk)  Starting from  a particle jumps ax = 0,
unit distance along the x-axis to the right with probability p or to the left with probab-
ility  The transitions occur independently of each other. Let  denote the loca-1 − p. Xn
tion of the particle after the  jump under the initial condition  Then then th X0 = 0.
Markov chain has period  Thus,{X0, X1, ...} d = 2.

 p00
(2m+1) = 0 ; m = 0, 1, ... .

To return to state  after  steps, the particle must jump m times to the left andx = 0 2m
m times to the right. There are  sample paths which satisfy this condition. Hence,(2m

m )

p00
(2m) = ⎛

⎝
2m
m

⎞
⎠ pm (1 − p)m; m = 1, 2, ... .

Letting  and making use of the well-known seriesy = p (1 − p)

Σ
m=0

∞ ⎛
⎝

2m
m

⎞
⎠ ym = 1

1 − 4 y
, − 1/4 < y < 1/4,

yields

 Σ
m=0

∞
p00
(m) = 1

(1 − 2p)2
= 1

1 − 2p
, p ≠ 1/2 .

Thus,                                          Σ
m=0

∞
p00
(m) < ∞ for all p ≠ 1/2.

8 DISCRETE-TIME MARKOV CHAINS                                                                357



Hence, by theorem 8.5, state 0 is transient. But for any p with  all states are0 < p < 1
essential, since there is always a positive probability of making a transition to any
state irrespective of the starting position. By the corollary from theorem 8.6, the Mar-
kov chain is transient, since it is irreducible.{X0, X1, ...}

If  (symmetric random walk), thenp = 1/2

                                 (8.28)Σ
m=0

∞
p00
(m) = lim

p→1/2
1

1 − 2p
= ∞ .

Therefore, in this case all states are recurrent.                                                            

The symmetric random walk along a straight line can easily be generalized to n-dimen-
sional Euclidian spaces: In the plane, the particle jumps one unit to the West, South,
East, or North, respectively, each with probability 1/4. In the 3-dimensional Euclid-
ian space, the particle jumps one unit to the West, South, East, North, up- or down-
wards, respectively, each with probability 1/6. When analyzing these random walks
analogously to the one-dimensional case, an interesting phenomenon becomes visible:
the symmetric two-dimensional random walk (more exactly, the underlying Markov
chain) is recurrent like the one-dimensional symmetric random walk, but all n-dimen-
sional symmetric random walks with  are transient. Thus, there is a positive prob-n > 2
ability that Jim, who randomly chooses one of the six possibilities in a 3-dimensional
labyrinth, each with probability 1/6, will never return to his starting position.

Example 8.12  A particle jumps from  to  with probability  or to x = i x = 0 pi i + 1
with probability

1 − pi, 0 < pi < 1, i = 0, 1, ... .

The jumps are independent of each other. In terms of population dynamics, a popula-
tion increases by one individual at each jump with positive probability  if before1 − pi
the jump it comprised i individuals (state i). But at any state i a disaster can wipe out
the whole population with probability  (State 0 is, however, not absorbing.)pi.
Let  be the position of the particle after the n th jump. Then the transition matrixXn
of the Markov chain  is{X0, X1, ...}

   P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

p0 1 − p0 0 0 0 . .. 0 0 . ..
p1 0 1 − p1 0 0 . .. 0 0 . ..
p2 0 0 1 − p2 0 . .. 0 0 . ..
.
..

.

..
.
..

.

..
.
.. . .. 0 0 . ..

pi 0 . .. . .. 0 . .. 1 − pi 0 . ..
.
..

.

..
.
..

.

..
.
.. . .. .

..
.
..

.

..

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

.

The Markov chain  is irreducible and aperiodic. Hence, for finding the{X0, X1, ...}
conditions under which this Markov chain is recurrent or transient it is sufficient to
consider state 0, say. It is not difficult to determine :f00

(m)
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Starting with

f00
(1) = p0,

 m-step first return probabilities arethe

f00
(m) =

⎛
⎝⎜ Πi=0

m−2
(1 − pi)

⎞
⎠⎟

pm−1; m = 2, 3, ...

If  is replaced with  then  becomespm−1 (1 − (1 − pm−1)), f00
(m)

 f00
(m) =

⎛
⎝⎜ Πi=0

m−2
(1 − pi)

⎞
⎠⎟
−
⎛
⎝⎜ Πi=0

m−1
(1 − pi)

⎞
⎠⎟

; m = 2, 3, ...

so that

Σ
n=1

m+1
f00
(n) = 1 − ⎛

⎝⎜Πi=0

m
(1 − pi)

⎞
⎠⎟

, m = 1, 2, ... .

Thus, state 0 is recurrent if and only if

                                         (8.29)lim
m→∞ Π

i=0

m
(1 − pi) = 0 .

Proposition Condition (8.29) is true if and only if

                                                      (8.30)Σi=0
∞ pi = ∞ .

To prove this proposition, note that
1 − pi ≤ e−pi ; i = 0, 1, ... .

Hence,

Πi=0
m (1 − pi) ≤ exp ⎛⎝−Σi=0

m pi
⎞
⎠ .

Letting  proves that (8.29) follows from (8.30).m →∞

The converse direction is proved indirectly: The assumption that (8.29) is true and
(8.30) is wrong implies the existence of a positive integer  satisfyingk

0 < Σi=k
m pi < 1 .

By induction
Πi=k

m (1 − pi) > 1 − pk − pk+1 − . .. − pm = 1 −Σi=k
m pi .

Therefore,

lim
m→∞Πi=k

m (1 − pi) > lim
m→∞

⎛
⎝1 −Σi=k

m pi
⎞
⎠ > 0 .

This contradicts the assumption that condition (8.29) is true, and, hence, completes
the proof of the proposition.
Thus, state 0 and with it the Markov chain are recurrent if and only if condition (8.30)
is true. This is the case, for instance, if                                   pi = p > 0; i = 0, 1, ... .
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8.3  LIMIT THEOREMS AND STATIONARY DISTRIBUTION

Theorem 8.7  Let state i and j communicate, i.e.  Then,i ⇔ j.

                                    (8.31)lim
n→∞

1
n Σ

m=1

n
pi j
(m) = 1

μj j
.

Proof  Analogously to the proof of theorem 8.5 it can be shown that, given the Mar-
kov chain is at state i at time  the sumt = 0,

Σ
m=1

n
pi j
(m)

is equal to the mean number of transitions into state  j in the time interval  The(0, n].
theorem is, therefore, a direct consequence of the elementary renewal theorem (theo-
rem 7.12, page 311). (If the corresponding renewal process is delayed.)              i ≠ j,

If the limit
lim

m→∞
pi j
(m)

exists, then it coincides with the limit at the right-hand side of equation (8.31). Since
it can be shown that for an irreducible Markov chain these limits exist for all i, j ∈ Z,
theorem 8.7 implies the

Corollary Let  be the m-step transition probabilities of an irreducible, aperiodicpi j
(m)

Markov chain. Then,

lim
m→∞

pi j
(m) = 1

μj j
.

If state  is transient or null-recurrent, thenj

lim
m→∞

pi j
(m) = 0 .

If the irreducible Markov chain has period  thend > 1,

lim
m→∞

pi j
(m) = d

μj j
.

To see this, switch from the one-step transition matrix P to the d-step transition
matrix . A proof of the following theorem is e.g. given in Feller (1968).Pd

Theorem 8.8  For any irreducible, aperiodic Markov chain, there are two possibilities:
(1) If the Markov chain is transient or null recurrent, then a stationary distribution
does not exist.
(2) If the Markov chain is positive recurrent, then there exists a unique stationary
distribution  which for any  is given by{πj , j ∈ Z}, i ∈ Z

                                              πj = lim
m→∞

pi j
(m) = 1

μj j
.
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 Example 8.13  A particle moves along the real axis. Starting from position (state) i
it jumps to state  with probability p and to state  with probability i + 1 i − 1 q = 1 − p,

  When the particle arrives at state 0, it remains there for a further time uniti = 1, 2, ... .
with probability q or jumps to state 1 with probability p. Let  denote the positionXn
of the particle after the n th jump (time unit). Under which condition has the Markov
chain  a stationary distribution?{X0, X1, ...}
Since  the system (8.9) isp00 = q, pi i+1 = p, and pi i−1 = q = 1 − p; i = 1, 2, ...,

π0 = π0 q + π1 q
πi = πi−1 p + πi+1 q ; i = 1, 2, ... .

By recursively solving this system of equations,

πi = ⎛
⎝

p
q
⎞
⎠

i
π0 ; i = 0, 1, ... .

To ensure that  condition  or, equivalently,  must hold. InΣi=0
∞ πi = 1, p < q p < 1/2 ,

this case,

                                  (8.32)πi =
q − p

q
⎛
⎝

p
q
⎞
⎠

i
; i = 0, 1, ... .

The necessary condition  for the existence of a stationary distribution is intui-p < 1/2
tive, since otherwise the particle would tend to drift to infinity. But then no time-in-
variant behavior of the Markov chain can be expected.                                              �

Theorem 8.9  Let  be an irreducible, recurrent Markov chain with state{X0, X1, ...}
space Z and stationary state probabilities . If g is any bounded function onπi, i ∈ Z

,  thenZ

                                                                                   �lim
n→∞

1
n Σj=0

n
g(Xj) = Σ

i∈Z
πi g(i) .

For example, if  is the 'profit' which arises when the Markov chain makes aci = g(i)
transition to state i, then

Σ i∈Z πi ci

is the mean profit in the long-run resulting from a state change of the Markov chain.
Thus, theorem 8.9 is the analog to the renewal reward theorem (formula (7.148) at
page 325) for compound renewal processes. In particular, let

g(i) = 1 for i = k
0 for i ≠ k

.

If changes of state of the Markov chain occur after unit time intervals,  then the limit

lim
n→∞

1
n Σj=0

n g(Xj)

is equal to  the mean  percentage  of  time  the  system is in state k.  By theorem 8.9, this
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percentage coincides with . This property of the stationary state distribution illus-πk
trates once more that it refers to an equilibrium state of the Markov chain. A proof of
theorem 8.9 under weaker assumptions can be found in Tijms (1994).

Example 8.14  A system can be in one of the three states 1, 2, and 3: In state 1 it
operates most efficiently. In state 2 it is still working but its efficiency is lower than
in state 1. State 3 is the down state, the system is no longer operating and has to be
maintained. State changes can only occur after a fixed time unit of length 1. Transi-
tions into the same state are allowed. If  denotes the state of the system at time n,Xn
then  is assumed to be a Markov chain with transition matrix{X0, X1, ...}

P =
⎛

⎝
⎜
⎜
⎜

0.8 0.1 0.1
0 0.6 0.4

0.8 0 0.2

⎞

⎠
⎟
⎟
⎟

.

Note that from state 3 the system most likely makes a transition to state 1, but it may
also stay in state 3 for one or more time units (for example, if a maintenance action
has not been successful). The corresponding stationary state probabilities satisfy the
system of linear equations

  π1 = 0.8π1 + 0.8π3

               π2 = 0.1π1 + 0.6π2

π3 = 0.1π1 + 0.4π2 + 0.2π3.

Only two of these equations are linearly independent. Together with the normalizing
constraint the unique solution isπ1 + π2 + π3 = 1 ,

                                                          (8.33)π1 =
4
6 , π2 = π3 =

1
6 .

The profits the system makes per unit time in states 1 and 2 are

 g(1) = $ 1000, g(2) = $ 600,

wheras, when in state 3, the system causes a loss of
g(3) = $100

per unit time. According to theorem 8.9, after an infinite (sufficiently long) running
time, the mean profit per unit time is

                     [$ per unit time].Σi=1
3 πi g(i) = 1000 ⋅ 4

6 + 600 ⋅ 1
6 − 100 ⋅ 1

6 = 250

Now, let Y be the random time, in which the system is in the profitable states 1 and 2.
According to the structure of the transition matrix, such a time period must begin with
state 1. Further, let Z be the random time in which the system is in the unprofitable
state 3. The mean values  and  are to be determined. The random vectorE(Y) E(Z)

 characterizes the typical cycle of an alternating  renewal  process. Therefore, by(Y, Z)
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formula (7.144), page 322, the ratio
E(Y) /[E(Y) + E(Z)]

is equal to the mean percentage of time the system is in states 1 or 2. As pointed out
after theorem 8.9, this percentage must be equal to :π1 + π2

                                                         (8.34)E(Y)
E(Y) + E(Z) = π1 + π2.

Since the mean time between transitions into state 3 is equal to  the ratioE(Y) + E(Z),
 is equal to the rate of transitions to state 3. On the other hand, this1/[E(Y) + E(Z)]

rate is Hence,π1 p13 + π2 p23.

                                                   (8.35)1
E(Y) + E(Z) = π1 p13 + π2 p23.

From (8.34) and (8.35)

  E(Y) = π1 + π2
π1 p13 + π2 p23

, E(Z) = π3
π1 p13 + π2 p23

.

Substituting the numerical values (8.33) gives  and  Hence,E(Y) = 6.25 E(Z) = 1.25.
the percentage of time, the system is in the profit-generating states 1 and 2 is

 83,3 [%].                                       �6.25/7.50 [100%] =

Example 8.15  An insurer knows that the total annual claim size X of a client in a
certain portfolio is exponentially distributed with mean value  , i.e.E(X) = $1000

F(x) = P(X ≤ x) = 1 − e−x/1000, x ≥ 0.
The insurer partitions his clients into classes 1, 2, and 3 depending on the annual
amounts they claim, and the class they belong to: A client, who is in class 1 in the
current year, will make a transition to class 1, 2 or 3 next year, when his respective
total claims are between 0 and 600, 600 and 1200, or greater than 1200 in the current
year. A client, who is in class 2 in the current year, will make a transition to class 1,
2, or 3 next year if his respective total claim sizes are between 0 and 500, 500 and
1100, or more than 1100. A client, who is in class 3 and claims between 0 and 1100
or at least 1100 in the current year, will be in class 2 or in class 3 next year, respec-
tively. In this case, a direct transition from class 3 to class 1 is not possible. When in
class 1, 2, or 3, the clients will pay the respective premiums 600, 1200, or 1400 a
year. The one-step transition probabilities  arepi j

          p11 = F(600) = 0.4512 , p12 = F(1200) − F(600) = 0.2476 ,

p21 = F(500) = 0.3935 , p22 = F(1100) − F(500) = 0.2736,

p31 = 0 , p32 = F(1100) = 0.6671.

Taking into account  the complete matrix of the one-pi 1 + pi 2 + pi 3 = 1, i = 1, 2, 3,
step transition probabilities is
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          P =
⎛

⎝
⎜
⎜
⎜

0.4512 0.2476 0.3012
0.3935 0.2736 0.2736
0.0000 0.6671 0.3329

⎞

⎠
⎟
⎟
⎟

.

By (8.9), the stationary state probabilities satisfy the system of linear equations (note
that one of the equations (8.9) is redundant, i.e., linearly dependent on the other two
equations, and must be replaced by the normalizing equation (8.10)):

                     π1 = 0.4512π1 + 0.3935π2

π2 = 0.2476π1 + 0.2736π2 + 0.6671π3,
                                  1 = π1 + π2 + π3.

The solution is
π1 = 0.2823, π2 = 0.3938, π3 = 0.3239 .

Hence, the average annual long-run premium a client has to pay is

Σi=1
3 πi g(i) = 0.2823 ⋅ 600 + 0.3938 ⋅ 1200 + 0.3239 ⋅ 1400 = 1095.4

so that the long-run average profit of the insurer per client and year is           �$ 95.4.

8.4  BIRTH AND DEATH PROCESSES

8.4.1 Introduction

In some of the examples considered so far only direct transitions to 'neighboring'
states were possible. More exactly, if starting at state i and not staying there for one
or more time units, only transitions to states  or  could be made in one step.i − 1 i + 1
In these cases,  the positive one-step transition probabilities have structure (Figure 8.2)
                              (8.36)pi i+1 = pi , pi i−1 = qi , pi i = ri with pi + qi + ri = 1.

A discrete Markov chain with state space  and transition prob-Z = {0, 1, ..., z}, z ≤ ∞,
abilities (8.36) is called a birth and death process. The state space implies q0 = 0.

 is the probability that the process stays for another time unit at state i.ri = 1 − pi − qi
The term birth and death process results from the application of these processes to
describing the development in time of biological populations. In this context,  isXn
the number of individuals of a population at time n assuming that the population does
not increase or decrease by more than one individual per unit time. Correspondingly,
the  and the  are called birth and death probabilities, respectively.pi qi
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Figure 8.2  Transition graph of a birth and death process with infinite state space
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A birth and death process is called a pure birth process if all the  are 0 (no deathsqi
are possible), and a pure death process if all the  are 0 (no births are possible).pi
To make sure that a birth and death process is irreducible, the assumptions (8.36)
have to be supplemented by

                  (8.37)pi > 0 for i = 0, 1, ... and qi > 0 for i = 1, 2, ... .

For instance, the random walk of example 8.13 is a birth- and death process with
pi = p, qi = q, ri = 0 for i = 1, 2, ...; p0 = p, q0 = 0, r0 = q = 1 − p.

The unbounded random walk in example 8.11 also makes direct transitions only to
neighboring states. But its state space is  so that this random walkZ = {0,±1,±2, ...}
is not a birth and death process.

8.4.2 General Random Walk with two Absorbing Barriers

In generalizing example 8.3, a random walk with state space  andZ = {0, 1, ..., z}
transition probabilities (8.36) is considered, which satisfy the additional conditions

                                  (8.38)r0 = rz = 1 , pi > 0 and qi > 0 for i = 1, 2, ..., z − 1.
Thus, states 0 and z are absorbing (Figure 8.3). 

Let  be the probability that the random walk is absorbed by state 0 when startinga(n)
from  (Since z is absorbing as well, the process cannot have beenn ; n = 1, 2, ..., z − 1.
in state z before arriving at state 0.)  It  obvious thatis

                      (8.39)1 = a(0) > a(1) > . .. > a(z − 1) > a(z) = 0.
From the total probability rule (1.24),

                    (8.40)a(n) = pn ⋅ a(n + 1) + qn ⋅ a(n − 1) + rn a(n) ,

or, equivalently, when replacing  with rn rn = 1 − pn − qn ,

a(n) − a(n + 1) = qn
pn [a(n − 1) − a(n)] ; n = 1, 2, ..., z − 1.

Repeated application  these difference equations givesof
               (8.41)a(n) − a(n + 1) = An [a(0) − a(1)] ; n = 0, 1, ..., z − 1,

with                                        (8.42)An =
q1 q2. .. qn
p1 p2 . .. pn ; n = 1, 2, ..., z − 1 ; A0 = 1,

and and a(0) = 1 a(z) = 0.
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Figure 8.3  Transition graph of a birth and death process with absorbing barriers
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Summing equations (8.41) from  yieldsn = k to n = z − 1

  a(k) = Σn=k
z−1 [a(n) − a(n + 1)] = [a(0) − a(1)] Σn=k

z−1 An .

In particular, for k = 0,

1 = [a(0) − a(1)] Σn=0
z−1 An .

By combining the last two equations,

                          (8.43)a(k) = Σn=k
z−1 An

Σn=0
z−1 An

; k = 0, 1, ..., z − 1 ; a(z) = 0, A0 = 1 .

The probability of absorption at state  if the particle starts at k is z b(k) = 1 − a(k).

Gambler's ruin problem: The probabilities  can be interpreted as follows (com-a(k)
pare to example 8.3): Two gamblers begin a game with stakes of sizes k and z − k,
respectively; k, z integers with  After each move a gambler either wins or0 < k < z.
loses  or the gambler's stake remains constant. These possibilities are controlled$1
by transition probabilities satisfying (8.36) and (8.38). The game is finished if a gam-
bler has won the entire stake of the other one or, equivalently, if one gambler has lost
her/his entire stake.

Mean time to absorption Let  be the mean number of time units (steps) till them(n)
particle arrives at any of the absorbing states 0 or z, when it has started at location n,

 If the particle moves from the starting point n to the right, then the mean0 < n < z.
time till absorption is  if the particle jumps to the left, then the mean time1 +m(n + 1);
till absorption is and if the particle stays at position n a further time1 +m(n − 1),
unit, then the mean time to absorption is  Hence, analogously to (8.19), the1 +m(n).

 satisfy the system of equationsm(n)

        (8.44)m(n) = pn ⋅ [1 +m(n + 1)] + qn ⋅ [1 +m(n − 1)] + rn ⋅ [1 +m(n)] ,

or, when replacing  with  the system of the equations (8.44) forrn rn = 1 − pn − qn,
the  becomes a system of equations for the differences m(n) d(n) = m(n) −m(n − 1) :

                    (8.45)d(n + 1) = qn
pn d(n) − 1

pn ; n = 1, 2, ..., z − 1.

The boundary conditions are  so that m(0) = m(z) = 0 d(1) = m(1).
k-fold application of the recursive equations (8.45) starting with  yieldsn = 1

d(2) = q1
p1

m(1) − 1
p1

,

 d(3) =
q2
p2

⎛
⎝

q1
p1

m(1) − 1
p1

⎞
⎠ −

1
p2

=
q1 q2
p1 p2

m(1) −
q2

p1 p2
− 1

p2
,

d(4) =
q3
p3

d3 −
1

p3
=

q1 q2 q3
p1 p2 p3

m(1) −
q2 q3

p1 p2 p3
−

q3
p2 p3

− 1
p3

,
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and, finally,

        (8.46)d(k) = Ak−1m(1) − Σ
i=2

k−1 qi qi+1. .. qk−1
pi−1 pi . .. pk−1

− 1
pk−1

; k = 3, 4, ..., z,

where the  are given by (8.42) with . The desired mean values  areAk−1 n = k − 1 m(n)
simply obtained by summation of the d(k) :

            (8.47)m(n) = Σk=1
n d(k) = Σk=1

n [m(k) −m(k − 1)], n = 1, 2, ..., z.

The still unknown , which occurs as a factor in each of the , can bem(1) d(k)
determined from (8.47) by making use of the boundary condition , i.e. fromm(z) = 0

m(z) = 0 = Σn=1
z d(n).

The result is

                        (8.48)m(1) =
Σ

k=2

z−1 ⎛
⎝⎜ Σi=2

k qi qi+1. .. qk
pi−1 pi . .. pk

⎞
⎠⎟
+ Σ

k=1

z−1 1
pk

1 + Σ
k=1

z−1
Ak

.

k 0 1 2 3 4 5 6

pk 0 0.8 0.4 0.3 0.1 0

qk 0 0.1 0.3 0.4 0.5 0.8 0

rk 1 0.1 0.2 0.2 0.2 0.1 1

Ak 1 0.1250 0.075 0.075 0.125 1.0

a(k) 1 0.5833 0.5313 0.5000 0.4687 0.4167 0

b(k) 0 0.4167 0.4687 0.5000 0.5313 0.5833 1

m(k) 0 53.54 58.95 60.50 58.95 53.54 0

Table 8.2 Numerical results for example 8.16

Example 8.16 A random walk with state space  and the absorbingZ = {0, 1, 2, ..., 6}
barriers 0 and 6 is considered. Table 8.2 shows the birth and death probabilities  pn
and the corresponding , the ratios  defined by (8.42), the absorption proba-qn, rn Ak
bilities  and  with regard to locations 0 and 6, respectively, and the meana(k) b(k)
times to absorption  at any of the locations 0 or 6. From (8.48), m(k)

m(1) = 53.54 .
Now the mean times to absorption  can be obtained from (8.47).m(2), m(3), . .. , m(6)
For manual calculations, it is most efficient to determine the  recursively byd(k)
(8.45). In view of the symmetric structure of the birth and death probabilities, the
absorption probabilities  and  coincide.                             �a(k) b(6 − k), k = 0, 1, 2, 3,
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8.4.3 General Random Walk with One Absorbing Barrier

The same situation as in section 8.4.2 is considered except that state z is no longer
assumed to be absorbing (Figure 8.4), i.e. the corresponding transition probabilities  
have properties

r0 = 1, pz = 0, qz > 0, rz = 1 − qz; pi > 0 and qi > 0 for i = 1, 2, ..., z − 1.

These transition probabilities imply that state 0 is absorbing, whereas from state z
transitions to state  are possible. The states  are transient so that afterz − 1 1, 2, ..., z − 1
a random number of time units the particle will arrive at location 0 with probability 1.
Again, jumps of the particle (possibly to the same location) always occur after one
time unit. Since the boundary condition  is the same as in in the previousm(0) = 0
section, formulas (8.46) and (8.47) stay valid for  Since k = 1, 2, ..., z − 1. pz = 0,
equation (8.44) yields for  the boundary conditionn = z

m(z) = qz ⋅ [1 +m(z − 1)] + (1 − qz) ⋅ [1 +m(z)] ,

or, equivalently,                                                               (8.49)m(z) − m(z − 1) = 1
qz .

Letting  in (8.47) and combining the resulting equation with (8.49) leads ton = z − 1
an equation for  the solution of which ism(1),

m(1) =
Σ
i=2

z−1 qi qi+1. .. qz−1
pi−1 pi . .. pz−1

+ 1
pz−1

+ 1
qz

Qz−1

or, equivalently,

                                 (8.50)m(1) = 1
q1

+ Σ
i=2

z p1 p2. .. pi−1
q1 q2 . .. qi

.

Now the  can be recursively determined by (8.45) or (8.46), re-m(2), m(3), ..., m(z)
spectively, or directly by (8.47). After some algebra, a more elegant representation of

 is obtained by inserting (8.50) into (8.47) (Nisbet, Gurney (1982)):m(k)

m(k) = m(1) + Σ
n=1

k−1 ⎛
⎝⎜

q1 q2. .. qn
p1 p2 . .. pn Σ

i=n+1

z p1 p2. .. pi−1
q1 q2 . .. qi

⎞
⎠⎟

; k = 2, 3, ..., z.

Mean Time to Extinction   can be interpreted as the mean time to the extinc-m(k)
tion of a finite population under the following assumptions: The maximal possible
number of individuals the environment can sustain is z. If  the  population has k mem-
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Figure 8.4  Transition graph for a random walk with absorption at 0  
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bers, it will grow per time unit by one individual with probability ,  itpk 1 ≤ k ≤ z − 1,
will decrease per time unit by one individual with probability ,   or theqk 1 ≤ k ≤ z,
number of members does not change per time unit with probability rk = 1 − pk − qk.
In addition,  No immigration occurs. One jump per time unitq0 = p0 = pz = 0.
(possibly to the same state) is realistic if the time unit is chosen small enough. If this
birth and death process arrives at the absorbing state 0, the population is extinct.

Example 8.17 Consider a population with a maximal size of  individuals andz = 6
transition probabilities with regard  a unit time given by Table 8.3. Then, by (8.50),to

m(1) = 1
q1

+
p1

q1q2
+

p1p2
q1q2q3

+ . .. +
p1p2. .. p5
q1q2. .. q6

= 155 .

Table 8.3 shows the mean times to extinction  Condition (8.49) ism(1), m(2), ..., m(6).
satisfied.                                                                                                                       �

k 0 1 2 3 4 5 6

pk 0 0.8 0.5 0.4 0.2 0.1 0

qk 0 0.1 0.2 0.4 0.5 0.6 0.8

rk 1 0.1 0.3 0.2 0.3 0.3 2

d(k) 155 18.125 5.250 2.750 1.875 1.250

m(k) 0 155 173.125 178.375 181.125 183.000 184.250

Table 8.3 Numerical results for example 8.17

Theorem 8.10  Under the additional assumptions (8.37) on its transition probabilities
(8.36), a birth- and death process is recurrent if and only if

                                    (8.51)Σ
n=1

∞ q1 q2. .. qn
p1 p2 . .. pn = ∞ .

Proof  It is sufficient to show that state 0 is recurrent. This can be established by using
the result (8.43) referring  a general random walk with two absorbing barriers, sinceto

lim
z→∞

p(k) = fk 0 ; k = 1, 2, ... ,

where the first passage time probabilities  are given by (8.26). If state 0 is recur-fk0
rent, then, from the irreducibility of the Markov chain, However,f00 = 1 and fk 0 = 1.

 if and only if (8.51) is valid. Conversely, let (8.51) be true. Then, by the totalfk 0 = 1
probability rule,

                                �f00 = p00 + p01 f10 = r0 + p0 ⋅ 1 = 1 .

Discrete-time birth and death processes have significance on their own, but may also
serve as approximations to the more important continuous-time birth and death pro-
cesses, which are the subject of section 9.6.
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8.5  DISCRETE-TIME BRANCHING PROCESSES

8.5.1 Introduction

Closely related to pure birth processes are branching processes. In this section, the
simplest branching process, the Galton-Watson process, is considered. The terminol-
ogy applied refers to population dynamics. The Galton-Watson process {X0, X1, ...}
is characterized by the following properties (For illustration, see a tree-representation
of a sample path of this process on condition  in Figure 8.5):X0 = 1
1) The population starts with  individuals. They constitute the zeroth generation.X0
2) Each individual i of the zeroth generation has  offspring;  TheYi,0 i = 0, 1, 2, ....

are independent and identically distributed as a random variable  withYi,0 Y

    (8.52)pk = P(Y = k) ; k = 0, 1, ... , Σk=0
∞ pk = 1; μ = E(Y) and σ2 = Var(Y).

The set of all offspring of individuals of the zeroth generation constitutes the first ge-
neration. The total number of all individuals in the first generation is denoted as :X1

X1 = Σi=1
X0 Yi,0.

3) Generally, each member i of the  generation produces a random number(n − 1) th
 of offspring, and all  are independent and identically distributed as Y. InYi,n−1 Yi,n−1

addition, the  are independent of all previous offspring figuresYi,n−1

 Yi,n−2, ..., Yi,0; n = 2, 3, ... .

The set of offspring generated by the  generation constitutes the  genera-(n − 1) th n th
tion with a total of  individuals,  Xn n = 0, 1, ... .
4) All individuals of a generation are of the same type.
According to its construction, the random sequence  is a discrete-time{X0, X1, ...}
Markov chain. Given  its m-step transition probabilities (8.3) are equal to theX0 = i,
absolute state probabilities  of  pj

(m) = P(Xm = j) Xm :

pi j
(m) = P(Xm = j X0 = i) .
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The first motive for dealing with branching processes was to determine the duration
of (noble) families. The French statistician L. F. Benoiston de  (1776  Chateauneuf −
1856) estimated their average duration to be 300 years (according to Moser (1839)).
As pointed out by Heyde, Seneta (1972), I. J. Bienaym  (1796 1878) was veryé −
likely able to determine the probability of the extinction of family names based on
the extinction of male offspring, but, unfortunately, did not leave behind any written
account.  Sir F. Galton (1822 1911) and H.W. Watson (1822 1900) formulated the− −
mathematical problem, but could not fully solve it; see Galton, Watson (1875). This
was done by the Danish actuary J.F. Steffenson only in 1930 (Steffenson (1930)).
Other applications of branching processes are among else in mutant genes dynamics,
nuclear chain reactions, electron multipliers to boost a current of electrons, and  cell
kinetics. There are numerous generalizations of the Galton Watson process, e.g.,−
multi-type branching processes, continuous-time branching processes, and age
dependent branching processes. Recent monographs on theory and applications of
branching processes are Haccou et al. (2011), Kimmel, Axelrod (2015), and Durret
(2015). Pioneering classics are Harris (1963) and Sevastyanov (1971).

8.5.2 Generating Function and Distribution Parameters

In what follows, the assumption is made that the development of the population starts
with one individual, i.e,  The respective z-transforms (moment generatingX0 = 1.
functions) of Y and  are denoted as (section 2.5, page 96)Xn

M(z) = E(zY) = Σk=0
∞ pk zk,

Mn(z) = E(zXn ) = Σk=0
∞ P(Xn = k) zk; n = 0, 1, ... .

In particular,                                                         (8.53)M0(z) = z and M1(z) = M(z).

According to the notation introduced,

 Xn = Σi=1
Xn−1 Yi,n−1,

where the random variables  are independent and identi-Y1,n−1, Y2,n−1,..., YXn−1,n−1
cally distributed as Y. Hence, by formula (2.116), page 99, on condition  Xn−1 = m
the z-transform of  isXn

Mn(z Xn−1 = m) = [M(z)]m; m = 0, 1, 2, ... .

Now, by using this result and the formula of the total probability

Mn(z) = Σk=0
∞ P(Xn = k) zk

= Σk=0
∞ Σm=0

∞ P(Xn = k Xn−1 = m)P(Xn−1 = m) zk

= Σm=0
∞ P(Xn−1 = m) Σk=0

∞ zk P(Xn = k Xn−1 = m)

= Σm=0
∞ P(Xn−1 = m) [M(z)]m.
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The last row is the z-transform of  with the variable z replaced by the variableXn−1
 i.e. the following recursive equation for the  is valid:M(z), Mn(z)

                               (8.54)Mn(z) = Mn−1(M(z)), n = 1, 2, ... .

A similar recursive equation for  isMn(z)

                           (8.55)Mn(z) = M (Mn−1(z)), n = 1, 2, ...,

which easily follows from (8.54) by induction:
For  formula (8.55) is true since by (8.53) and (8.54),n = 2

M2(z) = M1(M(z)) = M (M1(z)).

Now assume  is true. Then, by (8.54),Mn−1(z) = M (Mn−2(z))

     Mn(z) = Mn−1(M(z)) = M(Mn−2(M(z)) = M(Mn−1(z)),

which proves (8.55).
The first and second derivative of  given by (8.55) with regard to z areMn(z)

                               (8.56)Mn(z) = M (Mn−1(z)) ⋅Mn−1(z),

        (8.57)Mn (z) = M (Mn−1(z)) ⋅ [Mn−1(z)]
2 +M (Mn−1(z)) ⋅Mn−1(z).

Now let  Then, since  for all  and formu-z = 1. Mn(1) = 1 n = 0, 1, ... μ = E(Y) = M (1),
la (8.56) yields or, equivalently,  Therefore,Mn(1) = μ ⋅Mn−1(1), Mn(1) = E(Xn).

E(Xn) = μE(Xn−1), n = 1, 2, ... .

By repeated application of this relation,
                                      (8.58)E(Xn) = μn, n = 1, 2, ... .

Thus, if  i.e. there is on average less than one offspring per individual, theμ < 1,
population will eventually sooner or later become extinct, since in this case

 lim
n→∞

E(Xn) = 0.

From (8.57),
Mn (1) = M (1) ⋅ [Mn−1(1)]

2 +M (1) ⋅Mn−1(1), n = 1, 2, ...

or, taking into account (8.53)

Mn (1) = M (1) ⋅ μ2(n−1) + μ ⋅Mn−1(1), n = 1, 2, ... .

Repeated application of this recursive equation for the  givesMk (1)

Mn (1) = M (1) [μ2n−2 + μ2n−3 + . .. + μn−1].

By (2.112), page 96,

  and   M (1) = σ2 − μ + μ2 Mn (1) = Var(Xn) − μn + μ2n.

After some algebra,  becomesVar(Xn)
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Var(Xn) = Mn (1) + μn − μ2n = σ2 ⎡⎣μ
2n−2 + μ2n−3 + . .. + μn−1 ⎤⎦

                              = σ2 μn−1 ⎡⎣μ
n−1 + μn−2 + . .. + μ0 ⎤⎦, n = 1, 2, ... .

By making use of the finite exponential series (2.18) (page 48)  the final result is,

                         Var(Xn) =
⎧

⎩
⎨
⎪
⎪

σ2 μn−1 μ
n − 1
μ − 1 for μ ≠ 1,

nσ2 for μ = 1.

The variance of  increases linearly with increasing n if  For , this vari-Xn μ = 1. μ > 1
ance increases, and for  it decreases with increasing n. Clearly, this increase/de-μ < 1
crease occurs the faster the larger  which is the variance of the number of off-σ2,
spring a member of the population has.

8.5.3 Probability of Extinction and Examples

A population can only become extinct if the probability  (an individual has nop0
offspring) is positive. Hence, let us assume in this section that

0 < p0 < 1.
As in the previous section, let  Then the probability of extinction  is for-X0 = 1. π0
mally given as the limit of the m-step transition probabilities

π0 = lim
m→∞

p1 0
(m) = lim

m→∞
P(Xm = 0 X0 = 1).

By equations (2.9) (page 46) and (8.58),

E(Xn) = μn = Σ
i=1

∞
i P(Xn = i) = Σ

i=1

∞
P(Xn ≥ i) ≥ P(Xn ≥ 1).

Thus, if  then  so that   Hence, if μ < 1, lim
n→∞

μn = 0 lim
n→∞

P(Xn ≥ 1) = 1 − π0 = 0. μ < 1,

then  Moreover, it can be shown that  even if  Sinceπ0 = 1. π0 = 1 μ = 1.

 p10
(n) = P(Xn = 0 X0 = 0) = Mn(0), n = 1, 2, ...

equation (8.55) implies that

π0 = lim
n→∞

p1 0
(n) = lim

n→∞
Mn(0) = M ( lim

n→∞
Mn−1(0)) = M(π0), n = 1, 2, ....

Thus, the probability of extinction  satisfies the equationπ0

                                                 (8.59)z = M(z) .
This equation can have two solutions. In view of  the integer  is al-M(1) = 1, z1 = 1
ways a solution. Hence, a possible second solution  must satisfy z2 0 < z2 < 1.
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Without proof: The desired probability of extinction  is the smallest solution ofπ0
the equation (8.59). Such a solution exists if μ = E(Y) ≥ 1.

Let T be the random time to extinction. Then T is the smallest integer n with property
 i.e.,Xn = 0,

T = min
n
{n, Xn = 0}.

The values of the distribution function  of T at the 'jump points'  areFT(n) n

FT(n) = P(T ≤ n) = P(Xn = 0) = Mn(0), n = 1, 2, ... .

Furthermore, so thatP(T ≤ n) = P(T ≤ n − 1) + P(T = n)
                     (8.60)P(T = n) = Mn(0) −Mn−1(0), n = 1, 2, ....

Given  by formula (2.9), page 46, the mean time to expiration islim
n→∞

P(Xn = 0) = 1,

E(T) = Σn=1
∞ [1 −Mn−1(0)].

A sufficient condition for  is lim
n→∞

P(Xn = 0) = 1 μ ≤ 1.

Example 8.18 A standard example for an application of the Galton-Watson process
is due to Lotka (1931): Alfred Lotka investigated the random number Y of male
offspring per male of the white population in the USA in 1920. (Some male offspring
may arise out of wedlock so that Y need not refer to a married couple.) He found that
Y has approximately a modified geometric distribution with -transformz

M(z) = 0.482 − 0.041 z
1 − 0.559 z .

From this it follows that with probability  a male hasp0 = P(Y = 0) = M(0) = 0.482
no male offspring. The first and second derivatives of M(z) are

M (z) = 0.2284
(1 − 0.559 z)2 , M /(z) = 0.2554 − 0.0714 z

(1 − 0.559 z)2

so that  and  Hence, by formulas (2.112),M (1) = 1.1744 M (1) = 0.9461.

E(Y) = M (1) = 1.1744, Var(Y) = 0.7413, and Var(Y) = 0.8610.

Thus, a male produces on average 1.1744 male offspring with a fairly high standard
deviation of 0.8610. In this case, formula (8.59)  a quadratic equation:is

0.559 z2 − 1.041 z + 0.482 = 0 .
 is surely a solution. The second solution is , which is the desiredz1 = 1 z2 = 0.86

probability of extinction: π0 = 0.86.

Lotka found that the geometric distribution as given by formula (2.27), page 50, did
not fit well to his data set. Hence he estimated   from his data and calculat-p0 = 0.482
ed the  in such a way that their sum is p1, p2, ... 1 − p0 = 0.518 :

pi = 0.518 ⋅ (1 − 0.559) ⋅ 0.559i−1; i = 1, 2, ....
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Generally, for any fixed  with  the -modified geometricp0 = P(Y = 0) 0 < p0 < 1, p0
distribution is given by the probability mass function

                    (8.61)pi = P(Y = i) = (1 − p0)p (1 − p)i−1; i = 1, 2, ...

By formula (2.16), page 48  so that indeed, Σi=1
∞ (1 − p)i−1 = Σi=0

∞ (1 − p)i = 1/p

                                                �Σi=0
∞ pi = 1.

Some individuals have the potential to produce a huge number of offspring (locusts,
turtles, fish), even if only a few of them may reach adulthood (defined by the time
when being capable of reproduction). In these cases a distribution allowing for
infinite offspring is a suitable model. For human populations, a truncated distribution
(page 71) can be expected to provide best results. For instance, consider the truncated

-modified geometrical distribution with upper limit m, i.e., m is the maximalp0
number of offspring an individual can produce. The probability for being directlyp0,
estimated from the sample, is not subject to truncation. Given the probabilities (8.61),
making use of the series (2.118), the truncated -modified geometric distributionp0

 is for any  with   defined by{p0, p1, ..., pm} p0 0 < p0 < 1

          (8.62)p0, pi =
1 − p0

1 − (1 − p)m p (1 − p)i−1, i = 1, 2, ..., m.

Example 8.19 A female thrush produces up to 4 eggs a year from which adult birds
arise. The random number Y of such eggs has the distribution  withpi = P(Y = i)

p0 = 0.32, p1 = 0.24, p2 = 0.28, p3 = 0, 10, p4 = 0.06.

The corresponding mean value is  and the z-transform isE(Y) = 1.34,

M(z) = 0.32 + 0.24 z + 0.28 z2 + 0, 10 z3 + 0.06 z4.

The probability of extinction of the whole offspring of the zeroth generation thrush
in one of the subsequent generations is the smallest solution of the equation .M(z) = z
This solution .                                                                                             �π0 = 0.579

Example 8.20 Let the random number of offspring Y have a mixed Poisson distribu-
tion with continuous structure parameter L with density  Then Y has the z-trans-fL(λ).
form (see page 98)

M(z) = ∫0
∞ eλ(z−1)fL(λ)dλ .

The structure parameter L is supposed to have a Gamma distribution with density
given by (2.74) (page 75):

fL(λ) =
βα

Γ(α) λ
α−1e−βλ; λ > 0, α > 0, β > 0.

Then  becomesM(z)

M(z) = ∫0
∞ eλ(z−1)fL(λ)dλ = βα

Γ(α) ∫0
∞ e−λ(β+1−z)λα−1 dλ .
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Substituting  gives the final form of M(z):x = (β + 1 − z) λ

M(z) = ⎛
⎝

β
β + 1 − z

⎞
⎠

α
.

From formula (7.58) at page 281 we know that this is the z-transfom of a negative
binomial distribution with parameters  and  Its first derivative isα β.

M (z) =
αβα

(β + 1 − z)α+1 .

Hence, the mean number of offspring is A general solution, dif-E(Y) = M (1) = α/β.
ferent to 1, of equation    has a complicated structure. Hence, only two specialM(z) = z
cases are considered.

1) :  In this case the structure parameter L has an exponential distribution withα = 1
parameter  The equation  becomesβ. M(z) = z

z2 − (β + 1) z + β = 0 ,
and the solutions are   and   Hence, the probability of extinction will bez1 = 1 z2 = β .

  for   and    for  π0 = 1 β ≥ 1 π0 = β β < 1.

This result is in line with E(Y) = 1/β ≤ 1 for β ≥ 1.
2) : In this case equation  becomesα = 2, β = 1.2 M(z) = z

z3 − 4.4 z2 + 4.84 z − 1.44 = 0.
The solutions are  Hence, the probability of extinction isz1 = 1 and z2 = 0.496.

                                                       �π0 = 0.496.

8.6   EXERCISES

8.1) A Markov chain has state space   and transition matrix{X0, X1, ...} Z = {0, 1, 2}

   P =
⎛

⎝
⎜
⎜
⎜

0.5 0 0.5
0.4 0.2 0.4
0 0.4 0.6

⎞

⎠
⎟
⎟
⎟

.

(1) Determine   and  P(X2 = 2 X1 = 0, X0 = 1) P(X2 = 2, X1 = 0 X0 = 1).

(2) Determine  and, for P(X2 = 2, X1 = 0 X0 = 0) n > 1,

 P(Xn+1 = 2, Xn = 0 Xn−1 = 0).

(3) Assuming the initial distribution
P(X0 = 0) = 0.4; P(X0 = 1) = P(X0 = 2) = 0.3,

determine P(X1 = 2) and P(X1 = 1, X2 = 2).
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8.2) A Markov chain  has state space  and transition matrix{X0, X1, ...} Z = {0, 1, 2}

  P =
⎛

⎝
⎜
⎜
⎜

0.2 0.3 0.5
0.8 0.2 0
0.6 0 0.4

⎞

⎠
⎟
⎟
⎟

.

(1) Determine the matrix of the 2-step transition probabilities P(2).
(2) Given the initial distribution determine the probab-P(X0 = i) = 1/3 ; i = 0, 1, 2 ;
ilities P(X2 = 0) and P(X0 = 0, X1 = 1, X2 = 2).

8.3) A Markov chain  has state space  and transition matrix{X0, X1, ...} Z = {0, 1, 2}

P =
⎛

⎝
⎜
⎜
⎜

0 0.4 0.6
0.8 0 0.2
0.5 0.5 0

⎞

⎠
⎟
⎟
⎟

.

(1) Given the initial distribution P(X0 = 0) = P(X0 = 1) = 0.4 and P(X0 = 2) = 0.2,
determine .P(X3 = 2)
(2) Draw the corresponding transition graph.
(3) Determine the stationary distribution.

8.4) Let  be a sequence of independent, identically distributed binary{Y0, Y1, ...}
random variables with  Define a sequence ofP(Yi = 0) = P(Yi = 1) = 1/2; i = 0, 1, ....
random variables  by {X1, X2, ...} Xn = 1

2 (Yn − Yn−1) ; n = 1, 2, ....

Check whether the random sequence  has the Markov property.{X1, X2, ...}

8.5) A Markov chain has state space  and transition matrix{X0, X1, ...} Z = {0, 1, 2, 3}

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0.1 0.2 0.4 0.3
0.2 0.3 0.1 0.4
0.4 0.1 0.3 0.2
0.3 0.4 0.2 0.1

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

(1) Draw the corresponding transition graph.
(2) Determine the stationary distribution of this Markov chain.

8.6) Let  be an irreducible Markov chain with state space {X0, X1, ...} Z = {1, 2, ..., n},
 and with the doubly stochastic transition matrix  i.e.,n < ∞, P = ((pij)),

Σ
j∈Z

pi j = 1 for all i ∈ Z and Σ
i∈Z

pi j = 1 for all j ∈ Z.

(1) Prove that the stationary distribution of  is {X0, X1, ...} {π j = 1/n, j ∈ Z}.

(2) Can  be a transient Markov chain?{X0, X1, ...}
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8.7) Prove formulas (8.20), page 346, for the mean times to absorption in a random
walk with two absorbing barriers (example 8.3).

8.8) Show that the vector , determined in example 8.6, isπ = (π1 = α, π2 = β, π3 = γ)
a stationary initial distribution with regard to a Markov chain which has the one-step
transition matrix (8.22) (page 349).

8.9) A source emits symbols 0 and 1 for transmission to a receiver. Random noises
 successively and independently affect the transmission process of a symbolS1, S2, ...

in the following way: if a '0'  ('1') is to be transmitted, then  distorts it to a '1' ('0')  Si
with probability p (q);   Let  or  denote whether the sourcei = 1, 2, .... X0 = 0 X0 = 1
has emitted a '0' or a '1' for transmission. Further, let  denoteXi = 0 or Xi = 1
whether the attack of noise  implies the transmission of a '0' or a '1';  TheSi i = 1, 2, ....
random sequence  is an irreducible Markov chain with state space{X0, X1, ...}

 and transition matrixZ = {0, 1}

         P =
⎛

⎝
⎜

1 − p p
q 1 − q

⎞

⎠
⎟ .

(1) Verify: On condition  the m-step transition matrix is given by0 < p + q ≤ 1,

       P(m) = 1
p + q

⎛

⎝
⎜

q p
q p

⎞

⎠
⎟ +

(1 − p − q)m

p + q
⎛

⎝
⎜

p −p
−q q

⎞

⎠
⎟ .

(2) Let  The transmission of the symbols 0 and 1 is affected by the ran-p = q = 0.1.
dom noises   Determine the probability that a '0' emitted by the sourceS1, S2, ..., S5.
is actually received.

8.10) Weather is classified as (predominantly) sunny (S) and (predominantly) cloudy
(C), where C includes rain. For the town of Musi, a fairly reliable prediction of
tomorrow's weather can only be made on the basis of today's and yesterday's weather.
Let (C,S) indicate that the weather yesterday was cloudy and today's weather is sunny
and so on. Based on past observations it is known that, given the constellation (S,S)
today, the weather tomorrow will be sunny with probability 0.8 and cloudy with prob-
ability 0.2; given (S,C) today, the weather tomorrow will be sunny with probability
0.4 and cloudy with probability 0.6; given (C,S) today, the weather tomorrow will be
sunny with probability 0.6 and cloudy with probability 0.4; given (C,C) today, the
weather tomorrow will be cloudy with probability 0.8 and sunny with probability 0.2.
(1) Illustrate graphically the transition between the states

  1 = (S,S), 2 = (S,C), 3 = (C,S), and 4 = (C,C).
(2) Determine the matrix of the transition probabilities of the corresponding discrete-
time Markov chain and its stationary state distribution.
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8.11) A supplier of toner cartridges of a certain brand checks her stock every
Monday. If the stock is less than or equal to s cartridges, she orders an amount of 

 cartridges, which will be available the following Monday,  The week-S − s 0 ≤ s < S.
ly demands of cartridges  are independent and identically distributed according toD

pi = P(D = i); i = 0, 1, ... .

