
Commun Nonlinear Sci Numer Simulat 68 (2019) 1–14 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Research paper 

The risk matrix of vector-borne diseases in metapopulation 

networks and its relation with local and global R 0 

A. Anzo-Hernández 

b , ∗, B. Bonilla-Capilla 

b , J. Velázquez-Castro 

a , M. Soto-Bajo 

b , 
A. Fraguela-Collar a 

a Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San 

Manuel, 72570, Puebla, México 
b Cátedras CONACYT - Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad 

Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, 72570, Puebla, México 

a r t i c l e i n f o 

Article history: 

Received 16 February 2018 

Revised 30 May 2018 

Accepted 5 June 2018 

Available online 26 July 2018 

Keywords: 

Basic reproduction number 

Vector-borne disease 

Metapopulation networks 

Human mobility 

a b s t r a c t 

The basic reproduction number R 0 is an index worldwide commonly used by public health 

organizations as a key estimator of the severity of a given epidemic. In this work we use 

a Lagrangian approach to model vector-borne diseases (SIR-SI) into a metapopulation net- 

work in order to derive an expression of the basic reproduction number and we analyze its 

dependency on human mobility. We prove that this index can be computed by evaluating 

the spectral radius of the risk matrix W , whose entries W ij are the number of secondary 

cases in patch j produced by the inclusion of a single infected human in patch i . Based on 

the risk matrix, we propose a risk index which locally describes the epidemic vulnerability, 

while R 0 give us an estimation of the global vulnerability. Further, we numerically analyze 

the effect of human mobility over the values of R 0 in a system composed of two and three 

patches, and for a network connected in a star topology configuration. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Vector-borne diseases, particulary those transmitted by mosquitoes, are one of the most important concerns in public

health, mainly due to its growing impact and fast spreading in endemic areas. In particular, Dengue (DEN), Zika (ZIKV)

and Chikungunya (CHIKV) are the main three arboviruses that are transmitted to humans via the bite of two mosquito

species (among the 3500 mosquito species in the world) named Aedes aegypti ( Stegomyia aegypti ), which is adapted to a

peri-domestic environment and urban areas [1] ), and Aedes albopictus ( Stegomyia albopicta ). For instance, Dengue arbovirus

causes approximately 100 million annually at worldwide level, mostly in tropical and sub tropical countries [2] . In addition,

according to the World Health Organization [3] , in June 2016, 61 countries reported cases of ZIKV disease, and in May

2017 such a number grew up to 84. Currently, CHIKV have received considerable public health attention due to its recently

incursion in the Americas, with 146,914 confirmed cases in 2016 [4] . 

How and where a vector-borne disease will occur is one of the main research problems in epidemiology. Since these

mosquitoes rarely travel long distances (the maximum dispersa of Aedes aegypti is ten meters and, Aedes albopictus one is
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40 0–60 0 m [5] ), one of the key factors to amplify or dampen a disease outbreak is the mobility of people among different

spatial regions [6–8,11,12] . Take as an example the recent spread of ZIKV in Americas, which according to the analysis pre-

sented in [13] , it is estimated that the first introduction of ZIKV occured in Brazil between the Soccer Confederation Cup in

2013 and the Soccer World Cup in 2014, and the subsequent spread over 47 countries was caused by the daily human flow

[13] . This reflects the importance of incorporate, in the classical SIR epidemiological models, the human mobility among

different geographical zones, ranging from urban areas inside a city to global tracks between countries. 

In this context, the metapopulation models, widely used in Ecology [14] , have been considered in the study of disease

outbreaks. An early work in this direction can be traced back to the model of sexually transmitted diseases presented by

Arino and van den Driessche [15] , which were extended later to other types of diseases as those transmitted by mosquitoes

[16] . 