Let  be the number of cartridges on stock on the n th Sunday (no business overXn
weekends) given that the supplier starts her business on a Monday.
(1) Is  a Markov chain?{X1, X2, ...}
(2) If yes, determine its transition probabilities. 

8.12) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3, 4}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0.5 0.1 0.4 0 0
0.8 0.2 0 0 0
0 1 0 0 0
0 0 0 0.9 0.1
0 0 0 1 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Determine the minimal closed sets.
(2) Identify essential and inessential states.
(3) What are the recurrent and transient states?

8.13) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3}

  P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0 0 1 0
1 0 0 0

0.4 0.6 0 0
0.1 0.4 0.2 0.3

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

Determine the classes of essential and inessential states.

8.14) A Markov chain has state space   and transition matrixZ = {0, 1, 2, 3, 4}

      P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0 0.2 0.8 0 0
0 0 0 0.9 0.1
0 0 0 0.1 0.9
1 0 0 0 0
1 0 0 0 0

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Draw the transition graph.
(2) Verify that this Markov chain is irreducible with period 3.
(3) Determine the stationary distribution.
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8.15) A Markov chain has state space  and transition matrixZ = {0, 1, 2, 3, 4}

P =

⎛

⎝

⎜

⎜

⎜

⎜

⎜

0 1 0 0 0
1 0 0 0 0

0.2 0.2 0.2 0.4 0
0.2 0.8 0 0 0
0.4 0.1 0.1 0 0.4

⎞

⎠

⎟

⎟

⎟

⎟

⎟
.

(1) Find the essential and inessential states.
(2) Find the recurrent and transient states.

8.16) Determine the stationary distribution of the random walk considered in
example 8.12 on condition pi = p, 0 < p < 1.

8.17)  The weekly power consumption of a town depends on the weekly average
temperature in that town. The weekly average temperature, observed over a long time
span in the month of August, has been partitioned in 4 classes (in : C 0)

1 = [10 − 15), 2 = [15 − 20), 3 = [20 − 25), 4 = [25 − 30].

The weekly average temperature fluctuations between the classes in August follow a
homogeneous Markov chain  transition matrixwith

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0.1 0.5 0.3 0.1
0.2 0.3 0.3 0.2
0.1 0.4 0.4 0.1
0 0.2 0.5 0.3

⎞

⎠

⎟
⎟

⎟

⎟
⎟

.

When the weekly average temperatures are in class 1, 2, 3 or 4, the respective aver-
age power consumption per week is 1.5, 1.3, 1.2, and 1.3 [in MW]. (The increase
from class 3 to class 4 is due to air conditioning.)
What is the average power consumption in the longrun in August?

8.18)  A household insurer knows that the total annual claim size X of clients in a
certain portfolio hasy a normal distribution with mean value  and standard$800
deviation  The insurer partitions his clients into classes 1, 2, and 3 depending$260.
on the annual amounts they claim, and the class they belong to (all costs in $):
A client, who is in class 1 in the current year, will make a transition to class 1, 2, or 3
next year, when his respective total claims are between 0 and 600, 600 and 1000, or
greater than 1000 in the current year. 
A client, who is in class 2 in the current year, will make a transition to class 1, 2, or 3
next year if his respective total claim sizes are between 0 and 500, 500 and 900, or
more than 900. 
A client, who is in class 3 and claims between 0 and 400, between 400 and 800, or at
least 800 in the current year, will be in class 1, 2, or in class 3 next year, respectively.
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When in class 1, 2, or 3, the clients will pay the respective premiums 500, 800, or
1000 a year.
(1) What is the average annual contribution of a client in the longrun?
(2) Does the insurer make any profit under this policy in the longrun?

8.19) Two gamblers 1 and 2 begin a game with stakes of sizes $3 and $4, respec-
tively. After each move a gambler either wins or loses $ 1 or the gambler's stake
remains constant. These possibilities are controlled by the transition probabilities

p0 = 0, p1 = 0.5, p2 = 0.4, p3 = 0.2, p4 = 0.4, p5 = 0.5, p6 = 0.6, p7 = 0,
q7 = 0, q6 = 0.5, q5 = 0.4, q4 = 0.2, q3 = 0.4, q2 = 0.5, q1 = 0.6 , q0 = 0.

(According to Figure 8.3 there is  and  The game is finished aspi = pi i+1 qi = pi i−1.)
soon as a gambler has won the entire stake of the other one or, equivalently, if one
gambler has lost her/his entire stake.
(1) Determine the probability that gambler 1 wins.
(2) Determine the mean time till any of the gamblers win.

8.20) Analogously to example 8.17 (page 369), consider a population with a
maximal size of  individuals, which comprises at the beginning of its obser-z = 5
vation 3 individuals. Its birth and death probabilities with regard to a time unit are

p0 = 0, p1 = 0.6, p2 = 0.4, p3 = 0.2, p4 = 0.4, p5 = 0,

   q0 = 0, q1 = 0.4, q2 = 0.4, q3 = 0.6, q4 = 0.5, q5 = 0.8.

(1) What is the probability of extinction of this population?
(2) Determine its mean time to extinction.

8.21) Let the transition probabilities of a birth and death process be given by

pi =
1

1 + [i/(i + 1)]2 and qi = 1 − pi ; i = 1, 2, ... ; p0 = 1 .

Show that the process is transient.

8.22) Let i and  j be two different states with  Show that both i and  j arefi j = fj i = 1.
recurrent.

8.23) The respective transition probabilities of two irreducible Markov chains 1 and 2
with common state space are for all  Z = {0, 1, ...} i = 0, 1, ... ,

(1)  and    (2)  pi i+1 =
1

i + 2
, pi 0 =

i + 1
i + 2

pi i+1 =
i + 1
i + 2

, pi 0 =
1

i + 2
.

Check whether these Markov chains are transient, null recurrent, or positive
recurrent.
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8.24) Let  be the random number of time periods a discrete-time Markov chainNi
stays in state i (sojourn time of the Markov chain in state i).
Determine  and E(Ni) Var(Ni).

8.25) A Galton-Watson process starts with one individual. The random number of
offspring Y of this individual has the z-transform

M(z) = (0.6 z + 0.4)3.
(1) What type of probability distribution has Y (see section 2.5.1)? 
(2) Determine the probabilities P(Y = k).
(3) What is the corresponding probability of extinction?
(4) Let T be the random time to extinction. Determine the probability  byP(T = 2)
applying formula (8.60). Verify this result by applying the total probability rule to
P(T = 2).

8.26) A Galton-Watson process starts with one individual. The random number of
offspring Y of this individual has the z-transform

M(z) = e1.5 (z−1).
(1) What is the underlying probability distribution of Y ? 
(2) Determine the corresponding probability of extinction.
(3) Let T be the random time to extinction. Determine the probability  byP(T = 3)
applying formula (8.60).

8.27) (1) Determine the z-transform of the truncated,  - modified geometricp0
distribution given by formula (8.62). 
(2) Determine the corresponding probability of extinction  ifπ0

  and m = 6, p0 = 0.482, p = 0.441.

(3) Compare this  with the probability of extinction obtained in example (8.18)π0
without truncation, but under otherwise the same assumptions.

8.28) Assume a Galton-Watson process starts with  offspring.X0 = n > 1
Determine the corresponding probability of extinction given that the same Galton-
Watson process, when starting with one offspring, has probability of extinction . π0

8.29) Given show that the probability of extinction  satisfies equationX0 = 1, π0
M(π0) = π0

by applying the total probability rule (condition with regard to the number of
offspring of the individual in the zerouth generation). Make use of the answer to
exercise 8.28.
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CHAPTER 9

Continuous-Time Markov Chains

9.1  BASIC CONCEPTS AND EXAMPLES

This chapter deals with Markov processes which have parameter set  andT = [0,∞)
state space   or subsets of it. According to the terminology intro-Z = {0,±1,±2, ...}
duced in section 6.3, for having a discrete parameter space, this class of Markov pro-
cesses is called Markov chains.

Definition 9.1  A stochastic process  with parameter set T and discrete{X(t), t ≥ 0}
state space Z is called a continuous-time Markov chain or a Markov chain in contin-
uous time if, for any  and arbitrary sequencesn ≥ 1

{t0, t1, ..., tn+1} with t0 < t1 < . .. < tn+1 and {i0, i1, ... , in+1}, ik ∈ Z,
the following relationship holds:

                  (9.1)P(X(tn+1) = in+1 X(tn) = in, ... , X(t1) = i1, X(t0) = i0)

                                          = P(X(tn+1) = in+1 X(tn) = in).

The intuitive interpretation of the Markov property (9.1) is the same as for dis-
crete-time Markov chains:

    The future development of a continuous-time Markov chain depends only on           
     its present state and not on its evolution in the past.

The conditional probabilities
pi j(s, t) = P(X(t) = j X(s) = i) ; s < t; i, j ∈ Z ;

are  the  transition  probabilities  of  the  Markov  chain. A Markov chain is said to be
homogeneous if for all  and  the transition probabilities  depends, t ∈ T i, j ∈ Z pi j(s, t)
only on the difference t − s :

pi j(s, t) = pi j(0, t − s).

In this case the transition probabilities depend only on one variable:
pi j(t) = pi j(0, t).

Note  This chapter only considers homogeneous Markov chains. Hence no confusion can arise
if only Markov chains are referred to.

The transition probabilities are comprised in the matrix of transition probabilities P
(simply: transition matrix):



 P(t) = ((pi j(t))); i, j ∈ Z.

Besides the trivial property , transition probabilities are generally assumedpi j (t) ≥ 0
to satisfy the conditions

                                                         (9.2)Σ
j∈Z

pi j(t) = 1; t ≥ 0, i ∈ Z.

Comment  It is theoretically possible that, for some i ∈ Z,

                                    (9.3)Σ
j∈Z

pi j(t) < 1; t > 0, i ∈ Z .

In this case, unboundedly many transitions between the states may occur in any finite
time interval  with positive probability[0, t)

1 − Σ
j∈Z

pi j(t).

This situation approximately applies to nuclear chain reactions and population explo-
sions of certain species of insects (e.g., locusts)  Henceforth it is assumed that.

                                               (9.4)lim
t→+0

pi i (t) = 1.

By (9.2), this assumption is equivalent to
                                                  (9.5)pi j (0) = lim

t→+0
pi j(t) = δi j ; i, j ∈ Z .

The Kronecker symbol  is defined by formula (8.4), page 340.δi j

Analogously to (8.5)  the Chapman-Kolmogorov equations are,

                                                         (9.6)pi j(t + τ) = Σ
k∈Z

pi k(t)pk j(τ)

for  any   By making use of the total probability rule, thet ≥ 0, τ ≥ 0, and i, j ∈ Z.
homogeneity, and the Markov property  formula (9.6) is proved as follows:,

pi j(t + τ) = P(X(t + τ) = j X(0) = i) = P(X(t + τ) = j, X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(t + τ) = j, X(t) = k, X(0) = i)
P(X(0) = i)

  = Σ
k∈Z

P(X(t + τ) = j X(t) = k, X(0) = i)P(X(t) = k, X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(τ + t) = j X(t) = k)P(X(t) = k X(0) = i)P(X(0) = i)
P(X(0) = i)

= Σ
k∈Z

P(X(τ) = j X(0) = k)P(X(t) = k X(0) = i)

= Σ
k∈Z

pi k(t)pk j(τ).
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Absolute and Stationary Distributions  Let  be the probabilitypi(t) = P(X(t) = i)
that the Markov chain is in state i at time t.  is called the absolute state probabil-pi(t)
ity (of the Markov chain) at time t. Hence,  is said to be the absolute{ pi(t), i ∈ Z}
(one-dimensional) probability distribution of the Markov chain at time t. In particul-
ar,  is called an initial ( probability) distribution of the Markov chain.{pi(0); i ∈ Z}
By the total probability rule, given an initial distribution, the absolute probability
distribution of the Markov chain at time  ist

                                                      (9.7)pj(t) = Σ
i∈Z

pi(0) pi j(t), j ∈ Z .

For determining the multidimensional distribution of the Markov chain at time points
 with , only its absolute probability distributiont0, t1, ..., tn 0 ≤ t0 < t1 < . .. < tn < ∞

at time  and its transition probabilities need to be known. This can be proved byt0
repeated application of the formula of the conditional probability (1.22) and by mak-
ing use of homogeneity of the Markov chain:

P(X(t0) = i0, X(t1) = i1, ..., X(tn) = in)

                                 (9.8)= pi0 (t0)pi0i1 (t1 − t0)pi1i2 (t2 − t1) . .. pin−1in (tn − tn−1) .

Definition 9.2  An initial distribution  is said to be stationary if{πi = pi(0), i ∈ Z}

                                                    (9.9)πi = pi(t) for all t ≥ 0 and i ∈ Z .
                                                                                                                              

Thus, if at time  the initial state is determined by a stationary initial distribution,t = 0
then the absolute state probabilities  do not depend on t and are equal to .pj(t) πj
Consequently, the stationary initial probabilities  are the absolute state probabil-πj
ities  for all  and . Moreover, it follows from (9.8) that in this case allpj(t) j ∈ Z t ≥ 0

-dimensional distributions of the Markov chain, namelyn
           (9.10){P(X(t1 + h) = i1, X(t2 + h) = i2, ..., X(tn + h) = in}, ij ∈ Z

do not depend on h, i.e. if the process starts with a stationary initial distribution, then
the Markov chain is strictly stationary. (This result once more verifies the more
general statement of theorem 6.1, page 234.) Moreover, it is justified to call

 a stationary (probability) distribution of the Markov chain{πi, i ∈ Z} .

Example 9.1 The homogeneous Poisson process  with intensity  is a{N(t), t ≥ 0} λ
homogeneous Markov chain with state space  and transition probabilitiesZ = {0, 1, ...}

pi j(t) =
(λt) j−i

( j − i)!
e−λ t ; i ≤ j .

The sample paths of the process  are nondecreasing step-functions. Its{N(t), t ≥ 0}
trend function is linearly increasing:  Thus, a stationary initialm(t) = E(N(t)) = λ t.
distribution cannot exist. (But, by the corollary following definition 7.1 (page 259),
the homogeneous Poisson process is a stationary point process.)                                
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Example 9.2 At time  exactly n systems start operating. Their lifetimes are inde-t = 0
pendent, identically distributed exponential random variables with parameter . Letλ
X(t) be the number of systems still operating at time t. Then  is a Markov{X(t), t ≥ 0}
chain with state space  transition probabilitiesZ = {0, 1, ..., n},

pi j(t) = ⎛
⎝

i
i−j
⎞
⎠ (1 − e−λ t ) i−j e−λ t j , n ≥ i ≥ j ≥ 0,

and initial distribution  The structure of these transition probabilitiesP(X(0) = n) = 1.
is due to the memoryless property of the exponential distribution (see example 2.21,
page 87). Of course, this Markov chain cannot be stationary.                                    

Example 9.3  Let   be the state space andZ = {0, 1)

P(t) =
⎛

⎝
⎜
⎜
⎜

1
t + 1

t
t + 1

t
t + 1

1
t + 1

⎞

⎠
⎟
⎟
⎟

the transition matrix of a stochastic process . It is to check whether this{X(t), t ≥ 0}
process is a Markov chain  Assuming the initial distribution.

p0(0) = P(X(0) = 0) = 1

and applying formula (9.7) yields the absolute probability of state 0 at time :t = 3

p0(3) = p0(0)p00(3) = 1/4 .

On the other hand, applying (9.6)  with  and  yields the (wrong) resultt = 2 τ = 1

p0(3) = p00(2)p00(1) + p01(2)p10(1) = 1/2 .

Therefore, Chapman-Kolmogorov's equations (9.6) are not valid so that {X(t), t ≥ 0}
cannot be a Markov chain.                                                                                          

Classification of States  The classification concepts already introduced for  discrete-
time Markov chains can analogously be defined for continuous-time Markov chains.
In what follows, some concepts are defined, but not discussed in detail.
A state set  is called closed ifC ⊆ Z

 for all , pij(t) = 0 t > 0 i ∈ C and j ∉ C.

If, in particular, {i} is a closed set, then i is called an absorbing state. The state  j is
accessible from i if there exists a t with pij(t) > 0.

If i and  j are accessible from each other, then they are said to communicate. Thus,
equivalence classes, essential, and inessential states, as well as irreducible and reduc-
ible Markov chains can be defined as in section 8.2 for discrete Markov chains.
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State  is recurrent (transient) if i

∫0
∞ pii(t)dt = ∞ ⎛

⎝∫0
∞ pii(t)dt < ∞⎞⎠ .

A recurrent state i is positive recurrent if the mean value of its recurrence time (time
between two successive occurences of state i) is finite. Since it can easily be shown
that  implies  for all  introducing the concept of a periodpi j(t0) > 0 pi j(t) > 0 t > t0,
analogously to section 8.2.3 makes no sense.

9.2   TRANSITION PROBABILITIES AND RATES

This section discusses some structural properties of continuous-time Markov chains,
which are fundamental to mathematically modeling real systems.

Theorem 9.1  On condition (9.4), the transition probabilities  are differentiablepi j(t)
in  for all [0, ∞) i, j ∈ Z.

Proof  For any , the Chapman-Kolmogorov equations (9.6) yieldh > 0

pij(t + h) − pij(t) = Σ
k∈Z

pik(h)pkj(t) − pij(t)

= −(1 − pii(h))pij(t) + Σ
k∈Z/ , k≠i

pik(h)pkj(t) .

Thus,
−(1 − pii(h)) ≤ −(1 − pii(h))pij(t) ≤ pij(t + h) − pij(t)

≤ Σ
k∈Z/
k≠i

pik(h)pkj(t) ≤ Σ
k∈Z/
k≠i

pik(h)

= 1 − pii(h) .
Hence,

pij(t + h) − pij(t) ≤ 1 − pii(h) .

The uniform continuity of the transition probabilities and, therefore, their differentia-
bility for all  is now a consequence of assumption (9.4).                                     t ≥ 0

Transition Rates The following limits play an important role in future derivations.
For any , leti, j ∈ Z

                                                             (9.11)qi = lim
h→0

1 − pii(h)
h

,

                                   (9.12)qij = lim
h→0

pij(h)
h

, i ≠ j .
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These limits exist, since by (9.5),
 and pii(0) = 1 pij(0) = 0 for i ≠ j

so that, by theorem 9.1,

                                                       (9.13)pii(0) =
d pii(t)

dt t=0
= −qi ,

                                                   (9.14)pij(0) =
d pij(t)

dt t=0
= qij , i ≠ j .

For , relationships (9.13) and (9.14) are equivalent toh → 0

                                                               (9.15)pii(h) = 1 − qi h + o(h)
                                  (9.16)pi j(h) = qi j h + o(h) , i ≠ j ,

respectively. The parameters  and  are the transition rates of the Markov chain.qi qi j
More exactly,  is the unconditional transition rate of leaving state i for any otherqi
state, and   is the conditional transition rate of making a transition from state i toqij
state  j. According to (9.2),

                                                         (9.17)Σ
{ j, j≠i}

qij = qi , i ∈ Z.

Kolmogorov's Differential Equations In what follows, systems of differential equa-
tions for the transition probabilities and the absolute state probabilities of a Markov
chain are derived. For this purpose, the system of the Chapman-Kolmogorov equa-
tions is written in the form

pi j(t + h) = Σ
k∈Z

pi k(h)pk j(t) .

 follows thatIt

pi j(t + h) − pi j(t)
h

= Σ
k≠i

pi k(h)
h

pk j(t) −
1 − pi i(h)

h
pij(t) .

By (9.13) and (9.14), letting  yields Kolmogorov's backward equations for theh → 0
transition probabilities:

                                               (9.18)pij(t) = Σk≠i
qik pkj(t) − qi pij(t), t ≥ 0 .

Analogously, starting with
pi j(t + h) = Σ

k∈Z
pi k(t)pk j(h)

yields Kolmogorov's  forward equations for the transition probabilities:

                                              (9.19)pij(t) = Σk≠j
pi k(t)qk j − qj pi j(t), t ≥ 0 .
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Let  be any initial distribution. Multiplying Kolmogorov's forward{ pi(0), i ∈ Z}
equations (9.19) by  and summing with respect to i yieldspi(0)

Σ
i∈Z

pi(0)pij(t) = Σ
i∈Z

pi(0)Σ
k≠j

pi k(t)qk j − Σ
i∈Z

pi(0)qj pi j(t)

                          = Σ
k≠j

qk j Σ
i∈Z

pi(0)pi k(t) − qj Σ
i∈Z

pi(0)pi j(t) .

Thus, in view of (9.7), the absolute state probabilities satisfy the system of linear dif-
ferential equations

                                           (9.20)pj (t) = Σ
k≠j

qk j pk(t) − qj pj(t) , t ≥ 0 , j ∈ Z .

In future  the absolute state probabilities are assumed to satisfy,

                                                                   (9.21)Σ
i∈Z

pi(t) = 1.

This normalizing condition is always fulfilled if Z is finite.

Note  If the initial distribution has structure
pi(0) = 1, pj(0) = 0 for j ≠ i,

then the absolute state probabilities are equal to the transition probabilities
pj(t) = pi j(t), j ∈ Z.

Transition Times and Transition Rates It is only possible to exactly model real
systems by continuous-time Markov chains if the lengths of the time periods between
changes of states are exponentially distributed, since in this case the 'memoryless
property' of the exponential distribution (example 2.21, page 87) implies the Markov
property. If the times between transitions have known exponential distributions, then
it is no problem to determine the transition rates. For instance, if the sojourn time of
a Markov chain in state 0 has an exponential distribution with parameter , then,λ0
according to (9.11)  the unconditional rate of leaving this state is given by,

q0 = lim
h→0

1 − p00(h)
h

= lim
h→0

1 − e−λ0 h

h

      = lim
h→0

λ0 h + o(h)
h

= λ0 + lim
h→0

o(h)
h

.

Hence,
                                                                      (9.22)q0 = λ0 .

Now, let the sojourn time of a Markov chain in state  have structure0
Y0 = min (Y01, Y02),

where   and    are  independent  exponential  random  variables  with  respectiveY01 Y02
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parameters  and  If , the Markov chain makes a transition to state 1λ1 λ2. Y01 < Y02
and if  to state 2. Thus, by (9.12), the conditional transition rate from stateY01 > Y02
0 to state 1 is

q01 = lim
h→0

p01(h)
h

= lim
h→0

(1 − e−λ1h) e−λ2h + o(h)
h

 = lim
h→0

λ1h (1 − λ2h)
h

+ lim
h→0

o(h)
h

= lim
h→0

(λ1 − λ1λ2h) = λ1.

Hence, since the roles of  can be interchanged,Y01 and Y02

                                                (9.23)q01 = λ1, q02 = λ2, q0 = λ1 + λ2 .

The results (9.22) and (9.23) will be generalized in section 9.4.

Transition Graphs  Establishing the Kolmogorov equations can be facilitated by
transition graphs. These graphs are constructed analogously to the transition graphs
for discrete-time Markov chains: The nodes of a transition graph represent the states
of the Markov chain. A (directed) edge from node i to node j exists if and only if

 The edges are weighted by their corresponding transition rates. Thus, twoqi j > 0.
sets of states (possibly empty ones) can be assigned to each node i: first edges with
initial node i and second edges with end node i, that is, edges which leave node i and
edges which end in node i. The unconditional transition rate  equals the sum of theqi
weights of all those edges leaving node i. If there is an edge ending in state i and no
edge leaving state i, then i is an absorbing state.

Example 9.4 (system with renewal)  The lifetime L of a system has an exponential
distribution with parameter . After a failure the system is replaced by an equivalentλ
new one. A replacement takes a random time Z, which is exponentially distributed
with parameter . All life- and replacement times are assumed to be independent.μ
Thus, the operation of the system can be described by an alternating renewal process
(section 7.3.6) with 'typical renewal cycle' . Consider the Markov chain(L, Z)

 defined by{X(t), t ≥ 0}

X(t) = 1 if the system is operating
0 if the system is being replaced

.

Its state space is   The absolute state probability  of thisZ = {0, 1}. p1(t) = P(X(t) = 1)
Markov chain is the point availability of the system at time t.
In this simple example, only state changes from 0 to 1 and from 1 to 0 are possible.
Hence, by (9.22),

q0 = q01 = μ and q1 = q10 = λ.
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The corresponding Kolmogorov differential equations  are(9.20)

p0(t) = −μp0(t) + λp1(t),

p1(t) = +μp0(t) − λp1(t).

These two equations are linearly dependent. (The sums at the left hand-sides and the
right-hand sides are equal to 0.) Replacing  in the second equation by p0(t) 1 − p1(t)
yields a first-order nonhomogeneous differential equation with constant coefficients
for :p1(t)

p1(t) + (λ + μ)p1(t) = μ .

Given the initial condition , the solution isp1(0) = 1

p1(t) =
μ

λ + μ + λ
λ + μ e−(λ+μ)t , t ≥ 0 .

The corresponding stationary availability is

π1 = lim
t→∞

p1(t) =
μ

λ + μ .

In example 7.19, page 322) the same results have been obtained by applying the Lap-
lace transform. (There the notation  is used.)                                                     L = Y

Example 9.5 (two-unit redundant system, standby redundancy)  A system consists
of two identical units. The system is available if and only if at least one of its units is
available. If both units are available, then one of them is in standby redundancy (cold
redundancy), that is, in this state it does not age and cannot fail. After the failure of a
unit, the other one (if available) is immediately switched from the redundancy state
to the operating state and the replacement of the failed unit begins. The replaced unit
becomes the standby unit if the other unit is still operating. Otherwise it immediately
resumes its work. The lifetimes and replacement times of the units are independent
random variables, identically distributed as L and Z, respectively. L and Z are assum-
ed to be exponentially distributed with respective parameters  and . Let  denoteλ μ Ls
the system lifetime, i.e. the random time to a system failure. A system failure occurs
when a unit fails whilst the other unit is being replaced. A Markov chain {X(t), t ≥ 0}
with state space  is introduced in the following way:  if i unitsZ = {0, 1, 2} X(t) = i
are unavailable at time t. Let  be the unconditional sojourn time of the system inYi
state i and  be the conditional sojourn time of the system in state i given  that  the  Yi j
system  makes  a  transition from state i into state j. From state 0, the system can only
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make a transition to state 1. Hence, . According to (9.22), theY0 = Y01 = L
corresponding transition rate is given by

.q0 = q01 = λ

If  the  system  makes a transition from state 1 to state 2, then its conditional sojourn
time in state 1 is , whereas in case of a transition to state 0, it stays a timeY12 = L

 in state 1. The unconditional sojourn time of the system in state 1 isY10 = Z
.Y1 = min (L, Z)

Thus, by (9.23), the corresponding transition rates are
q12 = λ, q10 = μ, and q1 = λ + μ.

When the system returns from state 1 to state 0, then it again spends time L in state 0,
since the operating unit is  'as good as new' in view of the memoryless property of
the exponential distribution.
a) Survival probability  In this case, only the time to entering state 2  (system failure)
is of interest. Hence, state 2 must be considered absorbing (Figure 9.2) so that

q20 = q21 = 0.

The survival probability of the system has the structure
Fs(t) = P(Ls > t) = p0(t) + p1(t) .

The corresponding system of differential equations (9.20) is

p0(t) = −λp0(t) + μp1(t),

                                 (9.24)p1(t) = +λp0(t) − (λ + μ)p1(t),

p2(t) = +λp1(t).

This system of differential equations will be solved on condition that both units are
available at time  Combining the first two differential equations in (9.24) yieldst = 0.
a homogeneous differential equation of the second order with constant coefficients
for :p0(t)

p0 (t) + (2λ + μ)p0(t) + λ
2 p0(t) = 0 .

The corresponding characteristic equation is

x2 + (2λ + μ) x + λ2 = 0 .
Its solutions are
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x1,2 = −⎛⎝λ +
μ
2
⎞
⎠ ± λμ + μ2/4 .

Hence, since  for p0(0) = 1, t ≥ 0,

p0(t) = a sinh c
2 t with c = 4λμ + μ2 .

Since  the first differential equation in (9.24) yields  andp1(0) = 0, a = 2λ/c

p1(t) = e−
2λ+μ

2 t ⎛
⎝
μ
c sinh c

2 t + cosh c
2 t⎞⎠ , t ≥ 0 .

Thus, the survival probability of the system is

Fs(t) = e−
2λ+μ

2 ⎡
⎣
⎢cosh c

2 t +
2λ + μ

c sinh c
2 t⎤
⎦
⎥ , t ≥ 0 .

(For a definition of the hyperbolic functions sinh and cosh, see page 265). The mean
value of the system lifetime  is most easily obtained from formula (2.52), page 64:Ls

                                           (9.25)E(Ls ) = 2
λ +

μ
λ2 .

For the sake of comparison, in case of no replacement , the system lifetime(μ = 0)
 has an Erlang distribution with parameters 2 and :Ls λ

Fs(t) = (1 + λ t) e−λ t, E(Ls) = 2/λ .

b) Availability  If the replacement of failed units is continued after system failures,
then the point availability

A(t) = p0(t) + p1(t)
of the system is of particular interest. In this case, the transition rate  from state 2q21
to state 1 is positive.  However,   depends  on  the number   or   of me-q21 r = 1 r = 2
chanics  which  are  in  charge of the replacement of failed units.  Assuming that a me-
chanic cannot replace two failed units at the same time, then (see Figure 9.3)

q21 = q2 = rμ.

For  the sojourn time of the system in state 2 is given by r = 2, Y2 = min(Z1, Z2),
where  and  are independent and identically as Z distributed. Analogously, theZ1 Z2
sojourn time in state 1 is given by Y1 = min(L, Z).
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Hence, the transition rates  and  have the same values as under a). Theq10 q12
corresponding system of differential equations (9.20) becomes, when replacing the
last differential equation  the normalizing condition (9.21),by

p0(t) = −λp0(t) + μp1(t),

p1(t) = +λp0(t) − (λ + μ)p1(t) + rμp2(t) ,

1 = p0(t) + p1(t) + p2(t).

The solution is left as an exercise to the reader.                                                          

Example 9.6 (two-unit system, parallel redundancy)  Now assume that both units of
the system operate at the same time when they are available. All other assumptions
and the notation of the previous example are retained. In particular, the system is
available if and only if at least one unit is available. In view of the initial condition  

 the system spendsp0(0) = 1,
Y0 = min (L1, L2)

time units in state 0.  has an exponential distribution with parameter , and fromY0 2λ
state 0 only a transition to state 1 is possible. Therefore,   andY0 = Y01

q0 = q01 = 2λ.

When the system is in state , then it behaves as in example 9.5:1

q10 = μ, q12 = λ , q1 = λ + μ.

a) Survival probability  As in the previous example, state 2 has to be thought of as
absorbing:  (Figure 9.4). Hence, from (9.20) and (9.21),q20 − q21 = 0

p0(t) = −2λp0(t) + μp1(t),

p1(t) = +2λp0(t) − (λ + μ)p1(t),

1 = p0(t) + p1(t) + p2(t).

Combining the first two differential equations yields a homogeneous differential
equation of the second order with constant coefficients for p0(t) :

p0 (t) + (3λ + μ)p0(t) + 2λ2p0(t) = 0 .
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The solution is

p0(t) = e
−⎛⎝

3λ+μ
2

⎞
⎠ t ⎡
⎣⎢
cosh c

2 t +
μ − λ

c sinh c
2 t⎤
⎦⎥

,

where

c = λ2 + 6λμ + μ2 .

Furthermore,

p1(t) =
4λ
c e

−⎛⎝
3λ+μ

2
⎞
⎠ t

sinh c
2 t .

The survival probability of the system is

Fs(t) = P(Ls > t) = p0(t) + p1(t).

Hence,

            (9.26)Fs(t) = e
−⎛⎝

3λ+μ
2

⎞
⎠ t ⎡
⎣
⎢cosh c

2 t +
3λ + μ

c sinh c
2 t⎤
⎦
⎥ , t ≥ 0 .

The mean system lifetime is

E(Ls) = 3
2λ +

μ
2λ2 .

For the sake of comparison, in the case without replacement ,(μ = 0)

F(t) = 2 e−λ t − e−2λ t , E(Ls) = 3
2λ .

b) Availability  If r (  or )  mechanics replace failed units, thenr = 1 r = 2

q2 = q21 = rμ .

The other transition rates are the same as those under a) (Figure 9.5 ). The absolute
state probabilities satisfy the system  differential equations

p0(t) = −2λp0(t) + μp1(t),

p1(t) = +2λp0(t) − (λ + μ)p1(t) + r p2(t),

1 = p0(t) + p1(t) + p2(t).

Solving this system of linear differential equations is left to the reader.                    
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9.3  STATIONARY STATE PROBABILITIES

If  is a stationary distribution of the Markov chain  then this{πj, j ∈ Z} {X(t), t ≥ 0},
special absolute distribution must satisfy Kolmogorov's equations (9.20). Since the  

 are constant, all the left-hand sides of these equations are equal to 0. Therefore,πj
the system of linear differential equations (9.20)  simplifies to a system of linear al-
gebraic equations in the unknowns :πj

                               (9,27)0 = Σ
k∈Z, k≠j

qk j πk − qj πj, j ∈ Z .

This system of equations  frequently written in the formis

                                (9.28)qj πj = Σ
k∈Z, k≠j

qk j πk , j ∈ Z .

This form clearly illustrates that the stationary state probabilities refer to an equilib-
rium state of the Markov chain:

    The mean intensity per unit time of leaving state  j, which is , is equal to          qj πj
    the mean intensity per unit time of arriving at state j.

According to assumption (9.21), only those solutions  of (9.27), which{πj, j ∈ Z}
satisfy the normalizing condition, are of interest:

                                              (9.29)Σ
j∈Z

πj = 1.

It is now assumed that the Markov chain is irreducible and positive recurrent. (Recall
that an irreducible Markov chain with finite state space Z is always positive recur-
rent.) Then it can be shown that a unique stationary distribution  exists,{πj, j ∈ Z}
which satisfies (9.27) and (9.29). Moreover, in this case the limits

pj = lim
t→∞

pi j(t)

exist and are independent of i. Hence, for any initial distribution, there exist the
limits of the absolute state probabilities , and they are equal to :lim

t→∞
pj(t) pj

                                     (9.30)pj = lim
t→∞

pj(t), j ∈ Z .

Furthermore, for all ,j ∈ Z
lim
t→∞

pj (t) = 0.

Otherwise,  would unboundedly increase as , contradictory to pj(t) t →∞ pj(t) ≤ 1.
Hence, when passing to the limit as  in (9.20) and (9.21), the limits (9.30) aret →∞
seen to satisfy the system of equations (9.27) and (9.29). Since this system has a
unique solution, the limits  and the stationary probabilities  must coincide:pj πj

pj = πj, j ∈ Z.
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For a detailed discussion of the relationship between the solvability of (9.27) and the
existence of a stationary distribution; see Feller (1968).

Continuation of Example 9.5 (two-unit system, standby redundancy)  Since the
sys- tem is available if at least one unit is available, its stationary availability is

A = π0 + π1.

When substituting the transition rates from Figure 9.3 into (9.27) and (9.29), the  πj
are seen to satisfy the following system of algebraic equations

− λπ0 + μπ1 = 0,

+ λπ0 − (λ + μ)π1 + rπ2 = 0,

     π0 + π1 + π2 = 1.

Case r = 1

π0 =
μ2

(λ + μ)2 − λμ
, π1 =

λμ
(λ + μ)2 − λμ

, π2 =
λ2

(λ + μ)2 − λμ
,

A = π0 + π1 =
μ2 + λμ

(λ + μ)2 − λμ
.

Case r = 2

π0 =
2μ2

(λ + μ)2 + μ2 , π1 =
2λμ

(λ + μ)2 + μ2 , π2 =
λ2

(λ + μ)2 + μ2 ,

A = π0 + π1 =
2μ2 + 2λμ
(λ + μ)2 + μ2 .

Continuation of Example 9.6 (two-unit system, parallel redundancy)  Given the
transition rates in Figure 9.5, the  are solutions ofπj

− 2λπ0 + μπ1 = 0,

+ 2λπ0 − (λ + μ)π1 + rμπ2 = 0,

                 π0 + π1 + π2 = 1.

Case r = 1

π0 =
μ2

(λ + μ)2 + λ2 , π1 =
2λμ

(λ + μ)2 + λ2 , π2 =
2λ2

(λ + μ)2 + λ2 ,

A = π0 + π1 =
μ2 + 2λμ

(λ + μ)2 + λ2 .
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Case r = 2 

π0 =
μ2

(λ + μ)2 , π1 =
2λμ

(λ + μ)2 , π2 =
μ2

(λ + μ)2 ,

A = π0 + π1 = 1 − ⎛⎝
λ

λ + μ
⎞
⎠

2
.

Figure 9.6 shows a) the mean lifetimes and b) the stationary availabilities of the
two-unit system for  as functions of  As anticipated, standby redundancyr = 1 ρ = λ/μ.
yields better results if switching a unit from a standby redundancy state to the operat-
ing state is absolutely reliable. With parallel redundancy, this switching problem
does not exist, since an available spare unit  also operating.                                    is

Example 9.7  A system has two different failure types: type 1  and  type 2.  After a
type i-failure the system is said to be in failure state i;  The time  to a typei = 1, 2. Li
i-failure is assumed to have an exponential distribution with parameter , and theλi
random variables  and  are assumed to be independent. Thus, if at time  aL1 L2 t = 0
new system starts working, the time to its first failure is  After aY0 = min(L1, L2).
type 1-failure, the system is switched from failure state 1 into failure state 2. The
time required for this is exponentially distributed with parameter  After enteringν.
failure state 2, the renewal of the system begins. A renewed system immediately
starts working. The renewal time is exponentially distributed with parameter µ. This
process continues to infinity.
All life- and renewal times as well as switching times are assumed to be independent.
This model is, for example, of importance in traffic safety engineering: When the red
signal in a traffic light fails (type 1-failure), then the whole traffic light is switched
off (type 2-failure). That is, a dangerous failure state is removed by inducing a
blocking failure state.

0.5 10

5

1 0

0 0.5 1

1

0.8
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parallel 

standby
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a ) b)

Figure 9.6  Mean lifetime a) and stationary availability b)
                 

ρ ρ
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Consider the following system states
      0     system is operating
      1     type 1-failure state
      2     type 2-failure state

If  denotes  the state of the system at time t, then  is a homogeneousX(t) {X(t), t ≥ 0}
Markov chain with state space  Its transition rates are (Figure 9.7)Z = {0, 1, 2}.

q01 = λ1, q02 = λ2, q0 = λ1 + λ2, q12 = q1 = v, q20 = q2 = μ.
Hence , the stationary state probabilities satisfy the system of algebraic equations

 − (λ1 + λ2) π0 + μπ2 = 0,

 λ1π0 − νπ1 = 0,

 π0 + π1 + π2 = 1.
The solution is

π0 =
μν

(λ1 + λ2) ν + (λ1 + ν)μ
,

π1 =
λ1μ

(λ1 + λ2) ν + (λ1 + ν)μ
,

                                       π2 =
(λ1 + λ2) ν

(λ1 + λ2) ν + (λ1 + ν)μ
.

9.4   SOJOURN TIMES IN PROCESS STATES

So far the fact has been used that independent, exponentially distributed times between
changes of system states  allow for  modeling  system  behaviour  by  homogeneous
Markov chains.  Conversely,  it  can  be  shown  that  for  any    the sojourn time  ofi ∈ Z
a homogeneous Markov chain  in state i also has an exponential distribu-{X(t), t ≥ 0}
tion: By properties (9.8) and (9.15) of a homogeneous Markov chain,
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P(Yi > t X(0) = i) = P(X(s) = i, 0 < s ≤ t X(0) = i)

= lim
n→∞

P⎛⎝X
⎛
⎝

k
n t⎞⎠ = i; k = 1, 2, ..., n X(0) = i)

= lim
n→∞

⎡
⎣pii

⎛
⎝

1
n t⎞⎠

⎤
⎦

n

= lim
n→∞

⎡
⎣1 − qi

t
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

n
.

It follows that
                             (9.31)P(Yi > t X(0) = i) = e−qi t , t ≥ 0,

since  can be represented by the limite

                                        (9.32)e = lim
x→∞

⎛
⎝1 +

1
x
⎞
⎠

x
.

Thus,  has an exponential distribution with parameter Yi qi.

Given  is the state to which the Markov chain makes aX(0) = i, X(Yi) = X(Yi + 0)
transition on leaving state i. Let  be the greatest integer m satisfying the in-m(n t)
equality  or, equivalently,m/n ≤ t

nt − 1 < m(nt) ≤ nt.
By making use of the geometric series, the joint probability distribution of the random
vector  can be obtained as follows:(Yi, X(Yi)), i ≠ j,

P(X(Yi) = j, Yi > t X(0) = i)

= P(X(Yi) = j, X(s) = i for 0 < s ≤ t X(0) = i)

  = lim
n→∞ Σ

m=m(nt)

∞
P⎛⎝X⎛⎝

m+1
n
⎞
⎠ = j, Yi ∈ ⎡

⎣
m
n , m+1

n
⎞
⎠ X(0) = i ⎞⎠

= lim
n→∞ Σ

m=m(nt)

∞
P⎛⎝X

⎛
⎝

m+1
n
⎞
⎠ = j, X⎛⎝

k
n
⎞
⎠ = i for 1 ≤ k ≤ m X(0) = i ⎞⎠

= lim
n→∞ Σ

m=m(nt)

∞ ⎡
⎣qi j

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦
⎡
⎣1 − qi

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

m

= lim
n→∞

⎡
⎣qi j

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

qi
1
n + o⎛⎝

1
n
⎞
⎠

⎡
⎣1 − qi

1
n + o⎛⎝

1
n
⎞
⎠
⎤
⎦

m(n t)
.

Hence, by (9.32),

          (9.33)P(X(Yi) = j, Yi > t X(0) = i) =
qi j
qi

e−qi t ; i ≠ j ; i, j ∈ Z .

Passing to the marginal distribution of  (i.e., summing the equations (9.33) withYi
respect to ) verifies (9.31).j ∈ Z
Two other important conclusions are:
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1) Letting  in (9.33)  yields the one-step transition probability from state i intot = 0
state  j: 

                   (9.34)pi j = P(X(Yi + 0) = j X(0) = i) =
qi j
qi

, j ∈ Z.

2) The state following state i is independent of   (and, of course, independent of theYi
history of the Markov chain before arriving at state i).

Knowledge of the transition probabilities  suggests to observe a continuous-timepi j
Markov chain  only at those discrete time points at which state changes{X(t), t ≥ 0}
take place. Let  be the state of the Markov chain immediately after the n th changeXn
of state and  Then  is a discrete-time homogeneous MarkovX0 = X(0). {X0, X1, ...}
chain with transition probabilities given by (9.34)

             (9.35)pij = P(Xn = j Xn−1 = i) =
qi j
qi

, i, j ∈ Z ; n = 1, 2, ... .

In this sense, the discrete-time Markov chain  is embedded in the con-{X0, X1, ...}
tinuous-time Markov chain  Embedded Markov chains can also be{X(t), t ≥ 0}.
found in non-Markov processes. In these cases, they may facilitate the investigation
of non-Markov processes. Actually, discrete-time Markov chains, which are embed-
ded in arbitrary continuous-time stochastic processes, are frequently an efficient (if
not the only) tool for analyzing these processes. Examples for the application of the
method of embedded Markov chains to analyzing queueing systems are given in
sections 9.7.3.2 and 9.7.3.3. Section 9.8 deals with semi-Markov chains, the frame-
work of which is an embedded Markov chain.

9.5  CONSTRUCTION OF MARKOV SYSTEMS

In a Markov system, state changes are controlled by a Markov process. Markov sys-
tems, in which the underlying Markov process is a homogeneous, continuous-time
Markov chain with state space Z, are frequently special cases of the following basic
model: The sojourn time of the system in state i is given by

Yi = min (Yi1, Yi 2, ..., Yi ni ),

where the  are independent, exponential random variables with parametersYi j

λi j ; j = 1, 2, ..., ni; i, j ∈ Z.

A transition from state i to state  j is made if and only if  If  as usualYi = Yi j. X(t)
denotes the state of the system at time t, then, by the memoryless property of the
exponential distribution,  is a homogeneous Markov chain with transition{X(t), t ≥ 0}
rates

qi j = lim
h→0

pij(h)
h

= λi j , qi = Σj=1
ni λi j.
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This representation of  results from (9.12) and (9.17). It reflects the fact that  asqi Yi
the minimum of independent, exponentially distributed random variables  also hasYi j
an exponential distribution, the parameter of which is obtained by summing the para-
meters of the Yi j.

Example 9.8 (repairman problem) n machines with lifetimes  startL1, L2, ..., Ln
operating at time  The  are assumed to be independent, exponential randomt = 0. Li
variables with parameter  Failed machines are repaired. A repaired machine is 'asλ.
good as new'.  There is one mechanic  who  can only handle one failed machine at a
time. Thus, when there are  failed machines,  have to wait for repair. Thek > 1 k − 1
repair times are assumed to be mutually independent and identically distributed as an
exponential random variable Z with parameter µ. Life- and repair times are independ-
ent. Immediately after completion of its repair, a machine resumes its work.
Let  denote the number of machines which are in the failed state at time t. Then  X(t)

 is a Markov chain with state space  The system stays in{X(t), t ≥ 0} Z = {0, 1, ..., n}.
state 0 for a random time

Y0 = min (L1, L2, ... , Ln),

and then it makes a transition to state 1. The corresponding transition rate is
 q0 = q01 = λn.

The system stays in state 1 for a random time

Y1 = min (L1, L2, ... , Ln−1, Z).

From state 1 it makes a transition to state 2 if  and aY1 = Lk for k ∈ {1, 2, ..., n − 1},
transition to state 0 if . Hence,Y1 = Z

q10 = μ, q12 = (n − 1)λ, and q1 = (n − 1)λ + μ.

In general (Figure 9.8),
qj−1, j = (n − j + 1) λ ; j = 1, 2, ..., n,

qj+1, j = μ ; j = 0, 1, ..., n − 1,

qi j = 0 ; i − j ≥ 2,

qj = (n − j)λ + μ ; j = 1, 2, ..., n,

q0 = nλ.
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The corresponding system of equations (9.28) is
μπ1 = nλπ0

(n − j + 1)λπj−1 + μπj+1 = ((n − j)λ + μ)πj ; j = 1, 2, ..., n − 1

 μπn = λπn−1.

Beginning with the first equation, the stationary state probabilities are obtained by
successively solving for the :πi

πj =
n!

(n − j)! ρ
j π0 ; j = 0, 1, ..., n ,

where  From the normalizing condition (9.29),ρ = λ/μ.

                                          π0 =
⎡
⎣
⎢ Σ

i=0

n n!
(n − i)!

ρi⎤
⎦
⎥
−1

.

Erlang's Phase Method   Systems  with  Erlang  distributed  sojourn  times  in  their
states can be transformed into Markov systems by introducing dummy states. This is
due to the fact that a random variable, which is Erlang distributed with parameters n
and , can be represented as a sum of n independent exponential random variablesμ
with parameter  (formula (7.21), page 263). Hence, if the time interval, which theμ
system stays in state i, is Erlang distributed with parameters  and , then thisni μi
interval is partitioned into  disjoint subintervals (phases), the lengths of which areni
independent, identically distributed exponential random variables with parameter .μi
By introducing the new states  to label these phases, the original non-j1, j2, ..., jni
Markov system becomes a Markov system. In what follows, instead of presenting a
general treatment of this approach, the application of Erlang's phase method is
demonstrated by an example:

Example 9.9 (two-unit system, parallel redundancy)  As in example 9.6, a two-unit
system with parallel redundancy is considered. The lifetimes of the units are identic-
ally distributed as an exponential random variable L with parameter . The replace-λ
ment times of the units are identically distributed as Z, where Z has an Erlang distri-
bution with parameters  and µ. There is only one mechanic in charge of then = 2
replacement of failed units. All other assumptions and model specifications are as in
example 9.6. The following system states are introduced:

0    both units are operating
1    one unit is operating,  the replacement of the other one is in phase 1
2    one unit is operating,  the replacement of the other one is in phase 2
3    no unit is operating,  the replacement of the one being maintained is in phase 1
4    no unit is operating,  the replacement of the one being maintained is in phase 2

The transition rates are (Figure 9.9):
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q01 = 2λ, q0 = 2λ

q12 = μ, q13 = λ, q1 = λ + μ

q20 = μ, q23 = λ, q2 = λ + μ

q34 = μ, q3 = μ

q41 = μ, q4 = μ.

Hence  stationary state probabilities satisfy the following system of equationsthe

μπ2 = 2λπ0

2λπ0 + μπ4 = (λ + μ)π1

μπ1 = (λ + μ)π2

λπ1 + λπ2 = μπ3

μπ3 = μπ4

1 = π0 + π1 + π2 + π3 + π4.

The stationary probabilities ('i units are failed') are of particular interest:πi
∗ = P

π0
∗ = π0, π1

∗ = π1 + π2, π2
∗ = π3 + π4 .

With  the  areρ = E(Z)/E(L) = 2λ/μ πi
∗

π0
∗ = ⎡

⎣1 + 2ρ + 3
2 ρ

2 + 1
4 ρ

3 ⎤
⎦
−1

,

π1
∗ = ⎡

⎣2ρ +
1
2 ρ

2 ⎤
⎦
−1
π0
∗ , π2

∗ = ⎡
⎣ ρ

2 + 1
4 ρ

3 ⎤
⎦
−1
π0
∗.