In order to formulate a metapopulation network model, firstly the geographic territory is partitioned into patches, each

one occupied by individuals; next one consider a network of patches by adding links among them if humans of a given patch

moves towards another patch. Currently, there are two perspectives about how to model mobility of humans in a network

of patches [8] : in the first one, named the Eulerian approach, people emigrate into a neighboring patch in which they settle

as new residents. In the second one, named the Lagrangian approach, people spend a fraction of their day at some patch (by

work or personal reasons) and then return to its own patch after that. Because of the features of a vector-borne disease, in

this work we make use of the Lagrangian approach, from which human mobility is described by the dwell-time parameters

p ij , that stand for the fraction of the day that residents from patch i spend in patch j [5,17] . It is worth mentioning that

agent-based models (ABM) are another methodology currently used to analyze vector borne diseases in metapopulations

models [9] . Such models let us track spatial and temporal factors like population density and dynamics in heterogeneous

populations. However, ABM requires significant computing resources. 

An important quantity in Epidemiology is the basic reproduction number R 0 . This quantity represents the secondary

cases generated by an individual inside a totally susceptible population [20] . In simple single patch epidemic models this

quantity can be derived from the stability analysis of the system, but it can also be calculated directly from the model and

its meaning [10] . With the stability analysis it is also proved that if R 0 < 1, then the disease-free equilibrium (DFE) state

is asymptotically stable, and unstable if R 0 > 1 [19] . In multi-patch models the traditional interpretation of R 0 is not valid

anymore because the secondary cases generated by the insertion of an infected individual depend on the patch of insertion.

For this reason, in multi-patch models it becomes necessary to employ the NGM methodology. This method consists in

decomposing the Jacobian matrix into two matrices called the transmission and transition parts; from which the NGM is

determined [20] . R 0 is then the spectral radius of the NGM. In this models R 0 is used to indicate when the disease free

equilibrium is stable or unstable [18] . On the other hand, Keeling and Rohani [10] gave a biological interpretation of this

value as “the average number of secondary cases arising from an average infected individual in an entirely susceptible

population, once initial transients have decayed”. Even with this interpretation, it is difficult to calculate R 0 directly from

the model and even more from a vector borne disease. 

An analysis and an inspiring work for our research is the result presented by Bichara and Castillo-Chavez in [5] . There, a

metapopulation network model for vector-borne diseases is proposed assuming a SIS epidemic model for humans and a SI

framework for mosquitoes, and considering that the network is composed by N human groups and M patches occupied just

by mosquitoes. That is, the system is a bipartite network from which an expression of R 0 is obtained in terms of the spectral

radius of products of matrices. Further, it is also shown in [5] that the DFE state is globally asymptotically stable (GAS) if

R 0 < 1, and the endemic equilibrium state is GAS if R 0 > 1, under the assumption that the dwell-time matrix P = [ p i j ] N×N is

irreducible. 

On the other hand, based on the Bailey - Dietz model, which considers a metapopulation system with human migration,

Iggidr et al. [21] distinguish three different R 0 involved in this type of systems: (a) the global one derived from the NGM

methodology, (b) the uniform one, obtained by assuming that the patches are homogenous, and (c) the local one (which

we denote as R 0 i , with i the label of the patch), obtained when the patches were disconnected. Furthermore, the authors in

[21] derive an expression for R 0 assuming that the mobility time-scale within the patch is larger than when it is compared 

to either the demographic or epidemiological time scales, where some additional parameters are included such as the vector

alternative blood sources. 

In this same direction but assuming a reduced system of two connected patches, Lee and Sunmi [22] consider a SEIR

(Susceptible - Exposed - Infected - Recovered) framework for humans and a SEI for mosquitoes, and analyze three human

mobility scenarios: (i) unidirectional motion, (ii) symmetric bidirectional, and (iii) asymmetric bidirectional motion. In other

words, they fix the values of the dwell-time parameters p ij while varying the local reproduction numbers R 0 i and R 0 j in

order to show that larger asymmetry in the mobility patterns lead to larger final epidemic sizes. 