The stationary system availability is given by                                       A = π0
∗ + π1

∗.

Unfortunately, applying Erlang's phase method to structurally complicated systems
leads to rather complex Markov systems.
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 9.6  BIRTH AND DEATH PROCESSES 

In this section, continuous-time Markov chains with property that only transitions to
'neighboring' states are possible, are discussed in more detail. These processes, called
(continuous-time) birth and death processes, have proved to be an important tool for
modeling queueing, reliability, and inventory systems. In the economical sciences,
birth and death processes are among else used for describing the development of the
number of enterprises in a particular area and of manpower fluctuations. In physics,
flows of radioactive, cosmic, and other particles are modeled by birth and death
processes. Their name, however, comes from applications in biology, where they
have been used to stochastically model the development in time of the number of
individuals in populations of organisms.  

9.6.1  Birth Processes
A continuous-time Markov chain with state space  is called a (pure)Z = {0, 1, ..., n}
birth process if, for all  only a transition from state i to  is possi-i = 0, 1, ..., n − 1, i + 1
ble. State n is absorbing if  n < ∞.

Thus, the positive transition rates of a birth process are given by  Henceforthqi, i+1.
they will be called birth rates and denoted as

λi = qi,i+1, i = 0, 1, ..., n − 1,

λn = 0 for n < ∞.

The sample paths of birth processes are nondecreasing step functions with jump
height 1. The homogeneous Poisson process with intensity  is the simplest exampleλ
of a birth process. In this case,  Given the initial distributionλi = λ , i = 0, 1, ... .

pm(0) = P(X(0) = m) = 1

(i.e., in the beginning the 'population' consists of m individuals), the absolute state
probabilities  are equal to the transition probabilities . In this case, thepj(t) pm j(t)
probabilities  are identically equal to 0 for  and, according to (9.20), forpj(t) j < m

 they satisfy the system of linear differential equationsj ≥ m

pm(t) = −λm pm(t),

                (9.36)pj (t) = +λj−1 pj−1(t) − λj pj(t) ; j = m + 1, m + 2, ...

pn(t) = +λn−1 pn−1(t) , n < ∞.

The solution of the first differential equation is
                                       (9.37)pm(t) = e−λm t , t ≥ 0 .

For , the differential equations (9.36) are equivalent toj = m + 1, m + 2, ...
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eλ j t ⎛
⎝pj (t) + λj pj(t)⎞⎠ = λj−1eλ j t pj−1(t)

or
d
dt
⎛
⎝e

λ j tpj(t)⎞⎠ = λj−1eλ j t pj−1(t) .

By integration,
                            (9.38)pj(t) = λj−1e−λ j t ∫0

t eλ j xpj−1(x)dx .

Formulas (9.37) and (9.38) allow the successive calculation of the probabilities pj(t)
for  For instance, on conditions  and j = m + 1, m + 2, ... . p0(0) = 1 λ0 ≠ λ1,

p1(t) = λ0 e−λ1t ∫0
t eλ1x e−λ0 x dx

= λ0 e−λ1t ∫0
t e−(λ0−λ1)xdx

=
λ0

λ0 − λ1
⎛
⎝e

−λ1 t − e−λ0 t ⎞
⎠ , t ≥ 0 .

If all the birth rates are different from each other, then this result and (9.38) yield by
induction:

pj(t) = Σ
i=0

j
Ci j λi e−λ i t , j = 0, 1, ... ,

Ci j =
1
λj

Π
k=0, k≠i

j λk
λk − λi

, 0 ≤ i ≤ j , C00 =
1
λ0

.

Linear Birth Process  A birth process is called a linear birth process or a Yule-Furry
 process (see Furry (1937) and Yule (1924)) if its birth rates are given by

λi = iλ ; i = 0, 1, 2, ... .
Since state 0 is absorbing, an initial distribution should not concentrate probability 1
on state 0. Linear birth processes occur, for instance, if in the interval  each[t, t + h]
member of a population (bacterium, physical particle) independently of each other
splits with probability  as .λh + o(h) h → 0

Assuming  the system of differential equations  (9.36) becomesp1 = P(X(0) = 1) = 1,

                    (9.39)pj (t) = −λ [ j pj(t) − ( j − 1)pj−1(t)] ; j = 1, 2, ...

with
                              (9.40)p1(0) = 1 , pj(0) = 0 ; j = 2, 3, ... .

The solution of (9.39) given the initial distribution (9.40) is

pi(t) = e−λ t(1 − e−λ t) i−1 ; i = 1, 2, ... .
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Thus, X(t) has a geometric distribution with parameter   Hence, the trendp = e−λt.
function of the linear birth process is

m(t) = eλ t , t ≥ 0 .

If Z is finite, then there always exists a solution of   which satisfies(9.36)
                                                                   (9.41)Σ

i∈Z
pi(t) = 1.

In case of an infinite state space , the following theorem gives aZ = {0, 1, ...}
necessary and sufficient condition for the existence of a solution of (9.36) with prop-
erty (9.41). Without loss of generality, the theorem is proved on condition (9.40).

Theorem 9.2 (Feller-Lundberg) A solution  of the system of differ-{p0(t), p1(t), ... }
ential equations (9.36) satisfies condition (9.41) if and only if the series

                                                                        (9.42)Σ
i=0

∞ 1
λi

diverges.

Proof   Let
sk(t) = p0(t) + p1(t) + . .. + pk(t) .

Summing the middle equation of (9.36) from  to k yieldsj = 1

sk(t) = −λk pk(t) .

By integration, taking into account ,sk(0) = 1

                                     (9.43)1 − sk(t) = λk ∫0
t pk(x)dx.

Since  is monotonically increasing as , the following limit exists:sk(t) k →∞

r(t) = lim
k→∞

(1 − sk(t)).

From (9.43),
λk ∫0

t pk(x)dx ≥ r(t) .

Dividing by  and summing the arising inequalities from 0 to k givesλk

∫
0

t
sk(x)dx ≥ r(t)⎛⎝

1
λ0

+ 1
λ1

+ . .. + 1
λk

⎞
⎠ .

Since  for all ,sk(t) ≤ 1 t ≥ 0

t ≥ r(t)⎛⎝
1
λ0

+ 1
λ1

+ . .. + 1
λk

⎞
⎠ .

If the series (9.42) diverges, then this inequality implies that  for all  Butr(t) = 0 t > 0.
this result is equivalent to (9.41).
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Conversely, from (9.43),
λk ∫0

t pk(x)dx ≤ 1

so that

∫
0

t
sk(x)dx ≤ 1

λ0
+ 1
λ1

+ . .. + 1
λk

.

Passing to the limit as k →∞,

∫
0

t
(1 − r(t))dt ≤ Σ

i=0

∞ 1
λi

.

If , the left-hand side of this inequality is equal to t. Since t can be arbitrarilyr(t) ≡ 0
large, the series (9.42) must diverge. This result completes the proof.                       

According to this theorem, it is theoretically possible that within a finite interval
 the population grows beyond all finite bounds. The probability of such an[0, t]

explosive growth is
1 −Σi=0

∞ pi(t).

This probability is positive if the birth rates grow so fast that the series (9.42)
converges. For example, an explosive growth would occur if

λi = i2 λ ; i = 1, 2, ...

since

Σ
i=1

∞ 1
λi

= 1
λ Σ

i=1

∞ 1
i2 = π2

6λ < ∞ .

It is remarkable that an explosive growth occurs in an arbitrarily small time interval,
since the convergence of the series (9.42)  does not depend on t.

9.6.2  Death Processes

A continuous-time Markov chain with state space   is called a (pure)Z = {0, 1, ...}
death process if, for all  only transitions from state i to  are possible.i = 1, 2, ... i − 1
State 0 is absorbing.
Thus, the positive transition rates of pure death processes are given by  qi,i−1, i ≥ 1.
In what follows, these transition rates will be called death rates and denoted as

μ0 = 0, μi = qi,i−1; i = 1, 2, ... .

The sample paths of such processes are non-increasing step functions. For pure death
processes, on condition

pn(0) = P(X(0) = n) = 1,

408                             APPLIED PROBABILITY AND STOCHASTIC PROCESSES



the system of differential equations (9.20) becomes
pn(t) = −μn pn(t)

                  (9.44)pj (t) = −μj pj(t) + μj+1 pj+1(t) ; j = 0, 1, ..., n − 1.

The solution of the first differential equation is

pn(t) = e−μn t , t ≥ 0.
Integrating  yields(9.44)

             (9.45)pj(t) = μj+1 e−μj t ∫0
t eμj x pj+1(x)dx ; j = n − 1, ... , 1, 0.

Starting with  the probabilitiespn(t),

pj(t), j = n − 1, n − 2, ..., 0,

can be recursively determined from (9.45). For instance, assuming ,μn ≠ μn−1

pn−1(t) = μn e−μn−1 t ∫0
t e−(μn −μn−1) xdx

             =
μn

μn − μn−1 (e
−μn−1 t − e−μn t).

More generally, if all the death rates are different from each other , then

                             (9.46)pj(t) = Σ
i=j

n
Dij μi e−μi t , 0 ≤ j ≤ n ,

where

Dij =
1
μj Πk=j

k≠i

n μk
μk − μi

, j ≤ i ≤ n , Dnn = 1
μn .

Linear Death Process  A death process  is called a linear death process{X(t), t ≥ 0}
if for a positive parameter  it has death ratesμ

μi = iμ ; i = 0, 1, ... .
Given the initial distribution

pn(0) = P(X(0) = n) = 1,
the process stays in state n an exponentially with parameter  distributed time:nμ

pn(t) = e−nμ t , t ≥ 0.
Starting with , one obtains inductively from (9.45) or simply from (9.46):pn(t)

pi(t) = ⎛
⎝

n
i
⎞
⎠ e−iμ t (1 − e−μ t )n−i ; i = 0, 1, ..., n.

Hence, X(t) has a binomial distribution with parameters n and  so that thep = e−μ t

trend function of a linear death process is
m(t) = n e−μ t , t ≥ 0.
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Example 9.10  A system consisting of n subsystems starts operating at time .t = 0
The lifetimes of the subsystems are independent, exponentially with parameter λ
distributed random variables. If X(t) denotes the number of subsystems still working
at time t, then  is a linear death process with death rates{X(t), t ≥ 0}

                                                μi = iλ ; i = 0, 1, ... .

9.6.3 Birth and Death Processes

9.6.3.1 Time-Dependent State Probabilities
A continuous-time Markov chain  with state space{X(t), t ≥ 0}

Z = {0, 1, ..., n}, n ≤ ∞,

is called a birth and death process if from any state i only a transition to state  ori − 1
to state  is possible, provided that  and  respectively.i + 1 i − 1 ∈ Z i + 1 ∈ Z,

Therefore,  transition rates of a birth- and death process have propertythe

qi, j = 0 for i − j > 1.

The transition rates  and  are called birth rates and death rates,λi = qi,i+1 μi = qi,i−1
respectively. According to the restrictions given by the state space,  for λn = 0 n < ∞
and  (Figure 9.10). Hence, a birth process (death process) is a birth and deathμ0 = 0
process, the death rates (birth rates) of which are equal to 0. If a birth and death
process describes the number of individuals in a population of organisms, then, when
arriving at state 0, the population is extinguished. Thus, without the possibility of
immigration, state 0 is absorbing (λ0 = 0).

According to (9.20), the absolute state probabilities  of apj(t) = P(X(t) = j), j ∈ Z,
birth- and death process satisfy the system of linear differential equations

p0(t) = −λ0 p0(t) + μ1 p1(t),

      (9.47)pj (t) = +λj−1 pj−1(t) − (λj + μj)pj(t) + μj+1 pj+1(t) , j = 1, 2, ...,

pn(t) = +λn−1 pn−1(t) − μn pn(t) , n < ∞.

0 1 i  

Figure 9.10  Transition graph of the birth- and death process
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In the following two examples, the state probabilities  of two im-{ p0(t), p1(t), ... }
portant birth and death processes are determined via their respective -transformsz

M(t, z) = Σi=0
∞ pi(t) zi

under initial conditions of type
pn(0) = P(X(0) = n) = 1.

In terms of the -transform, this condition is equivalent toz
M(0, z) ≡ zn, n = 0, 1, ... .

Furthermore, partial derivatives of the z-transforms will be needed:

                (9.48)∂M(t, z)
∂t = Σ

i=0

∞
pi (t) zi and ∂M(t, z)

∂z = Σ
i=1

∞
i pi(t) zi−1.

Partial differential equations for  will be established and solved by applyingM(t, z)
the characteristic method.

Example 9.11 (linear birth and death process)   is called a linear birth{X(t), t ≥ 0}
and death process if it has transition rates

λi = iλ , μi = iμ , i = 0, 1, ...

In what follows, this process is analyzed on condition that
p1(0) = P(X(0) = 1) = 1.

Assuming  would make no sense since state 0 is absorbing. The system ofp0(0) = 1
differential equations (9.20) becomes

p0(t) = μp1(t),

           (9.49)pj (t) = (j − 1)λpj−1(t) − j (λ + μ)pj(t) + (j + 1)μpj+1(t) ; j = 1, 2, ... .

Multiplying the j-th differential equation by  and summing from  tak-z j j = 0 to j = ∞,
ing into account (9.48), yields the following linear, homogeneous partial differential
equation for M(t, z):

                                              (9.50)∂M(t, z)
∂t − (z − 1)(λz − μ) ∂M(t, z)

∂z = 0.

The corresponding (ordinary) characteristic differential equation is a Riccati differ-
ential equation with constant coefficients:

                    (9.51)dz
dt

= −(z − 1)(λz − μ) = −λ z2 + (λ + μ) z − μ.

a)    By separation of variables, (9.51) can be written in the formλ ≠ μ

dz
(z − 1)(λz − μ) = −dt.
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Integration on both sides of this equation yields

− 1
λ − μ ln ⎛⎝

λz − μ
z − 1

⎞
⎠ = −t +C.

The general solution  of the characteristic differential equation in implicitz = z(t)
form is, therefore, given by

c = (λ − μ) t − ln ⎛⎝
λ z − μ
z − 1

⎞
⎠ ,

where c is an arbitrary constant. Thus, the general solution  of (9.50) has theM(t, z)
structure

M(t, z) = f ⎛⎝(λ − μ)t − ln ⎛⎝
λ z − μ
z − 1

⎞
⎠
⎞
⎠ ,

where  f  can be any function with a continuous derivative.  f  can be determined by
making use of the initial condition  or, equivalently,  Sincep1(0) = 1 M(0, z) = z.

M(0, z) = f ⎛⎝ln ⎛⎝
z − 1
λ z − μ

⎞
⎠
⎞
⎠ = z,

  f  must have structure

f (x) =
μex − 1
λex − 1 .

Thus,  isM(t, z)

M(t, z) =
μ exp (λ − μ)t − ln ⎛⎝

λz−μ
z−1

⎞
⎠ − 1

λ exp (λ − μ)t − ln ⎛⎝
λz−μ
z−1

⎞
⎠ − 1

.

After simplification,  becomesM(t, z)

M(t, z) =
μ ⎡⎣1 − e(λ−μ)t ⎤⎦ − ⎡⎣λ − μe(λ−μ)t ⎤⎦ z
⎡⎣μ − λe(λ−μ)t⎤⎦ − λ ⎡⎣1 − μe(λ−μ)t ⎤⎦ z

.

This representation of  allows its expansion as a power series in z. The coef-M(t, z)
ficient of   is the desired absolute state probability . Letting yieldsz j pj(t) ρ = λ/μ

p0(t) =
1 − e(λ−μ)t

1 − ρe(λ−μ)t
,

 pj(t) = (1 − ρ)ρ j−1 ⎡⎣1 − e(λ−μ)t⎤⎦
j−1

⎡⎣1 − ρ e(λ−μ)t ⎤⎦
j+1 e(λ−μ)t , j = 1, 2, ... .

Since state 0 is absorbing,  is the probability that the population is extinguish-p0(t)
ed at time t. Moreover,
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 lim
t→∞

p0(t) =
⎧

⎩
⎨
⎪
⎪

1 for λ < μ
μ
λ for λ > μ

.

Thus, for  the population will survive to infinity with positive probability .λ > μ μ/λ
If , the population will eventually disappear with probability 1. In the latterλ < μ
case, the distribution function of the lifetime  of the population isL

P(L ≤ t) = p0(t) =
1 − e(λ−μ)t

1 − ρe(λ−μ)t
, t ≥ 0 .

Hence, the population will survive the interval  with probability[0, t]

P(L > t) = 1 − p0(t).

From this, applying formual (2.52), page 64,

E(L) = 1
μ − λ ln ⎛⎝2 −

λ
μ
⎞
⎠ .

The trend function  is principally given bym(t) = E(X(t))

m(t) = Σj=0
∞ j pj(t) .

By formulas (2.112), page 96,  can also be obtained from the z-transform:m(t)

m(t) = ∂M(t, z)
∂z z=1

.

If only the trend function of the process is of interest, then here as in many other ca-
ses knowledge of the z-transform or the absolute state distribution is not necessary,
since m(t) can be determined from the respective system of differential equations
(9.47). In this example, multiplying the j-th differential equation of (9.49) by j and
summing from  to  yields the following first-order differential equation:j = 0 ∞

                                          (9.52)m (t) = (λ − μ)m(t).

Taking into account the initial condition  its solution isp1(0) = 1,

m(t) = e(λ−μ)t .

By multiplying the j-th differential equation of (9.47) by  and summing from j2 j = 0
to , a second order differential equation for  is obtained. Its solution is∞ Var(X(t))

Var(X(t)) =
λ + μ
λ − μ

⎡⎣1 − e−(λ−μ) t ⎤⎦ e2(λ−μ)t .

Of course, since  is known, Var(X(t)) can be obtained from (2.112), too.M(t, z)

If the linear birth- and death process starts in states  no principal addition-s = 2, 3, ...,
al problems arise up to the determination of M(t,z). But it will be more complicated
to expand M(t,z) as a power series in z.
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The corresponding trend function, however, is easily obtained as solution of (9.52)
with the initial condition :ps(0) = P(X(0) = s) = 1

m(t) = s e(λ−μ)t , t ≥ 0 .

b)   In this case, the characteristic differential equation (9.51) simplifies toλ = μ

dz
λ (z − 1)2 = −dt .

Integration yields

c = λ t − 1
z − 1 ,

where  is an arbitrary constant. Therefore, M(t, z) has structurec

M(t, z) = f ⎛⎝λ t − 1
z−1

⎞
⎠ ,

where  f  is a continuously differentiable function. Since ,  f  satisfiesp1(0) = 1

f ⎛⎝−
1

z − 1
⎞
⎠ = z .

Hence, the desired function  f   given byis

f (x) = 1 − 1
x , x ≠ 0.

The corresponding z-transform is

M(t, z) = λ t + (1 − λ t) z
1 + λ t − λ t z .

Expanding  as a power series in  yields the absolute state probabilities:M(t, z) z

p0(t) =
λ t

1 + λ t , pj(t) =
(λ t) j−1

(1 + λ t) j+1 ; j = 1, 2, ..., t ≥ 0.

An equivalent form of the absolute state probabilities is

  p0(t) =
λ t

1 + λ t , pj(t) = [1 − p0(t)]
2 [p0(t)]

j−1 ; j = 1, 2, ..., t ≥ 0.

Mean value and variance of X(t) are
E(X(t)) = 1, Var(X(t)) = 2λ t .

This example shows that the analysis of apparently simple birth- and death processes
requires some effort.                                                                                                   

Example 9.12  Consider a birth- and death process with transition rates
λ i = λ , μi = iμ; i = 0, 1, ...

and initial distribution and .p0(0) = P(X(0) = 0) = 1
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The corresponding system of linear differential equations (9.47) is

p0(t) = μp1(t) − λp0(t),

         (9.53)pj (t) = λpj−1(t) − (λ + μ j)pj(t) + (j + 1)μpj+1(t) ; j = 1, 2, ... .

Multiplying the j-th equation by  and summing from  yields a homoge-z j j = 0 to ∞
neous linear partial differential equation for the moment generating function:

                     (9.54)∂M(t, z)
∂t + μ(z − 1) ∂M(t, z)

∂z = λ(z − 1)M(t, z).

The corresponding system of characteristic differential equations is

  dz
dt

= μ (z − 1) , dM(t, z)
dt

= λ(z − 1)M(t, z) .

After separation of variables and subsequent integration, the first differential equa-
tion yields

c1 = ln (z − 1) − μ t

with an arbitrary constant . By combining both differential equations and lettingc1
ρ = λ/μ,

dM(t, z)
M(t, z) = ρdz .

Integration yields
c2 = ln M(t, z) − ρ z ,

where  is an arbitrary constant. As a solution of (9.54), M(t, z) satisfiesc2

c2 = f (c1)

with an arbitrary continuous function  f, i.e.  satisfiesM(t, z)

ln M(t, z) − ρ z = f (ln(z − 1) − μ t) .

Therefore,
M(t, z) = exp { f (ln(z − 1) − μ t) + ρ z}.

Since condition  is equivalent to   f  is implicitly given byp0(0) = 1 M(0, z) ≡ 1,

f (ln(z − 1)) = −ρ z.

Hence,  the explicit representation of  isf
f (x) = −ρ (ex + 1) .

Thus, 

M(t, z) = exp −ρ ⎛⎝e
ln(z−1)−μ t + 1⎞⎠ + ρ z .
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Equivalently,

M(t, z) = e−ρ(1−e−μ t) ⋅ e+ρ(1−e−μ t) z .

Now it is easy to expand M(t, z) as a power series in z. The coefficients of  arez j

                  (9.55)pj(t) =
[ρ (1 − e−μ t ] j

j! e−ρ(1−e−μ t) ; j = 0, 1, ... .

This is a Poisson distribution with intensity function  Therefore, thisρ (1 − e−μ t ) .
birth and death process  trend functionhas

m(t) = ρ (1 − e−μ t ).

For  the absolute state probabilities  converge to the stationary state prob-t →∞ pj(t)
abilities:

  πj = lim
t→∞

pj(t) =
ρ j

j! e−ρ ; j = 0, 1, ... .

If the process starts at a state  the absolute state probability distribution is nots > 0,
Poisson. In this case this distribution has a rather complicated structure, which will
not be presented here. Instead, the system of linear differential equations (9.53) can
be used to establish ordinary differential equations for the trend function m(t) and the
variance of . Given the initial distribution ,  their respectiveX(t) ps(0) = 1 s = 1, 2, ...,
solutions are

m(t) = ρ (1 − e−μ t ) + s e−μ t ,

Var (X(t)) = (1 − e−μ t )(ρ + s e−μ t).

The birth and death process considered in this example is of importance in queueing
theory (section 9.7).                                                                                                      

Example 9.13 (birth and death process with immigration) For positive parameters 
, , and  let transition rates be given byλ μ ν,

λi = iλ + ν, μi = iμ ; i = 0, 1, ...

If this model is used to describe the development in time of a population, then each
individual will produce a new individual in  with probability  or[t, t + Δt] λΔt + o(Δt)
leave the population in this interval with probability . Moreover, due toμΔt + o(Δt)
immigration from outside, the population will increase by one individual in  [t, t + Δt]
with probability  Thus, if the probability that the population willν t + o(Δt). X(t) = i,
increase or decrease by one individual in the interval  is[t, t + Δt]

(iλ + ν)Δt + o(Δt) or iμΔ t + o(Δt),

respectively. These probabilities do not depend on t and refer to  As in theΔt → 0.
previous example, state 0 is not absorbing.
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The differential equations (9.47) become
p0(t) = μp1(t) − νp0(t) ,

pj (t) = (λ( j − 1) + ν)pj−1(t) + μ ( j + 1)pj+1(t) − (λ j + ν + μ j )pj(t) .

Analogously to the previous examples, the z-transformation  of the probabilityM(t, z)
distribution  is seen to satisfy the partial differential equation{ p0(t), p1(t), ...}

                                       (9.56)∂M(t, z)
∂t = (λ z − μ)(z − 1) ∂M(t, z)

∂z + ν(z − 1)M(t, z) .

The system of the characteristic differential equations belonging to (9.56) is
dz
dt

= −(λ z − μ)(z − 1) ,

dM(t, z)
dt

= ν(z − 1)M(t, z) .

From this, with the initial condition  or, equivalently,  the solu-p0(0) = 1 M(0, z) ≡ 1,
tion is obtained analogously to the previous example

M(t, z) =
⎧

⎩
⎨

λ − μ
λz + λ(1 − z) e(λ−μ) t − μ

⎫

⎭
⎬
ν/λ

for λ ≠ μ ,

M(t, z) = (1 + λt)ν/λ 1 − λ t z
1 + λ t

−ν/λ
for λ = μ .

Generally it is not possible to expand  as a power series in z. But the absoluteM(t, z)
state probabilities  can be obtained by differentiation of :pi(t) M(t, z)

pi(t) =
∂iM(t, z)
∂zi

z=0
for i = 1, 2, ...

The trend function

m(t) = E(X(t)) = ∂M(t, z)
∂z z=1

of this birth and death process is

                         (9.57)m(t) = ν
λ − μ

⎡⎣e(λ−μ) t − 1⎤⎦ for λ ≠ μ ,

m(t) = ν t for λ = μ.
If  the limit as  of the z-transform exists:λ < μ, t →∞

lim
t→∞

M(t, z) = ⎛
⎝1 −

λ
μ
⎞
⎠
ν/λ ⎛

⎝1 −
λ
μ z

⎞
⎠
−ν/λ

.

For  the trend function (9.57) tends to a positive limit as :λ < μ, t →∞

                                      lim
t→∞

m(t) = ν
μ − λ for λ < μ.
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9.6.3.2  Stationary State Probabilities
By (9.27), in case of their existence the stationary distribution  of a birth{π0,π1, ...}
and death process satisfies the following system of linear algebraic equations

λ0π0 − μ1π1 = 0

                                     (9.58)λj−1πj−1 − (λj + μj)πj + μj+1πj+1 = 0 , j = 1, 2, ...

 λn−1πn−1 − μnπn = 0 , n < ∞ .

This system is equivalent to the following one:
μ1π1 = λ0π0

                    (9.59)μj+1πj+1 + λj−1πj−1 = (λj + μj)πj ; j = 1, 2, ...

μnπn = λn−1πn−1 , n < ∞.

Provided its existence, it is possible to obtain the general solution of (9.58): Let
dj = −λjπj + μj+1πj+1 ; j = 0, 1, ... .

Then the system (9.58) simplifies to
          d0 = 0 ,

  dj − dj−1 = 0 , j = 1, 2, ...

dn−1 = 0, n < ∞ .

Starting with  one successively obtainsj = 0,

                                   (9.60)πj = Π
i=1

j λi−1
μi

π0 ; j = 1, 2, ..., n.

1) If , then the stationary state probabilities satisfy the normalizing conditionn < ∞

Σi=0
n πi = 1.

Solving for  yieldsπ0

                                     (9.61)π0 =
⎡

⎣
⎢1 + Σ

j=1

n
Π
i=1

j λi−1
μi

⎤

⎦
⎥
−1

.

2) If  then equation (9.61) shows that the convergence of the seriesn = ∞,

                                               (9.62)Σ
j=1

∞
Π
i=1

j λi−1
μi

is necessary for the existence of a stationary distribution. A sufficient condition for
the convergence of this series is the existence of a positive integer  such thatN

                                    (9.63)
λi−1
μi

≤ α < 1 for all i > N .
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Intuitively, this condition is not surprising: If the birth rates are greater than the cor-
responding death rates, the process will drift to infinity with probability 1. But this
exludes the existence of a stationary distribution of the process. For a proof of the
following theorem see  Karlin and Taylor (1981).

Theorem 9.3  The convergence of the series (9.62) and the divergence of the series

                                                  (9.64)Σ
j=1

∞
Π
i=1

j μi
λi

is sufficient for the existence of a stationary state distribution. The divergence of the
series (9.64) is, moreover, sufficient for the existence of such a time-dependent solu-
tion  of (9.47) which satisfies the normalizing condition (9.21).   { p0(t), p1(t), ... }

Example 9.14 (repairman problem)  The repairman problem introduced in example
9.8 is considered once more. However, it is now assumed that there are r mechanics
for repairing failed machines,  A failed machine can be attended only by1 ≤ r ≤ n.
one mechanic. (For a modification of this assumption see example 9.15.) All other
assumptions as well as the notation are as in example 9.8.

Let X(t) denote the number of failed machines at time t. Then  is a birth{X(t), t ≥ 0}
and death process with state space  Its transition rates areZ = {0, 1, ..., n}.

λj = (n − j)λ , 0 ≤ j ≤ n,

μj =
jμ , 0 ≤ j ≤ r
rμ , r < j ≤ n

(Figure 9.11). Note that in this example the terminology 'birth and death rates' does
not reflect the technological situation. If the service rate  is introduced,ρ = λ/μ
formulas (9.57) and (9.58) yield the stationary state probabilities

                         (9.65)πj =

⎧

⎩

⎨
⎪

⎪

⎛
⎝

n
j
⎞
⎠ ρ

j π0 ; 1 ≤ j ≤ r
n!

r j−r r! (n−j )!
ρ j π0 ; r ≤ j ≤ n

         π0 =
⎡

⎣
⎢ Σ

j=0

r ⎛
⎝

n
j
⎞
⎠ ρ

j + Σ
j=r+1

n n!
r j−r r! (n−j )!

ρ j ⎤

⎦
⎥
−1

.
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Figure 9.11 Transition graph of the general repairman problem
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      Policy 1:  n=10,  r = 2      Policy 2:    n=5, r = 1
           j πj,1           j πj,2

           0
            1
           2
           3
           4
           5
           6
           7
           8
           9
         10 

       0.0341
       0.1022
       0.1379
       0.1655
       0.1737
       0.1564
       0.1173
       0.0704
       0.0316
       0.0095
       0.0014

         0
         1
         2
         3
         4
         5

      0.1450
      0.2175
      0.2611
      0.2350
      0.1410
      0.0004

Table 9.1  Stationary state probabilities for example 9.14

A practical application of the stationary state probabilities (9.65) is illustrated by a
numerical example: Let  The efficiencies of the followingn = 10, ρ = 0.3, and r = 2.
two maintenance policies will be compared:
1) Both mechanics are in charge of the repair of any of the 10 machines.
2) The mechanics are assigned 5 machines each for the repair of which they alone
are responsible.
Let  be the random number of failed machines and  the random number ofXn,r Zn,r
mechanics which are busy with repairing failed machines, dependent on the number
n of machines and the number r of available mechanics  From Table 9.1, for policy 1,.

E(X10,2) = Σj=1
10 jπj,1 = 3.902

E(Z10,2) = 1 ⋅ π1,1 + 2Σj=2
10 πj,1 = 1.8296 .

For policy 2,

E(X5,1) = Σj=1
5 jπj,2 = 2.011

E(Z5,1) = 1 ⋅ π1,2 +Σj=2
5 πj,2 = 0.855.

Hence, when applying policy 2, the average number of failed machines out of 10 and
the average number of busy mechanics out of 2 are

2 E(X5,1) = 4.022 and 2 E(Z5,1) = 1.710.

Thus, on the one hand, the mean number of failed machines under policy 1 is smaller
than under policy 2, and, on the other hand, the mechanics are less busy under policy
2 than under policy 1. Hence, policy 1 should be preferred if no other relevant per-
formance criteria have to be taken into account.                                                          

420                             APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Example 9.15  The repairman problem of example 9.14 is modified in the following
way: The available maintenance capacity of r units (which need not necessarily be
human) is always fully used for repairing failed machines. Thus, if only one machine
has failed, then all r units are busy with repairing this machine. If several machines
are down, the full maintenance capacity of r units is uniformly distributed to the fail-
ed machines. This adaptation is repeated after each failure of a machine and after
each completion of a repair. In this case, no machines have to wait for repair.
If  j machines have failed, then the repair rate of each failed machine is

rμ / j .
Therefore, the death rates of the corresponding birth and death process are constant,
i.e., they do not depend on the system state:

μ j = j ⋅
rμ
j = rμ ; j = 1, 2, ... .

The birth rates are the same as in example 9.14:
λ j = (n − j)λ ; j = 0, 1, ... .

Thus, the stationary state probabilities are according to (9.60) and (9.61):

π0 =
⎡

⎣
⎢ Σ

j=1

n n!
(n − j)!

⎛
⎝
λ

rμ
⎞
⎠

j ⎤

⎦
⎥
−1

,

πj =
n!

(n − j)!
⎛
⎝
λ

rμ
⎞
⎠

j
π0 ; j = 1, 2 , ... .

Comparing this result with the stationary state probabilities (9.65), it is apparent that
in case  the uniform distribution of the repair capacity to the failed machines hasr = 1
no influence on the stationary state probabilities. This fact is not surprising, since in
this case the available maintenance capacity of one unit (if required) is always fully
used.                                                                                                                            

Many of the results presented so far in section 9.6  are due to Kendall (1948). 

9.6.3.3  Nonhomogeneous Birth and Death Processes
Up till now, chapter 9 has been restricted to homogeneous Markov chains. They are
characterized by transition rates which do not depend on time.

Nonhomogeneous Birth Processes 1) Nonhomogeneous Poisson process  The most
simple representative of a nonhomogeneous birth process is the nonhomogeneous
Poisson process (page 274). Its birth rates are

λi(t) = λ(t) ; i = 0, 1, ... .

Thus, the process makes a transition from state i at time t to state  in i + 1 [t, t + Δt]
with probability λ(t) Δt + o(Δt) .
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2) Mixed Poisson process   If certain conditions are fulfilled, mixed Poisson processes
(section 7.2.3) belong to the class of nonhomogeneous birth processes.
Lundberg (1964)  proved that a birth process is a mixed Poisson process if and only
if its birth rates  have propertiesλi(t)

λi+1(t) = λi(t) −
d lnλi(t)

dt
; i = 0, 1, ... .

Equivalently, a pure birth process  with transition rates  and with{X(t), t ≥ 0} λi(t)
absolute state distribution

{pi(t) = P(X(t) = i) ; i = 0, 1, ...}

is a mixed Poisson process if and only if

pi(t) =
t
i
λi−1(t)pi−1(t) ; i = 1, 2, ... ;

see also Grandel (1997).

Nonhomogeneous Linear Birth and Death Process  In generalizing the birth and
death process of example 9.11, now a birth and death process  is consid-{X(t), t ≥ 0}
ered which has transition rates

λi(t) = λ(t) i , μi(t) = μ(t) i ; i = 0, 1, ...
and initial distribution

p1(0) = P(X(0) = 1) = 1.

Thus,  can be interpreted as the transition rate from state 1 into state 2 at time t,λ(t)
and  is the transition rate from state 1 into the absorbing state 0 at time t. Accord-μ(t)
ing to (9.47), the absolute state probabilities  satisfypj(t)

p0(t) = μ(t)p1(t),

pj (t) = (j − 1)λ(t)pj−1(t) − j (λ(t) + μ(t))pj(t) + (j + 1)μ(t)pj+1(t) ; j = 1, 2, ... .

Hence, the corresponding z-transform  of M(t, z)

{ pi(t) = P(X(t) = i) ; i = 0, 1, ...}
is given by the partial differential equation (9.50) with time-dependent  and λ μ :

                        (9.66)∂M(t, z)
∂t − (z − 1) [λ(t) z − μ(t)] ∂M(t, z)

∂z = 0 .

The corresponding characteristic differential equation is a differential equation of
Riccati type with time-dependent coefficients (compare with (9.51)):

dz
dt

= −λ(t) z2 + [λ(t) + μ(t)] z − μ.

A property of this differential equation is that there exist functions ϕi(x); i = 1, 2, 3, 4,
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so that its general solution  can be implicitly written in the formz = z(t)

c =
zϕ1(t) − ϕ2(t)
ϕ3(t) − zϕ4(t)

.

Hence, for all differentiable functions , the general solution of (9.66) has the formg(⋅)

M(t, z) = g⎛⎝
zϕ1(t) − ϕ2(t)
ϕ3(t) − zϕ4(t)

⎞
⎠ .

From this and the initial condition  it follows that there exist two func-M(0, z) = z
tions  and  so thata(t) b(t)

                                (9.67)M(t, z) = a(t) + [1 − a(t) − b(t)] z
1 − b(t) z

.

By expanding  as a power series in ,M(t, z) z

p0(t) = a(t),

                     (9.68)pi(t) = [1 − a(t)][1 − b(t)][b(t)]i−1; i = 1, 2, ... .

Inserting (9.67) in (9.66) and comparing the coefficients of z yields a system of differ-
ential equations for  and a(t) b(t) :

(a b − ab ) + b = λ (1 − a) (1 − b)
a = μ (1 − a) (1 − b) .

The transformations  and  simplify this system toA = 1 − a B = 1 − b

                                          (9.69)B = (μ − λ)B − μB2

                                                 (9.70)A = −μA B .

The first differential equation is of Bernoulli type  Substituting in (9.69).

y (t) = 1/B(t)

gives a linear differential equation in y:

                                            (9.71)y + (μ − λ) y = μ .

Since
a(0) = b(0) = 0,

 y satisfies  Hence the solution of (9.71) isy (0) = 1.

 y(t) = e−ω(t) ⎡⎣∫0
t eω(x)μ(x)dx + 1⎤⎦,

where
ω(t) = ∫0

t [μ(x) − λ(x)]dx.
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From (9.70) and (9.71),
A
A = −μB = −

μ
y = −

y
y − ω .

Therefore, the desired functions  and b area

a(t) = 1 − 1
y(t) e−ω(t)

b(t) = 1 − 1
y(t) , t ≥ 0.

With  known, the one-dimensional probability distribution (9.68) of thea(t) and b(t)
nonhomogeneous birth and death process  is completely characterized. In{X(t), t ≥ 0}
particular, the probability that the process is in the absorbing state 0 at time  ist

p0(t) =
∫0

t eω(x)μ(x)dx

∫0
t eω(x)μ(x)dx + 1

.

Hence, the process  will reach state 0 with probability 1 if the integral{X(t), t ≥ 0}

                                            (9.72)∫0
t eω(x)μ(x)dx

diverges as  A necessary condition for this is t →∞. μ(x) ≥ λ(x) for all x ≥ 0.

Let L denote the first passage time of the process with regard to state 0  i.e.,,

L = inf
t
{t, X(t) = 0}.

Since state 0 is absorbing, it is justified to call L the lifetime of the process. On
condition that the integral (9.72) diverges as ,  L has distribution functiont →∞

FL(t) = P(L ≤ t) = p0(t) , t ≥ 0.

Mean value and variance of  areX(t)

                                         (9.73)E(X(t)) = e−ω(t),

                       (9.74)Var(X(t)) = e−2ω(t)∫0
t eω(x)[λ(x) + μ(x)]dx.

If the process  starts at , i.e., it has the initial distribution{X(t), t ≥ 0} s = 2, 3, ...

ps(0) = P(X(0) = s) = 1 for an s = 2, 3, ...

then the corresponding -transform isz

M(t, z) = ⎛
⎝

a(t) + [1 − a(t) − b(t)] z
1 − b(t) z

⎞
⎠

s
.

In this case, mean value and variance of  are simply obtained by multiplyingX(t)
(9.73) and (9.74), respectively, by s.

424                             APPLIED PROBABILITY AND STOCHASTIC PROCESSES



9.7    APPLICATIONS TO QUEUEING SYSTEMS

9.7.1  Basic Concepts

One of the most important applications of continuous-time Markov chains is stochas-
tic modeling of service facilities. The basic situation is the following: Customers
arrive at a service system (queueing system) according to a random point process. If
all servers are busy, an arriving customer either waits for service or leaves the system
without having been served. Otherwise, an available server takes care of the custom-
er. After random service times customers leave the system. The arriving customers
constitute the input (input flow, traffic, flow of demands) and the leaving customers
the output (output flow) of the queueing system. A queueing system is called a loss
system  if  it  has  no  waiting  capacity for customers  which do  not  find  an  available
server on arriving at the system. These customers leave the system immediately after
arrival and are said to be lost. A waiting system has unlimited waiting capacity for
those customers who do not immediately find an available server and are willing to
wait any length of time for service. A waiting-loss system has only limited waiting
capacity for customers. An arriving customer is lost if it finds all servers busy and the
waiting capacity fully occupied. A single-server queueing system has only one server,
whereas a multi-server queueing system has at least two servers. 'Customers' or 'ser-
vers' need not be persons.

Supermarkets are simple examples of queueing systems. Their customers are served
at checkout counters. Filling stations also can be thought of as queueing systems
with petrol pumps being the servers. Even a car park has the typical features of a
waiting system. In this case, the parking lots are the 'servers' and the 'service times'
are generated by the customers themselves. An anti-aircraft battery is a queueing sys-
tem in the sense that it 'serves' the enemy aircraft. During recent years the stochastic
modeling of communication systems, in particular computer networks, has stimulated
the application of standard queueing models and the creation of new, more sophistic-
ated ones. But the investigation of queueing systems goes back to the Danish engi-
neer A. K. Erlang in the early 1900s, when he was in charge of designing telephone
exchanges to meet criteria such as 'what is the mean waiting time of a customer
before being connected' or 'how many lines (servers) are necessary to guarantee that
with a given probability a customer can immediately be connected' ?
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Figure 9.12  Scheme of a standard queueing system



The repairman problem considered in example 9.14 also fits into the framework of a
queueing system. The successive failing of machines generates an input flow and the
mechanics are the servers. This example is distinguished by a particular feature: each
demand (customer) is produced by one of a finite number n of different sources
'inside the system', namely by one of the n machines. Classes of queueing systems
having this particular feature are called  closed queueing systems.

The global objective of queueing theory is to provide theoretical tools for the design
and the quantitative analysis of service systems. Designing engineers of service sys-
tems need to make sure that the required service can be reliably delivered at minimal
expense, since managers of service systems do not want to 'employ' more servers than
necessary for meeting given performance criteria. Important criteria are:
1) The probability that an arriving customer finds an available server.
2) The mean waiting time of a customer for service.
3) The total sojourn time of a customer in the system.

It is common practice to characterize the structure of standard queueing systems by
Kendall's notation A/B/s/m. In this code, A characterizes the input and B the service,
s is the number of servers, and waiting capacity is available for m customers. Using
this notation, standard classes of queueing systems are:

 (Markov): Customers arrive in accordance with a homogeneous Poisson pro-A = M
cess (Poisson input).

 (general independent): Customers arrive in accordance with an ordinaryA = GI
renewal process (recurrent input).

 (deterministic): The distances between the arrivals of neighbouring customersA = D
are constant (deterministic input).

 (Markov) The service times are independent, identically distributed exponen-B = M
tial random variables.

 (general) The service times are independent, identically distributed randomB = G
variables with arbitrary probability distribution.
For instance,  is a loss system with Poisson input, one server, and exponen-M/M/1/0
tial service times.  is a waiting system with recurrent input, exponentialGI/M/3/∞
service times, and 3 servers. For queueing systems with an infinite number of servers,
no waiting capacity is necessary. Hence their code is A/B/∞.

In waiting systems and waiting-loss systems there are several ways of choosing wait-
ing customers for service. These possibilities are called service disciplines (queueing
disciplines). The most important ones are:

1) FCFS (first come-first served)  Waiting customers are served in accordance with
the order of their arrival. This discipline is also called FIFO (first in-first out), al-
though 'first in' does not necessarily imply 'first out'.
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2) LCFS (last come-first served)  The customer, which arrived last, is served first.
This discipline is also called LIFO (last in-first out).
3) SIRO (service in random order) A server, when having finished with a customer,
randomly picks one of the waiting customers for service.

There is a close relationship between service disciplines and priority (queueing) sys-
tems: In a priority system arriving customers have different priorities of being served.
A customer with higher priority is served before a customer with lower priority, but
no interruption of ongoing service takes place (head of the line priority discipline).
When a customer with absolute priority arrives and finds all servers busy, then the
service of a customer with lower priority has to be interrupted (preemptive priority
discipline).

System Parameter and Assumptions In this chapter, if not stated otherwise, the
interarrival times of customers are assumed to be independent and identically distrib-
uted as a random variable Y. The intensity of the input flow (mean number of arriving
customers per unit time) is denoted as  and referred to as arrival rate or arrival in-λ
tensity. The service times of all servers, if not stated otherwise, are assumed to be
independent and identically distributed as a random variable Z. The service intensity
or service rate of the servers is denoted as  i.e.  is the mean number of customersμ, μ
served per unit time by a server. Hence,

 and E(Y) = 1/λ E(Z) = 1/μ.
The traffic intensity of a queueing system is defined as the ratio

ρ = λ/μ.
Usually, the state, the system is in, is fully characterized by the number of customers

 which are in the system at time t (waiting or being served). If the stochasticX(t),
process  has eventually become stationary, then we say the queuing sys-{X(t), t ≥ 0}
tem is in the steady state. When the system is in the steady state, then the time depend-
ence of its characteristic parameters, in particular of the state probabilities

P(X(t) = j); j = 0, 1, ... ,

has levelled out; they are constant. This will happen afer a sufficiently long operating
time. In this case, the probability distribution of  does no longer depend on t soX(t)
that  is simply written as X. In this case,X(t)

  {πj = lim
t→∞

P(X(t) = j) = P(X = j); j = 0, 1, ..., s + m, s, m ≤ ∞}

is the stationary probability distribution of {X(t), t ≥ 0}.
Let S denote the random number of busy servers in the steady state of the system.
Then its degree of server utilization is

η = E(S)/s.
The coefficient  can be interpreted as the mean proportion of time a server is busy.η
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9.7.2 Loss Systems

9.7.2.1 M/M/ -System∞
Strictly speaking, this system is neither a loss nor a waiting system. In this model, the
stochastic process   is a homogeneous birth-and death process with state{X(t), t ≥ 0}
space  and transition rates (see example 9.12)Z = {0, 1, ...}

λi = λ ; μi = iμ ; i = 0, 1, ... .

The corresponding time-dependent state probabilities  of this queueing systempj(t)
are given by (9.55). The stationary state probabilities are obtained by passing to the
limit as  in these  or by inserting the transition rates  and t →∞ pj(t) λi = λ μi = iμ
with  into (9.60) and (9.61):n = ∞

                                    (9.75)πj =
ρ j

j ! e−ρ ; j = 0, 1, ... .

This is a Poisson distribution with parameter  Hence, in the steady state theρ = λ/μ.
mean number of busy servers is equal to the traffic intensity of the system: E(X) = ρ.

5.7.2.2 M/M/s/0-System
In this case,  is a birth and death process with  and{X(t), t ≥ 0} Z = {0, 1, ..., s}

λi = λ ; i = 0, 1, ... , s − 1; λi = 0 for i ≥ s,
μi = iμ; i = 0, 1, ... , s.

Inserting these transition rates into the stationary state probabilities (9.60) and (9.61)
with  yieldsn = s

               (9.76)π0 =
⎡
⎣
⎢ Σ

i=0

s 1
i !
ρ i ⎤
⎦
⎥
−1

; πj =
1
j ! ρ

j π0; j = 0, 1, ... , s .

The probability  is called vacant probability. The loss probability, i.e., the proba-π0
bility that an arriving customer does not find an idle server, and, hence, leaves the
system immediately, is

                                             (9.77)πs =
1
s ! ρ

s

Σ
i=0

s 1
i ! ρ

i
.

This is the famous Erlang loss formula. The following recursive formula for the loss
probability as a function of s can easily be verified:

π0 = 1 for s = 0; 1
πs =

s
ρ

1
πs−1

+ 1 ; s = 1, 2, ... .

The mean number of busy servers is

  E(X) = Σ
i=1

s
iπi = Σ

i=1

s
i
ρi

i !
π0 = ρ Σ

i=0

s−1 ρi

i !
π0 .
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Combining this result with (9.76) and (9.77) yields
E(X) = ρ (1 − πs).

Hence, the degree of server utilization is

η =
ρ
s (1 − πs) .

Single-Server Loss System  In case  vacant and loss probability ares = 1

                                  (9.78)π0 =
1

1 + ρ and π1 =
ρ

1 + ρ .

Since ρ = E(Z)/E(Y),

π0 =
E(Y)

E(Y) + E(Z) and π1 =
E(Z)

E(Y) + E(Z) .

Hence,   is formally equal to the stationary availability (nonavailability) of aπ0 (π1)
system with mean lifetime E(Y) and mean renewal time E(Z) the operation of which
is governed by an alternating renewal process (formula (7.14), page 322).

Example 9.16  A 'classical application' (no longer of practical relevance) of loss
models of type M/M/s/0 is a telephone exchange. Assume that the input (calls of
subscribers wishing to be connected) has intensity  Thus, the mean timeλ = 2 [min−1].
between successive calls is On average, each subscriberE(Y) = 1/λ = 0.5 [min].
occupies a line for E(Z) = 1/μ = 3 [min].

1) What is the loss probability in case of  lines?s = 7
The corresponding traffic intensity is  Thus, the loss probability equalsρ = λ/μ = 6.

π7 =
1
7! 67

1 + 6 + 62

2! +
63
3! +

64

4! +
65

5! +
66

6! +
67

7!

= 0.185.

Hence, the mean number of occupied lines is
,E(X) = ρ(1 − π7) = 6 (1 − 0.185) = 4.89

and the degree of server (line) utilization is
η = η(7) = 4.89/7 = 0.698.

2) What is the minimal number of lines which have to be provided in order to make
sure that at least 95% of the desired connections can be made?
The respective loss probabilities for  and  ares = 9 s = 10

π9 = 0.075 and π10 = 0.043.

Hence, the minimal number of lines required is  In this case, however, thes = 10.
degree of server utilization is smaller than with  lines:s = 7

                                                η = η(10) = 0.574.
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It is interesting and practically important that the stationary state probabilities of the
queueing system M/G/s/0 also have the structure (9.76). That is, if the respective
traffic intensities  of the systems M/M/s/0 and M/G/s/0 are equal, then their stationary
state probabilities coincide: for both systems they are given by (9.76). A correspond-
ing result holds for the queueing systems  and . (Compare the station-M/M/∞ M/G/∞
ary state probabilities (9.75) with the stationary state probabilities (7.37) (page 274)
for the -system.)  Queueing systems having this property are said to beM/G/∞
insensitive with respect to the probability distribution of the service. An analogous
property can be defined with regard to the input. In view of (9.78),  the M/M/1/0
-system is insensitive both with  regard  to  arrival and service time distributions ( full
insensitiveness). A comprehensive investigation of the insensitiveness of queueing
systems and other stochastic models is given in the handbook on queueing theory by
Gnedenko, König (1983).

9.7.2.3 Engset's Loss System
Assume that n sources generate n independent Poisson inputs with common intensity

 which are served by s servers,  The service times are independent, exponen-λ , s ≤ n.
tially distributed random variables with parameter µ. As long as a customer from a
particular source is being served, this source cannot produce another customer. (Com-
pare to the repairman problem, example 9.14:  during the repair of a machine, this
machine cannot produce another demand for repair.) A customer which does not find
an available server is lost. Let  denote the number of customers being served atX(t)
time t. Then  is a birth- and death process with state space {X(t), t ≥ 0} Z = {0, 1, ..., s}.
In case   only  sources are active, that is they are able to generate custom-X(t) = j n − j
ers. Therefore, the transition rates of this birth- and death process are

λj = (n − j)λ ; j = 0, 1, 2, ... , s − 1,

μj = jμ ; j = 1, 2, ... , s.
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Inserting these transition rates into (9.60) and (9.61) with  yields the stationaryn = s
state distribution for Engset's loss system

πj =
⎛
⎝

n
j
⎞
⎠ ρ

j

Σ
i=0

s
⎛
⎝

n
i
⎞
⎠ ρ

i
; j = 0, 1, ... , s.

In particular,  and the loss probability  areπ0 πs

π0 =
1

Σ
i=0

s
⎛
⎝

n
i
⎞
⎠ ρ

i
, πs =

⎛
⎝
n
s
⎞
⎠ ρ

s

Σ
i=0

s
⎛
⎝

n
i
⎞
⎠ ρ

i
; j = 0, 1, ... , s.

Engset's loss system is just as the repairman problem considered in example 9.14, a
closed queueing system.

9.7.3 Waiting Systems

9.7.3.1 M/M/s/ -System∞
The Markov chain  which models this system, is defined as follows: If {X(t), t ≥ 0},

 with  then  j servers are busy at time t. If  with , then sX(t) = j 0 ≤ j ≤ s, X(t) = j s > j
servers are busy and  customers are waiting for service. In either case, X(t) is thej − s
total number of customers in the queueing system at time t.  is a birth and{X(t), t ≥ 0}
death process with state space  and transition ratesZ = {0, 1, ...}

λj = λ ; j = 0, 1, ...,

                      (9.79)μj = jμ for j = 0, 1, ... , s ; μj = sμ for j > s.

In what follows it is assumed that
ρ = λ/μ < s.

If   then the arrival intensity  of customers is greater than the maximum serviceρ > s, λ
rate  of the system so that, at least in the longrun, the system cannot cope with theμs
input, and the length of the waiting queue will tend to infinity as   Hence, not →∞.
equilibrium (steady) state between arriving and leaving customers is possible. On the
other hand, the condition   is necessary and sufficient for the existence of a stationary
state distribution, since in this case the corresponding series (9.62) converges and
condition (9.63) is fulfilled.
Inserting the transition rates (9.79) into (9.60) yields

 πj =
ρ j

j ! π0 for j = 0, 1, ... , s − 1,

                                         (9.80)πj =
ρ j

s ! s j−s π0 for j ≥ s.
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The normalizing condition and the geometric series (formula (2.16), page 48) yields
the vacant probability :π0

π0 =
⎡
⎣
⎢ Σ

i=0

s−1 1
i!
ρi +

ρs

(s − 1)! (s − ρ)
⎤
⎦
⎥
−1

.

The probability  that an arriving customer finds all servers busy isπw

πw = Σi=s
∞ πi.

 is called waiting probability, since it is the probability that an arriving customerπw
must wait for service. Making again use of the geometric series yields a simple for-
mula for :πw

                                               (9.81)πw = πs
1 − ρ/s

.

In what follows, all derivations refer to the system in the steady state. If S denotes
the random number of busy servers, then its mean value is

                                       (9.82)E(S) = Σi=0
s−1 iπi + sπw.

From this,
                                                  (9.83)E(S) = ρ .

(The details of the derivation of (9.83)  are  left  as  an  exercise  to  the  reader.)  Also
without proof: Formula (9.83) holds for any -system. Hence the degree ofGI/G/s/∞
server utilization in the -system is  By making use of (9.83), theM/M/s/∞ η = ρ/s.
mean value of the total number  of customers in the system is seen to beX

                          (9.84)E(X) = Σi=1
∞ iπi = ρ

⎡

⎣
⎢1 + s

(s − ρ)2 πs
⎤

⎦
⎥.

Let L denote the random number of customers waiting for service (queue length).
Then the mean queue length is

E(L) = Σi=s
∞ (i − s) πi = Σi=s

∞ iπi − sπw.

Combining  formula with (9.82)  (9.84) yieldsthis −

                                          (9.85)E(L) =
ρ s

(s − ρ)2 πs.

Waiting Time Distribution Let W be the random time a customer has to wait for
service if the service discipline FCFS  in effect. By the total probability ruleis

                              (9.86)P(W > t) = Σi=s
∞ P(W > t X = i) πi.

If a customer enters the system when it is in state  then all servers are busyX = i > s,
so  that  the  current output is a  Poisson  process  with   intensity    The random  eventsμ.
' ' occurs if within t time units after the arrival of a customer the service of atW > t
most   customers  has  been  finished. Therefore,  the probability that the service ofi − s
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precisely k customers,  will be finished in this interval of length t is0 ≤ k ≤ i − s,
(sμ t)k

k!
e−sμ t.

Hence,

P(W > t X = i) = e−sμ t Σ
k=0

i−s (sμ t)k

k!
and, by (9.86)

P(W > t) = e−sμ t Σ
i=s

∞
πi Σ

k=0

i−s (sμ t)k

k!
= π0e−sμ t Σ

i=s

∞ ρi

s!si−s Σ
k=0

i−s (sμ t)k

k!
.

By performing the index transformation   changing the order of summationj = i − s,
according to formula (2.115), page 99, and making use of both the exponential series
and the geometric series (page 48) yield

P(W > t) = π0
ρs

s! e−sμ t Σ
j=0

∞ ⎛
⎝
ρ
s
⎞
⎠

j
Σ

k=0

j (sμ t)k

k!

             = πs e−sμ t Σ
k=0

∞ (sμ t)k

k! Σ
j=k

∞ ⎛
⎝
ρ
s
⎞
⎠

j

= πs e−sμ t Σ
k=0

∞ (λt)k

k! Σ
i=0

∞ ⎛
⎝
ρ
s
⎞
⎠

i
= πs e−sμ t eλt 1

1 − ρ/s
.

Hence, the distribution function of  isW

FW(t) = P(W ≤ t) = 1 − s
s − ρ πs e−μ(s−ρ)t , t ≥ 0.

Note that  is the waiting probability (9.81):P(W > 0)

πw = P(W > 0) = 1 − FW(0) =
s

s − ρ πs.

The mean waiting time of a customer is

                           (9.87)E(W) = ∫0
∞ P(W > t)dt = s

μ (s − ρ)2 πs.

A comparison of (9.85) and (9.87) yields Little's formula or Little's law:

                                              (9.88)E(L) = λE(W ).

Little's formula can be motivated as follows: The mean value of the sum of the wait-
ing times arising in an interval of length  is  On the other hand, the sameτ τE(L).
mean value is given by  since the mean number of customers arriving in anλτE(W),
interval of length  is  Hence,τ λ τ.

τE(L) = λτE(W),

which is Little's formula.
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With  given by (9.84), an equivalent representation  Little's formula is  E(X) of

                                             (9.89)E(X) = λE(T),

where T is the total sojourn time of a customer in the system, i.e., waiting plus
service time  Hence, the mean value of T isT = W + Z.

E(T) = E(W) + 1/μ.

Little's formula holds for any  For a proof of this proposition andGI/G/s/∞−system.
other 'Little type formulas' see Franken et al. (1981).

9.7.3.2  M/G/1/ -System∞
In this single-server system, the service time Z is assumed to have an arbitrary proba-
bility density  and a finite mean   Hence, the corresponding stochasticg(t) E(Z) = 1/μ.
process  describing the development in time of the number of customers{X(t), t ≥ 0}
in the system needs no longer be a homogeneous Markov chain as in the previous
queuing models. However, there exists an embedded homogeneous discrete-time
Markov chain, which can be used to analyze this system (see section 9.4).
The system starts operating at time  Customers arrive according to a homogen-t = 0.
eous Poisson process with positive intensity  Let A be the random number of cus-λ.
tomers, which arrive whilst a customer  being served, andis

{ai = P(A = i); i = 0, 1, ...}

be  its  probability distribution. To determine the , note that the conditional proba-ai
bility that during a service time of length  exactly i new customers arrive isZ = t

(λ t)i

i !
e−λt.

Hence,

ai = ∫
0

∞ (λ t)i

i !
e−λtg(t)dt , i = 0, 1, ... .

This and the exponential series (page 48) yield the z-transform  of A:MA(z)

MA(z) = Σ
i=0

∞
ai zi = ∫

0

∞
e−(λ−λz) t g(t)dt.

Consequently, if   denotes the Laplace transform of  theng(⋅) g(t),

                                          (9.90)MA(z) = g(λ − λz).

By formula (2.112) (page 96), letting as usual  the mean value of A is ρ = λ/μ,

                       (9.91)E(A) = dMA(z)
dz z=1 = −λ

dg(r)
dr r=0

= ρ.
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Embedded Markov Chain Let  be the random time point at which the  cus-Tn n th
tomer leaves the system. If  denotes the number of customers in the system im-Xn
mediately after  then  is a homogeneous, discrete-time Markov chainTn, {X1, X2, ...}
with state space  and one-step transition probabilitiesZ = {0, 1, ...}

          (9.92)pi j = P(Xn+1 = j Xn = i) =
⎧

⎩

⎨
⎪

⎪

aj if i = 0 and j = 0, 1, 2, ...
aj−i+1 if i − 1 ≤ j and i = 1, 2, ...
0 otherwise

for all  This Markov chain is embedded in  sincen = 0, 1, ...; X0 = 0. {X(t), t ≥ 0}

Xn = X(Tn + 0); n = 0, 1, ... .

The discrete-time Markov chain  is irreducible and aperiodic. Hence, on{X0, X1, ...}
condition  it has a stationary state distribution , which can beρ = λ/μ < 1 {π0,π1, ...}
obtained by solving the corresponding system of algebraic equations (8.9) (see page
342): Inserting the transition probabilities  given by (9.92) into (8.9) givespi j

π0 = a0(π0 + π1) ,

                         (9.93)πj = π0 aj +Σi=1
j+1

πi aj−i+1; j = 1, 2, ...

Let  be the z-transform of the state X of the system in the steady state:MX(z)

MX(z) = Σj=0
∞ πj z j.

Then, multiplying (9.93) by  and summing up from  to  yieldsz j j = 0 ∞

MX(z) = π0Σj=0
∞ a j z j +Σj=0

∞ z jΣi=1
j+1

πiaj−i+1

       = π0 MA(z) +MA(z) Σ
i=1

∞
πi zi−1aj−i+1

 = π0 MA(z) +MA(z)
MX(z) − π0

z .

Solving this equation for  yieldsMX(z)

                          (9.94)MX(z) = π0 MA(z)
1 − z

MA(z) − z , z < 1.

To determine  note thatπ0,
MA(1) = MX(1) = 1

and

lim
z↑1

MA(z) − z
1 − z = lim

z↑1

⎛
⎝1 +

MA(z) − 1
1 − z

⎞
⎠ = 1 − dMA(z)

dz z=1 = 1 − ρ.

Therefore, by letting  in (9.94),z ↑ 1
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                                              (9.95)π0 = 1 − ρ.

Combining (9.90), (9.94), and (9.95) yields the Formula of  Pollaczek-Khinchin :

                         (9.96)MX(z) = (1 − ρ)
1 − z

1 − z
g(λ − λz))

, z < 1.

According to its derivation, this formula gives the z-transform of the stationary dis-
tribution of the random number X of customers in the system immediately after the
completion of a customer's service. In view of the homogeneous Poisson input, it is
even the stationary probability distribution of the 'original' Markov chain {X(t), t ≥ 0}
itself. Thus, X is the random number of customers at the system in its steady state. Its
probability distribution  exists and is solution of (9.93). Hence, numer-{π0,π1, ...}
ical parameters as mean value and variance of the number of customers in the system
in the steady state can be determined by (9.96) via formulas (2.112), page 96. For
instance, the mean number of customers in the system is 

                   (9.97)E(X) = dMX(z)
dz z=1 = ρ +

λ2[(E(Z))2 + Var(Z)]
2 (1 − ρ) .

Sojourn Time Let T be the time a customer spends in the system (sojourn time) if
the FCFS-queueing discipline is in effect. Then T has structure

T = W + Z,
where W is the time a customer has to wait for service (waiting time). Let  and  FT(t)

 be the respective distribution functions of T and W and  and  theFW(t) fT(t) fW(t)
corresponding densities with Laplace transforms  and . Since W and Zf T(r) fW (r)
are independent,

                                          (9.98)f T(r) = f W (r)g(r) .

The number of customers in the system after the departure of a served one is equal to
the number of customers which arrived during the sojourn time of this customer.
Hence, analogously to the structure of the , the probabilities  are given byai πi

πi = ∫
0

∞ (λ t)i

i !
e−λ t fT (t)dt ; i = 0, 1, ... .

The corresponding z-transform  of X or, equivalently, the z-transform of theMX(z)
stationary distribution  is  (compare to the derivation of (9.90)){π0,π1, ...}

MX(z) = f T (λ − λ z) .

Thus, by (9.98),
MX(z) = f W (λ − λz)g(λ − λz).
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This formula and (9.96) yields the Laplace transform of   :fW(r)

f W (r) = (1 − ρ) r
λg(r) + r − λ

.

By formulas (2.62) and (2.119),  and  can be determined from :E(W) Var(W) f W (r)

                                  (9.99)E(W) =
λ [(E(Z))2 + Var(Z)]

2 (1 − ρ) ,

Var(W) =
λ2 [(E(Z))2 + Var(Z)]2

4 (1 − ρ)2 +
λE(Z3)
3 (1 − ρ) .

The random number of busy servers S has the stationary distribution
P(S = 0) = π0 = 1 − ρ, P(S = 1) = 1 − π0 = ρ

so that                                                     E(S) = ρ.

The queue length is  Hence, by (9.97),L = X − S.

                                 (9.100)E(L) = λ2[(E(Z))2 + Var(Z)]
2 (1 − ρ) .

Comparing (9.99) and (9.100) verifies Little's formula (9.88):

E(L) = λE(W).

Example 9.17 The use of the formula of  is illustrated by assum-Pollaczek-Khinchin
ing that Z has an exponential distribution:

g(t) = μ e−μt, t ≥ 0.
By example 2.26 (page 101), the Laplace transform of  isg(t)

g(r) =
μ

r + μ so that g(λ − λz) = g(λ(1 − z)) =
μ

λ(1 − z) + μ .

Inserting this in (9.96) gives

                 MX(z) = (1 − ρ)μ
1 − z

μ − z [λ(1 − z) + μ]

                                 = (1 − ρ)μ 1 − z
μ(1 − z) − z [λ(1 − z)] = (1 − ρ)μ

1
μ − λ z

so that by the exponential series (2.19) (page 48),

MX(z) = (1 − ρ)
1

1 − ρ z = Σ
i=0

∞
(1 − ρ)

ρi

i !
zi.

Hence, by the exponential series (2.19) (page 48),

pi = (1 − ρ)
ρi

i !
; i = 0, 1, ... .

This confirms the result (9.80) for the M/M/s/ -system with                             ∞ s = 1.
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9.7.3.3 GI/M/1/ -System∞
In this single-server system, the interarrival times are given by an ordinary renewal
process  where the  are identically distributed as Y with probability{Y1, Y2, ...}, Yi
density  and finite mean value  The service times are identicallyfY(t) E(Y) = 1/λ.
exponentially distributed with parameter  A customer leaves the system immediate-μ.
ly after completion of its service. If an arriving customer finds the server busy, it
joins the queue. The stochastic process , describing the development of{X(t), t ≥ 0}
the number of customers in the system in time, needs not be a homogeneous Markov
chain. However, as in the previous section, an embedded homogeneous discrete-time
Markov chain can be identified: The  th customer arrives at timen

Tn = Σi=1
n Yi; n = 1, 2, ...

Let  denote the number of customers in the station immediately before arrival ofXn
the  customer (being served or waiting). Then,  The(n + 1) th 0 ≤ Xn ≤ n, n = 0, 1, ...
discrete-time stochastic process  is a Markov chain with parameter space{X0, X1, ...}

 and state space  Given that the system starts operating atT = {0, 1, ...} Z = {0, 1, ...}.
time  the initial distribution of this discrete-time Markov chain ist = 0, P(X0 = 0) = 1.

For obtaining the transition probabilities of  let  be the number of cus-{X0, X1, ...}, Dn
tomers leaving the station in the interval  of length  Then,[Tn, Tn+1) Yn+1.

Xn = Xn−1 −Dn + 1 with 0 ≤ Dn ≤ Xn ; n = 1, 2, ....
By theorem 7.2, on condition  the random variable  has a Poisson distri-Yn+1 = t, Dn
bution with parameter  if the server is busy throughout the interval μt [Tn, Tn+1).
Hence, for  and i ≥ 0 1 ≤ j ≤ i + 1,

    P(Xn = j Xn−1 = i, Yn+1 = t) =
(μ t)i+1−j

(i + 1 − j)!
e−μt; n = 1, 2, ....

Consequently the one-step transition probabilities
pi j = P(Xn = j Xn−1 = i); i, j ∈ Z; n = 1, 2, ...

of the Markov chain  are{X0, X1, ...}

pi j = ∫
0

∞ (μ t)i+1−j

(i + 1 − j)!
e−μt fY(t)dt ; 1 ≤ j ≤ i + 1.

The normalizing condition yields

pi 0 = 1 − Σj=1
i+1 pi j.

The transition probabilities  do not depend on n so that  is a homo-pi j {X0, X1, ...}
geneous Markov chain. It is embedded in the original state process  since{X(t), t ≥ 0}

Xn = X(Tn+1 − 0) ; n = 0, 1, ... .

Based on the embedded Markov chain , a detailed analysis of the queue-{X0, X1, ...}
ing system GI/M/1/  can be carried out analogously to the one of system M/G/1/ .∞ ∞
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9.7.4    Waiting-Loss Systems

9.7.4.1  M/M/s/m-System
This system has s servers and waiting capacity for m customers,  A potentialm ≥ 1.
customer, which at arrival finds no idle server and the waiting capacity occupied, is
lost, that is such a customer leaves the system immediately after arrival.
The number of customers X(t) in the system at time t generates a birth- and death
process  with state space  and transition rates{X(t), t ≥ 0} Z = {0, 1, ..., s + m}

λj = λ, 0 ≤ j ≤ s +m − 1,

                     μj =
⎧

⎩
⎨

jμ for 1 ≤ j ≤ s,
sμ for s < j ≤ s +m.

According to (9.60) and (9.61), the stationary state probabilities are

                πj =
⎧

⎩
⎨
⎪
⎪

1
j ! ρ

j π0 for 1 ≤ j ≤ s − 1,
1

s! s j−s ρ
j π0 for s ≤ j ≤ s +m.

    π0 =
⎡

⎣
⎢ Σ

j=0

s−1 1
j! ρ

j + Σ
j=s

s+m 1
s! s j−s ρ

j ⎤

⎦
⎥
−1

.

The second series in  can be summed up to obtainπ0

                  π0 =

⎧

⎩

⎨

⎪

⎪

⎪

⎪

⎡

⎣
⎢ Σ

j=0

s−1 1
j! ρ

j + 1
s! ρ

s 1−(ρ /s)m+1

1−ρ /s
⎤

⎦
⎥
−1

for ρ ≠ s,

⎡

⎣
⎢ Σ

j=0

s−1 1
j! ρ

j + (m + 1) ss

s!
⎤

⎦
⎥
−1

for ρ = s.

The vacant probability  is the probability that there is no customer in the systemπ0
and  is the loss probability, i.e., the probability that an arriving customer is lostπs+m
(rejected). The respective probabilities  and  that an arriving customer finds aπf πw
free (idle) server or waits for service are

πf = Σ
i=0

s−1
πi , πw = Σ

i=s

s+m−1
πi.

Analogously  the loss system M/M/s/0, the mean number of busy servers isto
E(S) = ρ (1 − πs+m).

Thus, the degree of server utilization is
η = ρ (1 − πs+m) /s .
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In the following example, the probabilities  and , which refer to a queueingπ0 πs+m
system with s servers and waiting capacity for m customers, are denoted as

 and  π0(s, m) πs+m(s, m),

respectively.

Example 9.18  A filling station has  petrol pumps and waiting capacity for s = 8 m = 6
cars. On average, 1.2 cars arrive at the filling station per minute. The mean time a car
occupies a petrol pump is 5 minutes. It is assumed that the filling station behaves like
an M/M/s/m-queueing system. Since  and   the traffic intensity is λ = 1.2 μ = 0.2, ρ = 6.
The corresponding loss probability  isπ14 = π14(8, 6)

π14(8, 6) = 1
8! 86 614 π0(8, 6) = 0.0167.

From the normalizing condition,

π0(8, 6) =
⎡

⎣
⎢ Σ

j=0

7 1
j! 6 j + 1

8! 68 1 − (6 /8)7

1 − 6 /8
⎤

⎦
⎥
−1

                      = 0.00225.

Consequently, the average number of occupied petrol pumps is
E(S) = 6 ⋅ (1 − 0.0167) = 5.9.

After having obtained these figures, the owner of the filling station considers 2 from
the 8 petrol pumps superfluous and has them pulled down. It is assumed that this
change does not influence the input flow so that cars continue to arrive with traffic
intensity . The corresponding loss probability  becomesρ = 6 π12 = π12(6, 6)

π12(6, 6) = 66

6! π0(6, 6) = 0.1023 .

Thus, about 10% of all arriving cars leave the station without having filled up. To
counter this drop, the owner provides waiting capacity for another 4 cars so that

. The corresponding loss probability  ism = 10 π16 = π16(6, 10)

 π16(6, 10) = 66

6! π0(6, 10) = 0.0726.

Formula

      π6+m(6, m) = 66

6!
⎡

⎣
⎢ Σ

j=0

5 1
j! 6 j + (m + 1) 66

6!
⎤

⎦
⎥
−1

yields that additional waiting capacity for 51 cars has to be provided to equalize the
loss caused by reducing the number of pumps from 8 to 6. So, the decision of the
owner to pull down two of the pumps was surely not helpful.                                    
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9.7.4.2 M/M/s/ -System with Impatient Customers∞
Even if there is waiting capacity for arbitrarily many customers, some customers
might leave the system without having been served. This happens when customers
can only spend a finite time, their patience time, in the queue. If the service of a cus-
tomer does not begin before its patience time expires, the customer leaves the system.
For example, if somebody, whose long-distance train will depart in 10 minutes, has
to wait 15 minutes to buy a ticket, then this person will leave the counter without a
ticket. Real time monitoring and control systems have memories for data to be
processed. But these data 'wait' only as long as they are up to date. Bounded waiting
times are also typical for packed switching systems, for instance in computer-aided
booking systems. Generally one expects that 'intelligent' customers adopt their behav-
ior to the actual state of the queueing system. Of the many available models dealing
with such situations, the following one is considered in some detail:
Customers arriving at an -system have independent, exponentially with pa-M/M/s/∞
rameter  distributed patience times. If X(t) as usual denotes the number of customersν
in the system at time t, then  is a birth and death process with transition{X(t), t ≥ 0}
rates

λj = λ ; j = 0, 1, ...,

μj =
jμ for j = 1, 2, ... , s,
sμ + (j − s)ν for j = s, s + 1, ...

.

If then  whereas the birth rate remains constant. Hence the sufficientj →∞, μj →∞,
condition for the existence of a stationary distribution stated in theorem 9.3 (page 419)
is fulfilled. Once the queue length exceeds a certain level, the number of customers
leaving the system is on average greater than the number of arriving customers per
unit time. That is, the system is self-regulating, aiming at reaching the equilibrium
state. Now formulas (9.60) and (9.61) yield the corresponding stationary state proba-
bilities:

πj =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1
j ! ρ

j π0 for j = 1, 2, ... , s
ρ s

s!
λ j−s

Π
i=1

j−s
(sμ+ iν)

π0 for j = s + 1, .s + 2, ...

π0 =

⎡

⎣

⎢
⎢

⎢

⎢
⎢
Σ
j=0

s 1
j ! ρ

j + ρ s

s! Σ
j=s+1

∞ λj−s

Π
i=1

j−s
(sμ+ iν)

⎤

⎦

⎥
⎥

⎥

⎥
⎥

−1

.

Let L denote the random length of the queue in the steady state. Then,

E(L) = Σj=s+1
∞ ( j − s) πj.
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Inserting the  yields after some algebraπj

E(L) = πs Σ
j=1

∞
jλ j ⎡

⎣
⎢Π

i=1

j
(sμ + iν)

⎤

⎦
⎥
−1

.

In this model, the loss probability   is not strictly associated with the number of cus-πv
tomers in the system. It is the probability that a customer leaves the system without
having been served, because its patience time has expired. Therefore,  is the1 − πv
probability that a customer leaves the system after having been served. By applying
the total probability rule with the exhaustive and mutually exclusive set of random
events ' ';  one obtainsX = j j = s, s + 1, ...,

E(L) = λ
ν πv.

Thus, the mean queue length is directly proportional to the loss probability (com-
pare to Little's formula (9.88)).

Variable Arrival Intensity  Finite waiting capacities and patience times imply that
in the end only a 'thinned flow' of potential customers will be served. Thus, it seems
to be appropriate to investigate queueing systems, whose arrival (input) intensities
depend on the state of the system. Those customers, however, which actually enter
the system do not leave it without service. Since the tendency of customers to leave
the system immediately after arrival increases with the number of customers in the
system, the birth rates should decrease for  as  j tends to infinity. This propertyj ≥ s
have, for example,  for  the birth ratesα ≥ 0

                   λj =
⎧

⎩
⎨
⎪
⎪

λ for j = 0, 1, ... , s − 1,
s

j+α λ for j = s, s + 1, ... .

9.7.5 Special Single-Server Queueing Systems

9.7.5.1 System with Priorities
A single-server queueing system with waiting capacity for  customer is subjectm = 1
to two independent Poisson inputs 1 and 2 with respective intensities  and  Theλ1 λ2.
corresponding customers are called type 1- and type 2-customers. Type 1-customers
have absolute (preemptive) priority, i.e. when a type 1- and a type 2-customer are in
the system, the type 1-customer is being served. Thus, the service of a type 2-custom-
er is interrupted as soon as a type 1-customer arrives. The displaced customer will
occupy the waiting facility if it is empty. Otherwise it leaves the system. A waiting
type 2-customer also has to leave the system when a type 1-customer arrives, since
the newcomer will occupy the waiting facility. (Such a situation can only happen
when a type 1-customer is being served.) An arriving type 1-customer is lost only
then when both server and waiting facility are occupied by other type 1-customers.
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Thus, if only the number of type 1-customers in the system is of interest, then this
priority queueing system becomes the waiting-loss system  M/M/s/1 with  sinces = 1,
type 2-customers have no impact on the service of type 1-customers at all. The service
times of type 1- and type 2-customers are assumed to have exponential distributions
with respective parameters  and . The state space of the system is representedμ1 μ2
in the form

Z = {(i, j); i, j = 0, 1, 2},

where i denotes the number of type 1-customers and  j the number of type 2-custom-
ers in the system. Note that if X(t) denotes the system state at time t, the stochastic
process can be treated as a one-dimensional Markov chain, since scalars{X(t), t ≥ 0}
can be assigned to the six possible system states, which are given as two-component
vectors. The Markov chain is, however, not a birth- and death process.{X(t), t ≥ 0}
Figure 9.14 shows its transition graph.
According to (9.28), the stationary state probabilities satisfy the system of equations

(λ1 + λ2) π(0,0) = μ1π(1,0) + μ2π(0,1)

(λ1 + λ2 + μ1) π(1,0) = λ1π(0,0) + μ1π(2,0)

(λ1 + λ2 + μ2) π(0,1) = λ2π(0,0) + μ1π(1,1) + μ2 π(0,2)

(λ1 + μ1) π(1,1) = λ2π(1,0) + λ1π(0,1) + λ1 π(0,2)

μ1 π(2,0) = λ1π(1,0) + λ1π(1,1)

(λ1 + μ2) π(0,2) = λ2π(0,1)

π(0,0) + π(1,0) + π(0,1) + π(1,1) + π(2,0) + π(0,2) = 1.

m = 0  Since there is no waiting capacity, each customer, notwithstanding its type, is
lost if the server is busy with a type 1-customer. In addition, a type 2-customer is lost
if, while being served, a type 1-customer arrives. The state space is

Z = {(0, 0), (0, 1), (1, 0)}.
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Figure 9.15 shows the transition rates. The corresponding system (9.27) for the sta-
tionary state probabilities is

(λ1 + λ2) π(0,0) = μ1π(1,0) + μ2 π(0,1)

μ1 π(1,0) = λ1π(0,0) + λ1π(0,1)

1 = π(0,0) + π(1,0) + π(0,1).
The solution is

π(0,0) =
μ1(λ1 + μ2)

(λ1 + μ1)(λ1 + λ2 + μ2)
,

     π(0,1) =
λ2 μ1

(λ1 + μ1)(λ1 + λ2 + μ2)
, π(1,0) =

λ1
λ1 + μ1

.

 is the loss probability for type 1-customers. It is simply the probability that theπ(1,0)
service time of type 1-customers is greater than their interarrival time. On condition
that at the arrival time of a type 2-customer the server is idle, this customer is lost if
and only if during its service a type 1-customer arrives. The conditional probability
of this event is

∫0
∞ e−μ2 t λ1 e−λ1t dt = λ1∫0

∞ e−(λ1+μ2 ) tdt =
λ1

λ1 + μ2
.

Therefore, the (total) loss probability for type 2-customers is

πl =
λ1

λ1 + μ2
π(0,0) + π(0,1) + π(1,0).

Example 9.19 Let  Then the stationary stateλ1 = 0.1, λ2 = 0.2, and μ1 = μ2 = 0.2.
probabilities are

π(0,0) = 0.2105, π(0,1) = 0.3073, π(1,0) = 0.0085,

π(1,1) = 0.1765, π(0,2) = 0.2048, π(2,0) = 0.0924 .

In case , with the same numerical values for the transition rates,m = 0
π(0,0) = 0.4000 , π(1,0) = 0.3333 , π(0,1) = 0.2667 .

The loss probability for type 2-customers is                                          πl = 0.7333 .
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9.7.5.2 M/M/1/m-System with Unreliable Server
If the implications of server failures on the system performance are not negligible,
server failures have to be taken into account when building up a mathematical model.
Henceforth, the principal approach is illustrated by a single-server queuing system
with waiting capacity for m customers, Poisson input, and independent, identically
distributed exponential service times with parameter µ. The lifetime of the server is
assumed to have an exponential distribution with parameter , both in its busy phaseα
and in its idle phase, and the subsequent renewal time of the server is assumed to be
exponentially distributed with parameter . It is further assumed that the sequence ofβ
life- and renewal times of the server can be described by an alternating renewal pro-
cess. When the server fails, all customers leave the system, i.e., the customer being
served and the waiting customers if there are any are lost. Customers arriving during
a renewal phase of the server are rejected, i.e., they are lost, too.
The stochastic process  describing the behaviour of the system is charac-{X(t), t ≥ 0}
terized  follows:as

  X(t) = j if there are j customers in the system at time t ; j = 0, 1, ... , m + 1
m + 2 if the server is being renewed at time t

.

Its transition rates are (Figure 9.16):
   qj,j+1 = λ ; j = 0, 1, ... , m

                                  (9.101)qj, j−1 = μ; j = 1, 2, ... , m + 1

   qj,m+2 = α; j = 0, 1, ... m + 1

                           qm+2,0 = β .

By (9.28), the stationary state probabilities satisfy the system of equations

(α + λ)π0 = μπ1 + βπm+2

                                       (9.102)(α + λ + μ) πj = λπj−1 + μπj+1 ; j = 1, 2, ... , m

(α + μ)πm+1 = λπm

βπm+2 = απ0 + απ1 + . .. + απm+1.
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The last equation is equivalent to  Hence,βπm+2 = α (1 − πm+2).

πm+2 =
α

α + β .

Now, starting with the first equation in (9.102), the stationary state probabilities of
the system  can be successively determined. The probability  is asπ1,π2, ... ,πm+1 π0
usual obtained from the normalizing condition

                                                               (9.103)Σi=0
m+2 πi = 1.

For the corresponding loss system , the stationary state probabilities are(m = 0)

 π0 =
β (α + μ)

(α + β)(α + λ + μ) , π1 =
βλ

(α + β)(α + λ + μ) , π2 =
α

α + β .

Modification of the Model  It makes sense to assume that the server can only fail if
it is busy. In this case,

qj,m+2 = α for j = 1, 2, ... , m + 1.

The other transition rates given by (9.101) remain valid. Thus, the corresponding
transition graph is again given by Figure 9.16 with the arrow from node 0 to node 

 deleted. The stationary state probabilities satisfy the system of equationsm + 2
 λπ0 = μπ1 + βπm+2

                  (9.104)(α + λ + μ) πj = λπj−1 + μπj+1 ; j = 1, 2, ... , m

(α + μ)πm+1 = λπm

βπm+2 = απ1 + απ2 + . .. + απm+1.

The last equation is equivalent to  It followsβπm+2 = α(1 − π0 − πm+2).

πm+2 =
α

α + β (1 − π0).

Starting with the first equation in (9.104), the solution  can beπ0,π1,π2, ... ,πm+1
obtained as above. In case  the stationary state probabilities arem = 0

  π0 =
β(α + μ)

β(α + μ) + λ(α + β) , π1 =
λβ

β(α + μ) + λ(α + β) , π2 =
αλ

β(α + μ) + λ(α + β) .

Comment  It is interesting that this queueing system with unreliable server can be
interpreted as a queueing system with priorities and absolutely reliable server. To see
this, a failure of the server has to be declared as the arrival of a 'customer' with abso-
lute priority. The service provided to this 'customer' consists in the renewal of the ser-
ver. Such a 'customer' pushes away any other customer from the server, in this model
even from the waiting facility. Hence it is not surprising that the theory of queueing
systems with priorities also provides solutions for more complicated queuing systems
with unreliable servers than the one considered in this section.
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9.7.6  Networks of Queueing Systems

9.7.6.1 Introduction
Customers frequently need several kinds of service so that, after leaving one service
station, they have to visit one or more other service stations in a fixed or random
order. Each of these service stations is assumed to behave like the basic queueing
system sketched in Figure 9.12. A set of queueing systems together with rules of their
interactions is called a network of queueing systems or a queueing network. Typical
examples are technological processes for manufacturing (semi-) finished products. In
such a case the order of service by different queueing systems is usually fixed. Queu-
ing systems are frequently subject to several inputs, i.e., customers with different ser-
vice requirements have to be attended. In this case they may visit the service stations
in different orders. Examples of such situations are computer and communication
networks. Depending on whether and how data are to be provided, processed, or
transmitted, the terminals (service stations) will be used in different orders. If techni-
cal systems have to be repaired, then, depending on the nature and the extent of the
damage, service by different production departments within a workshop is needed.
Transport and loading systems also fit into the scheme of queueing networks.
Using a concept from graph theory, the service stations of a queueing network are
called nodes. In an open queueing network customers arrive from 'outside' at the sys-
tem (external input). Each node may have its own external input. Once in the system,
customers visit other nodes in a deterministic or random order before leaving the
network. Thus, in an open network, each node may have to serve external and inter-
nal customers, where internal customers are the ones which arrive from other nodes.
In closed queueing networks there are no external inputs into the nodes, and the total
number of customers in the network is constant. Consequently, no customer departs
from the network. Queueing networks can be represented by directed graphs. The
directed edges between the nodes symbolize the possible transitions of customers
from one node to another. The nodes in the network are denoted by  Node i1, 2, ..., n.
is assumed to have  servers; si 1 ≤ si ≤ ∞.

9.7.6.2 Open Queueing Networks
A mathematically exact analysis of queueing systems becomes extremely difficult or
even impossible when dropping the assumptions of Poisson input and/or exponential-
ly distributed service times. Hence, this section is restricted to a rather simple class
of queueing networks, the Jackson queueing networks. They are characterized by four
properties:
1)  Each node has an unbounded waiting capacity.
2) The service times of all servers at node i are independent, identically distributed
exponential random variables with parameter (intensity)  They are also independ-μi.
ent of the service times at other nodes.
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3) External customers arrive at node i in accordance with a homogeneous Poisson
process with intensity . All external inputs are independent of each other and of allλi
service times.
4) When the service of a customer at node i has been finished, the customer makes a
transition to node j with probability  or leaves the network with probability pi j ai.
The transition or routing matrix

P = ((pi j))

is independent of the current state of the network and of its past.

Let I be the identity matrix. The matrix  is assumed to be nonsingular so that theI − P
inverse matrix   exists. According to the definition of the  and (I − P)−1 ai pi j,

                                                             (9.105)ai +Σj=1
n pi j = 1 .

In a Jackson queueing network, each node is principally subjected to both external
and internal input. Let  be the total input (arrival) intensity at node j. In the steadyαj
state,  must be equal to the total output intensity from node j. The portion of inter-αj
nal input intensity to node j, which is due to customers from node i, is  Thus,αi pi j.

Σi=1
n αi pi j

is the total internal input intensity to node . Consequently, in the steady state,j

                                             (9.106)αj = λj +Σi=1
n αi pi j ; j = 1, 2, ... , n .

By introducing vectors
  α = (α1,α2, ... ,αn) and λ = (λ1,λ2, ... ,λn),

 the relationship (9.106) can be written as
α(I − P) = λ .

Since  is assumed to be nonsingular, the vector of the total input intensities α isI − P
                                          (9.107)α = λ (I − P)−1.

Even under the assumptions stated, the total inputs at the nodes and the outputs from
the nodes are generally nonhomogeneous Poisson processes.
Let  be the random number of customers at node i at time t. Its realizations areXi(t)
denoted as  The random state of the network at time t is characterizedxi; xi = 0, 1, ....
by the vector  with realizations  TheX(t) = (X1(t), X2(t), ... , Xn(t)) x = (x1, x2, ... , xn).
set of all these vectors x forms the state space of the Markov chain {X(t), t ≥ 0}.
Using set-theory notation, the state space is denoted as  i.e., Z is theZ = {0, 1, ...}n,
set of all those n-dimensional vectors the components of which assume nonnegative
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integers. Since Z is countably infinite, this at first glance n-dimensional Markov
chain becomes one-dimensional by arranging the states as a sequence.
To determine the transition rates of  the n-dimensional vector  is{X(t), t ≥ 0}, ei
introduced. Its i th component is a 1 and the other components are zeros:

                                   (9.108)ei = (0, 0, ... , 0, 1, 0, ... , 0) .
     1 2 . .. i . .. n

Thus,  is the i th row of the identity matrix I. Since the components of any stateei
vector x are nonnegative integers, each x can be represented as a linear combination
of all or some of the  In particular,  is the vector whiche1, e2, ... , en. x + ei (x − ei)
arises from x by increasing (decreasing) the i th component by 1. Starting from state
x, the Markov chain  can make the following one-step transitions:{X(t), t ≥ 0}

1) When a customer arrives at node i, the Markov chain makes a transition to state
.x + ei

2) When a service at node i is finished, , and the served customer leaves thexi > 0
network, the Markov chain makes a transition to state  .x − ei

3) When a service at node i with  is finished and the served customer leavesxi > 0
node i for node  j, the Markov chain makes a transition to state x − ei + ej.

Therefore, starting from state , the transition rates arex = (x1, x2, ..., xn)

qx,x+ei = λi

qx,x−ei = min(xi, si) μi ai

qx,x−ei+ej = min(xi, si) μi pi j, i ≠ j.
In view of (9.105),

Σ
j, j≠i

pi j = 1 − pii − ai.

Hence, the rate of leaving state  isx

qx = Σi=1
n λi +Σi=1

n μi (1 − pii) min(xi, si).

According to (9.28), the stationary state probabilities

πx = lim
t→∞

P(X(t) = x), x ∈ Z,

provided they exist, satisfy the system of equations

qx πx = Σi=1
n λi πx−ei +Σi=1

n ai μi min(xi + 1, si) πx+ei

                 (9.109)+Σj=1
n Σi=1

i≠j

n ai μi min(xi + 1, si)pi j πx+ei−ej .
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In order to be able to present the solution of this system in a convenient form, recall
that the stationary state probabilities of the waiting system  with parame-M/M/si/∞
ters   and  denoting in this order the intensity of the Poisson input,αi, μi, ρi = αi/μi
the service intensities of all servers, and the traffic intensity of the system are given
by (see formula (9.80)), 

ϕi( j) =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1
j ! ρi

j ϕi(0) for j = 1, 2 , ... , si − 1,

1
si! si

j−si
ρi

j ϕi(0) for j = si, si + 1, ...,
ρi < si,

ϕi(0) =
⎡

⎣
⎢⎢⎢ Σj=0

si−1 1
j ! ρi

j +
ρi

si

(si − 1)! (si − ρi)

⎤

⎦
⎥⎥⎥

−1

, ρi < si.

(In the context of queueing networks, the notation  for the stationary state proba-ϕi(⋅)
bilities is common practice.) The stationary state probabilities of the queueing net-
work are simply obtained by multiplying the corresponding state probabilities of the
queuing systems :M/M/si/∞, i = 1, 2, ...n

     If the vector of the total input intensities  given by (9.106)       α = (α1,α2, ... ,αn)
     satisfies the conditions  then the stationary probability      αi < siμi, i = 1, 2, ..., n,
     of state  isx = (x1, x2, ... , xn)

                                   (9.110)πx = Πi=1
n ϕi(xi) , x ∈ Z .

Thus, the stationary state distribution of a Jackson queueing system is given in prod-
uct form. This implies that each node of the network behaves like an -sys-M/M/si/∞
tem. However, the nodes need not be queueing systems of this type because the
process  is usually not a birth and death process. In particular, the total{Xi(t), t ≥ 0}
input into a node need not be a homogeneous Poisson process. But the product form
(9.110) of the stationary state probabilities proves that the queue lengths at the nodes
in the steady state are independent random variables. There is a vast amount of litera-
ture dealing with assumptions under which the stationary distribution of a queueing
network has the product form (see, for instance, van Dijk (1983)).
To verify that the stationary state distribution indeed has the product form (9.110),
one has to substitute (9.110) into the system of equations (9.109). Using (9.105) and
(9.106), one obtains an identity after some tedious algebra.

Queueing Networks with Feedback The simplest Jackson queueing network arises if
 The only difference from the queueing system  is that now a positiven = 1. M/M/s/∞

proportion of customers, who have departed from the network after having been
served, will return and require further service. This leads to a queueing system with
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feedback (Figure 9.17). For instance, when servers have done a bad job, the affected
customers  will  soon  return  to  exercise possible guarantee claims.  Formally, these
customers remain in the network. Roughly speaking, a single-node Jackson queueing
network is a mixture between an open and a closed waiting system. A customer leaves
the system with probability a or reenters the system with probability  Ifp11 = 1 − a.
there is an idle server, then, clearly, the service of such a customer starts immediately.
From (9.105) and (9.106), the total input rate  into the system satisfiesα

α = λ + α(1 − a).
(The index 1 is deleted from all system parameters.) Thus,

α = λ/a.
Hence there exists a stationary distribution if

  λ/a < sμ or, equivalently, if ρ = λ/μ < a s.

In this case the stationary state probabilities are

         πj =

⎧

⎩

⎨
⎪

⎪

⎪
⎪

1
j !
⎛
⎝
ρ
a
⎞
⎠

j
π0 for j = 1, 2, ... , s − 1,

1
s ! s j−s

⎛
⎝
ρ
a
⎞
⎠

j
π0 for j = s, s + 1, ... ,

where

π0 =
⎡

⎣

⎢
⎢

⎢
Σ
j=1

s−1 1
j !
⎛
⎝
ρ
a
⎞
⎠

j
+

⎛
⎝
ρ
a
⎞
⎠

s

(s − 1)! ⎛⎝s −
ρ
a
⎞
⎠

⎤

⎦

⎥
⎥

⎥

−1

.

Interestingly, this is the stationary state distribution of the queueing system M/M/s/∞
(without feedback), the input of which has intensity λ/a.
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Sequential Queueing Networks  In technological processes, the sequence of service
is usually fixed. For example,  a  'customer'  may be a car being manufactured on an
assembly line. Therefore, queueing systems switched in series, called sequential
queueing networks or tandem queueing networks, are of considerable practical
interest: External customers arrive only at node 1 (arrival intensity: ). They sub-λ1
sequently visit in this order the nodes 1, 2, ..., n  and then leave the network.

The corresponding parameters  (Figure 9.18):are

λi = 0; i = 2, 3, ... , n
pi ,i+1 = 1; i = 1, 2, ... , n − 1

a1 = a2 = . .. = an−1 = 0 , an = 1.

According to (9.106), the (total) input intensities of all nodes in the steady state must
be the same:

λ1 = α1 = α2 = . .. = αn.

Hence, for single-server nodes  a stationary state distribution(si = 1; i = 1, 2, ..., n),
exists if

ρi = λ1/μi < 1 ; i = 1, 2, ... , n,

or, equivalently, if
λ1 < min(μ1,μ2, ... ,μn).

Thus, the slowest server determines the efficiency of a sequential network. The sta-
tionary probability of state  isx = (x1, x2, ..., xn)

πx = Π
i=1

n
ρi

xi (1 − ρi) ; x ∈ Z .

The sequential network can be generalized by taking feedback into account. This is
left as an exercise to the reader.                                                                                   

Example 9.20  Defective robots arrive at the admission's department of a mainte-
nance workshop in accordance with a homogeneous Poisson process with intensity

 In the admissions department (denoted as (1)) a first failure diagnosisλ = 0.2 [h−1].
is done. Depending on the result, the robots will have to visit other departments of
the workshop. These are departments for checking and repairing the mechanics (2),
electronics (3), and software (4) of the robots, respectively. The failure diagnosis in
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the admissions department results in 60% of the arriving robots being sent to depart-
ment (2) and 20% each to the departments (3) and (4). After having being maintained
in department (2), 60% of the robots leave the workshop, 30% are sent to department
(3), and 10% to department (4). After having being served by department (3), 70% of
the robots leave the workshop, 20% are sent to department (2), and 10% are sent to
department (4). After elimination of possible software failures all robots leave the
workshop. A robot can be sent several times to one and the same department.
The following transition probabilities result from the transfer of robots between the
departments:

p12 = 0.6 , p13 = 0.2 , p14 = 0.2,
p23 = 0.3, p24 = 0.1,

p32 = 0.2 , p34 = 0.1.

The service intensities are assumed to be
μ1 = 1, μ2 = 0.45, μ3 = 0.4, μ4 = 0.1 [h−1].

The graph plotted in Figure 9.19 illustrates the possible transitions between the
departments. The edges of the graph are weighted by the corresponding transition
probabilities. The system of equations (9.106) in the total input intensities is

                                 α1 = 0.2

 α2 = 0.6α1 + 0.2α3

 α3 = 0.2α1 + 0.3α2

 α4 = 0.2α1 + 0.1α2 + 0.1α3.

The solution is (after rounding)

α1 = 0.20, α2 = 0.135, α3 = 0.08, α4 = 0.06.
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The corresponding traffic intensities   areρi = αi /μi

 ρ1 = 0.2, ρ2 = 0.3, ρ3 = 0.2, ρ4 = 0.6.

From (9.110), the stationary probability of state  for single-serverx = (x1, x2, ..., xn)
nodes is

πx = Πi=1
4 ρxi (1 − ρi)

or               πx = 0.1792 (0.2)x1 (0.3)x2 (0.2)x3 (0.6)x4 ; x ∈ Z = {0, 1, ... }4 .

In particular, the stationary probability that there is no robot in the workshop is
πx0 = 0.1792,

where  Let  denote the random number of robots at node i in thex0 = (0, 0, 0, 0). Xi
steady state. Then the probability that, in the steady state, there is at least one robot
in the admissions department is

P(X1 > 0) = 0.8Σi=1
∞ (0.2)i = 0.2.