In this paper we show that for vector-borne diseases R 0 can be found as the spectral radius of a risk matrix W of

dimension N × N . This allows to greatly reduce the computational difficulty of finding R 0 . In addition to this, we give an

interpretation for the elements of W making it possible to calculate them directly from the model. Specifically, the entries

W ij are the secondary infection cases that are generated in patch j due to the inclusion of a single infected human in patch i

and because of the human mobility among patches. In this sense, the risk matrix describes the mobility influence of a given

patch over the propagation of a vector-borne disease in the entire metapopulation network. 

In order to show these results, we used a specific model where the dynamics of each patch is described by a compart-

ment SIR model for humans and SI for vectors. Two patches are connected if humans travel between them; that is, from the
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Lagrangian approach, we assume that the dynamical network is connected with weighted and directional links described by

the dwell-time parameters p ij . 

Once having the expression for R 0 , we numerically analyze the case of two patches, where we explore three possible

scenarios: (a) the local basic reproduction number of patch i is R 0 i > 1 and R 0 j < 1; (b) both indices are smaller than one;

and (c) both are bigger than one. We find the values of p ij for which the disease outbreak is triggered or not in each patch.

Next we extend this study to the case in which a third patch, with label k and local basic reproduction number R 0 k > 1,

is connected to the above system of two patches. Here we analyze the effect of the out-flow and in-flow of humans in

the new patch k and we observe that the in-flow can produce a major number of secondary infection cases in the entire

metapopulation network. We found two potential effects of human mobility in a system. The first one is that it can trigger

a disease outbreak in a metapopulation ( R 0 > 1) even if for the same patches but without human mobility there isn’t an

outbreak, i.e. R 0 i < 1, ∀ i . The second one is that in certain cases, human mobility can dampen a disease outbreak ( R 0 < 1)

compared to the same isolated patches, i.e. ∃ i such that R 0 i > 1. Finally, we study the case of N patches connected in a

star topology configuration and we find the values for the dwell-time parameters that can reduce the number of infected

humans in the central patch. 

This paper is organized as follows: in Section 2 we present some preliminaries. Specifically, we describe a single pop-

ulation model with the SIR-SI epidemic model for vector-borne diseases. Next, we use this model to describe the NGM

methodology. In Section 3 we find the basic reproduction number for a metapopulation network connected in an arbitrary

topology configuration. In Section 4 we analyze numerically the effect of the mobility for a system of two and three patches,

and for a metapopulation network with a star topology configuration. Further, we assess the basic reproduction number for

each one of the above examples by varying the dwell-time parameters. In Section 5 we present some concluding remarks. 

2. R 0 for a single and isolated patch 

With the aim of deriving a mathematical model for a metapopulation network with human mobility, first we describe

the compartmental local model SIR-SI which describes the vector-borne disease dynamics of an isolated patch; i.e., when it

is not connected to the network. Taking this model into account, we obtain the expression of the local basic reproduction

number following the NGM methodology. 

2.1. Single population model 

Consider an isolated patch i occupied by a homogeneously mixing population of N hi humans and N vi vectors. Further-

more, assume that human population is classified at every time instant t as susceptible S i ( t ), infected I i ( t ), and recovered R i ( t )

(with N hi = S i (t) + I i (t) + R i (t) ∀ t ), while vector population can be classified into susceptible M i ( t ) and infected V i ( t ) (with

N v i (t) = M i (t) + V i (t) ). Other compartments can be incorporated to the model, as for example the exposed hosts or vectors

in aquatic phase, which includes egg, larva and pupa states [23] . In this paper we do not incorporate other compartments

because we are more interested in the general properties of vector-borne diseases. Hence we use a SIR (Susceptible-Infected-

Recovered) model for humans and a SI model for vectors, given by the following set of nonlinear differential equations: 

humans 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ S i = μhi (N hi − S i ) − βi V i 

S i 
N hi 

, 

˙ I i = −(γi + μhi ) I i + βi V i 

S i 
N hi 

, 

˙ R i = γi I i − μhi R i , 

(1)

vectors 

⎧ ⎨ 

⎩ 

˙ M i = �i − μv i M i − βi M i 

I i 
N hi 

, 

˙ V i = −μv i V i + βi M i 

I i 
N hi 

. 