Analogously
P(X2 > 0) = 0.3, P(X3 > 0) = 0.2, and P(X4 > 0) = 0.6.

Thus, when there is a delay in servicing defective robots, the cause is most probably
department (4) in view of the comparatively high amount of time necessary for find-
ing and removing software failures.                                                                           

9.7.6.3 Closed Queueing Networks
Analogously to the closed queueing system, customers cannot enter a closed queue-
ing network 'from outside'. Customers  which have been served at a node  do not leave
the network, but move to another node for further service. Hence, the number of cus-
tomers in a closed queueing network is a constant N. Practical examples for closed
queueing networks are multiprogrammed computer and communication systems.
When the service of a customer at node i is finished, then the customer moves with
probability  to node  j for further service. Since the customers do not leave thepi j
network,

                              (9.111)Σj=1
n pi j = 1 ; i = 1, 2, ... , n,

where as usual n is the number of nodes. Provided the discrete Markov chain given
by the transition matrix  and the state space  is irreducible,P = ((pi j)) Z = (1, 2, ..., n}
it has a stationary state distribution  which, according to (8.9), is the{π1,π2, ... ,πn},
unique solution  the system of equationsof

                             (9.112)πj = Σi=1
n pi j πi ; j = 1, 2, ... , n,

1 = Σi=1
n πi.
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Let  be the random number of customers at node i at time t andXi(t)

X(t) = (X1(t), X2(t), ... , Xn(t)) .

The state space of the Markov chain  is{X(t), t ≥ 0}

      (9.113)Z = x = (x1, x2, ... , xn) with Σi=1
n xi = N and 0 ≤ xi ≤ N ,

where the  are nonnegative integers. The number of elements (states) in Z isxi

⎛
⎝

n +N − 1
N

⎞
⎠ .

Let   be the service intensity of all servers at node i  if there are  custom-μi = μi(xi) xi
ers at this node,  Then  has the positive transition ratesμi(0) = 0. {X(t), t ≥ 0}

qx, x−ei+ej = μi(xi)pi j ; xi ≥ 1, i ≠ j ,

q x−ei+ej, x = μj(xj + 1)pj i ; i ≠ j , x − ei + ej ∈ Z,

where the  are given by (9.108). From (9.111), the rate of leaving state  isei x

qx = Σi=1
n μi(xi)(1 − pii).

Hence, according to (9.28), the stationary distribution  of the Markov{πx , x ∈ Z}
chain  satisfies{X(t), t ≥ 0}

             (9.114)Σ
i=1

n
μi(xi)(1 − pii) πx = Σ

i,j=1,i≠j

n
μj(xj + 1)pj i π x−ei+ej ,

where   In these equations, all  with  arex = (x1, x2, ... , xn) ∈ Z. πx−ei+ej x − ei + ej ∉ Z
equal to 0.  Let  andϕi(0) = 1

ϕi(j) = Π
k=1

j ⎛
⎝⎜

πi
μi(k)

⎞
⎠⎟

; i = 1, 2, ... , n ; j = 1, 2, ... , N.

Then the stationary probability of state  isx = (x1, x2, ... , xn) ∈ Z.

                    (9.115)πx = h Π
i=1

n
ϕi(xi) , h =

⎡

⎣
⎢ Σ

y∈Z
Π
i=1

n
ϕi(yi)

⎤

⎦
⎥
−1

with  By substituting (9.115) into (9.114) one readily verifies thaty = (y1, y2, ... , yn).
 is indeed a stationary distribution of the Markov chain {πx , x ∈ Z} {X(t), t ≥ 0}.

Example 9.21 Consider a closed sequential queueing network, which  has a single
server at each of its n nodes (Figure 9.20). There is only  customer in the sys-N = 1
tem. When this customer is being served at a certain node, the other nodes are empty.
Hence, with vectors  as defined by (9.108), the state space of the correspondingei
Markov chain  is  The transition probabilities are{X(t), t ≥ 0} Z = {e1, e2, ... , en}.

pi, i+1 = 1; i = 1, 2, ... , n − 1; pn,1 = 1.
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The corresponding solution of (9.114) is a uniform distribution
π1 = π2 = . .. = πn = 1/n.

Let  be the service rate at node i. Then, for  μi = μi(1) i = 1, 2, ..., n,

ϕi(0) = 1, ϕi(1) =
1

nμi
, h = n ⎡⎣Σi=1

n 1
μi
⎤
⎦
−1

.

Hence, the stationary state probabilities (9.115) are

πei =
1/μi

Σ
i=1

n 1
μi

; i = 1, 2, ... , n.

In particular, if  then the states  have a uniform distribution:μi = μ ; i = 1, 2, ... , n, ei

πei = 1/n ; i = 1, 2, ... , n.

If there are  customers in the system and the  do not depend on , then theN ≥ 1 μi xi
stationary state probabilities are

πx =
(1/μ1)

x1 (1/μ2)
x2 . .. (1/μn)xn

Σ
y∈Z

Π
i=1

n ⎛
⎝

1
μi
⎞
⎠

yi
,

where  Given  the states have again ax = (x1, x2, ... , xn) ∈ Z. μi = μ, i = 1, 2, ..., n,
uniform distribution:

                                         πx = 1
⎛
⎝⎜
n +N − 1

N
⎞
⎠⎟

, x ∈ Z.

Example 9.22  A computer system consists of two central processors 2 and 3, a disc
drive 1, and a printer 4. A new program starts in the central processor 2. When this
processor has finished its computing job, the computing phase continues in central
processor 3 with probability  or the program goes to the disc drive with probabilityα

 From the disc drive the program goes to central processor 3 with probability 1.1 − α.
From central processor 3 it goes to the central processor 2 with probability  or to theβ
printer with probability  Here it terminates or goes back to central processor 2.1 − β.
When a program terminates, then another program (from outside) immediately joins
the queue of central processor 2 so that there is always a fixed number of programs
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Figure 9.20  Closed sequential queueing network
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in the system. Hence, a program formally goes from the printer to the central proces-
sor 2 with probability 1. If N denotes the constant number of programs in the system,
this  situation  represents  a  simple case of multiprogramming with N as the level of
multiprogramming. The state space Z of this system and the matrix P of the transi-
tion probabilities  arepi j

Z = {y = (y1, y2, y3, y4); yi = 0, 1, ... , N; y1 + y2 + y3 + y4 = N}

and

P =

⎛

⎝

⎜
⎜

⎜

⎜
⎜

0 0 1 0
1 − α 0 α 0

0 β 0 1 − β
0 1 0 0

⎞

⎠

⎟
⎟

⎟

⎟
⎟

,

respectively (Figure 9.21). The corresponding solution of  (9.114) is

π1 =
1 − α

4 − α − β , π2 = π3 =
1

4 − α − β
, π4 =

1 − β
4 − α − β .

Let the service intensities of the nodes be independent of theμ1, μ2, μ3, and μ4
number of programs at the nodes. Then,

ϕi(xi) = ⎛
⎝
πi
μi
⎞
⎠

xi
, i = 1, 2, ..., n.

Hence,  the stationary probability of state
 withx = (x1, x2, x3, x4) x1 + x2 + x3+x4 = N

is                   πx = h
(4 − α − β)N

⎛
⎝

1 − α
μ1

⎞
⎠

x1 ⎛
⎝

1
μ2

⎞
⎠

x2 ⎛
⎝

1
μ3

⎞
⎠

x3 ⎛
⎝

1 − β
μ4

⎞
⎠

x4

with                                                    h =
(4 − α − β)N

Σ
y∈Z

⎛
⎝

1−α
μ1

⎞
⎠

y1 ⎛
⎝

1
μ2
⎞
⎠

y2 ⎛
⎝

1
μ3
⎞
⎠

y3 ⎛
⎝

1−β
μ4

⎞
⎠

y4
.

Application-oriented treatments of queueing networks are Gelenbe, Pujolle (1987),
Walrand (1988).
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5.8  SEMI-MARKOV CHAINS

Transitions between the states of a continuous-time homogeneous Markov chain are
controlled by its transition probabilities. According to section 9.4, the sojourn time in
a state has an exponential distribution and depends on the current state, but not on
the  history  of  the  process.  Since  in  most  applications  the sojourn times in system
states are non-exponential random variables, an obvious generalization is to allow
arbitrarily distributed sojourn times whilst retaining the transition mechanism between
the states. This approach leads to semi-Markov chains.
A semi-Markov chain with state space  evolves in the following way:Z = {0, 1, ...}
Transitions between the states are governed by a discrete-time homogeneous Mar-
kov chain  with state space Z and matrix of transition probabilities{X0, X1, ...}

P = ((pi j)).

If the process starts at time  in state  then the subsequent state   is determin-t = 0 i0, i1
ed according to the transition matrix P, while the process stays in state  a randomi0
time  After that the state  following state  is determined. The process staysYi0i1 . i2, i1,
in state  a random  time   and  so  on.  The  random  variables   are  the  condi-i1 Yi1i2 Yi j

tional  sojourn times of the process in state i given that the process makes a transition
from i to j. They are assumed to be independent. Hence, immediately after entering a
state at a time t, the further evolvement of a semi-Markov chain depends only on its
state at this time point, but not on the evolvement of the process before t. The sample
paths of a semi-Markov chain are piecewise constant functions which, by convention,
are continuous on the right. In contrast to homogeneous continuous-time Markov
chains, for predicting the development of a semi-Markov chain from a time point t, it
is not only necessary to know its current state i, but also the 'age' of i at time t.
Let  denote the sequence of time points at which the semi-Markov chainT0, T1, ...
makes a transition from one state to another (or to the same state). Then

,                                    (9.116)Xn = X(Tn) ; n = 0, 1, ...

where  is the initial state  Hence, the transition probabi-X0 = X(0) (Xn = X(Tn + 0)).
lities can be written in the following form

pi j = P(X(Tn+1) = j X(Tn) = i) ; n = 0, 1, ... .

In view of (9.116), the discrete-time stochastic process  is embedded in{X0, X1, ... }
the (continuous-time) semi-Markov chain  (see page 401).{X(t), t ≥ 0}
As already pointed out, the future development of a semi-Markov chain from a  jump
point  is independent of the entire history of the process before  LetTn Tn.

Fi j(t) = P(Yi j ≤ t) , i, j ∈ Z ,

denote the distribution function of the conditional sojourn time  of a semi - MarkovYi j
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chain in state i if the subsequent state is  j. By the total probability rule, the uncondi-
tional sojourn time  of the chain in state i isYi

                     (9.117)Fi(t) = P(Yi ≤ t) = Σ j∈Z pi j Fi j(t), i ∈ Z .

Special Cases  1) An alternating renewal process (page 319) is a semi-Markov chain
with state space  and transition probabilitiesZ = {0, 1}

p00 = p11 = 0 and p01 = p10 = 1.

The states 0 and 1 indicate that the system is under renewal or operating, respectively.
In this case,  and  are in this order the distribution functions of the  re-F01(⋅) F10(⋅)
newal time and the system lifetime.
2) A homogeneous Markov chain in continuous time with state space  isZ = {0, 1, ...}
a semi-Markov chain with the same state space and transition probabilities (9.34):

pi j =
qi j
qi

, i ≠ j,

where  are the conditional (unconditional) transition rates of the Markovqi j (qi)
chain. By (9.31), the distribution function of the unconditional sojourn time in state i
is

Fi(t) = 1 − e−qi t, t ≥ 0.

In what follows, semi-Markov processes are considered under the following three
assumptions:

1) The embedded homogeneous Markov chain  has a unique stationary{X0, X1, ...}
state distribution  By (8.9), this distribution is solution of {π0,π1, ....}.

                              (9.118)πj = Σ
i∈Z

pi j πi , Σ
i∈Z

πi = 1.

As pointed out in section 8.3, a unique stationary state distribution exists if the Mar-
kov chain is aperiodic, irreducible, and positive recurrent.
2) The distribution functions  are nonarithmetic (see definition 5.3,Fi(t) = P(Yi ≤ t)
page 216).
3) The mean sojourn times  the process in all states are finite:of

μi = E(Yi) = ∫0
∞[1 − Fi(t)]dt < ∞, i ∈ Z .

Note: In this section  denotes no longer an intensity, but a mean sojourn time.μ i

In what follows, a transition of the semi-Markov chain into state k is called a k-tran-
sition. Let  be the random number of k-transitions occurring in  and  Nk(t) (0, t] Hk(t)
its mean value: Then, for any Hk(t) = E(Nk(t)). t > 0,

                    (9.119)lim
t→∞

[Hk(t + τ) −Hk(t)] =
τ πk

Σ i∈Z πiμi
, k ∈ Z.
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This relationship implies that after a sufficiently long time period the number of
k-transitions in a given time interval does no longer depend on the position of this
interval, but only on its length. Strictly speaking, the right-hand side of (9.119) gives
the mean number of k-transitions in an interval of length  once the process hasτ
reached its stationary regime, or, with other words, if it is in the steady state. The fol-
lowing formulas and the analysis of examples is based on (9.119), but the definition
and properties of stationary semi-Markov chains will not be discussed in detail.
From (9.119), when the process is in the steady state, the mean number of k-transi-
tions per unit time is

Uk =
πk

Σ i∈Z πi μi
.

Hence the portion of time the chain is in state  isk

                                           (9.120)Ak =
πk μk

Σ i∈Z πi μi
.

Consequently, in the longrun, the fraction of time the chain is in a set of states Z0,
 isZ0 ⊆ Z,

                                      (9.121)AZ0 =
Σk∈Z0 πk μk
Σ i∈Z πi μi

.

With other words,  is the probability that a visitor, who arrives at a random timeAZ0
from 'outside', finds the semi-Markov chain in a state belonging to Z0.
Let  denote the cost, which is caused by a k-transition of the system. Then theck
mean total (transition) cost per unit time is

                                           (9.122)C = Σk∈Z πk ck
Σ i∈Z πi μi

.

Note that the formulas (9.119) to (9.122) depend only on the unconditional sojourn
times of a semi-Markov chain in its states. This property facilitates their application.

Example 9.23 (age renewal policy) The system is renewed upon failure by an
emergency renewal  at age  by a preventive renewal, whichever occurs first.or τ

To determine the stationary system availability, system states have to be introduced:
0      operating                                                                                                                 
1      emergency renewal                                                                                                 
2      preventive renewal
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Let L be the random system lifetime,  its distribution function, andF(t) = P(L ≤ t)
F(t) = 1 − F(t) = P(L > t)

its survival probability. Then the positive transition probabilities between the states
are (Figure 9.22)

p01 = F(τ), p02 = F(τ), p10 = p20 = 1.

Let  and  be the random times for emergency renewals and preventive renewals,Ze Zp
respectively. Then the conditional sojourn times of the system in the states are

Y01 = L, Y02 = τ, Y10 = Ze , Y20 = Zp.

The unconditional sojourn times are
Y0 = min (L, τ), Y1 = Ze , Y2 = Zp.

The system behaviour can be described by a semi-Markov chain  with{X(t), t ≥ 0}
state space  and the transition probabilities and sojourn times given. TheZ = {0, 1, 2}
corresponding equations (9.118) in the stationary probabilities of the embedded Mar-
kov chain are

π0 = π1 + π2

                                               π1 = F(τ) π0

 1 = π0 + π1 + π2.
The solution is

π0 = 1/ 2 , π1 = F(τ) / 2 , π2 = F(τ) / 2.

The mean sojourn times are

μ0 = ∫0
τ F(t)dt , μ1 = de, μ2 = dp.

According to (9.120), the stationary availability  of the system isA0 = A(τ)

A(τ) =
μ0π0

μ0π0 + μ1π1 + μ2π2

or

                         (9.123)A(τ) =
∫0
τ F(t)dt

∫0
τ F(t)dt + de F(τ) + d p F(τ)

.

It is important that this result does not depend on the probability distributions of the
renewal times  and , but only on their mean values. An optimal renewal intervalZe Zp

 satisfies the equation  orτ = τ∗ dA(τ)/dτ = 0

                               (9.124)λ(τ) ∫0
τ F(t)dt − F(τ) = d

1 − d
with  A unique solution of this equation exists if  is strictly increasingd = de/dp. λ(t)
and  i.e.  (Otherwise preventive renewals would not make sense.)dp < de, d < 1.

9 CONTINUOUS-TIME MARKOV CHAINS                                                         461



By coupling the equations (9.123) and (9.124) the corresponding maximal long-run
availability  is seen to have structureA(τ∗)

                                 (9.125)A(τ∗) = 1
1 + (de − dp) λ(τ∗)

.

As a numerical special case, let L have a Rayleigh-distribution with parameter  andθ
renewal times  and  Thende = 10 dp = 2.

F(t) = P(L ≤ t) = 1 − e−(t/θ)2 , t ≥ 0,

and, by formula (2.80), page 77,  has mean valueL

E(L) = θ π/4 .

Since the corresponding failure rate is  equation (9.123) becomesλ(t) = 2t/θ2,

2 τθ ∫
0

τ/θ
e−x2 dt + e−(τ/θ)2

= 1.25.

The unique solution is  This holds for any  (  is a scale parameter.)τ∗ = 0.5107 ⋅ θ. θ. θ
By (9.125), the maximal stationary availability is

A(τ∗) = θ
θ + 8.1712,

whereas the stationary availability of the system without preventive renewals is smal-
ler:

A =
E(L)

E(L) + de
= θ
θ + 11.2838.

If the renewal times are negligibly small, but the mean costs  and  for emergen-ce cp
cy and preventive renewals, respectively, are relevant, then, from (9.122), the mean
renewal cost per unit time in the steady state are

K(τ) =
ceπ1 + cpπ2

μ0π0
=

ceF(τ) + cpF(τ)

∫0
τ F(t)dt

.

Analogously to the corresponding renewal times,  and  can be thought of meance cp
values of arbitrarily distributed renewal costs. Since  has the same functionalK(τ)
structure as maximizing  and minimizing  leads again to the same1/A(τ) − 1, A(τ) K(τ)
equation (9.124) if there d is replaced with                                                 c = cp/ce.

Example 9.24 A series system consists of n subsystems  The lifetimese1, e2, ... , en.
of the subsystems  are independent exponential random variables withL1, L2, ... , Ln
parameters  Letλ1,λ2, ... ,λn.

Gi(t) = P(Li ≤ t) = 1 − e−λi t, gi(t) = λi e−λ i t, t ≥ 0; i = 1, 2, ... , n.

When a subsystem fails, the system interrupts its work. As soon as the renewal of the
failed subsystem is finished, the system continues operating. Let  be the averageμi
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renewal time of subsystem  As long as a subsystem is being renewed, the otherei.
subsystems cannot fail, i.e. during such a time period they are in the cold-standby
mode. The following system states are introduced:

  if the system is operating,X(t) = 0
   if  subsystem  is under renewal, X(t) = i ei i = 1, 2, ..., n.

Then   is a semi-Markov chain with state space  The{X(t), t ≥ 0} Z = {0, 1, ..., n}.
conditional sojourn times in state 0 of this semi-Markov chain are

Y0 i = Li, i = 1, 2, ..., n,

and its unconditional sojourn time in state 0 is
Y0 = min{L1, L2, ... , Ln}.

Thus,  has distribution functionY0

 F0(t) = 1 −G1(t) ⋅G2(t). .. Gn(t) .

Letting   impliesλ = λ1 + λ2 + . .. + λn

F0(t) = 1 − e−λ t, t ≥ 0,

μ0 = E(Y0) = 1/λ .

The system makes a transition from state  into state i with probability0

p0 i = P(Y0 = Li)

= ∫0
∞ G1(x) ⋅G2(x). .. G i−1(x) ⋅G i+1(x). .. Gn(x)gi(x)dx

= ∫0
∞ e−(λ1+λ2+. .. +λi−1+λi+1+. .. +λn ) x λi e−λ i x dx = ∫0

∞ e−λx λi dx.

Hence,

p0i =
λi
λ , pi 0 = 1; i = 1, 2, ... , n .

Thus, the system of equations (9.118) becomes

π0 = π1 + π2 + . .. + πn ,

πi =
λi
λ π0 ; i = 1, 2, ... , n .

In view of  the solution isπ1 + π2 + . .. + πn = 1 − π0,

π0 =
1
2 ; πi =

λi
2λ ; i = 1, 2, ... , n .

With these ingredients,  formula (9.120) yields the stationary system availability

                                             A0 =
1

1 +Σi=1
n λiμi

.
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Example 9.25  Consider the loss system  on condition that the server is sub-M/G/1/0
jected to failures: Customers arrive according to a homogeneous Poisson process
with rate  Hence, their interarrival times are identically distributed as an exponen-λ.
tial random variable Y with parameter  The server has random lifetime   whenλ. L0
being idle, and a random lifetime   when being busy.   is exponential with param-L1 L0
eter , and   is exponential with parameter  The service time Z has distributionλ0 L1 λ1.
function   with density   When at the time point of server failure a customerB(t) b(t).
is being served, then this customer is lost, i.e., it has to leave the system. All occur-
ring random variables are assumed to be independent. To describe the behavior of
this system by a semi-Markov chain, three states are introduced:
State 0    The server is idle, but available.
State 1    The server is busy.
State 2    The server is under repair (not available)
To determine the steady state probabilities of the states 0, 1, and 2, the transition prob-
abilities are needed: 

p00 = p11 = p22 = p21 = 0, p20 = 1

p01 = P(L0 > Y) = ∫0
∞ e−λ0 tλ e−λ tdt = λ

λ + λ0

p02 = 1 − p01 = P(L0 ≤ Y) =
λ0

λ + λ0

p10 = P(L1 > Z) = ∫0
∞ e−λ1 t b(t)dt

p12 = 1 − p10 = P(L1 ≤ Z) = ∫0
∞[1 − e−λ1 t ]b(t)dt .

With these transition probabilities, the stationary state probabilities of the embedded
Markov chain  can be obtained from (9.118):{X0, X1, ...}

      π0 =
λ + λ0

2(λ + λ0) + λp12
, π1 =

λ
2(λ + λ0) + λp12

, π2 =
λ0 + λp12

2(λ + λ0) + λp12
.

The sojourn times in state , 1, and 2 are0

Y0 = min (L0, Y), Y1 = min (L1, Z), Y2 = Z .

Hence, the mean sojourn times are

μ0 =
1

λ + λ0
, μ1 = ∫0

∞(1 − B(t)) e−λ1 tdt , μ2 = E(Z) .

With these parameters, the stationary state probabilities of the semi-Markov process  
are given by (9.120).                                                                                                   

The time-dependent behaviour of semi-Markov chains is discussed, for instance, in
Kulkarni (2010).
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9.9  EXERCISES

9.1) Let   be the state space andZ = {0, 1}

P(t) =
⎛

⎝
⎜

e−t 1 − e−t

1 − e−t e−t
⎞

⎠
⎟

the transition matrix of a continuous-time stochastic process  Check{X(t), t ≥ 0}.
whether  is a homogeneous Markov chain.{X(t), t ≥ 0}

9.2) A  system  fails  after a random lifetime L.  Then  it  waits  a  random  time  W  for
renewal. A renewal takes another random time Z. The random variables L, W, and Z
have exponential distributions with parameters , , and , respectively. On comple-λ v μ
tion of a renewal, the system immediately resumes its work. This process continues
indefinitely. All life, waiting, and renewal times are assumed to be independent. Let
the system be in states 0, 1, and 2 when it is operating, waiting, or being renewed.
The transitions between the states are governed by a Markov chain {X(t), t ≥ 0}.
(1) Draw the transition graph of  and set up a system of linear differential{X(t), t ≥ 0}
equations for the time-dependent state probabilities         pi(t) = P(X(t) = i), i = 0, 1, 2.
(2) Use this system to derive an algebraic system of equations for the stationary state
probabilities  of  Determine the stationary availability of the system.πi {X(t), t ≥ 0}.

9.3)  Consider a 1-out-of-2 system, i.e., the system is operating when at least one of
its two subsystems is operating. When a subsystem fails, the other one continues to
work. On its failure, the joint renewal of both subsystems begins. On its completion,
both subsystems resume their work at the same time. The lifetimes of the subsystems
are identically exponential with parameter  The joint renewal time is exponentialλ.
with parameter µ. All life- and renewal times are independent of each other. Let X(t)
be the number of subsystems operating at time t.
(1) Draw the transition graph of the Markov chain {X(t), t ≥ 0}.
(2) Given the initial condition , determine the time-dependent stateP(X(0) = 2) = 1
probabilities  and the stationary state distribution.pi(t) = P(X(t) = i), i = 0, 1, 2,
Hint  Consider separately the cases (λ + μ + ν)2(=)(<)(>) 4(λμ + λν + μν).

9.4) A copy center has 10 copy machines of the same type which are in constant use.
The times between two successive failures of a machine have an exponential distribu-
tion with mean value 100  hours. There are two mechanics who repair failed machines.
A  defective  machine  is repaired  by only one mechanic. During  this  time, the second
mechanic is busy repairing another failed machine, if there are any, or this mechanic
is idle. All repair times have an exponential distribution with mean value 4 hours. All
random variables involved are independent. Consider the steady state.
(1) What is the average percentage of operating machines?
(2) What is the average percentage of idle mechanics?
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9.5) Consider the two-unit system with standby redundancy discussed in example
 on condition that the lifetimes of the units are exponential with respective9.5 a)

parameters  and  The other model assumptions listed in example 9.5 remainλ1 λ2.
valid. 
Model the system by a Markov chain and draw the transition graph.

9.6) Consider the two-unit system with parallel redundancy discussed in example 9.6
on condition that the lifetimes of the units are exponential with parameters  andλ1

 respectively. The other model assumptions listed in example 9.6 remain valid.λ2,
Model the behavior of the system by a Markov chain and draw the transition graph.

9.7)  The system considered in example 9.7 is generalized as follows: If the system
makes a direct transition from state 0 to the blocking state 2, then the subsequent
renewal time is exponential with parameter  If the system makes a transition fromμ0.
state 1 to state 2, then the subsequent renewal time is exponential with parameter μ1.
(1) Model the system by a Markov chain and draw the transition graph.
(2) What is the stationary probability that the system is blocked?

9.8) Consider a two-unit system with standby redundancy and one mechanic. All
repair times of failed units have an Erlang distribution with parameters  and n = 2 μ.
Apart from this, the other model assumptions listed in example 9.5 remain valid.
(1) Model the system by a Markov chain and draw the transition graph.
(2) Determine the stationary state probabilities of the system.
(3) Sketch the stationary availability of the system as a function of  ρ = λ/μ.

9.9) Consider a two-unit parallel system (i.e., the system operates if at least one unit
is operating). The lifetimes of the units have an exponential distributions with param-
eter  There is one repairman, who can only attend one failed unit at a time. Repairsλ.
times have an Erlang distribution with parameters  and  The systemn = 2 λ = 1/2.
arrives at the failed state as soon as a unit fails during the repair of the other one. All
life and repair times are assumed to be independent.
(1) By using Erlang's phase method, determine the relevant state space of the system
and draw the corresponding transition graph of the underlying Markov chain.
(2) Determine the stationary availability of the system.

9.10) When being in states 0, 1, and 2, a (pure) birth process  with state{X(t), t ≥ 0}
space  has the respective birth ratesZ = {0, 1, 2, ...}

λ0 = 2, λ1 = 3, λ2 = 1.

Given determine the time-dependent state probabilities X(0) = 0, pi(t) = P(X(t) = i)
for  i = 0, 1, 2.
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9.11) Consider a linear birth process with state space  and transitionZ = {0, 1, 2, ...}
rates λj = jλ , j = 0, 1, ...

(1) Given  determine the distribution function of the random time point X(0) = 1, T3
at which the process enters state 3.
(2) Given  determine the mean value of the random time point  at whichX(0) = 1, Tn
the process enters state n, n > 1.

9.12) The number of physical particles of a particular type in a closed container
evolves as follows:  There is one particle at time  Its  splits into  two particles  of  t = 0.
the same type after an exponential random time Y  with parameter  (its lifetime).λ
These two particles behave in the same way as the original one, i.e., after random
times, which are identically distributed as Y, they split into 2 particles each, and so
on. All lifetimes of the particles are assumed to be independent. Let  denote theX(t)
number of particles in the container at time t.
Determine the absolute state probabilities , of the sto-pj(t) = P(X(t) = j) ; j = 1, 2, ...
chastic process {X(t), t ≥ 0}.

9.13) A death process with state space   has death ratesZ = {0, 1, 2, ...}
μ0 = 0, μ1 = 2, and μ2 = μ3 = 1.

Given , determine  for X(0) = 3 pj(t) = P(X(t) = j) j = 0, 1, 2, 3.

9.14) A linear death process  has death rates  {X(t), t ≥ 0} μj = jμ ; j = 0, 1, ... .
(1) Given  determine the distribution function of the time to entering state 0X(0) = 2,
('lifetime' of the process).
(2) Given  determine the mean value of the time at which the processX(0) = n, n > 1,
enters state 0.

9.15)  At time  there are an infinite number of molecules of type a  and 2nt = 0
molecules of type b in a two-component gas mixture. After an exponential random
time with parameter µ any molecule of type b combines, independently of the others,
with a molecule of type a to form a molecule ab.
(1) What is the probability that at time t there are still  j free molecules of type b in
the container?
(2) What is the mean time till there are only n free molecules of type b left in the
container?

9.16) At time  a cable consists of 5 identical, intact wires. The cable is subject tot = 0
a constant load of 100kp such that in the beginning each wire bears a load of 20kp.
Given a load of w kp per wire, the time to breakage of a wire (its lifetime) is expo-
nential with mean value
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1000
w [weeks].

When one or more wires are broken, the load of 100kp is uniformly distributed over
the remaining intact ones. For any fixed number of wires, their lifetimes are assumed
to be independent and identically distributed.
(1) What is the probability that all wires are broken at time t = 50 [weeks] ?
(2) What is the mean time until the cable breaks completely?

9.17)* Let  be a death process with  and positive death rates{X(t), t ≥ 0} X(0) = n
μ1, μ2, ... , μn.
Prove: If Y is an exponential random variable with parameter  and independent ofλ
the death process, then

P(X(Y) = 0) = Π
i=1

n μi
μi + λ

.

9.18) A birth- and death process has state space  and transition ratesZ = {0, 1, ..., n}

 and  λj = (n − j) λ μj = jμ ; j = 0, 1, ..., n.

Determine its stationary state probabilities.

9.19) Check whether or under what restrictions a birth- and death process with tran-
sition rates

λj =
j + 1
j + 2 λ and μj = μ ; j = 0, 1, ... ,

has a stationary state distribution.

9.20) A birth- and death process has transition rates
λj = (j + 1)λ and μj = j2μ; j = 0, 1, ...; 0 < λ < μ.

Confirm that this process has a stationary state distribution and determine it.

9.21) Consider the following deterministic models for the mean (average) develop-
ment of the size of populations:
(1) Let m(t) be the mean number of individuals of a population at time t. It is reason-
able to assume that a change of the population size, namely  is proportionaldm(t)/dt,
to , for a constant h the mean number m(t) satisfies the differentialm(t), t ≥ 0, i.e.
equation

d m(t)
d t = h m(t).

a) Solve this differential equation assuming m(0) = 1.
b) Is there a birth and death process the trend function of which has the functional
structure of m(t)?
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(2) The mean population size  satisfies the differential equationm(t)
dm(t)

dt
= λ − μm(t).

a) With a positive integer N, solve this equation under the initial condition
 m(0) = N.

b) Is there a birth and death process the trend function of which has the functional
structure of m(t) ?

9.22) A computer is connected to three terminals (for example, measuring devices).
It can simultaneously evaluate data records from only two terminals. When the
computer is processing two data records and in the meantime another data record has
been produced, then this new data record has to wait in a buffer, when the buffer is
empty. Otherwise the new data record is lost. The buffer can store only one data
record. The data records are processed according to the FCFS-queueing discipline.
The terminals produce data records independently according to a homogeneous
Poisson process with intensity  The processing times of data records from allλ.
terminals are independent, even  if  the  computer  is  busy  with  two  data  records  at  

the  same time, and they have an exponential distribution with parameter µ. They are
assumed to be independent of the input.
Let  be the number of data records in computer and buffer at time t.X(t)
(1) Verify that  is a birth and death process, determine its transition rates{X(t), t ≥ 0}
and draw the transition graph.
(2) Determine the stationary loss probability, i.e., the probability that in the steady
state a data record is lost.

9.23) Under otherwise the same assumptions as in exercise 9.22, it is assumed that a
data record, which has been waiting in the buffer a random patience time, will be
deleted as being no longer up to date. The patience times of all data records are

 to be independent, exponential random variables with parameter . Theyassumed ν
are also independent of all arrival and processing times of the data records.
(1) Draw the transition graph.
(2) Determine the stationary loss probability.

9.24) Under otherwise the same assumptions as in exercise 9.22, it is assumed that a
data record will be deleted when its total sojourn time in the buffer and computer
exceeds a random time Z, where Z has an exponential distribution with parameter α.
Thus, the interruption of the current service of a data record is possible.
(1) Draw the corresponding transition graph.
(2) Determine the stationary loss probability.
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9.25) A small filling station in a rural area provides diesel for agricultural machines.
It has one diesel pump and waiting capacity for 5 machines. On average, 8 machines
per hour arrive for diesel. An arriving machine immediately leaves the station without
fuel if pump and all waiting places are occupied. The mean time a machine occupies
the pump is 5 minutes. The station behaves like a M/M/s/m-queueing system.
(1) Determine the stationary loss probability.
(2) Determine the stationary probability that an arriving machine waits for diesel.

9.26) Consider a two-server loss system. Customers arrive according to a homogene-
ous Poisson process with intensity  A customer is always served by server 1 whenλ.
this server is idle, i.e., an arriving customer goes only then to server 2, when server 1
is busy. The service times of both servers are iid exponential random variables with
parameter  Let  be the number of customers in the system at time t.μ. X(t)
Determine the stationary state probabilities of the stochastic process {X(t), t ≥ 0}.

9.27) A  two-server loss system is subject to a homogeneous Poisson input with in-
tensity  The situation considered in exercise 9.26 is generalized as follows: If bothλ.
servers are idle, a customer goes to server 1 with probability p and to server 2 with
probability . Otherwise, a customer goes to the idle server (if there is any). The1 − p
service times of the servers 1 and 2 are independent, exponential random variables
with parameters  and  respectively. Arrival and service times are independent.μ1 μ2,
Describe the behaviour of the system by a suitable homogeneous Markov chain and
draw the transition graph.

9.28) A single-server waiting system is subject to a homogeneous Poisson input with
intensity  If there are not more than 3 customers in the system, the ser-λ = 30 [h−1].
vice times have an exponential distribution with mean [min]. If there are more1/μ = 2
than 3 customers in the system, the service times are exponential with mean  1/μ = 1
[min]. All arrival and service times are independent.
(1) Show that there exists a stationary state distribution and determine it.
(2) Determine the mean length of the waiting queue in the steady state.

9.29) Taxis and customers arrive at a taxi rank in accordance with two independent
homogeneous Poisson processes with intensities

   and  λ1 = 4 [h−1] λ2 = 3 [h−1],

respectively. Potential customers, who find 2 waiting customers, do not wait for ser-
vice, but leave the rank immediately. Groups of customers, who will use the same
taxi, are considered to be one customer. On the other hand, arriving taxis, who find
two taxis waiting, leave the rank as well.

What is the average number of customers waiting at the rank?
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9.30) A transport company has 4 trucks of the same type. There are 2 maintenance
teams for repairing the trucks after a failure. Each team can repair only one truck at a
time and each failed truck is handled by only one team. The times between failures
of a truck (lifetime) is exponential with parameter  The repair times are exponen-λ.
tial with parameter  All life and repair times are assumed to be independent. Let μ.

 What is the most efficient way of organizing the work:ρ = λ/μ = 0.2.

(1) to make both maintenance teams responsible for the maintenance of all 4 trucks
so that any team which is free can repair any failed truck, or
(2) to assign 2 definite trucks to each team?

9.31) Ferry boats and customers arrive at a ferry station in accordance with two inde-
pendent homogeneous Poisson processes with intensities  and , respectively. Ifλ μ
there are k customers at the ferry station, when a boat arrives, then it departs with
min (k,n) passengers (n is the capacity of each boat). If  then the remainingk > n,

 customers wait for the next boat. The sojourn times of the boats at the stationk − n
are assumed to be negligibly small.
Model the situation by a suitable homogeneous Markov chain  and draw{X(t), t ≥ 0}
the transition graph.

9.32) The life cycle of an organism is controlled by shocks (e.g., accidents, virus
attacks) in the following way: A healthy organism has an exponential lifetime L with
parameter  If a shock occurs, the organism falls sick and, when being in this state,λh.
its (residual) lifetime S is exponential with parameter

λs, λs > λh.
However, a sick organism may recover and return to the healthy state. This occurs in
an exponential time R with parameter  If during a period of sickness another shockμ.
occurs,  the  organism  cannot  recover  and will die a random time D after the occur-
rence of the second shock.  is assumed to be exponential with parameterD

λd, λd > λs.
The random variables L, S, R, and D are assumed to be independent.
(1) Describe the evolvement in time of the states the organism may be in by a Markov
chain.
(2) Determine the mean lifetime of the organism.

9.33) Customers arrive at a waiting system of type  with intensity  AsM/M/1/∞ λ.
long as there are less than n customers in the system, the server remains idle. As soon
as the n th customer arrives, the server resumes its work and stops working only then,
when all customers (including newcomers) have been served. After that the server
again waits until the waiting queue has reached length n and so on. Let  be the1/μ
mean service time of a customer and X(t) be the number of customers in the system
at time t.
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(1) Draw the transition graph of the Markov chain {X(t), t ≥ 0}.
(2) Given that , compute the stationary state probabilities. Make sure they exist.n = 2

9.34) At time  a computer system consists of n operating computers. As soon ast = 0
a computer fails, it is separated from the system by an automatic switching device
with probability  If a failed computer is not separated from the system (this1 − p.
happens with probability p), then the entire system fails. The lifetimes of the comput-
ers are independent and have an exponential distribution with parameter  Thus, thisλ.
distribution does not depend on the system state. Provided the switching device has
operated properly when required, the system is available as long as there is at least
one computer available. Let X(t) be the number of computers which are available at
time t. By convention, if, due to the switching device, the entire system has failed in
[0, t), then X(t) = 0.

(1) Draw the transition graph of the Markov chain {X(t), t ≥ 0}.
(2) Given  determine the mean lifetime  of the system.n = 2, E(Xs)

9.35) A waiting-loss system of type  is subject to two independent PoissonM/M/1/2
inputs 1 and 2 with respective intensities  and  which are referred to as type 1-λ1 λ2,
and type 2-customers. An arriving type 1-customer who finds the server busy and the
waiting places occupied displaces a possible type 2-customer from its waiting place
(such a type 2-customer is lost), but ongoing service of a type 2-customer is not
interrupted. When a type 1-customer and a type 2-customer are waiting, then the type
1-customer will always  be  served  first,  regardless  of  the order of their arrivals.  The
service times of type 1- and type 2-customers are independent and have exponential
distributions with respective parameters , and μ1 μ2.
Describe the behavior of the system by a homogeneous Markov chain, determine the
transition rates, and draw the transition graph.

9.36) A queueing network consists of two servers 1 and 2 in series. Server 1 is subject
to a homogeneous Poisson input with intensity  an hour. A customer is lost ifλ = 5
server 1 is busy. From server 1 a customer goes to server 2 for further service. If ser-
ver 2 is busy, the customer is lost. The service times of servers 1 and 2 are exponen-
tial with respective mean values

 min  and  min.1/μ1 = 6 1/μ2 = 12

All arrival and service times  independent. are
What percentage of customers (with respect to the total input at server 1) is served by
both servers?

9.37) A queueing network consists of three nodes (queueing systems) 1, 2, and 3,
each of type  The external inputs into the nodes have respective intensitiesM/M/1/∞.

 [customers per hour].λ1 = 4, λ2 = 8, and λ3 = 12
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The respective mean service times at the nodes are
4, 2, and 1 [min].

After having been served by node 1, a customer goes to nodes 2 or 3 with equal
probabilities 0.4 or leaves the system with probability 0.2. From node  2, a customer
goes to node 3 with probability 0.9 or leaves the system with probability 0.1. From
node  3, a customer goes to node 1 with probability 0.2 or leaves the system with
probability 0.8. The external inputs and the service times are independent.

(1) Check whether this queueing network is a Jackson network.
(2) Determine the stationary state probabilities of the network.

9.38) A closed queueing network consists of 3 nodes. Each one has 2 servers. There
are 2 customers in the network. After having been served at a node, a customer goes
to one of the others with equal probability. All service times are independent random
variables and have an exponential distribution with parameter µ.

What is the stationary probability to find both customers at the same node?

9.39) Depending on demand, a conveyor belt operates at 3 different speed levels 1, 2,
and 3. A transition from level i to level  j is made with probability  withpi j

p12 = 0.8 , p13 = 0.2 , p21 = p23 = 0.5 , p31 = 0.4 , p32 = 0.6 .

The respective mean times the conveyor belt operates at levels 1, 2, or 3 between
transitions are

μ1 = 45 , μ2 = 30 , and μ3 = 12 [hours].

Determine the stationary percentages of time in which the conveyor belt operates at
levels 1, 2, and 3 by modeling the situation as a semi-Markov chain.

9.40) The mean lifetime of a system is 620 hours. There are two failure types: Repair-
ing the system after a type 1-failure requires 20 hours on average and after a type
2-failure 40 hours on average. 20%  of  all  failures  are  type 2-failures. There  is  no
dependence between the system lifetime and the subsequent failure type. Upon each
repair the system is 'as good as new'. The repaired system immediately resumes its
work. This process is continued indefinitely. Life- and repair times  independent.are
(1) Describe the situation by a semi-Markov chain with 3 states and draw the transi-
tion graph of the underlying discrete-time Markov chain.
(2) Determine the stationary state probabilities of the system.

9.41)* Under otherwise the same model assumptions as in example 9.25, determine
the stationary probabilities of the states 0, 1, and 2 introduced there on condition that
the service time B is a constant μ; i.e., determine the stationary state probabilities of
the loss system  with unreliable server.M/D/1/0
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9.42) A system has two different failure types: type 1 and type 2. After a type i-fail-
ure the system is said to be in failure state  The time  to a type i-failurei ; i = 1, 2. Li
has an exponential distribution with parameter  Thus, if at time  aλi ; i = 1, 2. t = 0
new system starts working, the time to its first failure is

Y0 = min (L1, L2).

The random variables  and  are assumed to be independent. After a type 1-fail-L1 L2
ure, the system is switched from failure state 1 into failure state 2. The respective
mean sojourn times of the system in states 1 and 2 are  and  When in state 2,μ1 μ2.
the system is being renewed. Thus,  is the mean switching time and  the meanμ1 μ2
renewal time. A renewed system immediately starts working, i.e., the system makes a
transition from state 2 to state 0 with probability 1. This process continues to infinity.
(For motivation, see example 9.7.)
(1) Describe the system behavior by a semi-Markov chain and draw the transition
graph of the embedded discrete-time Markov chain.
(2) Determine the stationary availability of the system.
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CHAPTER 10

Martingales

10.1 DISCRETE-TIME MARTINGALES

10.1.1  Definition and Examples

Martingales are important tools for solving prestigious problems in probability theory
and its applications. Such problems occur in areas as random walks, point processes,
mathematical statistics, actuarial risk analysis, and mathematics of finance. Heuristic-
ally, martingales are stochastic models for 'fair games' in a wider sense, i.e., games,
in which each side has the same chance to win or to lose. In particular, martingale is
the French word for that game, in which a gambler doubles her/his bet on every loss
until he wins (Example 10.6). Martingales were introduced as a special class of sto-
chastic processes by J. Ville und  P. Levy. It was, however, J. L. Doob, who recog-
nized their large theoretical and practical potential and began with their systematic
investigation. Martingales as stochastic processes are defined for discrete and contin-
uous parameter spaces T. Analogously to Markov processes, the terminology discrete-
time martingales and continuous-time martingales is adopted. The definition of a
martingale as given in this chapter heavily relies on the concept of the conditional
mean value of a random variable given values of other random variables or, more
generally, on the concept of the conditional mean value of a random variable given
other random variables (see formulas (3.61) (3.64)). −

Definition 10.1 A stochastic process in discrete time  with state space Z,{X0, X1, ...}
which satisfies

E( Xn ) < ∞ , n = 0, 1, 2, ...,
is called a (discrete-time) martingale if for all vectors  with  and(x0, x1, ..., xn) xi ∈ Z
n = 0, 1, ...

                         (10.1)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) = xn.

Under the same assumptions,  is a (discrete-time) supermartingale if{X0, X1, ...}

                       (10.2)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) ≤ xn,

and a (discrete-time) submartingale if
                       (10.3)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) ≥ xn .

     z



If, for instance, the  are continuous random variables, then, in view of (3.54)Xn
(page 145), multiplying both sides of the (in-) equalities (10.1) to (10.3) by the joint
density of the random vector   and integrating over its range yields(X0, X1, ..., Xn)

Martingale:               E(Xn+1) = E(Xn); n = 0, 1, ... ,
Supermartingale:         E(Xn+1) ≤ E(Xn); n = 0, 1, ... ,

Submartingale:          E(Xn+1) ≥ E(Xn); n = 0, 1, ... .

Thus, the trend function of a martingale is constant ,
                                 (10.4)m = E(Xn) = E(X0) ; n = 0, 1, ... ,

whereas the trend functions of supermartingales (submartingales) are nonincreasing
(increasing) in time. Despite its constant trend function, a martingale need not be a
stationary process. Conditions (10.1) to (10.3) are obviously equivalent to

                    (10.5)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) = 0 ,

                    (10.6)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) ≤ 0 ,
                       (10.7)E(Xn+1 − Xn Xn = xn, ..., X1 = x1, X0 = x0) ≥ 0 .

In particular, a stochastic process  with finite absolute first moments{X0, X1, ...}
 is a martingale if and only if it satisfies condition (10.5).E( Xn ), n = 0, 1, ...

Since (10.1) is assumed to be true for all vectors  another,(x0, x1, ..., xn) with xi ∈ Z,
equivalent definition of a martingale is

    (10.8)E(Xn+1 Xn , ..., X1, X0) = Xn or E(Xn+1 − Xn Xn , ..., X1, X0) = 0 ,
where the conditional (random) mean values are defined by formula (3.62) with k = n
and  The relations in (10.8) mean that they are true with probability 1. ThisY = Xn+1.
definition applies analogously to super- and submartingales. From (10.8),

     E(Xn+2 Xn , ..., X1, X0) = E[E(Xn+2 Xn+1 , ..., X1, X0) Xn, ..., X1, X0)]

 = EXn+1 Xn, ..., X1, X0) = Xn.

From this one gets by induction:  is a martingale if and only if for allX0, X1, ..., Xn
positve integers m

E(Xn+m Xn, ..., X1, X0) = Xn,
, equivalentlyor

 for all  E(Xn+m Xn = xn, ..., X1 = x1, X0 = x0) = xn (x0, x1, ..., xn) with xi ∈ Z.

If  is a martingale and  is interpreted as the random fortune of a gam-{X0, X1, ...} Xn
bler at time n, then, on condition  the conditional mean fortune of the gam-Xn = xn ,
bler at time  is also  , and this is independent on the development in time ofn + 1 xn
the fortune of the gambler before n ( fair game with regard both to the gambler and
its opponent).
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Example 10.1 (sum martingale)  Let  be a sequence of independent ran-{Y0, Y1, ...}
dom variables with  and  for  ThenE( Yn ) < ∞ for n = 0, 1, 2, ... E(Yi) = 0 n = 1, 2, ....
the sequence  defined by is a mar-{X0, X1, ...} Xn = Y0 + Y1 + . .. + Yn; n = 0, 1, ...
tingale. The proof  easily established:is

E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= E(Xn + Yn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= xn + E(Yn+1) = xn.

The sum martingale  can be interpreted as a random walk on the real{X0, X1, ...}
axis:  is the position of a particle after its n th jump or, in other words, its positionXn
at time . The constant trend function of this martingale n is

                                    �m = E(Xn) = E(Y0); n = 0, 1, ....

Example 10.2 (product martingale)  Let  be a sequence of independent,{Y0, Y1, ...}
positive random variables with   for  andE(Y0) < ∞, μ = E(Yi) < ∞ i = 1, 2, ...,

Xn = Y0 Y1. .. Yn.

Then, for , since n = 1, 2, ... Xn+1 = XnYn+1,

  E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0)

                = E(XnYn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= xn E(Yn+1 Xn = xn, ..., X1 = x1, X0 = x0)

= xn E(Yn+1) = xn μ.

Thus,  is a supermartingale for  and a submartingale for  For{X0, X1, ...} μ ≤ 1 μ ≥ 1.
 the random sequence  is a martingale with trend functionμ = 1, {X0, X1, ...}

m = E(Xn) = E(Y0), n = 0, 1, ...

This martingale seems to be a realistic model for describing the development in time
of share prices or other risky assets or derivates from these (for terminology see sec-
tion 11.5.5.2) since, from historical experience, the share at a time point in the future
is usually proportional to the current price. With this interpretation,  is the rela-Yn − 1
tive change in the share price over the interval   with regard to :[n, n + 1] Xn

                                      �Xn+1 − Xn
Xn

= Yn − 1; n = 0, 1, ....

A further specification of the factors  within the product martingale yields anYi
exponential type martingale, which is considered in the following example.

Note For notational convenience, in this chapter (super-, sub-) martingales are sometimes de-
noted as  instead of {X1, X2, ...} {X0, X1, ...}.
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Example 10.3 (exponential martingale)  A special case of the product martingale is
the exponential martingale. Let  be a sequence of independent, identical-{Z1, Z2, ...}
ly as Z distributed random variables, and  be a real number withθ w(θ) = E(eθZ) < ∞.

A sequence of random variables   be defined as{Y1, Y2, ...}

                              (10.9)Yn = Z1 + . .. + Zn; n = 1, 2, ... .
Then the sequence of random variables  with{X1, X2, ...}

           (10.10)Xn = eθZ1

w(θ) ⋅
eθZ2

w(θ) ⋅
. .. ⋅ eθZn

w(θ) =
eθYn

[w(θ)]n ; n = 1, 2, ...

is a martingale. This follows immediately from example 10.2, since the factors  eθZi

w(θ)
in (10.10) are independent and have mean value 1:

 E⎛⎝
eθZi

w(θ)
⎞
⎠ =

E(eθZ)
w(θ) =

w(θ)
w(θ) = 1.

In view of its structure,  is called an exponential martingale. If a parame-{X1, X2, ...}
ter  exists with  then the exponential martingale simplifies toθ = θ0 w(θ0) = 1,

                                                                                          �{X1 = eθ0 Y1 , X2 = eθ0 Y2 , ...}.

 Important special cases of the exponential martingale are:

1) Geometric Random Walk  Let  be a binary random variable with distributionZ

Z =
+1 with probability p
−1 with probability q

, q = 1 − p ≠ 1/2,

then  given by (10.9) can be interpreted as a random walk, which starts at{Y1, Y2, ...}
, and proceeds with steps of size 1 to the right or to the left, each with probabil-Y0 = 0

ities p and respectively,  The sequence  is called aq, 0 < p < 1. {eθY1 , eθY2 , ...}
geometric random walk.  this case,In

w(θ) = E(eθZ) = p eθ + q e−θ.

The geometric random walk is a martingale if  since then  andθ = ln [q /p] w(θ) = 1,
the corresponding exponential martingale  has the structure {X1, X2, ...} Xn = [q/p]Yn

with trend function m(n) = E(Xn) = 1, n = 1, 2, ....

2) Discrete Black-Scholes Model  A favorite model  for describing the development
of share prices, which are sampled at discrete time points 1, 2,..., is

Xn = S1 ⋅ S2 . .. Sn ,

with  and independent, identically as   distributed . Si = eZi Z = N(μ,σ2) Zi, i = 1, 2, ...
 has a logarithmic normal distribution with parameters  and  (page 84) andSi μ σ2

mean value  Thus, is a martingale iff  E(Si) = eμ+σ2/2. {X1, X2, ...} μ = −σ2/2.
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Example 10.4 (branching process)  Consider the Galton-Watson branching process
as introduced at page 370: Each member of the n th generation, , producesn = 0, 1, ...
independently of each other a random number Y of offspring with mean value  Letμ.

 be the random number of offspring produced by the  generation. GivenXn+1 n th
 the random variable  is independent of  Therefore,Xn = xn, Xn+1 X0, X1, ..., Xn−1.

                  (10.12)E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0) = μ xn .

Hence,  is a martingale if  a supermartingale if  and a sub-{X0, X1, ...} μ = 1, μ ≤ 1,
martingale if  Moreover, for any positive , the sequence  with μ ≥ 1. μ {Z0, Z1, ...}

 is a martingale. This can be verified as follows:Zn = Xn /μn

E(Zn+1 Zn = zn, ..., Z1 = z1, Z0 = z0)

 = E⎛⎝
Xn+1

μn+1
Xn
μn =

xn
μn , ..., X1

μ1 =
x1

μ1 , X0

μ0 =
x0

μ0
⎞
⎠

= 1
μn+1 E(Xn+1 Xn = xn, ..., X1 = x1, X0 = x0)

                                            �= 1
μn+1 μ xn =

xn
μn = zn .

10.1.2  Doob-Type Martingales

In this section, the concept of a (super-, sub-) martingale  as introduced{X0, X1, ...}
in definition 10.1 is generalized by conditioning with regard to another sequence of
random variables  This, of course, only makes sense if  is{Y0, Y1, ...}. {Y0, Y1, ...}
somewhat related to  The following definition refers to the characteriza-{X0, X1, ...}.
tion of (super-, sub-) martingales by properties (10.5) to (10.7).

Definition 10.2  Let  and  be two discrete-time stochastic{X0, X1, ...} {Y0, Y1, ...}
processes. If  for all  then the random sequence  isE( Xn ) < ∞ n = 0, 1, ..., {X0, X1, ...}
a martingale with regard to  or a Doob-type martingale if for all {Y0, Y1, ...} (n + 1)
-dimensional vectors  with  elements of the state space of (y0, y1, ..., yn) yi {Y0, Y1, ...}
and for any ,n = 0, 1, ...

                 (10.13)E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) = 0.

Under otherwise the same assumptions,  is a supermartingale with regard{X0, X1, ...}
to  if{Y0, Y1, ...}

E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) ≤ 0 ,

and a submartingale with regard to  if{Y0, Y1, ...}

                          zE(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0) ≥ 0.
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Remark Most of the literature on martingales is measure-theoretically based. In this case, the
definition of a martingale is usually done by means of the concept of a filtration. Loosely
speaking, a filtration  contains all the information, which is available about the stochasticFn
process  up to time point n. Generally, since with increasing time n the knowledge{X0, X1, ...}
about the process increases, . Definition 10.1 uses the natural filtration F0 ⊂ F1 ⊂ F2 ⊂ . ..

 for characterizing a martingale. Thus, the natural filtrationFn = {X0 = x0, X1 = x1, ..., Xn = xn}
is simply obtained by observing the process  up to time point n. Formally,  is the{X0, X1, ...} Fn

smallest -algebra generated by the events ' ' see page 18. A filtration  σ Xi = xi, i = 1, 2, ..., n; Fn
may also contain other information than the natural filtration. In particular, in case of Doob-
type martingales, our knowledge about the process  at time point n is given by the{X0, X1, ...}
filtration  The value of  is fully determined by theFn = {Y0 = y0, Y1 = y1, ..., Yn = yn}. Xn
filtration  In measure-theoretic terms, the random variable  is measurable with regard toFn. Xn

 The random variable  however, is not measurable with regard to  Thus, the mar-Fn. Xn+1, Fn.
tingale terminology can be unified by making use of the concept of a filtration:

A stochastic process  with  for all  is said to be a martingale{X0, X1, ...} E( Xn ) < ∞ n = 0, 1, ...
with regard to the sequence of filtrations  if {F0, F1, ...}

.E(Xn+1 Fn) = xn, n = 0, 1, ...

Example 10.5  Let  be the random price of a share at time i and  be the amountYi Si
of share an investor holds in the interval Thus, at time[i, i + 1); i = 0, 1, ..., Si ≥ 0.

 the total value of the investor's amount of shares is  and in thet = 0 X0 = Y0 S0
interval  the investor makes a 'profit' of  Hence, the investor's[i, i + 1) Si (Yi+1 − Yi).
total profit up to time  ist = n

                        (10.14)Xn = Σi=0
n−1 Si (Yi+1 − Yi) ; n = 1, 2, ...

It makes sense to assume that the investor's choice, what amount of share to hold in  
, does not depend on the profit made in this and later intervals, but only on[n, n + 1)

the profits made in the previous intervals. Hence,  is assumed to be fully determinedSn
by the  i.e., the  are constant. Under this assumption, the sequenceY0, Y1, ..., Yn, Sn

 is a supermartingale with regard to  if  is a super-{X1, X2, ..., } {Y0, Y1, ...} {Y0, Y1, ...}
martingale. This is proved as follows:

  E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0)

         = E(Sn(Yn+1 − Yn) Yn = yn, ..., Y1 = y1, Y0 = y0)

= Sn E(Yn+1 − Yn Yn = yn, ..., Y1 = y1, Y0 = y0) ≤ 0 .

The last line makes use of the assumptions that given ' 'Yn = yn, ..., Y1 = y1, Y0 = y0
the share amount  is a constant and that  is a supermartingale. Hence,Sn {Y0, Y1, ...}
no matter how well-considered the investor fixes the amount of share to be held in an
interval, in the longrun she/he cannot expect to make positive profit if the share price
develops unfavorably. (A supermartingale has a decreasing trend function.)             �
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Example 10.6  The structure of  given by (10.14) includes as a special case theXn
winnings (losses) development when applying the doubling strategy: Jean bets €1 on
the first game. If he wins, he gets 1. If he loses, his 'winning' are  Hoping to− 1.
equalize the loss, Jean will bet € 2 on the next game. If he wins, he will get € 2 and,
hence, will have made total winnings of € 1. But if he loses he will have total 'winn-
ings' of € -3, and will bet € 4 on the next game and so on. After the first win Jean stops
gambling. The following table shows the losses (winnings) development of Jean if he
loses 5 times in a row and then wins:

game    1    2    3    4    5    6
result                loss        loss        loss        loss        loss        win
bet    1    2    4    8   16          32
'  winnings'   -1           -3            -7          -15          -31         +1total

Generally, if Jean loses the first  games and wins the n th game, then his bets aren − 1
Si = 2i−1, i = 1, 2, ..., n,

and  at  this  time  point he  quits the play with a win of  € +1.  Hence,  at  all  future time
points   , Jean's total winnings stay constant at level  €+1. n + 1, n + 2, ...
Let  be a sequence of independent random variables, identically distributedZ1, Z2, ...
as Z, which indicate whether Jean has won the  game or not:i th

               (10.15)Zi =
+1 with probability 1/2 (Jean wins),
−1 with probability 1/2 (Jean loses).

In terms of the  the stopping time N of the play is defined as follows:Zi,

N = min
i=1,2,...

{i, Zi = 1}.

Obviously N has the geometrical distribution (2.26) with :p = 1/2

pk = P(N = k) = ⎛
⎝

1
2
⎞
⎠

k
, k = 1, 2, ..., and E(N) = 2.

Let  be the total winnings of Jean at time point n. To show that  is aXn {X1, X2, ...}
martingale, equation (10.5) has to be verified:

                (10.16)E(Xn − Xn−1 Xn−1 = xn−1, ..., X2 = x2, X1 = x1) = 0.

Let  Then the condition ' '   in (10.16) can beN = k. Xn−1 = xn−1, ..., X2 = x2, X1 = x1
deleted, since it is fully characterized by  and n. Three cases have to be considered:k

1)  n < k : Xn = 20Z1 + 21Z2 + . .. + 2n−1Zn = −1 − 2 − . .. − 2n−1 = 1 − 2n .
   (in view of the geometric series (2.16), page 48)

2)  n = k : Xn = 20Z1 + 21Z2 + . .. + 2n−1Zn + 2n = −1 − 2 − . .. − 2n−1 + 2n = 1.

3)   all n > k : Xn = 1 for n = k + 1, k + 2, ....
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Therefore,

  E(Xn − Xn−1) = E(Xn − Xn−1 N > n)P(N > n) + E(Xn − Xn−1 N = n)P(N = n)

   = −2n−1 Σ
i=n+1

∞ ⎛
⎝

1
2
⎞
⎠

i
+ 2n−1 ⎛

⎝
1
2
⎞
⎠

n

                                                                                  = −2n−1 ⎛
⎝

1
2
⎞
⎠

n+1
Σ
i=0

∞ ⎛
⎝

1
2
⎞
⎠

i
+ 1

2

            = −2n−1 ⎛
⎝

1
2
⎞
⎠

n+1
2 + 1

2 = 0,

which holds for all  (letting  Thus, condition (10.16) is fulfilled son = 1, 2, ... X0 = 0).
that  is a martingale. Hence, on average, Jean cannot make a profit when{X1, X2, ...}
applying the doubling strategy. This theoretical result is not intuitive at all, since with
increasing n the probability  that at least one of the  in a series of n gamespn Zi
assumes value 1 is  and this probability tends to 1 very fast with increas-pn = 1 − 2−n,
ing n. For being able to maintain the doubling strategy till a win, Jean must, however,
have a sufficiently large (theoretically, an unlimited) amount of initial capital, since
each bet size  has a positive probability to occur (and the casino must allow arbi-2i

trarily large stakes). 'Large' is of course relative in this context, since if Jean starts
gambling with an initial capital of €1 and his first bet size is one cent, then he can
maximally maintain 6 bets so that his probability of winning one cent is p6 ≈ 0.984.

Now let us generalize the doubling strategy by assuming that the  are given byZi

              (10.17)Z =
+1 with probability p
−1 with probability q

, q = 1 − p ≠ 1/2.

Then, under otherwise  same assumptions, the mean value of  becomesthe Xn − Xn−1

E(Xn − Xn−1) = −2n−1 Σ
i=n+1

∞
p qi−1 + 2n−1p qn−1

= (2 q)n−1(p − q), n = 1, 2, ....

Thus,  is a supermartingale for  and a submartingale for {X1, X2, ...} p ≤ 1/2 p ≥ 1/2.
Even if  is a supermartingale, Jean can make money with the doubling{X1, X2, ...}
strategy with  desired probability if his initial capital is large enough.any

To establish the relationship of the doubling strategy to the previous example, let us
introduce the notation Then so thatYi = Z1 + Z2 + . .. + Zi. Yi − Yi−1 = Zi

 E(Yi − Yi−1) = p − q.

Thus, the sequence  is a supermartingale if  (For extensions of(Y1, Y2, ...} p ≤ 1/2.
this example see exercises 10.4 and 10.6.)                                                                   �
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Example 10.7 At time t = 0  a population consists of 2 individuals, one of them is of
type 1, the other one of type 2. An individual of type k splits into 2 individuals of
type k,  The splitting time is negligibly small. For all individuals, the time tok = 1, 2.
splitting is a finite random variable. These times to splitting need not be identically
distributed and/or independent. Let  be the sequence of time points, at whicht1, t2, ...
splittings occur.  is supposed to be a simple point process (page 255).{t1, t2, ...}

 becomes a marked point process  where the marks{t1, t2, ...} {(t1, k1), (t2, k2), ...},
 indicate whether an individual of type 1 or type 2 has split at time .ki = 1 or ki = 2 ti

No deaths are assumed to occur so that we consider a special branching process.
After each splitting event the number of individuals in the population increases by 1.
Hence, at time   (i.e., immediately after ) the population comprises a totaltn = tn + 0 tn
number of  individuals,  It is assumed that at any time point eachn + 2 n = 1, 2, ....
individual has the same probability to split. Let  be the number of individuals ofYn
type 1 at time point  Then  is a nonhomogeneous Markovtn, Y0 = 1. {Y0, Y1, ...}
chain with state space  and transition probabilities{1, 2, ...}

pi i(n) = P(Yn+1 = i Yn = i) = n + 2 − i
n + 2 ,

        pi i+1(n) = P(Yn+1 = i Yn = i) = i
n + 2 .

Note that the conditional mean value of  on condition  isYn+1 Yn = yn

              (10.18)E(Yn+1 Yn = yn) = yn + 0 ⋅ pyn yn (n) + 1 ⋅ pyn yn+1(n)

    = yn +
yn

n + 2.

Now let  be the fraction of type 1-individuals in the population at time :Xn tn

  Xn =
Yn

n + 2 .

Then  is a martingale with respect to  To prove this, it is to{X0, X1, ...} {Y0, Y1, ...}.
show that

      E(Xn+1 Yn = yn, ..., Y1 = y1, Y0 = y0) = xn.

Since  is a Markov chain, the condition ' '  can{Y0, Y1, ...} Yn = yn, ..., Y1 = y1, Y0 = y0
be replaced with ' .'  Hence, by (10.18),Yn = yn

   E(Xn+1 Yn = yn) = E⎛⎝
Yn+1
n + 3 Yn = yn) = 1

n + 3 E(Yn+1 Yn = yn )

= 1
n + 3

⎡
⎣⎢
yn +

yn
n + 2

⎤
⎦⎥
=

yn
n + 2 = xn.

In the literature, this population model is known as 'P lya's urn scheme'.                   �ó
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Next, under rather strong additional conditions, a criterion is derived, which ensures
that a Doob-type martingale is a martingale in the sense of definition 10.1. This
derivation is facilitaed by the introduction of a new concept (Kannan (1979)).

Definition 10.3  Let  be a discrete-time Markov chain (not necessarily ho-{Y0, Y1, ...}
mogeneous) with state space  and transition probabilitiesZ = {. .. ,−1, 0,+1, . .. }

pn(y, z) = P(Yn+1 = z Yn = y) ; y, z ∈ Z; n = 0, 1, ....

A function  is said to be concordant with  if ith(y, n); y ∈ Z; n = 0, 1, ... {Y0, Y1, ...}
satisfies for all y ∈ Z

                                (10.19)h(y, n) = Σz∈Z pn(y, z)h( z, n + 1) .

           z

Theorem 10.1  Let  be a discrete-time Markov chain with state space{Y0, Y1, ...}

Z = {. .. ,−1, 0,+1, . .. }.

Then, for any function  which is concordant with h(y, n) {Y0, Y1, ...},
a) the sequence of random variables  generated by{X0, X1, ...}

Xn = h(Yn, n) ; n = 0, 1, ...

is a martingale with regard to  and{Y0, Y1, ...},

b) the sequence  is a martingale.{X0, X1, ...}

Proof  a) By the Markov property and the concordance of h with {Y0, Y1, ...},

E(Xn+1 − Xn Yn = yn, ..., Y1 = y1, Y0 = y0)

= E(Xn+1 Yn = yn, ..., Y1 = y1, Y0 = y0) − E(Xn Yn = yn, ..., Y1 = y1, Y0 = y0)

= E(h(Yn+1, n + 1) Yn = yn) − E(h(Yn, n) Yn = yn)

= Σ
z∈Z

pn(yn, z)h(z, n + 1) − h(yn, n)

= h(yn, n) − h(yn, n) = 0.

This result shows that  is a martingale with regard to {X0, X1, ...} {Y0, Y1, ...}.

b) Let, for given  the random event A be defined as the 'martingalex0, x1, ..., xn,
condition' Since the  are fully determinedA = {Xn = xn, ...., X1 = x1, X0 = x0}. Xn

by the   there exists a set Y of vectors  with propertyY0, Y1, ..., Yn, y = (yn, ..., y1, y0)
that  occurrence of any of the mutually disjoint random eventsthe

Ay = {Yn = yn, ..., Y1 = y1, Y0 = y0}, y ∈ Y,

implies the occurrence of event A:
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A =
y∈Y

Ay .

Now the martingale property of  is easily established:{X0, X1, ...}

  E(Xn+1 A) = Σ
y∈Y

E⎛⎝Xn+1 Ay
⎞
⎠

P(Ay )
P(A) = h(yn, n) Σ

y∈Y

P(Ay )

P(A)

                                                    = h(yn, n) = xn.

Hence,  is a martingale according to definition 10.1.                              �{X0, X1, ...}

Example 10.8  (variance martingale )  Let  be a sequence of independ-{Z1, Z2, ...}
ent, integer-valued random variables with probability distributions

qi
(n) = P(Zn = i), i ∈ Z = {. .. ,−1, 0,+1, . .. },

and numerical parameters E(Zi) = 0 and E(Zi
2) = σi

2; i = 1, 2, ....

With an integer-valued constant , a discrete-time Markov chain  withz0 {Y0, Y1, ...}
state space   is introduced as  Then, Z = {. .. ,−1, 0,+1, . .. } Yn = z0 + Z1 + . .. + Zn .

 for  and  E(Yn) = z0 n = 0, 1, ... Var(Yn) = Σi=1
n σi

2 for n = 1, 2, ....

The function
h(y, n) = y2 −Σi=1

n σi
2

is concordant with  To verify this, let  be the transition probabil-{Y0, Y1, ...}. pn(y, z)
ities of  at time n. These transition probabilities are fully determined by{Y0, Y1, ...}
the probability distribution of Zn+1 :

pn(y, z) = P(Yn+1 = z Yn = y) = P(Zn+1 = z − y) = qz−y
(n+1); y, z ∈ Z .

Therefore,

Σ
z∈Z

pn(y, z)h(z, n + 1) = Σ
z∈Z

qz−y
(n+1)h(z, n + 1)

    = Σ
z∈Z

qz−y
(n+1) ⎛

⎝z
2 −Σi=1

n+1 σi
2 ⎞
⎠ = Σ

z∈Z
qz−y
(n+1) ⎡

⎣(z − y + y)2 −Σi=1
n+1 σi

2 ⎤
⎦

= Σ
z∈Z

qz−y
(n+1)( z − y)2 + 2 y Σ

z∈Z
qz−y
(n+1)(z − y) + Σ

z∈Z
qz−y
(n+1)y2 −Σi=1

n+1 σi
2

= σn+1
2 + 2y ⋅ 0 + 1 ⋅ y2 − Σi=1

n+1 σi
2 = y2 −Σi=1

n σi
2 = h(y, n).

Hence, the function  is concordant with  Thus, by theorem 10.1,h(y, n) {Y0, Y1, ...}.
the random sequence  with  generated by{X0, X1, ...} Xn

                                        (10.20)Xn = Yn
2 − Var (Yn)

is a martingale. It is called variance martingale.                                                        �
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10.1.3   Martingale Stopping Theorem and Applications

As pointed out in the beginning of this chapter, martingales are suitable stochastic
models for fair games, i.e., the chances to win or to lose are equal. If one bets on a
supermartingale, is it, nevertheless, possible to make money by finishing the game at
the 'right time'? The decision, when to finish a game can, of course, only be made on
the past development of the martingale (if no other information is available) and not
on its future. Hence, a proper time for finishing a game seems to be a stopping time
N for  where  is the gambler's net profit after the n th game. Accord-{X0, X1, ...}, Xn
ing to definition 4.2 (page 195), a stopping time for  is a positive, integer{X0, X1, ...}
-valued random variable N with property that the occurrence of the event 'N  n' is=
fully determined by the random variables  and, hence, does not dependX0, X1, ..., Xn
on the However, the martingale stopping theorem (also called option-Xn+1, Xn+2, ...
al stopping theorem or optional sampling theorem) excludes the possibility of winn-
ing in the longrun if finishing the game is controlled by a stopping time (see also
examples 10.5 and 10.6).

Theorem 10.2 (martingale stopping theorem)  Let N be a finite stopping time for
the martingale  i.e.  Then{X0, X1, ...}, P(N < ∞) = 1.

                                           (10.21)E(XN) = E(X0)

if at least one of the following three conditions is fulfilled:
1) The stopping time N is bounded, i.e., there exists a finite constant  so that, withC1
probability 1,   (Of course, in this case N is finite.)N ≤ C1.

2) There exists a finite constant  withC2

Xmin(N,n) ≤ C2 for all n = 0, 1, ...

3)                                                �E( XN ) < ∞ and lim
n→∞

E(Xn N > n)P(N > n) = 0.

Remarks 1) When comparing formulas (10.4) and (10.21), note that in (10.21) N is a
random variable.
2) Example 10.6 shows that (10.21) is not true for all martingales.

Example 10.9  (Wald's identity) Theorem 10.2 implies Wald's identity (4.74) on con-
dition that N with  is a stopping time for a sequence of independent, iden-E(N) < ∞
tically as Y with  distributed random variables . To see this, letE(Y) < ∞ Y1, Y2, ...

Xn = Σi=1
n (Yi − E(Y)) ; n = 1, 2, ....

By example 10.1,  the sequence  is a martingale. Therefore,  theorem 10.2{X1, X2, ...}

is applicable with E(X1) = 0 :
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E(XN) = E⎛⎝Σi=1
N (Yi − E(Y))⎞⎠

= E⎛⎝Σi=1
N Yi − N E(Y)⎞⎠ = E⎛⎝Σi=1

N Yi
⎞
⎠ − E(N)E(Y) = 0.

This proves Wald's identity:

                                     (10.22)E⎛⎝Σi=1
N Yi

⎞
⎠ = E(N)E(Y).

�

Example 10.10 ( fair game)  Let  be a sequence of independent, identi-{Z1, Z2, ...}
cally as  distributed random variablesZ :

Z =
+1 with probability 1/2
−1 with probability 1/2

.

Since  the sequence  defined byE(Zi) = 0, {Y1, Y2, ...}

Yn = Z1 + Z2 + . .. + Zn; n = 1, 2, ...
is a martingale (example 10.1).  is interpreted as the cumulative net profit (loss) ofYn
a gambler after the n th play if he bets one dollar on each play. The gambler finishes
the game as soon he has won  or lost  Thus, the game will be finished at time$ a $ b.

                          (10.23)N = min {n; Yn = a or Yn = −b}.
Obviously, N is a stopping time for the martingale  Note that this martin-{Y1, Y2, ...}.
gale is the symmetric random walk. Since E(N) is finite, by equation (10.21),

0 = E(Y1) = E(YN) = a P(YN = a) + (−b)P(YN = −b).
Combining this relationship with

P(YN = a) + P(YN = −b) = 1

yields the desired probabilities

P(YN = a) = b
a + b

, P(YN = −b) = a
a + b

.

For determining , the variance martingale  withE(N) {X1, X2, ...}

 Xn = Yn
2 − Var(Yn) = Yn

2 − n

is used (formula (10.20)). By theorem 10.2,
E(X1) = E(XN) = E(YN

2) − E(N) = 0.

Therefore,
E(N) = E(YN

2) = a2P(YN = a) + b2P(YN = −b).

Thus, the mean duration of this fair game is 

                                     �E(N) = a2 b
a + b

+ b2 a
a + b

= a b.
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Example 10.11 (unfair game)  Under otherwise the same assumptions as in the pre-
vious example, let

              (10.24)Z =
+1 with probability p
−1 with probability q

, q = 1 − p ≠ 1/2.

Thus, the win and loss probabilities on a play are different. The mean value of   isZi

.E(Zi) = p − q = 2p − 1

The martingale  is defined as in the previous example:{X1, X2, ...}

Xn = Σi=1
n (Zi − E(Zi)); n = 1, 2, ... .

By introducing ,  the random variable  can be written asYn = Z1 + Z2 + . .. + Zn Xn

Xn = Yn − (p − q)n.

If this martingale is stopped at time  given by (10.23), equation (10.21) yieldsN

                     (10.25)E(XN) = E(YN) − (p − q)E(N) = E(X1) = 0,

or, equivalently,
a P(YN = a) + (−b)P(YN = −b) − (p − q)E(N) = 0.

For establishing another equation for the three unknowns
P(YN = a), P(YN = −b), and E(N),

the exponential martingale (example 10.3) is used. If   with then,θ = ln [q/p] q = 1 − p,
as pointed out in example 10.3,  so that the geometric random walkE(eθZi ) = 1

 given by{U1, U2, ...}

Un = Π
i=1

n
eθZi = eθΣi=1

n Zi = eθYn ; n = 1, 2, ...

is a martingale. Now, again by applying equation (10.21),

           (10.26)1 = E(U1) = E(UN) = eθa P(YN = a) + e−θbP(YN = −b) .

Equations (10.25) and (10.26) together with  yield theP(YN = a) + P(YN = −b) = 1
'hitting probabilities'

   P(YN = a) = 1 − (p/q)b

(q/p)a − (p/q)b , P(YN = −b) = (q/p)a − 1
(q/p)a − (p/q)b ,

and the mean duration  the gameof

   E(N) = E(YN)
p − q = 1

p − q
⎛

⎝
⎜

a [1 − (p/q)b] − b [q/pa − 1]
(q/p)a − (p/q)b

⎞

⎠
⎟ .

By letting  and  one gets the result already obtained in example 8.3n = b z = a + b
(page 346, formula (8.20)) with elementary methods and without worrying whether
the assumptions of theorem 10.2 are fulfilled.                                                             �
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10.2   CONTINUOUS-TIME MARTINGALES

This section summarizes some results on continuous-time martingales. For simplicity
and with regard to applications to Brownian motion processes in Chapter 11,  their
parameter space is restricted to  whereas the state space can be the wholeT = [0, ∞),
real axis  or a subset of it. Z = (−∞,+∞)

Definition 10.4  A stochastic process  with  for all  is{X(t), t ≥ 0} E( X(t) ) < ∞ t ≥ 0
called a martingale if for all integers  for every sequence  withn = 0, 1, ..., t0, t1, ..., tn
  for all vectors  with  and for any  0 ≤ t0 < t1 < . .. < tn, (xn, xn−1,..., x0) xi ∈ Z t > tn ,

                  (10.27)E(X(t) X(tn) = xn, ..., X(t1) = x1, X(t0) = x0) = xn,

                                       z

Thus, for predicting the mean value of a martingale at a time t, only the last observa-
tion point before t is relevant. The development of the process before  contains notn
additional information with respect to its mean value at a time  Hence, regard-t, t > tn.
less how large the difference  is, on average no increase/decrease of the processt − tn

 can be predicted for the interval .{X(t), t ≥ 0} [tn, t]
Analogously to the definition of a discrete-time martingale via (10.8), a continuous-
time martingale can be equivalently defined based on the formulas (3.61) and (3.62)
at page 147:  is a continuos-time martingale if, with the notation and{X(t), t ≥ 0}
assumptions of theorem 10.2,

                          (10.28)E(X(t) X(tn), . .. , X(t1), X(t0)) = X(tn).

This property  frequently written in the more convenient formsis
                              (10.29)E(X(t) X(y), y ≤ s) = X(s), s < t,

or
                           (10.30)E(X(t) − X(s) X(y), y ≤ s) = 0, s < t.

 is a supermartingale (submartingale) if in (10.27) (10.30) the sign ' '{X(t), t ≥ 0} − =
is replaced with ' ' (' '). The trend function of a continuous-time martingale is con-≤ ≥
stant:

m(t) = E(X(t)) ≡ m(0).

Example 10.12  Let  be a homogeneous Poisson process with intensity {N(t), t ≥ 0} λ,
 (page 261). Then its trend functionλ > 0

m(t) = E(N(t)) = λ t
is increasing so that this process cannot be a martingale. The process  {X(t), t ≥ 0},
however, defined by

X(t) = N(t) − λt
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has trend function  and is indeed a martingale: For m(t) ≡ 0 s < t,

E(X(t) − X(s) X(y), y ≤ s)

= E(N(t) −N(s) − λ(t − s) N(y), y ≤ s)

= E(N(t) −N(s)) − λ(t − s) = 0.

The condition ' ' could be deleted, since the homogeneous Poisson processN(y), y ≤ s
has independent increments. (Its development in  has no influence on its devel-[0, s]
opment in  Of course, not every stochastic process  of structure(s, t].) {X(t), t ≥ 0}

 is a martingale.                                                                            �X(t) = Y(t) − E(Y(t))

Definition 10.5 (stopping time)  A random variable L is a stopping time with regard
to an (arbitrary) stochastic process  if for all  the occurrence of the{X(t), t ≥ 0} s > 0
random event ' ' is fully determined by the evolvement of this process to timeL ≤ s
point s. Therefore, the occurrence of the random event ' ' is independent of allL ≤ s

 with .                                                                                                             zX(t) t > s

Let ' ' denote the indicator function for the occurrence of the event ' :'IL>t L > t

IL>t =
1 if L > t occurs,
0 otherwise

.

Theorem 10.3 (martingale stopping theorem)  If  is a continuous-time{X(t), t ≥ 0}
martingale and  a finite stopping time for this martingale, thenL

                                        (10.31)E(X(L)) = E(X(0))
if one of the following two conditions is fulfilled:
1)  L is bounded,
2)                                                               �E( X(L) ) < ∞ and lim

t→∞
E( X(t) IL>t) = 0.

The interpretation of this theorem is the same as in case of the martingale stopping
theorem for discrete-time martingales. For proofs of theorems 10.2 and 10.3 see, for
instance, Kannan (1979), Grimmett, Stirzaker (2001), or Rolski et al. (1999).

Example 10.13  As an application of theorem 10.3, a proof of Lundberg's inequality
(7.85) in actuarial risk analysis is given: Let  be the risk  process under{R(t), t ≥ 0}
the assumptions made at page 294:

R(t) = x + κt −C(t),
where x is the initial capital,  the premium rate, and  the compoundκ {C(t), t ≥ 0}
claim size process defined by

C(t) = Σi=0
N(t)

Mi , M0 = 0,

where  is the homogeneous Poisson process with parameter {N(t), t ≥ 0} λ = 1/μ.
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The  claim sizes  are assumed to be independent and identically as M dis-M1, M2, ...
tributed random variables with finite mean  and distribution function and densityE(M)

B(t) = P(M ≤ t), b(t) = dB(t)/dt, t ≥ 0.

Let further
  Y(t) = e−r R(t) and h(r) = E(er M) = ∫0

∞ er tb(t)dt

for any positive r with property Thenh(r) < ∞ .

   E(Y(t)) = e−r (x+κ t) E⎛⎝e+r C(t) ⎞
⎠

  = e−r (x+κ t) Σ
i=0

∞
E(e+r C(t) N(t) = n)P(N(t) = n)

   = e−r (x+κ t) Σ
i=0

∞
[h(r)]n (λ t)n

n! e−λt

= e−r(x+κt) eλ t [h(r)−1].
Let

X(t) = Y(t)
E(Y(t)) = er C(t)−λ t [h(r)−1].

Since  has independent increments, the process  has inde-{C(t), t ≥ 0} {X(t), t ≥ 0}
pendent increments as well. Hence, for  since  for all s < t, E(X(t)) = 1 t ≥ 0,

E(X(t) X(y), y ≤ s) = E(X(s) + X(t) − X(s) X(y), y ≤ s)

= X(s) + E(X(t) − X(s) X(y), y ≤ s)

= X(s) + E(X(t) − X(s)) = X(s) + 1 − 1 = X(s).

Thus,  is a martingale. Now, let{X(t), t ≥ 0}
L = inf

t
{t, R(t) < 0}.

L is obviously a stopping time for the martingale  Therefore, for any{X(t), t ≥ 0}.
finite  the truncated random variable is a bounded stoppingz > 0, L ∧ z = min (L, z)
time for  (exercise 10.13). Hence, theorem 10.3 is applicable with the{X(t), t ≥ 0}
stopping time :L ∧ z

E(X(0)) = 1 = E(X(L ∧ z))
= E(X(L ∧ z L < z)P(L < z) + E(X(L ∧ z L ≥ z))P(L ≥ z)

≥ E(X(L ∧ z L < z)P(L < z)

= E(X(L L < z)P(L < z)

= E(er C(L)−λL [h(r)−1] L < z)P(L < z).

The definitions of  and L imply  Thus, from the first and the lastR(t) x + κL < C(L) .
line of this derivation,
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1 > E(er (x+κL) −λL (h(r)−1) L < z)P(L < z) ,
or, equivalently,

                    (10.32)1 > er xE(e[rκ−λ (h(r) −1)]L L < z)P(L < z) .
If the parameter  is chosen in such a way thatr

                                       (10.33)rκ − λ [h(r) − 1] = 0 ,

then inequality (10.32) simplifies to
P(L < z) < e−r x.

Since this inequality holds for all finite   it follows thatz > 0,
                                            (10.34)P(L < ∞) ≤ e−r x.

The probability  is obviously nothing else but the ruin probability . OnP(L < ∞) p(x)
the other hand, in view of  equation (10.33) is equivalent to equation (7.94),λ = 1/μ,
which defines the Lundberg coefficient  When verifying this by partial integration ofr.

E(er M) = ∫0
∞ er xb(t)dt,

note that the assumption  impliesh(r) < ∞

lim
t→∞

er t B(t) = 0.

Thus, (10.34) is indeed the Lundberg inequality (7.85) for the ruin probability.       �

10.3  EXERCISES

10.1) Let  be a sequence of independent random variables, which are iden-Y0, Y1, ...
tically distributed as  Are the stochastic sequences  withN(0, 1). {X0, X1, ...}

(1)   martingales?Xn = Σi=0
n Yi

2 (2) Xn = Σi=0
n Yi

3 (3) Xn = Σi=0
n Yi ; n = 0, 1, ...,

10.2) Let  be a sequence of independent random variables with finite meanY0, Y1, ...
values. Show that the discrete-time stochastic process  generated by{X0, X1, ...}

Xn = Σi=0
n (Yi − E(Yi))

is a martingale.

10.3) Let a discrete-time stochastic process  be defined by{X0, X1, ...}

Xn = Y0 ⋅ Y1 ⋅ . .. ⋅ Yn ,
where the random variables  are independent and have a uniform distribution overYi
the interval  Under which conditions is  (1) a martingale, (2) a[0, T]. {X0, X1, ...}
submartingale, (3) a supermartingale?
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10.4) Determine the mean value of the loss immediately before the win when apply-
ing the doubling strategy, i.e., determine  (example 10.6).E(XN−1)

10.5) Why is theorem 10.2 not applicable to the sequence of 'winnings' ,{X1, X2, ...}
which arises by applying the doubling strategy (example 10.6)?

10.6) Jean is not happy with the winnings he can make when applying the 'doubling
strategy'. Hence, under otherwise the same assumptions and notations as in example
10.6, he triples his bet size after every lost game, starting again with €1.
(1) What is his winnings when he loses 5 games in a row and wins the 6th one?
(2) Is  a martingale?{X1, X2, ...}

10.7) Starting at value 0, the profit of an investor increases per week by $1 with prob-
bability p,  or decreases per week by one unit with probability  Thep > 1/2, 1 − p.
weekly increments of the investor's profit are assumed to be independent. Let N be the
random number of weeks until the profit reaches for the first time a positive integer n.
By means of Wald's equation, determine E(N).

10.8) Starting at value 0, the fortune of an investor increases per week by $200 with
probability 3/8, remains constant with probability 3/8, and decreases by $200 with
probability 2/8. The weekly increments of the investor's fortune are assumed to be
independent. The investor stops the 'game' as soon as he has made a total fortune of

 or a loss of  whichever occurs first.$2000 $1000,
By using suitable martingales and applying the optional stopping theorem, determine
(1) the probability  that the investor finishes the 'game' with a profit of $2000,p2000

(2) the probability  that the investor finishes the 'game' with a loss of $1000, p−1000

(3) the mean duration  of the 'game.'E(N)

10.9) Let  be uniformly distributed over  be uniformly distributed overX0 [0, T], X1
 and, generally,  be uniformly distributed over  [0, X0], Xi+1 [0, Xi], i = 0, 1, ....

Verify: The sequence  is a supermartingale with {X0, X1, ...} E(Xk) =
T

2k+1 ; k = 0, 1, ....

10.10) Let  be a homogeneous discrete-time Markov chain with state{X1, X2, ...}
space  and transition probabilitiesZ = {0, 1, ..., n}

pi j = P(Xk+1 = j Xk = i) = ⎛
⎝

n
j
⎞
⎠
⎛
⎝

i
n
⎞
⎠

j ⎛
⎝

n−i
n
⎞
⎠

n−j
; i, j ∈ Z.

Show that  is a martingale. (In Genetics, this martingale is known as the{X1, X2, ...}
Wright-Fisher model without mutation.)
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10.11) Show that if L is a stopping time for a stochastic process with discrete or
continuous time and  then0 < z < ∞,

L ∧ z = min(L, z)
is a stopping time for this process as well.

10.12) Let  be a nonhomogeneous Poisson process with intensity func-{N(t), t ≥ 0}
tion  and trend functionλ(t)

.Λ(t) = ∫0
t λ(x)dx

Check whether the stochastic process  with  is a martin-{X(t), t ≥ 0} X(t) = N(t) − Λ(t)
gale.

10.13) Show that every stochastic process  satisfying{X(t), t ∈ T}

,E( X(t) ) < ∞, t ∈ T

which has a constant trend function and independent increments, is a martingale.

10.14)* The ruin problem described in section 7.2.7 is modified in the following way:
The risk reserve process  is only observed at the end of each year (or any{R(t), t ≥ 0}
other time unit). The total capital of the insurance company at the end of year n is

R(n) = x + κn − Σi=0
n Mi; n = 1, 2, ...,

where x is the initial capital,  is the constant premium income a year, and  is theκ Mi
total claim size the insurance company has to cover in year i,  The randomM0 = 0.
variables  are assumed to be independent and identically distributed asM1, M2, ...

 M = N(μ,σ2) with κ > μ > 3σ.

Let  be the ruin probability of the company:p(x)

p(x) = P(there is an n = 1, 2, ... so that R(n) < 0).

Show that
p(x) ≤ e−2 (κ−μ) x/σ2 , x ≥ 0.

Hint  Define  and select s such that  is a martingale.Xn = e−s R(n), n = 0, 1, ..., {X0, X1, ...}
Apply theorem 10.2 with the stopping times  and L = min(n, R(n) < 0) L ∧ z, 0 < z < ∞.
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CHAPTER 11

Brownian Motion

11.1 INTRODUCTION 

Tiny organic and inorganic particles when immersed in fluids move randomly along
zigzag paths. In 1828, the English botanist Robert Brown published a paper in which
he summarized his observations on this motion and tried to find its physical explana-
tion. Originally, he was only interested in the behaviour of pollen in liquids in order
to investigate the fructification process of phanerogams. However, at that time Brown
could only speculate on the causes of this phenomenon and was at an early stage of
his research even convinced that he had found an elementary form of life, which is
common to all particles. Other early explanations refer to attraction and repulsion
forces between particles, unstable conditions in the fluids in which they are suspend-
ed, capillary actions, and so on. Although the ceaseless, seemingly chaotic zigzag
movement of microscopically small particles in fluids had already been observed
before Brown, it is generally called Brownian motion.
The first approaches to mathematically modeling the Brownian motion were made by
L. Bachelier (1900) and A. Einstein (1905). Both found the normal distribution to be
an appropriate model for describing the Brownian motion and gave a physical expla-
nation of the observed phenomenon: The chaotic movement of sufficiently small par-
ticles in fluids and in gases is due to the huge number of impacts with the surround-
ing molecules, even in small time intervals. (Assuming average physical conditions,
there are about  collisions per second between a particle and the surrounding1021

molecules in a fluid.) More precisely, Einstein showed that water molecules could
momentarily form a compact conglomerate which has sufficient energy to move a
particle, when banging into it. (Note that the tiny particles are 'giants' compared with
a molecule.) These bunches of molecules would hit the 'giant' particles from random
directions at random times, causing its apparently irregular zigzag motion. Strangely,
Einstein was obviously not aware of the considerable efforts, which had been made
before him, to understand the phenomenon 'Brownian motion'. N. Wiener (1923),
better known as the creator of the science of Cybernetics, was the first to present a  
general mathematical treatment of the Brownian motion. He defined and analyzed a
stochastic process, which has served up till now as a stochastic model of Brownian
motion. Henceforth, this process is called Brownian motion process or, if no misun-
derstandings are possible, simply Brownian motion. Frequently, mainly in the German
literature, this process is also referred to as the Wiener process.
Nowadays the enormous importance of the Brownian motion is above all due to the
fact that it is one of the most powerful tools in theory and applications of stochastic



modeling, whose role can be compared with that of the normal distribution in proba-
bility theory. The Brownian motion process is an essential ingredient into stochastic
calculus, plays a crucial role in mathematics of finance, is basic for defining one of
the most important classes of Markov processes, the diffusion processes, and for solv-
ing large sample estimation problems in mathematical statistics. Brownian motion
has fruitful applications in key disciplines as time series analysis, operations research,
communication theory (modeling signals and noise), and reliability theory (wear
modeling, accelerated life testing). This chapter only deals with the one-dimensional
Brownian motion.

Definition 11.1 (Brownian motion) A continuous-time stochastic process {B(t), t ≥ 0}
with state space  is called a (one-dimensional) Brownian motion (pro-Z = (−∞, + ∞)
cess)  with parameter  if it has the following properties:σ
1) .B(0) = 0
2)  has homogeneous and independent increments.{B(t), t ≥ 0}
3)  has a normal distribution withB(t)

                               zE(B(t)) = 0 and Var (B(t)) = σ2t, t > 0 .

Condition 1, namely , is only a normalization and as an assumption notB(0) = 0
really necessary. Actually, in what follows situations will arise in which a Brownian
motion is required to start at  In such a case, the process retains prop-B(0) = u ≠ 0.
erty 2, but in property 3 assumption  has to be replaced with E(B(t)) = 0 E(B(t)) = u.
The process  with  is called a shifted Brownian motion.{Bu(t), t ≥ 0} Bu(t) = u + B(t)
In view of properties 2 and 3, the increment  has a normal distribution withB(t) − B(s)
mean value 0 and variance  σ2 t − s :

                          (11.1)B(t) − B(s) = N(0,σ2 t − s ) , s, t ≥ 0 .
In applications of the Brownian motion to finance, the parameter  is called volatili-σ
ity.  is also called variance parameter sinceσ2

                                           (11.2)σ2 = Var (B(1)) .
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             Figure 11.1  Sample path of the Brownian motion
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Standard Brownian Motion  If  then  is called a standard Brown-σ = 1, {B(t), t ≥ 0}
ian motion and will be denoted as  For any Brownian motion with pa-{S(t), t ≥ 0}.
rameter σ,

                                                 (11.3)B(t) = σS(t) .

Laplace Transform  Since  because of formula (2.128), page 102,B(t) = N(0,σ2t),
the Laplace transform of  isB(t)

                                    (11.4)E⎛⎝e
−αB(t) ⎞

⎠ = e+
1
2α

2σ2t.

11.2  PROPERTIES OF THE BROWNIAN MOTION

The first problem, which has to be addressed, is whether there exists a stochastic pro-
cess having properties 1 to 3. An affirmative answer was already given by N. Wiener
in 1923. In what follows, a constructive proof of the existence of the Brownian motion
is given. This is done by showing that Brownian motion can be represented as the
limit of a discrete-time random walk, where the size of the steps tends to 0 and the
number of steps per unit time is speeded up.

Brownian Motion and Random Walk  With respect to the physical interpretation
of the Brownian motion, it is not surprising that there is a close relationship between
Brownian motion and the random walk of a particle along the real axis. Modifying
the random walk described in example 8.1, page 342, it is now assumed that after
every  time units the particle jumps  length units to the right or to the left, eachΔt Δx
with probability 1/2. Thus, if  is the position of the particle at time t, thenX(t)

                             (11.5)X(t) = (X1 + X2 + . .. + X[t/Δt]) Δx ,
where X(0) = X0 = 0 and

    Xi =
+1 if the i th jump goes to the right,
−1 if the i th jump goes to the left.

As usual,  denotes the greatest integer less than or equal to  The random[t /Δt] t /Δt.
variables  are independent of each other and have probability distributionXi

  with  P(Xi = 1) = P(Xi = −1) = 1/2 E(Xi) = 0, Var(Xi) = 1.
Hence, formula (4.56) at page  187, applied to (11.5), yields

E(X(t)) = 0 , Var(X(t)) = (Δx)2 [t/Δt].

With a positive constant , let  Then, taking the limit as  in (11.5),σ Δx = σ Δt . Δt → 0
a stochastic process in continuous time  arises which has trend and var-{X(t), t ≥ 0}
iance function

E(X(t)) = 0, Var(X(t)) = σ2t.
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Due to its construction,  has independent and homogeneous increments.{X(t), t ≥ 0}
Moreover, by the central limit theorem, X(t) has a normal distribution for all t > 0.
Therefore, the stochastic process of the 'infinitesimal random walk'  is a{X(t), t ≥ 0}
Brownian motion.

Even after Norbert Wiener, many amazing properties of the Brownian motion have
been detected. Some of them will be considered in this chapter. The following theo-
rem summarizes key properties of the Brownian motion.

Theorem 11.1  A Brownian motion  has the following properties:{B(t), t ≥ 0}
a)  is mean-square continuous.{B(t), t ≥ 0}

b)  is a martingale.{B(t), t ≥ 0}
c)  is a Markov process.{B(t), t ≥ 0}
d)  is a Gaussian process.{B(t), t ≥ 0}

Proof  a)  From (11.1),
                    (11.6)E((B(t) − B(s))2) = Var(B(t) − B(s)) = σ2 t − s .

Hence,

    lim
h→0

E⎛⎝[B(t + h) − B(t)]2 ⎞
⎠ = lim

h→0
σ2 h = 0 .

Thus, the limit exists with regard to the convergence in mean-square (page 205).

b) Since a Brownian motion  has independent increments, for {B(t), t ≥ 0} s < t,

E(B(t) B(y), y ≤ s)) = E(B(s) + B(t) − B(s) B(y), y ≤ s))

= B(s) + E(B(t) − B(s) B(y), y ≤ s))

= B(s) + E(B(t) − B(s)) = B(s) + 0 − 0 = B(s) .

Therefore,  is a martingale.{B(t), t ≥ 0}

c) Any stochastic process  with independent increments is a Markov pro-{X(t), t ≥ 0}
cess.

d) Let  be any sequence of real numbers with Itt1, t2, ..., tn 0 < t1 < t2 < . .. < tn < ∞.
has to be shown that for all  the random vectorn = 1, 2, ...

(B(t1), B(t2), ... , B(tn))

has an n-dimensional normal distribution. This is an immediate consequence of
theorem 3.3 (page 149), since each  can be represented as a sum of independent,B(ti)
normally distributed random variables (increments) in the following way:

         �B(ti) = B(t1) + (B(t2) − B(t1)) + . .. + (B(ti) − B(ti−1)); i = 2, 3, ... , n.
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Theorem 11.2  Let  be the standardized Brownian motion. Then, for any{S(t), t ≥ 0}
constant  the stochastic processes  defined as follows are martin-α ≠ 0, {Y(t), t ≥ 0}
gales:
a)  (exponential martingale),Y(t) = eαS(t)−α2t /2

b)       (variance martingale).Y(t) = S2(t) − t

Proof  a) For s < t,

E(eαS(t)−α2t /2 S(y), y ≤ s) = E(eα[S(s)+ S(t)−S(s)]−α2t /2 S(y), y ≤ s)

= eαS(s)−α2t /2E(eα[S(t)−S(s)] S(y), y ≤ s)

= eαS(s)−α2t /2 E⎛⎝e
α[S(t)−S(s)] ⎞

⎠ .