(2)

Here, β i is the number of vector bites per human per time unit. Then, β i V i S i / N hi is the total number of susceptible hosts

that become ill by the bite of the infected vectors, and β i M i I i / N hi is the total number of susceptible vectors that contract

the arbovirus due to their interaction with the fraction I i / N hi of infected hosts. On the other hand, μhi and μvi are the per-

capita birth and natural mortality rates in humans and vectors respectively, and γ i is the per-capita human recovery rate.

In this model we assume that the natural growth of susceptible vectors is described by the constant recruitment rate �i . In

Table 1 we present some numerical values from the above described parameters reported in the literature for the Dengue

case [24,25] . 

In order to illustrate the dynamics of the vector-borne disease for a single and isolated patch, we show in Fig. 1

the numerical solution of the SIR-SI model (1) and (2) , by using the fourth order Runge – Kutta method (RK4) and the

parameters values given in Table 1 , with β = 0 . 67 , and initial condition S i (t = 0) = 10 , 0 0 0 , I i (t = 0) = 1 , R i (t = 0) = 0 ,

M (t = 0) = 8 , 0 0 0 , V (t = 0) = 0 . 
i i 
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Fig. 1. Numerical solution of the SIR-SI model (1) and (2) with the fourth order Runge–Kutta method (RK4) and with the parameters values given in 

Table 1 ; with βi = 0 . 67 , and initial condition S i (t = 0) = 10 , 0 0 0 , I i (t = 0) = 1 , R i (t = 0) = 0 , M i (t = 0) = 80 0 0 , V i (t = 0) = 0 . 

Table 1 

Description and parameters values of the SIR-SI model ( Eqs. (1) and (2) ) for the Dengue case [24,25] . 

Parameter Description Numerical value 

μhi Per-capita birth/mortality rate of humans (per day, per capita) 4 . 57 × 10 −5 humans/days 

μvi Per-capita mortality rate of adult female mosquitoes (per day, per capita) 1/8 mosquitos/days 

γ i Humans recovery rate (per day, per capita) 1/7 humans/days 

�i The constant recruitment rate of vectors 10 0 0 mosquitoes/days 

β i Effective vector biting rate (global number of bites, per day, per mosquito) [0.2,0.67] bites/mosquitoes × days 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Computing the local R 0 i with the NGM methodology 

The key idea in the Next Generation Matrix (NGM) methodology is interpreting the infection process as a demographic

one with consecutive generations of infected individuals. Such a process can be characterized by the NGM, since the basic

reproduction number is defined as the spectral radius of the NGM [20] . In what follows we briefly explain this methodology

using the SIR-SI model (1) and (2) as an example. In order to distinguish between the basic reproduction number for a

metapopulation network and the basic reproduction number of a single patch (when it is isolated from the network), we

denote with R 0 i the local basic reproduction number of the i th patch. 

The first step consists in separating the compartmental model into two subsystems: infected compartments, also named

the infected subsystem, and the disease-free subsystem. For the SIR-SI model (1) and (2) , the infected subsystem is com-

posed by the state variables x = (x 1 , x 2 ) = (I i , V i ) ∈ R 

2 , while the state variables y = (S i , R i , M i ) ∈ R 

3 correspond to the

disease-free subsystem. Then the right-hand side of the infected subsystem is split as follows: 

˙ I i = − σhi I i ︸︷︷︸ 
H 1 (x,y ) 

+ βi V i S 
∗
i ︸ ︷︷ ︸ 

T 1 (x,y ) 

, and 

˙ V i = − μv i V i ︸ ︷︷ ︸ 
H 2 (x,y ) 