From (11.4) with σ = 1,

E⎛⎝e
α[S(t)−S(s)] ⎞

⎠ = e+
1
2α

2(t−s) .

Hence,

                       (11.7)E(eαS(t)−α2t/2 S(y), y ≤ s) = eα S(s)−α2s/2 .

b) For  since  and  are independent and  for all s < t, S(s) S(t) − S(s) E(S(x)) = 0 x ≥ 0,

E(S2(t) − t S(y), y ≤ s) = E([S(s) + S(t) − S(s)]2 − t S(y), y ≤ s)

= S2(s) + E{2 S(s) [S(t) − S(s)] + [S(t) − S(s)]2 − t S(y), y ≤ s}

= S2(s) + 0 + E{[S(t) − S(s)]2} − t

= S2(s) + (t − s) − t

= S2(s) − s ,

which proves the assertion.                                                   �

There is an obvious analogy between the exponential and the variance martingale
defined in theorem 11.2 and corresponding discrete-time martingales considered in
examples 10.3 and 10.8.
The relationship (11.7) can be used to generate further martingales: Differentiating
(11.7) with regard to  once and twice, respectively, and letting  'proves' onceα α = 0,
more that  and  are martingales. This algorithm produces{S(t), t ≥ 0} {S2(t) − t, t ≥ 0}
more martingales by differentiating (11.7)  times. For instance, when differ-k = 3, 4, ...
entiating (11.7) three  four times, respectively, the resulting martingales areand

  and  {S3(t) − 3 t S(t), t ≥ 0} {S4(t) − 6 t S2(t) + 3 t2, t ≥ 0}.
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Properties of the Sample Paths Since a Brownian motion is mean-square continu-
ous, it is not surprising that its sample paths  are continuous functions in t.b = b(t)
More exactly, the probability that a sample path of a Brownian motion is continuous
is equal to 1. In view of this, it may come as a surprise that the sample paths of a
Brownian motion are nowhere differentiable. This is here not proved either, but it is
made plausible by using (11.6): For any sample path  and any sufficientlyb = b(t)
small, but positive the differenceΔt,

Δb = b(t + Δt) − b(t)

is approximately equal to  Therefore,σ Δt .

Δb
Δt =

b(t + Δt) − b(t)
Δt ≈

σ Δt
Δt = σ

Δt
.

Hence, for the difference quotient  is likely to tend to infinity for anyΔt → 0, Δb/Δt
nonnegative t. Thus, it can be anticipated that the sample paths of a Brownian motion
are nowhere differentiable; for proofs see, e.g., Kannan (1979). Another example for
a continuous function, which is nowhere differentiable, is given in Gelbaum and
Olmstead (1990).
The variation of a sample path (as well as of any real function)  in an intervalb = b(t)

 with  is defined as the limit[0, τ] τ > 0

                                (11.8)lim
n→∞ Σk=1

2n

b⎛⎝
k τ
2n
⎞
⎠ − b⎛⎝

(k−1) τ
2n

⎞
⎠ .

A consequence of the non-differentiability of the sample paths is that this limit, no
matter how small  is, cannot be finite. Hence, any sample path of the Brownian mo-τ
tion is of unbounded variation. This property in its turn implies that the 'length' of a
sample path over the finite interval , and, hence, over any finite interval  [0, τ] [s, t]
with , is infinite. What geometric structure is such a sample path supposed tos < t
have? The most intuitive explanation is that the sample paths of any Brownian motion
are strongly dentate (in the sense of the structure of leaves), but this structure must
continue to the infinitesimal. This explanation corresponds to the physical interpreta-
tion of the Brownian motion: The numerous and rapid bombardments of particles in
liquids or gases by the surrounding molecules cannot lead to a smooth sample path.
Unfortunately, the unbounded variation of the sample paths implies that particles
move with an infinitely large velocity when dispersed in liquids or gases. Hence, the
Brownian motion process cannot be a mathematically exact model for describing the
movement of particles in these media. But it is definitely a good approximation. (For
modeling the velocity of particles in liquids or gases the Ornstein-Uhlenbeck process
has been developed; see page 511). However, as pointed out in the introduction,
nowadays the enormous theoretical and practical importance of the Brownian motion
within the theory of stochastic processes and their applications goes far beyond its
being a mathematical model for describing the movement of microscopically small
particles in liquids or gases.
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11.3  MULTIDIMENSIONAL AND CONDITIONAL DISTRIBUTIONS

Let  be a Brownian motion and  the density of  From{B(t), t ≥ 0} ft(x) B(t), t > 0.
property 3 of definition 11.1,

                              (11.9)ft(x) = 1
2πt σ

e
− x2

2σ2 t , t > 0 .

Since the Brownian motion is a Gaussian process, its multidimensional distributions
are multidimensional normal distributions. To determine the parameters of this distri-
bution, next the joint density  of   will be derived.fs,t (x1, x2) (B(s), B(t))
Because of the independence of the increments of the Brownian motion and in view
of  having probability density  for small   and  ,B(t) − B(s) ft−s (x), Δx1 Δx2

fs,t (x1, x2) Δx1Δx2 = P(x1 ≤ B(s) ≤ x1 + Δx1, x2 ≤ B(t) ≤ x2 + Δx2)

  = P(x1 ≤ B(s) ≤ x1 + Δx1, x2 − x1 ≤ B(t) − B(s) ≤ x2 − x1 + Δx2 − Δx1)

 = fs(x1) ft−s(x2 − x1) Δx1Δx2 .

Hence,
                            (11.10)fs,t (x1, x2) = fs(x1) ft−s(x2 − x1) .

(This derivation can easily be made rigorously.) Substituting (11.9) into (11.10) yields
after some simple algebra

(11.11)fs,t (x1, x2) =
1

2πσ2 s (t − s)
exp

⎧

⎩
⎨− 1

2σ2s (t − s)
⎛
⎝t x1

2 − 2s x1x2 + s x2
2 ⎞
⎠
⎫

⎭
⎬.

Comparing this density with the density of the bivariate normal distribution (3.24) at
page 131 shows that the random vector  has a joint normal distribution{B(s), B(t)}
with correlation coefficient

ρ = + s /t , 0 < s < t .
Therefore, the covariance function of the Brownian motion is

                         (11.12)C(s, t) = Cov (B(s), B(t)) = σ2 s, 0 < s < t.

In view of the independence of the increments of the Brownian motion, it is easier to
directly determine the covariance function of :  For {B(t), t ≥ 0} 0 < s ≤ t ,

C(s, t) = Cov (B(s), B(t)) = Cov (B(s), B(s) + B(t) − B(s))
= Cov (B(s), B(s)) + Cov (B(s), B(t) − B(s))

= Cov (B(s), B(s)) = σ2s.

Since the roles of  and t can be changed, for any s and t,s

C(s, t) = σ2 min (s, t).
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Let  .  By formula (3.19), page 128, the conditional density of  B(s) on  con-0 < s < t
dition  isB(t) = b

                                 (11.13)fB(s)(x B(t) = b) =
fs,t (x, b)

ft (b)
.

Substituting (11.9) and (11.11) into (11.13) or by immediately making use of formula
(3.25) at page 131,

       (11.14)fX(s)(x B(t) = b) = 1
2π s

t (t − s) σ
exp

⎧

⎩
⎨
⎪
⎪
− 1

2σ2 s
t (t − s)

⎛
⎝x −

s
t b⎞⎠

2⎫

⎭
⎬
⎪
⎪

.

This is the density of a normally distributed random variable with parameters 

            (11.15)E(B(s) B(t) = b) = s
t b , Var(B(s) B(t) = b) = σ2 s

t (t − s) .

For fixed t, one easily verifies that  assumes its maximum at Var(B(s) B(t) = b) s = t /2.

Let  be the n-dimensional density of the random vectorft1,t2,...,tn (x1, x2, ... , xn)

  with   (B(t1), B(t2), ... , B(tn)) 0 < t1 < t2 < . .. < tn < ∞.

From (11.10), by induction,

 ft1,t2,...,tn (x1, x2, ... , xn) = ft1 (x1) ft2−t1 (x2 − x1). .. ftn−tn−1 (xn − xn−1).

With  given by (11.9), the n-dimensional joint density becomesft(x)

                                                        (11.16)ft1,t2,...,tn (x1, x2, ... , xn)

 =
exp

⎧

⎩
⎨− 1

2σ2

⎡

⎣
⎢

x1
2

t1
+ (x2−x1)2

t2−t1
+ . .. + (xn−xn−1)2

tn−tn−1

⎤

⎦
⎥
⎫

⎭
⎬

(2π)n/2 σn t1(t2 − t1). .. (tn − tn−1)
.

Transforming this density analogously to the two-dimensional case shows that (11.16)
has the form (3.66), page 148. This proves once more that the Brownian motion is a
Gaussian process.
The Brownian motion, as any Gaussian process, is completely determined by its trend
and covariance function. Actually, since the trend function of a Brownian motion is
identically zero, the Brownian motion is completely characterized by its covariance
function. In other words, given  there is exactly one Brownian motion processσ2,
with covariance function

C(s, t) = σ2min (s, t).
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Example 11.1 (Brownian bridge)  The Brownian bridge is a stoch-{B(t), t ∈ [0, 1]}
astic process, which is given by the Brownian motion in the interval  on con-[0, 1]
dition that :B(1) = 0

B(t) = B(t), 0 ≤ t ≤ 1; B(1) = 0.

Letting in (11.14)  and  yields the probability density of b = 0 t = 1 B(t) :

  fB(t)(x) =
1

2π t (1 − t) σ
exp

⎧

⎩
⎨− x2

2σ2 t (1 − t)
⎫

⎭
⎬ , 0 < t < 1 .

Mean value and variance of  are for :B(t) 0 ≤ t ≤ 1

 E(B(t)) = 0,

Var (B(t)) = σ2 t (1 − t).

The two-dimensional probability density of the random vector  can be(B(s), B(t))
obtained from

ft1,t2 (x1, x2) =
ft1,t2,t3 (x1, x2, 0)

ft3 (0)

with  Hence, for   the joint density of the ran-t1 = s, t2 = t , and t3 = 1. 0 < s < t < 1,
dom vector  is(B(s), B(t))

f(B(s),B(t)) (x1, x2)

     =
exp − 1

2σ2
⎡
⎣

t
s (t− s) x1

2 − 2
t− s x1x2 +

1−s
(t− s)(1−t) x2

2 ⎤
⎦

2πσ2 s (t − s)(1 − t)
.

A comparison with (3.24), page 131, shows that the correlation and the covariance
function of the Brownian bridge are

      ρ(s, t) = s (1 − t)
t (1 − s) , 0 < s < t ≤ 1,

  C(s, t) = σ2 s (1 − t), 0 < s < t ≤ 1.

The Brownian bridge is a Gaussian process whose trend function is identically 0.
Hence, it is uniquely determined by its covariance function. 
The geometric Brownian bridge is defined as the stochastic process  with{Y(t), t ≥ 0}

Y(t) = eB(t), 0 ≤ t ≤ 1.
Both the Brownian bridge and the geometric Brownian bridge have some significance
in modelling stochastically fluctuating parameters in mathematics of finance.          �
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11.4   FIRST PASSAGE TIMES

By definition, the Brownian motion  starts at  The random time{B(t), t ≥ 0} B(0) = 0.
point , at which the process  reaches a given level x for the first time,L(x) {B(t), t ≥ 0}
is called the  first passage time or the  first hitting time of  with respect to{B(t), t ≥ 0}
level x. Since the sample paths of the Brownian motion are continuous functions,  L(x)
is uniquely characterized by  and can, therefore, be defined asB(L(x)) = x

L(x) = min
t

{t, B(t) = x}, x ∈ (−∞,+∞).

Next the probability distribution of  is derived on condition : ApplicationL(x) x > 0
 the total probability rule yieldsof

                    (11.17)P(B(t) ≥ x) = P(B(t) ≥ x L(x) ≤ t)P(L(x) ≤ t)

                     + P(B(t) ≥ x L(x) > t)P(L(x) > t).

The second term on the right-hand side of this formula vanishes, since, by definition
of the first passage time,

P(B(t) ≥ x L(x) > t) = 0
for all  For symmetry reasons and in view of t > 0. B(L(x)) = x,

                                   (11.18)P(B(t) ≥ x L(x) ≤ t) = 1/2.

This situation is illustrated in Figure 11.2: Two sample paths of the Brownian motion,
which coincide up to reaching level x and which after  are mirror symmetric withL(x)
respect  to  the  straight  line  have the same chance of occurring. (Theb(t) ≡ x,
probability of this event is, nonetheless, zero.) This heuristic argument is known as
the reflection principle. Formulas (11.9), (11.17), and (11.18) yield

         (11.19)FL(x)(t) = P(L(x) ≤ t) = 2 P(B(t) ≥ x) = 2
2π t σ

∫
x

∞
e
− u2

2σ2 t du.
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For symmetry reasons, the probability distributions of the first passage times L(x)
and  are identical for any x. Therefore, from (11.19),L(−x)

              (11.20)FL(x)(t) =
2

2π t σ
∫
x

∞
e
− u2

2σ2 t du , t > 0 .

The relationship of the probability distribution of L(x) to the normal distribution
becomes visible when substituting  in the integral of (11.20):y2 = u2/(σ2 t)

                                             (11.21)FL(x)(t) = 2
⎡

⎣
⎢1 −Φ

⎛

⎝
⎜

x
σ t

⎞

⎠
⎟
⎤

⎦
⎥ , t > 0 ,

where as usual  is the distribution function of a standard normal random variable.Φ(⋅)
Differentiation of (11.20) with respect to t yields the probability density of L(x) :

                                      (11.22)fL(x)(t) =
x

2π σ t3/2
exp − x2

2σ2 t
, t > 0.

Mean value  and variance  do not exist, i.e., they are infinite.E(L(x)) Var(L(x))
The probability distribution determined by (11.21) or (11.22), respectively, is a
special case of the inverse Gaussian distribution (page 513).

Maximum  Let M(t) be the maximal value the Brownian motion assumes in :[0, t]

                                                       (11.23)M(t) = max {B(s), 0 ≤ s ≤ t}.

The probability distribution of  is obtained as follows:M(t)
1 − FM(t)(x) = P(M(t) ≥ x) = P(L(x) ≤ t).

Hence,  (11.21), the distribution function of M(t) isby

                    (11.24)FM(t)(x) = 2Φ
⎛

⎝
⎜ x
σ t

⎞

⎠
⎟ − 1 ; t > 0, x > 0,

The density of  one obtains by differentiation of (11.24) with regard to t:M(t)

                      (11.25)fM(t)(x) =
2

2π t σ
e−x2/(2σ2t); t > 0, x > 0.

As a consequence from (11.24): For all finite ,x
                                       (11.26)lim

t→∞
P(M(t) < x) = 0.

Therefore, with probability 1,  The unbounded growth of M(t) is duelim
t→∞

M(t) = ∞.

to the linearly increasing variance  of the Brownian motion as Var(B(t)) = σ2t t →∞.

Contrary to the Brownian motion, its corresponding 'maximum process' {M(t), t ≥ 0}
has nondecreasing sample paths. This process has applications among others in finan-
cial modeling and in reliability engineering (accelerated life testing, wear modeling).
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Example 11.2 A sensor for measuring high temperatures gives an unbiased indication
of the true temperature during its operating time. At the start, the measurement is ab-
solutely correct. In the course of time, its accuracy deteriorates, but no systematic
errors occur. Let B(t) be the random deviation of the temperature indicated by the sen-
sor at time t from the true temperature. Historical observations justify the assumption
that  is a Brownian motion with parameter {B(t), t ≥ 0}

σ = Var(B(1)) = 0.1 [0C/day].
What is the probability that within a year (365 days)  exceeds the critical levelB(t)

, i.e. the sensor reads at least once in a year  high? This probability x = +50C 50C is

  FL(5)(365) = P(L(5) < 365) = 2 ⎡
⎣
⎢1 −Φ

⎛
⎝⎜

5
0.1 365

⎞
⎠⎟
⎤
⎦
⎥

    = 2 [1 −Φ(2.617)] = 0.009.

If the accuracy of the sensor is allowed to exceed the critical value of  with+50C
probability 0.05 during its operating time, then the sensor has to be exchanged by a
new one after a time  given by According to (11.21),t0.05 P(L(−5) ≤ t0.05) = 0.05.

 satisfies equationt0.05

  2
⎡

⎣
⎢⎢⎢
1 −Φ

⎛

⎝
⎜ 5

0.1 t0.05

⎞

⎠
⎟
⎤

⎦
⎥⎥⎥
= 0.05

or                                           5
0.1 t0.05

= Φ−1(0.975) = 1.96.

Thus,  .                                                                                             �t0.05 = 651 [days]

The next example considers a first passage time problem with regard to the Brownian
motion leaving an interval.

Example 11.3  Let  be the random time at which  for the first timeL(a, b) {B(t), t ≥ 0}
hits either value a or value b :

L(a, b) = min
t

{t, B(t) = a or B(t) = b}; b < 0 < a .

Then the probability  that  assumes value a  before value b ispa,b {B(t), t ≥ 0}

pa,b = P(L(a) < L(b)) = P(L(a, b) = L(a))

(Figure 11.3) or, equivalently,
 pa,b = P(B(L(a, b)) = a).

To determine , note that  is a stopping time for  In view ofpa,b L(a, b) {B(t), t ≥ 0}.
formula (11.24),  is finite. Hence, theorem 10.3 is applicable and yieldsE(L(a, b))

0 = E(B(L(a, b))) = a pa,b + b (1 − pa,b) .
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Therefore, the probability that the Brownian motion hits value  before value b isa

                                           (11.27)pa,b =
b

a + b
.

For determining the mean value of  the martingale  withL(a, b), {Y(t), t ≥ 0}

Y(t) = 1
σ2 B2(t) − t

is used (theorem 11.2 b) with . In this case, theorem 10.3 yieldsS(t) = B(t)/σ)

0 = E⎛⎝
1
σ2 B2(L(a, b))⎞⎠ − E(L(a, b)).

Hence,

   E(L(a, b)) = E⎛⎝
1
σ2 B2(L(a, b))⎞⎠ =

1
σ2 ⎡⎣pa,b a2 + (1 − pa,b)b2⎤⎦

so that, by (11.27),
                                            (11.28)E(L) = 1

σ2 a b .

As an application of the situation considered in this example, assume that the total
profit, which a speculator makes with a certain investment, develops according to a
Brownian motion process i.e., B(t) is the cumulative 'profit', the specu-{B(t), t ≥ 0},
lator has achieved at time t (possibly negative). If the speculator stops investing after
having achieved a profit of a or after having suffered a loss of b, then  is thepa,b
probability that he finishes with a profit of a.
With reference to example 11.2: The probability that the sensor reads  high80C
before it reads  low is  Or, if in the same example the tolerance40C 4/(8 + 4) = 1/3.
region for  is , then  on average leaves this region for the firstB(t) [−5 0C, 5 C 0] B(t)
time at time

                                        �E(L) = 25/0.01 = 2500 [days].
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11.5  TRANSFORMATIONS OF THE BROWNIAN MOTION

11.5.1   Identical Transformations

Transforming the Brownian motion leads to stochastic processes  which are important
in their own right, both from the theoretical and the practical point of view. Some
transformations again lead to the Brownian motion. Theorem 11.3 compiles three
transformations of this type (see Lawler (2006)).

Theorem 11.3  If  is the standard Brownian motion, then each of the fol-{S(t), t ≥ 0}
lowing stochastic processes is also the standard Brownian motion:
(1) {X(t), t ≥ 0} with X(t) = c S(t /c2), c > 0,

(2) {Y(t), t ≥ 0} with Y(t) = S(t + h) − S(h), h > 0,

(3) {Z(t), t ≥ 0} with Z(t) = t S(1/t) for t > 0
0 for t = 0

.

Proof  The theorem is proved by verifying properties 1) to 3) of definition 11.1. The
processes (1) to (3) start at the origin:  Since the BrownianX(0) = Y(0) = Z(0) = 0.
motion has independent, normally distributed increments, the processes (1) to (3)
have the same property. Their trend functions are identically zero. Hence, it remains
to show that the increments of the processes (1) to (3) are homogeneous. In view of
(11.1), it suffices to prove that the variances of the increments of the processes (1) to
(3) in any interval  with  are equal to  The following derivations make[s, t] s < t t − s.
use of  and formula (11.12).E(S2(t)) = t

(1)                                      Var(X(t) − X(s)) = E([X(t) − X(s)]2)

= E(X 2(t)) − 2Cov (X(s), X(t)) + E(X 2(s))

= c2 E(S2(t /c2)) − 2Cov [S(s /c2), S2(t /c2)] + E(S 2(s /c2)

= c2 ⎛
⎝⎜

t
c2 − 2 s

c2 + s
c2

⎞
⎠⎟
= t − s.

(2)                               Var (Y(t) − Y(s)) = E([S(t + h) − S(s + h)]2)

= E S2(t + h)) − 2 Cov [S(s + h)S(t + h)] + E(S2(s + h)

= (t + h) − 2(s + h) + (s + h) = t − s.

(3)                                    Var(Z(t) − Z(s)) = E⎛⎝[t S(1/t) − s S(1/s)]2 ⎞
⎠

= t2E(S2(1/t)) − 2 s t Cov [S(1/s), S(1/t)] + s2E(S2(1/s))

                                   = t2 ⋅ 1
t − 2 s t ⋅ 1

t + s2 ⋅ 1
s = t − s.
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For any Brownian motion  (see, e.g.,  Lawler (2006)):{B(t), t ≥ 0}

                                                     (11.29)P ⎛
⎝ lim

t→∞
1
t B(t) = 0⎞⎠ = 1.

If t is replaced with , then taking the limit as   is equivalent to taking the1/t t →∞
limit as   Hence,t → 0.

                                  (11.30)P ⎛
⎝ lim

t→0
t B(1/t) = 0⎞⎠ = 1.

A consequence of (11.29) is that any Brownian motion  crosses the t-axis{B(t), t ≥ 0}
with probability 1 at least once in the interval  and, hence, even coun-[s, ∞), s > 0,
tably infinite times. Since

{t B(1/t), t ≥ 0}

is also a Brownian motion, it must have the same property. Therefore, for any s > 0,
no matter how small s is, a Brownian motion  crosses the t-axis in {B(t), t ≥ 0} (0, s]
countably infinite times with probability 1.

11.5.2  Reflected Brownian Motion

A stochastic process  defined by  is called a reflected Brown-{X(t), t ≥ 0} X(t) = B(t)
ian motion (reflected at the t-axis). Its trend and variance function are

m(t) = E(X(t)) = 2
2π t σ

∫
0

∞
x e

− x2

2σ2t dx = σ 2 t
π , t ≥ 0,

Var (X(t)) = E(X2(t)) − [E(X(t))]2 = σ2t − σ2 2t
π = (1 − 2/π)σ2t .

The reflected Brownian motion is a homogeneous Markov process with state space
. This can be seen as follows: ForZ = [0,∞)

 0 ≤ t1 < t2 < . .. < tn < ∞, xi ∈ Z,

taking into account the Markov property of the Brownian motion and its symmetric
stochastic evolvement with regard to the t-axis,

P(X(t) ≤ y X(t1) = x1, X(t2) = x2, ..., X(tn) = xn)

= P(−y ≤ B(t) ≤ +y B(t1) = ±x1, B(t2) = ±x2, ..., B(tn) = ±xn)

= P(−y ≤ B(t) ≤ +y B(tn) = ±xn)

= P(−y ≤ B(t) ≤ +y B(tn) = xn).

Hence, for  the transition probabilities0 ≤ s < t,

P(X(t) ≤ y X(s) = x)
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of the reflected Brownian motion are determined by the increment of the Brownian
motion in  if it starts at time s at state x. Because this increment has an [s, t] N(x,σ2τ)-
distribution with τ = t − s,

P(X(t) ≤ y X(s) = x) = 1
2πτ σ

∫
−y

y
e
− (u−x)2

2σ2τ du ,

or equivalently by

P(X(t) ≤ y X(s) = x) = Φ⎛
⎝⎜

y − x
σ τ

⎞
⎠⎟
+ Φ

⎛
⎝⎜

y + x
σ τ

⎞
⎠⎟
− 1 ; x, y ≥ 0; τ = t − s.

Since the transition probabilities depend on s and t only via  the reflectedτ = t − s,
Brownian motion is a homogeneous Markov process.

11.5.3  Geometric Brownian Motion

A stochastic process  with{X(t), t ≥ 0}

                                            (11.31)X(t) = eB(t)

is called geometric Brownian motion.
Unlike the Brownian motion, the sample paths of a geometric Brownian motion can-
not become negative. Therefore and for analytical convenience, the geometric Brown-
ian motion is a favourite tool in mathematics of finance for modeling share prices,
interest rates, and so on.
According to (11.4), the Laplace transform of  isB(t)

                              (11.32)B(α) = E(e−αB(t)) = e
+1

2 α
2σ2t

.

Substituting in (11.32) the parameter  with a positive integer n yields the momentsα
of :X(t)

                           (11.33)E(Xn(t)) = e+
1
2 n2σ2t; n = 1, 2, ....

In particular, mean value and second moment of  areX(t)

                           (11.34)E(X(t)) = e+
1
2 σ

2t, E(X2(t)) = e+2σ2t.

From (11.34) and (1.19):
Var(X(t)) = etσ2

(etσ2
− 1).

Although the trend function of the Brownian motion is constant, the trend function of
the geometric Brownian motion is increasing:

                              (11.35)m(t) = E(X(t)) = e σ2t /2, t ≥ 0.
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11.5.4  Ornstein-Uhlenbeck Process

As mentioned before, if the Brownian motion process would be the absolutely correct
model for describing the movements of particles in liquids or gases, the particles had
to move with an infinitely large velocity. To overcome this unrealistic assumption,
Uhlenbeck and Ornstein (1930) developed a stochastic process for modeling the ve-
locity of tiny particles in liquids and gases. Now this process is used as a stochastic
model in other applications as well, e.g., in finance and population dynamics.

Definition 11.2  Let  be a Brownian motion with parameter . Then the{B(t), t ≥ 0} σ
stochastic process  defined by{U(t), t ∈ (−∞,+∞)}

                                      (11.36)U(t) = e−αt B(e2α t )

is said to be an Ornstein-Uhlenbeck process with parameters  and           σ α, α > 0.

Thus, the stationary Ornstein-Uhlenbeck process arises from the nonstationary Brown-
ian motion by time transformation and standardization.
The density of  is easily derived from (11.9):U(t)

fU(t)(x) =
1

2π σ
e−x2/(2σ2) , − ∞ < x < ∞ .

Thus,  has a normal distribution with parametersU(t)

E(U(t)) = 0, Var(U(t)) = σ2.

Hence, the trend function of the Ornstein-Uhlenbeck process is identically zero, and
U(t) is standard normal if  is the standard Brownian motion.{B(t), t ≥ 0}

Since  is a Gaussian process, the Ornstein-Uhlenbeck process has the{B(t), t ≥ 0}
 property. (This is a corollary from theorem 3.3, page 149.) Hence, the multi-same

dimensional distributions of the Ornstein-Uhlenbeck process are multidimensional
normal distributions. Moreover, there is a unique correspondence between the sample
paths of the Brownian motion and the sample paths of the corresponding Ornstein-
Uhlenbeck process. Thus, the Ornstein-Uhlenbeck process, as the Brownian motion,
is a Markov process. The covariance function of the Ornstein-Uhlenbeck procss is

                                                    (11.37)C(s, t) = σ2e−α(t− s), s ≤ t.

This can be seen as follows: For , in view of (11.12),s ≤ t

C(s, t) = Cov (U(s), U(t)) = E(U(s)U(t))

= e−α(s+t )E(B(e2α s )B(e2αt ))

= e−α(s+t )Cov (B(e2αs ), B(e2αt )) = e−α(s+ t) σ2e2α s

 = σ2e−α(t− s).
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Corollary  The Ornstein-Uhlenbeck process is weakly stationary. As a Gaussian pro-
cess, it is also strongly stationary.
In contrast to the Brownian motion, the Ornstein-Uhlenbeck process has the follow-
ing properties:
1) The increments of the Ornstein-Uhlenbeck process are not independent.
2) The Ornstein-Uhlenbeck process is mean-square differentiable.

11.5.5     Brownian Motion with Drift

11.5.5.1    Definitions and First Passage Times
Definition 11.3  A stochastic process  is called Brownian motion with{D(t), t ≥ 0}
drift if it has the following properties:
1) ,D(0) = 0
2)  has homogeneous, independent increments,{D(t), t ≥ 0}
3) Every increment  has a normal distribution with mean value D(t) −D(s) μ (t − s)
and variance                                                                                                 σ2 t − s .

An equivalent definition of the Brownian motion with drift is:
 is a Brownian motion with drift if and only if  has structure{D(t), t ≥ 0} D(t)

                                          (11.38)D(t) = μ t + B(t),
where  is the Brownian motion with variance parameter  The constant{B(t), t ≥ 0} σ2.
µ is called drift parameter or simply drift. Thus, a Brownian motion with drift arises
by superimposing a Brownian motion on a deterministic function. This deterministic
function is a straight line and coincides with the trend function of the Brownian
motion with drift:

m(t) = E(D(t)) = μ t.
If properties 2) and 3) are fulfilled, but the process starts at time  at level u,t = 0

 then the resulting stochastic process  is called a shifted Brown-u ≠ 0, {Du(t), t ≥ 0}
ian motion with drift.  has structureDu(t)

Du(t) = u +D(t).
The one-dimensional density functions of the Brownian motion with drift are

            (11.39)fD(t)(x) =
1

2πt σ
e
−
(x − μ t)2

2σ2 t ; − ∞ < x < ∞, t > 0.

Brownian motion processes with drift are, amongst other applications, used for model-
ing financial parameters, productivity criteria, cumulative maintenance costs, wear
modeling as well as for modeling physical noise. Generally speaking, the Brownian
motion with drift can successfully be applied to modeling situations in which  causally
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linear processes are permanently disturbed by random influences. In view of these
applications it is not surprising that first passage times of Brownian motions with
drift play an important role both with respect to theory and practice.
Let L(x) be the first passage time of  with regard to level x. Then,{D(t), t ≥ 0}

  L(x) = min
t

{t, D(t) = x}, x ∈ (−∞,+∞).

Since every Brownian motion with drift has independent increments and is a Gauss-
ian process, the following relationship between the probability densities of D(t) and
L(x) holds (Franz (1977)):

       fL(x)(t) =
x
t fD(t)(x) , x > 0, μ > 0.

Hence, the probability density of   isL(x)

                                  (11.40)fL(x)(t) =
x

2π σ t3/2
exp

⎧

⎩
⎨−

(x − μ t)2

2σ2 t
⎫

⎭
⎬, t > 0 .

(See also  Scheike (1992) for a direct proof of this result.) For symmetry reasons, the
probability density of the first passage time L(x) of a Brownian motion with drift
starting at u can be obtained from (11.40) by replacing x there with x − u.
The probability distribution given by the density (11.40) is the inverse Gaussian dis-
tribution with parameters µ,  and x. (Replace in (2.89),  page 85, the parametersσ2,

 with  and   with  to obtain (11.40)). Contrary to the first passage time ofα x2/σ2 β 1/μ
the Brownian motion, now mean value and variance of  exist:L(x)

                       (11.41)E(L(x)) = x
μ , Var(L(x)) = xσ2

μ3 ; μ > 0.

For , the density (11.40) simplifies to the first passage time density (11.20) ofμ = 0
the Brownian motion. If  and  formula (11.40) yields the density of thex < 0 μ < 0,
corresponding first passage time L(x) by substituting  and  for x and , respec-x μ μ
tively.
Let

FL(x)(t) = P(L(x) ≤ t) and FL(x)(t) = 1 − FL(x)(t) , t ≥ 0.
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m(t) = μ t
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Assuming  and  integration of (11.40) yieldsx > 0 μ > 0,

            (11.42)FL(x)(t) = Φ
⎛

⎝
⎜

x − μ t
t σ

⎞

⎠
⎟ − e−2 xμΦ

⎛

⎝
⎜−

x + μ t
t σ

⎞

⎠
⎟ , t > 0.

If the second term on the right-hand side of (11.42) is sufficiently small, then one ob-
tains an interesting result: The Birnbaum-Saunders distribution (7.159) at page 330
as a limit distribution of first passage times of compound renewal processes approxi-
mately coincides with the inverse Gaussian distribution.
After some tedious algebra, the Laplace transform of   is seen to befL(x)(t)

  (11.43)E⎛⎝e
−sL(x) ⎞

⎠ = ∫
0

∞
e−s t fL(x)(t)dt = exp − x

σ2
⎛
⎝ 2σ2s + μ2 − μ⎞⎠ .

Theorem 11.4  Let M be the absolute maximum of the Brownian motion with drift
on the positive semiaxis :(0,∞)

M = max
t∈(0,∞)

D(t).

Then, for any positive x,

                         (11.44)P(M > x) =
⎧

⎩
⎨
⎪
⎪

1 for μ > 0,
e−2 μ x /σ2 for μ < 0.

Proof  In view of (11.26), it is sufficient to prove (11.44) for  The exponentialμ < 0.
martingale  with  (theorem 11.2) is stopped at time{Y(t), t ≥ 0} Y(t) = eα S(t)−α2t/2

 In view ofL(x).
D(L(x)) = μL(x) + σS(L(x)) = x,

the random variable  can be represented asY(L(x))

Y(L(x)) = exp α
σ [x − μL(x)] − α2L(x)/2 = exp α

σ x − ⎡⎣
αμ
σ + α2/2⎤⎦ L(x) .

Hence,

 E(Y(L(x))) = e
α
σ xE⎛⎝exp α μ

σ − α2/2 L(x) L(x) < ∞)P(L(x) < ∞)

 + e
α
σ xE⎛⎝exp α μ

σ − α2/2 L(x) L(x) = ∞)P(L(x) = ∞).

Let  Then the second term disappears and theorem 10.3 yieldsα > 2 μ /σ.

1 = e
α
σ xE⎛

⎝⎜
exp

α μ
σ − α2/2 L(x) L(x) < ∞)P(L(x) < ∞).

Since  letting  yields the desired result.              P(M > x) = P(L(x) < ∞), α ↓ 2 μ /σ
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Corollary  The maximal value, which a Brownian motion with negative drift assum-
es in  ,  has an exponential distribution with parameter(0,+∞)

                                                (11.45)λ =
2 μ
σ2 .

Example 11.4 (Leaving an interval) Analogously to example 11.3, let  be theL(a, b)
first time point at which the Brownian motion with drift  hits either{D(t), t ≥ 0}
value a or value b, b < 0 < a.

Let  be the probability that  hits level a before level b given :pa,b {D(t), t ≥ 0} μ ≠ 0

pa,b = P(L(a) < L(b)) = P(L(a, b) = a).

For establishing an equation in  the exponential martingale in theorem 11.2 withpa,b,

S(t) = (D(t) − μt) /σ

is stopped at time . From theorem 10.3,L(a, b)

1 = E
⎛
⎝⎜
exp

⎧

⎩
⎨ ασ (D(L(a, b)) − μ L(a, b)) − α2 L(a, b)

2
⎫

⎭
⎬
⎞
⎠⎟

.

Equivalently,

   1 = E⎛⎝exp α
σ (D(L(a, b)) − ⎡

⎣
⎢
αμ
σ + α2

2
⎤
⎦
⎥ L(a, b) ⎞

⎠ .

Let  Then,α = −2μ /σ.

1 = E⎛⎝e
α
σ (D(L(a,b)) ⎞

⎠ = pa,be−2μa /σ2
+ (1 − pa,b) e−2μb /σ2 .

Solving this equation for  yieldspa,b

                                  (11.46)pa,b =
1 − e−2μb/σ2

e−2μa/σ2
− e−2μb/σ2 .

If  and b tends to   in (11.46), then the probability becomes μ < 0 −∞ pa,b P(L(a) < ∞),
which proves once more formula (7.44) with x = a.

Generally, for a shifted Brownian motion with drift {Du(t), t ≥ 0},

Du(t) = u +D(t), b < u < a, μ ≠ 0,

formula (11.46) yields the corresponding probability  by replacing there apa,b(u)
and b with  and   respectively (u can be negative):a − u b − u,

                pa,b(u) = P(L(a) < L(b) Du(0)) = e−2μu/σ2
− e−2μb/σ2

e−2μa/σ2
− e−2μb/σ2 .
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Geometric Brownian Motion with Drift Let  be a Brownian motion{D(t), t ≥ 0}
with drift. Then the stochastic process  with{X(t), t ≥ 0}

                                                 (11.47)X(t) = eD(t)

is called geometric Brownian motion with drift. If the drift  is 0, then  isμ {X(t), t ≥ 0}
simply the geometric Brownian motion as defined by (11.31).

The Laplace transform of  is obtained by multiplying (11.4) by :D(t) e−tμα

                              (11.48)E⎛⎝e
−αD(t) ⎞

⎠ = e
− tμα+ 1

2 σ
2tα2

.

Letting respective  and   yields the first and the second moment of :α = −1 α = −2 X(t)

              (11.49)E(X(t)) = et (μ+σ2/2), E(X2(t)) = e2 tμ+2σ2t.
Therefore, by formula (2.62), page 67,

Var(X(t)) = et (2μ+σ2)(etσ2
− 1) .

Since the inequalities are equivalent, the first passage timeeD(t) ≥ x and D(t) ≥ ln x
results obtained for the Brownian motion with drift can immediately be used for
characterizing the first passage time behavior of the geometric Brownian motion with
drift with level  instead of x, ln x x > 0.

11.5.5.2  Application to Option Pricing
In financial modeling, Brownian motion and its transformations are used to describe
the evolvement in time of prices of risky assets as shares, precious metals, crops, and
combinations of them. Derivatives are financial products, which derive their values
from one or more risky assets. Options belong to the most popular derivatives. An
option is a contract, which entitles (but not obliges) its holder (owner) to either buy
or sell a risky asset at a fixed, predetermined price, called strike price or exercise
price. A call (put) option gives its holder the right to buy (to sell). An option has a
finite or an infinite expiration or maturity date, which is determined by the contract.
An American option can be exercised at any time point to its expiration; a European
option can only be exercised at the time point of its expiration. So one can expect
that an American option with finite expiration time  is more expensive than a Euro-τ
pean option with the same expiration time if they are based on the same risky assets.
A basic problem in option trading is: What amount of money should a speculator pay
to the writer (seller) of an option at the time of signing the contract to become holder
of the option? Common sense tells that the writer will fix the option price at a level,
which is somewhat higher than the mean payoff (profit) the speculator will achieve
by acquiring this option. Hence, the following examples focus on calculating the
mean (expected) payoff of a holder. For instance, if a European call option has the
finite expiration date , strike price  and the random price (value) of the under-τ xs,
lying risky asset at time  is then the holder will achieve a positive randomτ X(τ),
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payoff of  if  If  then the owner will not exercise. ThisX(τ) − xs X(τ) > xs. X(τ) ≤ xs,
would make no financial sense, since in addition to the price the holder had to pay
for accquiring the option, he/she would suffer a further loss of  In case of axs − X(τ).
European put option, the owner will exercise at time  if  and make a ran-τ X(τ) < xs
dom profit of  Thus, owners of European call or put options will achievexs − X(τ).
the random payoffs (Figure 11.5)

 and  max(X(τ) − xs, 0) max(xs − X(τ), 0) ,

respectively. But, to emphasize it once more, 'payoff' in this context is not the net
payoff of the holder, the holder's mean net profit is, if the model assumptions are
correct, on average zero or even negative, since at the time of signing the contract
he/she had to pay a price for becoming a holder.

Figure 11.5 illustrates the situation for a European option with expiration time  Theτ.
underlying share price (risky asset) starts at the selling time of the option  att = 0
value  per unit and ends at value  If a holder owns a European call option, hex0 x(τ).
or she would not exercise, but for an owner of an American call option based on the
same share there had been opportunities for making a profit (maximum payoff at time

 A holder of an European put option would have made a profit of tm). xs − x(τ).

Closely related to options is another kind of derivatives called forward contracts. A forward
contract is an agreement between two parties, say Tom and Huckleberry. At time  Tomt = 0,
declares to buy a risky asset from Huckleberry at time  for a certain price  called deliv-τ Z(τ),
ery price. Huckleberry agrees both with the maturity date  and the delivery price  andτ Z(τ),
they sign the contract. Different to options, Tom must buy at maturity date and Huckeleberry
must sell at maturity, and no money changes hands between Tom and Huckleberry when sign-
ing the contract at time  If at the time of maturity the  price  of the risky securityt = 0. X(τ)
exceeds  the  delivery  price  , then Tom will win, otherwise Huckleberry. Determining theZ(τ)
profit of  Tom  (Huckleberry)  is quite  analogous to determining the profit of the holder (price)
of a European option. Related to forward contracts are futures contracts. They differ from each
other mainly by administrative issues.
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Another basic aspect in finance is discounting. Due to interest and inflation rates, the
value, which a certain amount of money has today,  will not be value which the same
amount of money has tomorrow. In financial calculations, in particular in option pric-
ing, this phenomenon is taken into account by a discount factor.
The following examples deal with option pricing under rather simplistic assumptions.
For detailed and more general expositions, see, e.g., Lin (2006) and Kijima (2013).

Example 11.5 The price of a share at time t is given by a shifted Brownian motion
 with negative drift  and volatility :{X(t) = Dx0 (t), t ≥ 0} μ σ = Var(B(1))

                                                  (11.50)X(t) = x0 +D(t) = x0 + μt + B(t).

Thus,  is the initial price of the share:  Based on this share, Huckleberryx0 x0 = X(0).
holds an American call option with strike price

xs, xs ≥ x0.
The option has no finite expiry date. Although the price of the share is on average
decreasing, Huckleberry hopes to profit from random share price fluctuations. He
makes up his mind to exercise the option at that time point, when the share price for
the first time reaches value  with . Therefore, if the holder exercises, hisx x > xs
payoff will be  (Figure 11.6). By following this policy, Huckleberry's meanx − xs
payoff (gain) is 

 G(x) = (x − xs)p(x) + 0 ⋅ (1 − p(x)) = (x − xs)p(x) ,

where p(x) is the probability that the share price will ever reach level  Equivalently,x.
 is the probability that the Brownian motion with drift  will everp(x) {D(t), t ≥ 0}
 level . Since the option has no finite expiration date, this probability isreach x − x0

given by (11.44) if there x is replaced with   Hence, Huckleberry's mean pay-x − x0.
off is

                                       (11.51)G(x) = (x − xs) e−λ (x−x0) with λ = 2 μ /σ2.
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The condition  yields the optimal value of x: Huckleberry will exercisedG(x)/dx = 0
as soon as the share price hits level

                                            (11.52)x∗ = xs + 1/λ .

The corresponding maximal mean payoff is

                                                        (11.53)G(x∗) = 1
λ eλ (xs−x0)+1 .

Discounted Payoff  Let the constant (risk free) discount rate  be positive. The dis-α
counted payoff from exercising the option at time t on condition that the share has at
time t price x with  isx > xs

e−αt(x − xs).
Since under the policy considered, Huckleberry exercises the option at the random
time , which is the first passage time of  with respect to levelLD(x − x0) {D(t), t ≥ 0}

 his random discounted payoff isx − x0),

e−αLD(x−x0) (x − xs)

so that Huckleberry's mean discounted payoff is
                                              (11.54)Gα(x) = (x − xs)∫0

∞ e−αt fLD(x−x0)(t)dt,

where the density
fLD(x−x0)(t)

is given by (11.40) with x replaced by  The integral in (11.54) is equal to thex − x0.
Laplace transform of  with parameter  Thus  from (11.43),fLD(x−x0)(t) s = α. ,

                              (11.55)Gα(x) = (x − xs) exp −
x − x0
σ2

⎛
⎝ 2σ2α + μ2 − μ⎞⎠ .

The functional structures of the mean undiscounted payoff and the mean discounted
payoff as given by 11.51) and (11.55), respectively, are identical. Hence the optimal
parameters with respect to  are again given by (11.52) and (11.53) with  re-Gα(x) λ
placed by

                                                       (11.56)γ = 1
σ2
⎛
⎝ 2σ2α + μ2 − μ⎞⎠ .

Note that minimizing  makes sense also for a positive drift parameter .        Gα(x) μ

Example 11.6  Since for a negative drift parameter  the sample paths of a stochas-μ
tic process  of structure (11.50) eventually become negative with proba-{X(t), t ≥ 0}
bility one, the share price model (11.50) has only limited application, in particular in
cases of infinite expiration dates. Hence, in such a situation it seems to be more real-
istic to assume that the share price at time t is, apart from a constant factor, modeled
by a geometric Brownian motion with drift:
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X(t) = x0 e D(t), t ≥ 0.

The other assumptions as well as the formulation of the problem and the notation
introduced in the previous example remain valid. In particular, the price of the share
at time  is again equal to .t = 0 x0

The random event  ' ' with  is equivalent toX(t) ≥ x x > x0

D(t) ≥ ln(x/x0) .

Therefore, by (11.44), the probability that the share price will ever reach level  isx

   p(x) = e−λ ln(x/x0) = ⎛
⎝

x0
x
⎞
⎠
λ

.

If the holder exercises the option as soon as the share price is  his mean payoff isx,

                                      (11.57)G(x) = (x − xs) ⎛⎝
x0
x
⎞
⎠
λ

.

The optimal level isx = x∗

                                            (11.58)x∗ = λ
λ − 1 xs .

To ensure that  an additional assumption has to be made:x∗ > xs > 0,

λ = 2 μ /σ2 > 1.

The corresponding maximal mean payoff is

                                                    (11.59)G(x∗) = ⎛
⎝
λ − 1

xs
⎞
⎠
λ−1 ⎛

⎝
x0
λ
⎞
⎠
λ

.

Discounted Payoff  The undiscounted payoff   is made when  hitsx − xs {D(t), t ≥ 0}
level  for the first time, i.e., at timeln(x/x0)

LD (ln(x/x0)).

Using this and processing as in the previous example, the mean discounted payoff is
seen to be

                                                     (11.60)Gα(x) = (x − xs)⎛⎝
x0
x
⎞
⎠
γ

with  given by (11.56). The functional forms of the mean undiscounted payoff andγ
(11.57) and (11.60) are identical. Hence, the corresponding optimal values  andx∗

 are given by (11.58) and (11.59) if in these formulas  is replaced with .Gα(x∗) λ γ
Note that condition  is equivalent toγ > 1

2(α − μ) > σ2.

As in the previous example, a positive drift parameter µ need not be excluded.        

520                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



Example 11.7 (Formula of Black-Scholes-Merton)  A European call option is con-
sidered with strike price  and expiration date  The option is based on a risky assetxs τ.
the price of which, apart from a constant factor  develops according to a geometricx0,
Brownian motion with drift :{X(t), t ≥ 0}

X(t) = x0 e D(t), t ≥ 0.

The holder will buy if . Then, given a constant discount factor , his randomX(τ) > xs α
discounted payoff is

[e−ατ(X(τ) − xs)]+ = max [e−ατ(X(τ) − xs), 0] .

Hence, the holder's mean discounted profit will be

Gα(τ,μ,σ) = E([e−ατ(X(τ) − xs)]+).

In view of  D(τ) = N(μτ,σ2τ),

      Gα(τ;μ,σ) = e−ατ ∫
ln(xs/x0)

∞
(x0ey − xs) 1

2πσ2τ
exp − 1

2τ
⎛
⎝

y − μτ
σ

⎞
⎠

2
d y.

Substituting    and lettingu =
y − μτ
σ τ

c =
[ln(xs/x0) − μτ]

σ τ

yields

    Gα(τ;μ,σ) = x0 e(μ−α)τ 1
2π

∫
c

∞
euσ τ e−u2/2du − xs e−ατ 1

2π
∫
c

∞
e−u2/2du.

By substituting in the first integral  one obtainsu = y + σ τ

   ∫
c

∞
euσ τ e−u2/2du = e

1
2σ

2τ ∫
c−σ τ

∞
e−y2/2d y.

Hence,

                                                                                                        Gα(τ;μ,σ)

                = x0 e(μ−α+σ2/2)τ 1
2π ∫

c−σ τ

∞
e−y2/2dy − xs e−ατ 1

2π ∫
c

∞
e−u2/2du

                           = x0 e(μ−α+σ2/2)τ Φ(σ τ − c) − xs e−ατ(Φ(−c)).

At time , the discounted price of the risky security ist

           Xα(t) = e−α tX(t) = x0 e−(α−μ) t+σS(t),
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where  is the standard Brownian motion. By theorem 11.2, the stochastic{S(t), t ≥ 0}
process  is a martingale (exponential martingale) if  On{Xα(t), t ≥ 0} α − μ = σ2/2.
this condition, the mean discounted payoff of the holder is given by the Formula of
Black-Scholes-Merton

                    (11.61)G∼α(τ,σ) = x0Φ(σ τ − c) − xs e−ατΦ(−c)

(Black and Scholes (1973), Merton (1973)). In this formula, the influence of the drift
 on the price development has been eliminated by the assumption that theμ

discounted price of the risky asset develops according to a martingale. The formula
of Black-Scholes-Merton gives the  fair price of the option. This is partially motivat-
ed by the fact that a martingale has a constant trend function so that, on average,
holder and writer of this option will neither lose nor win.                                          

11.5.5.3  Application to Maintenance
In the following example, a functional of the Brownian motion will be used to model
the random cumulative repair cost X(t) a technical system causes over a time period

. The following basic situation is considered: A system starts working at time[0, t]
 As soon as  reaches level x, the system is replaced by an equivalent newt = 0. X(t)

one in negligibly small time. The cost of each replacement is c, and after a replace-
ment a system is 'as good as new'. With regard to cost and length, all replacement
cycles are independent of each other. Scheduling of replacements aims at minimizing
the long-run total maintenance cost per unit time, in what follows referred to as main-
tenance cost rate.

Policy 1 The system is replaced by a new one as soon as the cumulative repair cost
 reaches a given positive level x.X(t)

By the renewal reward theorem, i.e., by formula (7.148), page 325, the corresponding
maintenance cost rate is

                                      (11.62)K1(x) =
x + c

E(LX(x))
.

Policy 1 basically needs the same input as the economic lifetime policy, which is in-
troduced next for the sake of comparisons.

Policy 2  The system is replaced by a new one after reaching its economic lifetime,
which is defined as that value , which minimizes the average maintenance costτ = τ∗
per unit time  if the system is always replaced by a new one after  time units.K2(τ) τ

Again from the renewal reward theorem,  is given byK2(τ)

                                    (11.63)K2(τ) =
E(X(τ)) + c

τ .

In this case a replacement cycle is has the constant length τ.
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Example 11.8 The cost of a replacement is  and the cumulative repair cost$10 000,
X(t) [in $] has structure

                                       (11.64)X(t) = 0.1 eD(t),
where  is the Brownian motion with drift parameter  and{D(t), t ≥ 0} μ = 0.01 [h−1]
variance parameter  i.e., in terms of the standard Brownian motion, σ2 = 0.0064,

D(t) = 0.01t + 0.08 S(t).
Policy 1 The stochastic repair cost process  reaches level x at that time{X(t), t ≥ 0}
point when the Brownian motion with drift  reaches level :{D(t), t ≥ 0} ln 10x

X(t) = x ⇔ D(t) = ln 10x.
Hence, by formula (11.41), the mean value of the first passage time of the process

 with regard to level x is{X(t), t ≥ 0}

    E(LX(x)) =
1

0.01 ln 10x = 100 ln 10x.

The corresponding maintenance cost rate (11.62) is

K1(x) =
x + 10 000
100 ln 10x

.

A limit  minimizing  satisfies the necessary condition  orx = x∗ K1(x) dK1(x)/dx = 0

x ln 10x − x = 10 000.
The unique solution of this equation is (slightly rounded)

                (11.65)x∗ = 1192.4 [$] so that K1(x∗) = 11.92 [$/h].

The mean length of an optimum replacement cycle is
E(LX(x∗)) = 939 [h] .

Policy 2 Since by (11.49),

   E(eD(t)) = e(μ+σ2/2) t = e0.0132 t,
the corresponding maintenance cost rate (11.63) is

K2(τ) =
10 000 + 0.1 e0.0132 τ

τ .

The optimal values are
   and                      (11.66)τ∗ = 712 [h] K2(τ∗) = 15.74 [$/h].

Thus, applying policy 1 instead of policy 2 reduces the maintenance cost rate by
about 25 %.
At first glance, a disadvantage of modelling repair cost processes by functionals of
the Brownian motion is that these functionals generally are not monotone increasing.
However, in this example  hits a level x for the first time at that time{X(t), t ≥ 0}
point when the Brownian motion with drift  reaches level  In{D(t), t ≥ 0} ln 10x.
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other words, if a replacement cycle is given by the random interval , then[0, LD(y))
the processes  and  hit a positive level y for the first time at{D(t), t ≥ 0} {M(t), t ≥ 0}
the same time point, namely  Hence, replacing  in the cumulativeLD(y). {D(t), t ≥ 0}
cost process  given by (11.64) with the 'maximum process' {X(t), t ≥ 0} {M(t), t ≥ 0}
defined by

 M(t) = max
0≤y≤t

D(y),

would, with regard to policy 1, yield the same the optimal values  and  asx∗ K1(x∗)
the ones given by formulas (11.65). The sample paths of  are nonde-{M(t), t ≥ 0}
creasing and therefore, principally suitable for modelling the cumulative evolvement
of repair costs. In the light of this it makes sense, and it is actually necessary to apply
policy 2 to the cumulative repair cost process

X(t) = 0.1 eM(t), t ≥ 0,
and to compare the results to (11.66). The probability distribution of M(t) is given by
the distribution of the first passage time  since L(x) = LD(x) P(L(x) ≤ t) = P(M(t) > x)).
Hence, by (11.40)

P(M(t) > x) = ∫
0

t x
0.08 2π y1.5

e
−
(x − 0.01y)2

0.0128y dy.

Making use of formula (2.55), page 64, with  yields the correspondingh(x) = ex

maintenance cost rate in the form

K2(τ M) =

10 000 + 0.1 ∫
0

∞
xex∫

0

τ 1
0.08 2π y1.5

e
−
(x − 0.01y)2

0.0128y dydx

τ .

The optimal values are
   and  τ∗ = 696 [h] K2(τ∗ M) = 16.112.

They are quite close to the ones given by (11.66 ). As expected,  K2(τ∗ M) > K2(τ∗)
with the respective                                                                                     τ∗-values.

11.5.6   Integrated Brownian Motion

If  is  a Brownian motion, then its sample paths   are continuous.{B(t), t ≥ 0} b = b(t)
Hence, the integrals

 b(t) = ∫0
t b(y)dy

exist for all sample paths. They are realizations  the random integralof

U(t) = ∫0
t B(y)dy.

524                              APPLIED PROBABILITY AND STOCHASTIC PROCESSES



The stochastic process   is called integrated Brownian motion. This pro-{U(t), t ≥ 0}
cess can be a suitable model for situations, in which the observed sample paths seem
to be 'smoother' than those of the Brownian motion. Analogously to the definition of
the Riemann integral, for any n-dimensional vector  with(t1, t2, ..., tn)

      and  0 = t0 < t1 < . .. < tn = t Δti = ti+1 − ti ; i = 0, 1, 2, ... , n − 1,

the random integral  is defined as the limitU(t)

U(t) = lim
n→∞
Δti→0

⎧
⎩
⎨ Σ

i=0

n−1
[B(ti + Δti) − B(ti)] Δti

⎫
⎭
⎬,

where passing to the limit refers to mean-square convergence. Therefore, the ran-
dom variable U(t), being the limit of a sum of normally distributed random variables,
is itself normally distributed. More generally, by theorem 3.3, page 149, the integrated
Brownian motion  is a Gaussian process. Hence, the integrated Brown-{U(t), t ≥ 0}
ian motion  uniquely characterized by its trend and covariance function. In view ofis

E⎛⎝∫0
t B(y)dy⎞⎠ = ∫0

t E(B(y))dy = ∫0
t 0 dy ≡ 0 ,

the trend function of the integrated Brownian motion is identically equal to 0:
m(t) = E(U(t)) ≡ 0 .

The covariance function
 C(s, t) = Cov(U(s), U(t)) = E(U(s)U(t)), s ≤ t,

of  is obtained as follows:{U(t), t ≥ 0}

C(s, t) = E ∫0
s B(y)dy ∫0

t B(z)dz

= E ∫0
t ∫0

s B(y)B(z)dy dz = ∫0
t ∫0

s E(B(y)B(z))dy dz .

Since  it follows thatE(B(y), B(z)) = Cov(B(y)B(z)) = σ2 min(y, z),

C(s, t) = σ2∫0
t ∫0

s min(y, z)dy dz

= σ2∫0
s ∫0

s min(y, z)dy dz + σ2∫s
t ∫0

s min(y, z)dy dz

= σ2∫0
s ⎡⎣∫0

z y dy + ∫z
s z dy⎤⎦ dz + σ2∫s

t ∫0
s y dy dz

= σ2 s3

3 + σ2 s2

2 (t − s).

Thus,                                   C(s, t) = σ2

6 (3t − s) s2, s ≤ t.

Letting  yields the variance of :s = t U(t)

  Var(U(t)) = σ2

3 t3.
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11.6  EXERCISES

Note  In all exercises,  is the Brownian motion with {B(t), t ≥ 0} Var(B(1)) = σ2.

11.1) Verify that the probability density  of B(t),ft(x)

ft(x) = 1
2πt σ

e−x2/(2σ2 t) , t > 0 ,

satisfies with a positive constant c the thermal conduction equation
∂ ft(x)
∂t = c ∂

2 ft(x)
∂ x2 .

11.2) Determine the conditional probability density of B(t) given B(s) = y, 0 ≤ s < t.

11.3)* Prove that the stochastic process  given by {B(t), 0 ≤ t ≤ 1} B(t) = B(t) − t B(1)
is the Brownian bridge.

11.4) Let  be the Brownian bridge. Prove that the stochastic process  {B(t), 0 ≤ t ≤ 1}

 defined by {S(t), t ≥ 0} S(t) = (t + 1)B⎛⎝
t

t+1
⎞
⎠

is the standard Brownian motion.

11.5) Determine the probability density of B(s) + B(t), 0 ≤ s < t.

11.6) Let n be any positive integer. Determine mean value and variance of
X(n) = B(1) + B(2) + . .. + B(n).

Hint  Make use of formula (4.52), page 187.

11.7) Check whether for any positve  the stochastic process  defined byτ {V(t), t ≥ 0}
V(t) = B(t + τ) − B(t)

is weakly stationary.

11.8) Let  Prove that  is a continuous-time martin-X(t) = S3(t) − 3t S(t). {X(t), t ≥ 0}
gale, i.e., show that

 E(X(t) X(y), y ≤ s) = X(s), s < t.

11.9) Show by a counterexample that the Ornstein-Uhlenbeck process does not have
independent increments.

11.10)  (1) What is the mean value of the first passage time of the reflected Brownian
motion  with regard to a positive level x ?{ B(t) , t ≥ 0}
(2) Determine the distribution function of B(t) .
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11.11)* Starting from , a particle makes independent jumps of lengthx = 0
Δx = σ Δt

to the right or to the left every  time units. The respective probabilities of jumps toΔt
the right and  the left areto

 p = 1
2
⎛
⎝1 +

μ
σ Δt ⎞⎠ and 1 − p with Δt ≤ σ

μ , σ > 0.

Show that as  the position of the particle at time t is governed by a BrownianΔt → 0
motion with drift with parameters µ and .σ

11.12) Let  be a Brownian motion with drift with paramters  and  {D(t), t ≥ 0} μ σ.

Determine E⎛⎝∫0
t (D(s))2 ds⎞⎠ .

11.13) Show that for  and c > 0 d > 0
  P(B(t) ≤ c t + d for all t ≥ 0) = 1 − e −2 c d /σ2 .

Hint Make use of formula (11.29).

11.14) At time  a speculator acquires an American call option with infinite expi-t = 0
ration time and strike price  The price [in $]  of the underlying risky security atxs.
time t is given by The speculator makes up his mind to exercise thisX(t) = x0eB(t).
option at that time point, when the price of the risky security hits for the first time
level x with x > xs ≥ x0.
(1) What is the speculator's mean discounted payoff  under a constant discountGα(x)
rate  α?
(2) What is the speculator's payoff  without discounting? G(x)
In both cases, the cost of acquiring the option is not included in the speculator's payoff.

11.15) The price of a unit of a share at time point t is  whereX(t) = 10 eD(t), t ≥ 0,
 is a Brownian motion process  with drift parameter  and vola-{D(t), t ≥ 0} μ = −0.01

tility  At time  a speculator acquires an option, which gives him the rightσ = 0.1. t = 0
to buy a unit of the share at strike price  at any time point in the future,.xs = 10.5
independently of the then current market value. It is assumed that this option has no
expiry date. Although the drift parameter is negative, the investor hopes to profit
from random fluctuations of the share price. He makes up his mind to exercise the
option at that time point, when the expected difference between the actual share price
x and the strike price  is maximal.xs

(1) What is the initial price of a unit of the share?
(2) Is the share price on average increasing or decreasing?
(3) Determine the corresponding share price which maximizes the expected profit of
the speculator.

11  BROWNIAN MOTION                                                                                         527



11.16) The value (in $) of a share per unit develops, apart from the constant factor 10,
according to a geometric Brownian motion  given by{X(t), t ≥ 0}

  X(t) = 10 eB(t), 0 ≤ t ≤ 120,

where  is the Brownian motion process with volatility {B(t), t ≥ 0} σ = 0.1.
At time   a speculator pays  for becoming owner of a unit of the share aftert = 0 $17
120 [days],  irrespective of the then current market value of the share.
(1) What will be the mean undiscounted profit of the speculator at time point t = 120?
(2) What is the probability that the investor will lose some money when exercising at
this time point? 
In both cases, take into account the amount of $17, which the speculator had to pay
in advance.

11.17 The value of a share per unit develops according to a geometric Brownian mo-
tion with drift given by

X(t) = 10 e0.2 t+0.1 S(t), t ≥ 0,

where  is the standardized Brownian motion. An investor owns a Europ-{S(t), t ≥ 0}
ean call option with running time  and with strike price τ = 1 [year]

xs = $12
on a unit of this share.
(1) Given a discount rate of  determine the mean discounted profit of theα = 0.04,
holder of the option.
(2) For what value of the drift parameter  do you get the fair price of the option?μ
(3) Determine this fair price.

11.18) The random price  of a risky security per unit at time t isX(t)

X(t) = 5 e−0.01t+B(t)+0.2 B(t) ,

where   is the Brownian motion with volatility{B(t), t ≥ 0}
σ = 0.04.

At time  a speculator acquires the right to buy the share at price $5.1 at any timet = 0
point in the future, independently of the then current market value; i.e., the
speculator owns an American call option with strike price  on the share.xs = $5.1
The speculator makes up his mind to exercise the option at that time point, when the
mean difference between the actual share price x and the strike price is maximal.
(1) Is the stochastic process  a geometric Brownian motion with drift?{X(t), t ≥ 0}
(2) Is the share price on average increasing or decreasing?
(3) Determine the optimal actual share price x = x∗.
(4) What is the probability that the investor will exercise the option?
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11.19) At time  a speculator acquires a European call option with strike price t = 0 xs
and finite expiration time τ. Thus, the option can only be exercised at time τ at price  

 independently of its market value at time τ. The random price X(t) of the underly-xs
ing risky security develops according to

X(t) = x0 + D(t),

where  is the Brownian motion with positive drift parameter  and{D(t), t ≥ 0} μ
volatility   If  the speculator will exercise the option. Otherwise, theσ. X(τ) > xs,
speculator will not exercise. Assume that

x0 + μt > 3σ t , 0 ≤ t ≤ τ.

(1) What will be the mean undiscounted payoff of the speculator (cost of acquiring
the option not included)?
(2) Under otherwise the same assumptions, what is the investor's mean undiscounted
profit if

X(t) = x0 + B(t) and x0 = xs?

11.20) Show that
E(eαU(t)) = eα2t3/6

for any constant where U(t)  the integrated standard Brownian motion:α, is

 U(t) = ∫0
t S(x)dx, t ≥ 0.

11.21)* For any fixed positive  let the stochastic process  be given byτ, {V(t), t ≥ 0}

V(t) = ∫t
t+τ S(x)dx.

Is  weakly stationary?{V(t), t ≥ 0}

11.22) Let  be the cumulative repair cost process of a system with{X(t), t ≥ 0}
X(t) = 0.01eD(t),

where  is a Brownian motion with drift and parameters{D(t), t ≥ 0}

  and  μ = 0.02 σ2 = 0.04.
The cost of a system replacement by an equivalent new one is c = 4000.
(1) The system is replaced according to policy 1 (page 522). Determine the optimal
repair cost limit  and the corresponding maintenance cost rate x∗ K1(x∗).

(2) The system is replaced according to policy 2 (page 522). Determine its economic
lifetime  based on the average repair cost developmentτ∗

 E(X(t)) = 0.01 E(eD(t))

and the corresponding maintenance cost rate K2(τ∗).
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(3) Analogously to example 11.8, apply replacement policy 2 to the cumulative repair
cost process

X(t) = 0.01eM(t)

with  Determine the corresponding economic lifetime of the systemM(t) = max
0≤y≤t

D(y).

and the maintenance cost rate  Compare to the minimal maintenance costK2(τ∗ M).
rates determined under (1) and (2).

For part (3) of this exercise you need computer assistance.
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CHAPTER 12

Spectral Analysis of Stationary Processes

12.1  FOUNDATIONS

Covariance functions of weakly stationary stochastic processes can be represented by
their spectral densities. These spectral representations of covariance functions have
proved a useful analytic tool in many technical and physical applications.
The mathematical treatment of spectral representations and the application of the
results, particularly in electrotechnics and electronics, is facilitated by introducing
the concept of a complex stochastic process:  is a complex stochastic{X(t), t ∈ R}
process if X(t) has structure

X(t) = Y(t) + i Z(t), R = (−∞,+∞),

where  are two real-valued stochastic processes and{Y(t), t ∈ R} and {Z(t), t ∈ R}
 Thus, the probability distribution of X(t) is given by the joint probabilityi = −1 .

distribution of the random vector   Trend and covariance(Y(t), Z(t)), R = (−∞,+∞).
function of  are defined by{X(t), t ≥ 0}

                            (12.1)m(t) = E(X(t)) = E(Y(t)) + i E(Z(t)),

                     (12.2)C(s, t) = Cov (X(s), X(t)) = E⎛⎝[X(s) − E(X(s))]⎡⎣X(t) − E(X(t))⎤⎦ ⎞⎠ .

If X(t) is real, then (12.1) and (12.2) coincide with (6.2) and (6.3), respectively.

Notation  If   and  then z and  are conjugate complex numbers. The modu-z = a + ib z = a − ib, z
lus of z, denoted by  is defined as z , z = z z = a2 + b2 .

A complex stochastic process  is a second-order process if{X(t), t ∈ R}

E( X(t) 2) < ∞ for all t ∈ R.

Analogously to the definition real-valued weakly stationary stochastic processes (see
page 232), a second-order complex stochastic process  is said to be{X(t), t ∈ R}
weakly stationary , with a complex constant m, it has the following properties:if
1) m(t) ≡ m,
2) C(s, t) = C(0, t − s).
In this case,  simplifies to a function of one variable:C(s, t)

C(s, t) = C(τ),
where τ = t − s.



Ergodicity  If the complex stochastic process  is weakly stationary, then{X(t), t ∈ R}
one anticipates that, for any of its sample paths  its constant trendx(t) = y(t) + i z(t),
function  can be obtained by m ≡ E(X(t))

                                    (12.3)m = lim
T→∞

1
2T ∫−T

+T x(t)dt.

This representation of the trend function as an improper integral uses the full informa-
tion, which is contained in one sample path of the process.
On the other hand, if n sample paths of the process

x1(t), x2(t), ..., xn(t)

are each only scanned at one fixed time point t and if these values are obtained inde-
pendently of each other, then m can be estimated by

                                                            (12.4)m = lim
n→∞

1
n Σ

k=1

n
xk(t) .

The equivalence of formulas (12.3) and (12.4) allows a simple physical interpretation:
the mean of a stationary stochastic process at a given time point is equal to its mean
over the whole observation period ('time mean is equal to location mean'). With
respect to their practical application, this is the most important property of ergodic
stochastic processes. Besides the representation (12.2), for any sample path x = x(t),
the covariance function of an ergodic process can be obtained from

                                         (12.5)C(τ) = lim
T→∞

1
2T ∫−T

+T [x(t) − m][ x(t + τ) −m]dt.

The exact definition of ergodic stochastic processes cannot be given here. In the
engineering literature, the ergodicity of stationary processes is frequently simply
defined by properties (12.3) and (12.5). The application of formula (12.5) is useful if
the sample path of an ongoing stochastic process is being recorded continuously. The
estimated value of C(t) becomes the better the larger the observation period [−T, + T].

Assumptions This chapter deals only with weakly stationary processes. Hence, the attribute
'weakly' is generally omitted. Moreover, without of loss of generality, the trend function of all
processes considered is identically zero.

For this assumption, the representation (12.2) of the covariance function simplifies to

                                            (12.6)C(τ) = C(t, t + τ) = E(X(t)X(t + τ) ) .

In what follows, Euler's  formula is needed:
                                                           (12.7)e±i x = cos x ± sin x.

Solving for sin x and  yieldscos x

                                     (12.8)sin x = 1
2 i
⎛
⎝ei x − e−ix ⎞

⎠ , cos x = 1
2
⎛
⎝ei x + e−ix ⎞

⎠ .
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12.2  PROCESSES WITH DISCRETE SPECTRUM

In this section the general structure of stationary stochastic processes with discrete
spectra is developed. Next the simple stochastic process  with{X(t), t ∈ R}

                                                                    (12.9)X(t) = a(t)X
is considered, where X is a complex random variable and a(t) a complex function
with  For  to be stationary, the two conditionsa(t) ≡/ constant. {X(t), t ∈ R}

E(X) = 0 and E( X 2) < ∞

are necessary. Moreover, because of (12.5) the function

                        (12.10)E(X(t)X(t + τ) ) = a(t)a(t + τ)E( X 2)

is not allowed to depend on t. Letting  this impliest = 0,

 a(t)a(t) = a(t) 2 = a 2 = constant.
Therefore, a(t) has structure

                                            (12.11)a(t) = a eiω(t),

where  is a real function. Substituting (12.11) into (12.10) shows that the differ-ω(t)
ence  does not depend on t. Thus, if  is assumed to be differen-ω(t + τ) − ω(t) ω(t)
iable, then it satisfies the equation

d [ω(t + τ) − ω(t)]/dt = 0,

or, equivalently,

constant.d
dt
ω(t) =

Hence,  where  and  are constants. (Note that for proving this resultω(t) = ω t + ϕ, ω ϕ
it is only necessary to assume the continuity of  Thus,ω(t).)

a(t) = a ei (ωt+ϕ).

If in (12.9) the random variable X is multiplied by  and  is again denot-a eiϕ a eiϕX
ed as X, then the desired result assumes the following form:

     A stochastic process  defined by (12.9) is stationary if and only if {X(t), t ∈ R}

                                                                  (12.12)X(t) = X eiω t

     with E(X) = 0  and   E( X 2) < ∞.

Letting  the corresponding covariance function iss = E( X 2),

C(τ) = s e−iωτ.

Remark Apart from a constant factor, the parameter s is physically equal to the mean energy
of the oscillation per unit time (mean power).
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The real part  of the stochastic process  given by (12.12){Y(t), t ∈ R} {X(t), t ∈ R}
describes a cosine oscillation with random amplitude and phase. Its sample paths
have, therefore, structure

y(t) = a cos(ω t + ϕ),

where a and  are realizations of possibly dependent random variables A and  Theϕ Φ.
parameter  is the circular frequency of the oscillation.ω

Generalizing the situation dealt with so far, a linear combination of two stationary
processes of structure (12.12) is considered:

                                (12.13)X(t) = X1eiω1t + X2eiω2t.
 and  are two complex random variables with mean values 0, whereas  andX1 X2 ω1
 are two constant real numbers with  The covariance function of the sto-ω2 ω1 ≠ ω2.

chastic process  defined by (12.13) is{X(t), t ∈ R}

C(t, t + τ) = E(X(t)X(t + τ) )

= E⎛⎝ ⎡⎣X1eiω1t + X2eiω2t ⎤⎦ ⎡⎣X1e−iω1(t+τ) + X2e−iω2(t+τ) ⎤⎦
⎞
⎠

= E⎛⎝ ⎡⎣X1X1 e−iω1τ + X1 X2ei (ω1−ω2) t −iω2 τ) ⎤⎦
⎞
⎠

                          + E⎛⎝ ⎡⎣X2 X2 e−iω2τ + X2 X1ei (ω2−ω1) t −iω1τ) ⎤⎦
⎞
⎠ .

Thus,  is stationary if and only if  and  are uncorrelated.{X(t), t ∈ R} X1 X2

Note Two complex random variables X and Y with mean values 0 are said to be uncorrelated
if they satisfy the condition  or, equivalently, and correlated otherwise.E(X Y) = 0 E(Y X) = 0,

In this case, the covariance function of  is given by{X(t), t ∈ R}

                                  (12.14)C(τ) = s1 e−iω1τ + s2 e−iω2τ,
where

s1 = E( X1
2), s2 = E( X2

2).

Generalizing equation (12.13) leads to

                                        (12.15)X(t) = Σk=1
n Xk eiωk t

with real numbers  satisfying    If the  are un-ωk ωj ≠ ωk for j ≠ k; i, j = 1, 2, ..., n. Xk
correlated and have mean value 0, then it can be readily shown by induction that the
process  is stationary. Its covariance function is{X(t), t ∈ R}

                                  (12.16)C(τ) = Σk=1
n sk e−iωk τ,

where                                                                                                                              
   sk = E( Xk

2); k = 1, 2, ... , n.
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In particular,

                                                                          (12.17)C(0) = E( X(t) 2) = Σ
k=1

n
sk .

The oscillation X(t) given by (12.15) is an additive superposition of n harmonic
oscillations. Its mean power is equal to the sum of the mean powers of these n
harmonic oscillations.
Now let  be a countably infinite sequence of uncorrelated complex randomX1, X2, ...
variables with  k = 1, 2, ... ; andE(Xk) = 0;

                                    (12.18)Σ
k=1

∞
E⎛⎝ Xk

2 ⎞
⎠ = Σk=1

∞
sk < ∞ .

Under these assumptions, the equation

                                              (12.19)X(t) = Σ
k=1

∞
Xk eiωkt, ωj ≠ ωk for j ≠ k,

defines a stationary process  with covariance function{X(t), t ∈ R}

                                      (12.20)C(τ) = Σ
k=1

∞
sk e−iωk τ.
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The sets  and  are said to be the spectra of the stochastic{ω1,ω2, ... ,ωn} {ω1,ω2, ...}
processes  defined by (12.15) and (12.19), respectively. If all  are sufficiently closeωk
to a single value , then  is called a narrow-band process (Figure 12.1);ω {X(t), t ∈ R}
otherwise it is called a wide-band process (Figure 12.2). Regarding convergence in
mean-square, any stationary process  can be sufficiently closely approx-{X(t), t ∈ R}
imated to a stationary process of structure (12.15) in any finite interval .[−T ≤ t ≤ +T]
Later it will prove useful to represent the covariance function (12.20) in terms of the
delta function This function is defined  the limitδ(t). as

                        (12.21)δ(t) = lim
h→0

1/h for − h/2 ≤ t ≤ +h/2
0 elsewhere

.

Symbolically,

δ(t) = ∞ for t = 0
0 elsewhere

.

The delta-function has a characteristic property, which is sometimes used as its
definition: For any function f (t),

                                 (12.22)∫−∞
+∞ f (t) δ(t − t0)dt = f (t0).

The proof is easily established: If  is the antiderivative of  thenF(t) f (t),

 ∫−∞
+∞ f (t) δ(t − t0)dt = ∫−∞

+∞ f (t + t0) δ(t)dt

= lim
h→0

⎧

⎩
⎨ ∫
−h/2

+h/2
f (t + t0)

1
h

dt
⎫

⎭
⎬

= 1
2 lim

h→0

F(t0 + h/2) − F(t0)
h/2

+ lim
h→0

F(t0) − F(t0 − h/2)
h/2

= 1
2 {f (t0) + f (t0)} = f (t0).

Using property (12.22), the covariance function (12.20) can be written as

C(τ) = Σ
k=1

∞
sk ∫−∞

+∞ eiωτ δ(ω − ωk)dω .

Symbolically,
                                                             (12.23)C(τ) = ∫−∞

+∞ eiωτ s(ω)dω ,

where

                                                                        (12.24)s(ω) = Σk=1
∞ sk δ(ω − ωk).

The (generalized) function  is called the spectral density of the stationarys(ω)
process. Therefore,  is the Fourier transform of the spectral density of aC(τ)
stationary process with discrete spectrum.
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Real Stationary Processes  In contrast to a stochastic process of structure (12.12), a
stationary process  of structure (12.13), i.e.,{X(t), t ∈ R}

X(t) = X1eiω1t + X2eiω2t,
can be real. To see this, let
                    X1 =

1
2 (A + i B), X2 = X1 =

1
2 (A − i B), and ω1 = −ω2 = ω,

where A and B are two real random variables with mean values  0.  Substituting these
 and  into (12.13) yields (compare to Example 6.7, page 235)X1 X2

X(t) = A cosωt − B sinωt.
If A and B are uncorrelated, then, letting the covariances = E( X1

2) = E( X2
2),

function of  is seen to be More generally, it can be{X(t), t ∈ R} C(τ) = 2 s cosωτ.
shown that the process given by (12.15) with n terms defines a real stationary pro-
cess if n is even and pairs of the  are complex conjugates.Xk

12.3   PROCESSES WITH CONTINUOUS SPECTRUM

12.3.1 Spectral Representation of the Covariance Function

Let  be a complex stationary process with covariance function  {X(t), t ∈ R} C(τ).
Then there exists a real, nondecreasing, and bounded function  so thatS(ω)

                                    (12.25)C(τ) = ∫−∞
+∞ eiωτ dS(ω).

(This fundamental relationship is associated with the names of Bochner, Khinchin
and Wiener; see, e.g., Khinchin (1934)).  is called the spectral function of theS(ω)
process. The definition of the covariance function implies that for all t

  C(0) = S(∞) − S(−∞) = E( X(t) 2) < ∞.

Given  the spectral function is, apart from a constant c, uniquely determined.C(τ),
Usually c is selected in such a way that  If   exists, thenS(−∞) = 0. s(ω) = dS(ω)/dω

                                                    (12.26)C(τ) = ∫−∞
+∞ eiωτ s(ω)dω.

The function  is called the spectral density of the process. Since  is nonde-s(ω) S(ω)
creasing and bounded,  spectral density has propertiesthe

                                           (12.27)s(ω) ≥ 0, C(0) = ∫−∞
+∞ s(ω)dω < ∞.

Conversely, it can be shown that every function  with properties (12.27) is thes(ω)
spectral density of a stationary process.
Remark Frequently the function  is referred to as the spectral density. Anf(ω) = s(ω) /2π
advantage of this representation is that   is the mean power of the oscillation.∫−∞

+∞ f(ω)dω
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The set  with its lower, upper marginal points{ω, s(ω) > 0}

inf
ω∈S

ω and sup
ω∈S

ω

is said to be the (continuous) spectrum of the process. Its bandwidth w is defined as

w = sup
ω∈S

ω− inf
ω∈S

ω.

Note Here and in what follows mind the difference between w and ω .

Determining the covariance function is generally much simpler than determining the
spectral density.  Hence the inversion of the relationship (12.26) is of importance. It is
known from the theory  the Fourier integral that this inversion is always possible ifof

                                                              (12.28)∫−∞
+∞ C(t) dt < ∞.

In this case,

                                                     ( 12.29)s(ω) = 1
2π ∫

−∞

+∞
e−iωt C(t)dt.

The intuitive interpretation of assumption (12.28) is that  must sufficiently fastC(τ)
converge to 0 as  The stationary processes occurring in electroengineeringτ → ∞.
and communication generally satisfy this condition. Integration of  over thes(ω)
interval   yields[ω1, ω2], ω1 < ω2,

                                     (12.30)S(ω2) − S(ω1) =
i

2π ∫
−∞

+∞ e−iω2t − e−iω1t

t C(t)dt.

This formula is also valid if the spectral density does not exist. But in this case the
additional assumption has to be made that at each point of discontinuity   of theω0
spectral function the following value is assigned to S(ω) :

S(ω0) =
1
2 [S(w0 + 0) − S(ω0 − 0)].

Note that the delta function  satisfies condition (12.28). If   is substituted forδ(t) δ(t)
 in (12.29), then formula (12.22) yieldsC(t)

                           (12.31)s(ω) = 1
2π ∫−∞

+∞ e−iωt δ(t)dt ≡ 1
2π .

The formal inversion of this relationship according to (12.26) provides a complex
representation of the delta function:

                                                         (12.32)δ(t) = 1
2π ∫−∞

+∞ eiωt dω.

The time-discrete analogues  formulas (12.28) and (12.29) areto

                                         (12.33)Σ
t=−∞

+∞
C(t) < ∞, s(ω) = 1

2π Σ
t=−∞

+∞
e−i tω C(t).
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Real Stationary Processes  Since for any real stationary process  the co-C(τ) = C(τ),
variance function can be written in the form

C(τ) = [C(τ) +C(−τ)]/2.
Substituting (12.26) for  into this equation and using (12.8) yieldsC(τ)

C(τ) = ∫−∞
+∞ cosωτ s(ω)dω .

Because of this formula can be written ascosωτ = cos(−ωτ),

                                                   (12.34)C(τ) = 2 ∫0
+∞ cosωτ s(ω)dω .

Analogously, (12.29) yields the spectral density in the form

s(ω) = 1
2π ∫−∞

+∞ cosωt C(t)dt.

Since s(ω) = s(−ω),

                                                   (12.35)s(ω) = 1
π ∫−∞

+∞ cosωt C(t)dt.

Even in case of real processes it is, however, sometimes more convenient to use the
formulas (12.26) and (12.29) instead of (12.34) and (12.35), respectively.
In many applications, the correlation time  is of interest. It is defined byτ0

                                                         (12.36)τ0 =
1

C(0) ∫0
∞ C(t)dt.

If there is , then there is a significant correlation between X(t) and τ ≤ τ0 X(t + τ).
If  then the correlation between X(t) and  quickly decreases as  τ > τ0, X(t + τ) τ
tends to infinity.

Example 12.1  Let  be the discrete white noise (purely random{..., X−1, X0, X1, ...}
sequence)  defined   page 246. Its covariance function isat

                           (12.37)C(τ) =
⎧

⎩
⎨
σ2 for τ = 0
0 for τ = ±1, ± 2, ....

.

Hence, from (12.29),
s(ω) = σ2/2π.

Thus, the discrete white noise has a constant spectral density. This result is in accord-
ance with (12.31), since the covariance function of the discrete white noise given by
(12.37) is equivalent to                                                                   �C(τ) = σ2 δ(τ).

Example 12.2 The covariance function of the first-order autoregressive sequence has
structure (page 249)

   C(τ) = c a τ ; τ = 0,±1, ...,

where a and c are real constants and  The corresponding spectral density isa < 1.
obtained from (12.33) as follows:
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s(ω) = 1
2π Σ

τ=−∞

∞
C(τ) e−i τω

= c
2π

⎡
⎣
⎢ Σ
τ=−∞

−1
a−τ e−i τω + Σ

τ=0

∞
aτ e−i τω⎤

⎦
⎥

= c
2π

⎡
⎣
⎢ Σ
τ=1

∞
aτ ei τω + Σ

τ=0

∞
aτ e−i τω⎤

⎦
⎥.

Hence,

                                   �s(ω) = c
2π

⎡
⎣
⎢ a eiω

1 − a eiω + 1
1 − a e−iω

⎤
⎦
⎥.

Example 12.3 The random telegraph signal considered in example 7.3 (page 265)
has covariance function

                                                   (12.38)C(τ) = a e−b τ , a > 0, b > 0.
Since condition (12.28) is satisfied, the corresponding spectral density  can bes(ω)
obtained from (12.29):

s(ω) = 1
2π ∫

−∞

+∞
e−iωt ae−b t dt

= a
2π

⎧

⎩
⎨ ∫
−∞

0
e(b−iω)t dt + ∫

0

∞
e−(b+iω)t dt

⎫

⎭
⎬

= a
2π

1
b − iω

+ 1
b + iω

Hence,

s(ω) = a b
π (ω2 + b2)

.

The corresponding correlation time is τ0 = 1/b.
This result is in line with Figure 12.3. Because of its simple structure, the covariance
function (12.38) is sometimes even then applied if it only approximately coincides
with the actual covariance function.                                                                         �
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Example 12.4  Let

             (12.39)C(τ) = a (T − τ ) for τ ≤ T
0 for τ > T

, a > 0, T > 0.

Figure 12.5 shows the graph of this covariance function. For example, the covariance
function of the randomly delayed pulse code modulation considered in example 6.8
(page 236) has this structure (see Figures 6.4 and 6.5). The corresponding spectral
density one gets by applying (12.29):

                              s(ω) = a
2π ∫

−T

+T
e−iωt (T − t )dt

                   = a
2π

⎧

⎩
⎨T ∫

−T

+T
e−iωt dt − ∫

0

+T
t e+iωt dt − ∫

0

+T
t e−iωt dt

⎫

⎭
⎬

                                         = a
2π

⎧

⎩
⎨ 2T
ω sinωT − 2 ∫

0

T
t cosωt dt

⎫

⎭
⎬.

Hence,

s(ω) = a
π

1 − cosωT
ω2 .

Figure 12.6 shows the graph of                                                                       �s(ω).
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Figure 12.4  Spectral density for example 12.3
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The previous examples should not give rise to the conjecture that for every function  
 which tends to zero as , a stationary stochastic process can be foundf (τ) τ → ∞

with  being its covariance function. A slight modification of (12.39) yields af (τ)
counterexample:

f (τ) =
⎧

⎩

⎨
⎪

⎪

a ⎛⎝T − τ2 ⎞
⎠ for τ ≤ T

0 for τ > T
, a > 0, T > 0.

If this function is substituted for   in (12.29), then the resulting function  C(τ) s(ω)
does not have properties (12.27). Therefore,  cannot be the covariance functionf (τ)
of a stationary process.

Example 12.5 The stochastic processes considered in the examples 6.6 and 6.7 have
covariance functions of the form

C(τ) = a cosω0τ .
Using (12.8), the corresponding spectral density is obtained as follows:

                    s(ω) = a
2π ∫

−∞

+∞
e−iωt cosω0t dt = a

4π ∫
−∞

+∞
e−iωt ⎛

⎝e
iω0t − e−iω0t ⎞

⎠ dt

                                     = a
4π

⎧

⎩
⎨ ∫
−∞

+∞
ei (ω0−ω)t dt + ∫

−∞

+∞
e−i (ω0+ω)t dt

⎫

⎭
⎬.

Applying (8.30) yields a symbolic representation of   (Figure 12.7):s(ω)

                                                  (12.40)s(ω) = a
2{δ(ω0 − ω) + δ(ω0 + ω)}.

Making use of (12.22), the corresponding spectral function is seen to be

 S(ω) =
⎧

⎩

⎨
⎪

⎪

0 for ω ≤ −ω0,
a/2 for -ω0 < ω ≤ ω0,
a for ω > ω0.

Thus, the spectral function is piecewise constant (Figure 12.7).                                �
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Comment Since in example 12.5 the covariance function does not tend to zero as , theτ → ∞
condition (12.28), which is necessary for applying (12.29), is not satisfied. This fact motivates
the occurrence of the delta function in (12.40). Hence, (12.40) as well as (12.24) are symbolic
representations of the spectral density. The usefulness of such symbolic representations based
on the delta function will be illustrated later for a heuristic characterization of the white noise.

If   and  are the covariance functions of two stationary processes andC1(τ) C2(τ)
C(τ) = C1(τ)C2(τ),

then it can be shown that there exists a stationary process with covariance function
 The following example considers a stationary process, whose covarianceC(τ).

function  is the product of the covariance functions of the stationary processesC(τ)
discussed in examples 12.3 and 12.5.

Example 12.6  Let  be given by the exponentially damped oscillation:C(τ)

                                                        (12.41)C(τ) = a e−b τ cosω0τ,

where . Thus,  satisfies condition (12.28) so that thea > 0, b > 0, and ω0 > 0 C(τ)
corresponding spectral density can  obtained from (12.29):be

s(ω) = a
π ∫

0

∞
e−b t cos(ωt) cos(ω0t) dt

 = a
2π ∫

0

+∞
e−b t [cos(ω − ω0) t + cos(ω + ω0) t ]dt.

Therefore,

s(ω) = a b
2π

⎧

⎩
⎨ 1

b2 + (ω − ω0)2 + 1
b2 + (ω + ω0)2

⎫

⎭
⎬.

Functions of type (12.41) are frequently used to model covariance functions of sta-
tionary processes (possibly approximately), whose observed covariances periodically
change their sign as  increases. A practical example for such a stationary process isτ
the fading of radio signals, which are recorded by radar.                                           �
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Figure 12.7 'Spectral density' and spectral function for example 12.5
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12.3.2 White Noise

In section 6.4.4 (page 246), the discrete white noise or a purely random sequence is
defined as a sequence  of independent, identically distributed random{X1, X2, ...}
variables  with parameters  There is absolutely noXi E(Xi) = 0 and Var(Xi) = σ2.
problem with this definition.
Now let us assume that the indices i refer to time points . What happensiτ, i = 1, 2, ...
to the discrete white noise when  tends to zero? Then, even for arbitrarily small ,τ τ
there will be no dependence between  and  as well as between  andXiτ X(i−1)τ Xiτ

 Hence, a continuous-time stochastic process , resulting fromX(i+1)τ. {X(t), t ≥ 0}
passing to the limit as  must have the same covariance function as theτ → 0,
discrete-time white noise (see formula (6.37), page 246):

                 (12.42)C(τ) = Cov(X(t), X(t + τ) =
⎧

⎩
⎨
σ2 for τ = 0,
0 for τ ≠ 0,

or, in terms of the delta-function, if the variance parameter  is written as σ2 2π s0,

                                          (12.43)C(τ) = 2π s0δ(τ).

One cannot really think of a stochastic process in continuous time having this covari-
ance function. Imagine  measures the temperature depending on time t at{X(t), t ≥ 0}
a location. Then the temperature at time point t would have no influence at the tem-
perature one second later. Since there is no dependence between  and  forX(t) X(t + τ)
whatever small  the continuous white noise is frequently said to be the 'mostτ ,
random process'. 
By formulas (12.29) and (12.31), the spectral density belonging to (12.43) is

s(ω) = 1
2π ∫

−∞

+∞
e−iωt 2π s0δ(t)dt ≡ s0

so that

∫−∞
+∞ s(ω)dω = ∞.

Hence, a continuous-time white noise process cannot exist, since its spectral density
only satisfies the first condition of (12.27). Nevertheless, the concept of white noise
as an approximate statistical model is of great importance for various phenomena in
electronics, electrical engineering, communication, time series, econometrics, and
other disciplines. Its outstanding role in applications can be compared with the one
of the point mass in mechanics, which also only exists in theory. (A mathematically
exact definition of the white noise process is, however, possible on the fundament of
stochastic calculus even if white noise does not exist in the real world.) Here, as a
working basis, the following explanation of the continuous white noise is given:

    The (continuous) white noise is a real, stationary, continuous-time stochastic         
    process with constant spectral density.                                                                     
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White noise can be thought of as a sequence of extremely sharp pulses, which occur
after extremely short time intervals, and which have independent, identically distri-
buted amplitudes with mean 0. The times in which the pulses rise and fall are so short
that they cannot be registered by measuring instruments. Moreover, the response
times of measurements are so large that during any response time a huge number of
pulses occur, which cannot be registered (Figure 12.8).

Remark The term 'white noise' is due to a not fully justified comparison with the spectrum of
the white light. This spectrum actually also has a wide-band structure, but its frequencies are
not uniformly distributed over the entire bandwidth of the white light.

A stationary process   can be approximately considered a white noise{X(t), t ≥ 0}
process if the covariance between  and  tends to 0 extremely fast withX(t) X(t + τ)
increasing  For example, if X(t) denotes the the absolute value of the force whichτ .
particles in a liquid are subjected to at time t (causing their Brownian motion), then
this force arises from the about  collisions per second between the particles and1021

the surrounding molecules of the liquid (assuming average temperature, pressure and
particle size). The process  is known to be weakly stationary with a{X(t), t ≥ 0}
covariance of type

 C(τ) = e−b τ with b ≥ 1019sec−1.

Hence, X(t) and  are practically uncorrelated ifX(t + τ)

τ ≥ 10−18.

A similar fast drop of the covariance function can be observed if {X(t), t ≥ 0}
describes the fluctuations of the electromotive force in a conductor, which is caused
by the thermal movement of electrons.
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Figure 12.8 Illustration of a sample path of the white noise (time axis extremely stretched) 

t

x(t)



Example 12.7  Let  be a homogeneous Poisson process with intensity  {N(t), t ≥ 0} λ
and  be a shot noise process (see example 6.5, page 229) defined by{X(t), t ≥ 0}

 X(t) = Σ
i=1

N(t)
h(t − Ti),

where the function  quantifies the response of a system to the Poisson eventsh(t)
arriving at time points  In this example, the system is a vacuum tube, where aTi.
current impulse is initiated as soon as the cathode emits an electron. If e denotes the
charge on an electron and if an emitted electron arrives at the anode after z time
units, then the current impulse induced by an electron is known to be

     h(t) =
⎧

⎩
⎨
⎪
⎪

αe
z2 t for 0 ≤ t ≤ z,

0 elsewhere,

where  is a tube-specific constant.  is, therefore, the total current flowing in theα X(t)
tube at time t. Now the covariance function of the process  can immedi-{X(t), t ≥ 0}
ately be derived from the covariance function (7.32), page 272. The result is

C(s, t) =
⎧

⎩
⎨
⎪
⎪

λ (α e)2

3 z
⎡
⎣
⎢1 − 3 t−s

2 z + t−s 3

2 z3
⎤
⎦
⎥ for t − s ≤ z,

0 elsewhere.

Since
lim
z→0

C(s, t) = δ(s − t),

this shot noise process  behaves approximately as white noise if the trans-{X(t), t ≥ 0}
mission time z is sufficiently small.                                                                             �

Band-Limited White Noise As already pointed out, a stationary process with con-
stant spectral density over an unlimited bandwidth cannot exist. A stationary process,
however, with spectral density

s(ω) = s0 for −w/2 ≤ ω ≤ +w/2,
0 otherwise,

can (Figure 12.9 a). By making use of formulas (12.26) and (12.8), the corresponding
covariance function  seen to be (Figure 12.9 b)is

C(τ) = ∫
−w/2

+w/2
eiωτs0dω = 2s0

sin w τ/2
τ .

The mean power of such a process is proportional to  sinceC(0) = s0 w ,

   lim
x→0

sin x
x = 1.

The parameter w is the bandwidth of its spectrum. With increasing w the band-limit-
ed white noise process behaves increasingly like a white noise.                                �
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12.4 EXERCISES

12.1) Define the stochastic process  by{X(t), t ∈ R}
X(t) = A cos(ωt +Φ),

where A and  are independent random variables with  and  is uniformlyΦ E(A) = 0 Φ
distributed over the interval [0, 2π].
Check whether the covariance function of the weakly stationary process {X(t), t ∈ R}
can be obtained from the limit relation (12.5).
The covariance function of a slightly more general process has been determined in example 6.6
at page 235.

12.2) A weakly stationary, continuous-time process  covariance functionhas

C(τ) = σ2e−α τ ⎛
⎝cosβτ − α

β sinβ τ ⎞
⎠ .

Prove that its spectral density is given by

s(ω) = 2σ2αω2

π (ω2 + α2 + β2 − 4β2ω2)
.

12.3) A weakly stationary continuous-time process  covariance functionhas

C(τ) = σ2e−α τ ⎛
⎝cosβτ + α

β sinβ τ ⎞
⎠ .

Prove that its spectral density  given byis

s(ω) =
2σ2α(α2 + β2)

π (ω2 + α2 − β2 + 4α2β2)
.
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a) b)

Figure 12.9 Spectral density and covariance function of the band-limited white noise

s(ω)
s0

−w/2 0 +w/2
ω

s0w
C(τ)

−2π − π 0 + π + 2π

ωτ



12.4) A weakly stationary continuous-time process has covariance function

C(τ) = a−b τ2 for a > 0, b > 0.

Prove that its spectral density  given byis

s(ω) = a
2 πb

e
− ω

2

4b .

12.5) Define a weakly stationary stochastic process  by{V(t), t ≥ 0}
V(t) = S(t + 1) − S(t),

where  is the standard Brownian motion process.{S(t), t ≥ 0}
Prove that its spectral density is proportional to

1 − cosω
ω2 .

12.6) A weakly stationary, continuous-time stochastic process has spectral density

s(ω) = Σ
k=1

n αk

ω2 + βk
2 , αk > 0.

Prove that its covariance function  given byis

C(τ) = π Σ
k=1

n αk
βk

e−βk τ , αk > 0.

12.7) A weakly stationary, continuous-time stochastic process  spectral densityhas

s(ω) =
⎧

⎩
⎨

0 for ω < ω0 or for ω > 2ω0,
a2 for ω0 ≤ ω ≤ 2ω0,

ω0 > 0.

Prove that its covariance function  given byis

C(τ) = 2 a2 sin(ω0τ)
⎛
⎝

2 cosω0τ − 1
τ

⎞
⎠ .
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Presenting the material in a reader-friendly, application-oriented 
manner, the author draws on his 50 years of experience in the field to 
give readers a better understanding of probability theory and stochastic 
processes and enable them to use stochastic modeling in their work. 
Many exercises allow readers to assess their understanding of the 
topics. In addition, the book occasionally describes connections 
between probabilistic concepts and corresponding statistical 
approaches to facilitate comprehension. Some important proofs 
and challenging examples and exercises are also included for more 
theoretically interested readers.
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