+ βi M i I 
∗
i ︸ ︷︷ ︸ 

T 2 (x,y ) 

, (3) 

where we have defined σhi = γi + μhi , S ∗
i 

= S i /N hi , and I ∗
i 

= I i /N hi in order to reduce the notation. Here, H k (for k = 1 , 2 )

incorporates the transition terms (births, deaths, disease progression, and recovery), while T k is the rate of appearance of

new infections ( i.e the transmission term) [26] . The selection of the transition and transmission terms of Eq. (3) should be

performed by considering the following assumptions [19,26] : 

• H k (0 , y ) = 0 and T k (0 , y ) = 0 , for all y > 0 and k = 1 , 2 . That is, the first condition says that there is no immigration

from disease-free subsystem to the infected one; and the second condition states that all new infections arise from the

infected compartment only. 

• H k (x, y ) ≤ 0 whenever x k = 0 for k = 1 , 2 . The above says that each element of the transitional term represents the net

outflow and must be negative (inflow only). 

• T k (x, y ) ≥ 0 for all nonnegative x and y , and k = 1 , 2 . This means that new infections can only be produced. 

• 
∑ 2 

k =1 H k (x, y ) ≥ 0 for all nonnegative x and y, i.e. the total outflow of all infected compartments is nonnegative. 

• The disease-free subsystem (corresponding to I i = V i = 0 ) has an unique equilibrium point (S i , R i , M i ) = (N hi , 0 , �i /μv i )
which is globally asymptotically stable. 
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Fig. 2. Schematic representation of the interaction between two patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is straightforward to show that the selection of the transition and transmission terms defined in (3) satisfy the above

assumptions. Next, we compute the following matrices: 

H = 

[
∂H j 

∂x k 

∣∣∣∣
D 

]
2 ×2 

= 

(
σhi 0 

0 μv i 

)
; T = 

[
∂T j 
∂x k 

∣∣∣∣
D 

]
2 ×2 

= βi 

( 

0 1 

�i 

μv i N hi 

0 

) 

; (4)

for j, k = 1 , 2 , and where D = (N hi , 0 , 0 , �i /μv i , 0) is the disease-free equilibrium (DFE) state. The matrices H and T are

called the transition and transmission matrices respectively. It is straightforward to note that the above process is equivalent

to linearize the infected subsystem around the DFE state and rewrite the resulting Jacobian matrix as J = T − H. 

The matrix K = T H 

−1 is called the NGM [20] which, for the SIR-SI model (1) and (2) becomes: 

K = 

⎛ 

⎜ ⎝ 

0 

βi 

μv i 

βi 

�i 

N hi σhi μv i 
0 

⎞ 

⎟ ⎠ 

. 

Hence the local basic reproduction number is given by the spectral radius ρ( K ) of the NGM. Then, by using the charac-

teristic polynomial p(λ) = det(K − λI 2 ) (with I 2 the 2 × 2 identity matrix) we get the following mathematical expression of

R 0 i (for the SIR-SI model (1) and (2) ): 

R 0 i = ρ(K) = βi 

√ 

�i 

N hi σhi μ
2 
v i 

. (5)

For the parameters values given in Table 1 , the local basic reproduction number for a single and isolated population is

R 0 i = 4 . 48 . According to the results of Diekmann et al. [20] , the DFE state is asymptotically stable if R 0 i < 1 and, it is unstable

otherwise. 

In the next section we use this NGM methodology in order to get an expression of the basic reproduction number for a

system of N connected patches. 

3. R 0 for a metapopulation network and the risk matrix W 

In order to get a mathematical expression for the basic reproduction number R 0 in a system of N connected patches, we

first derive the model from the Lagrangian approach by assuming that the dynamics of each patch is given by the SIR-SI

model (1) and (2) and the connection among patches is described by human mobility patterns. After that, we use the NGM

methodology in order to derive an expression for the basic reproduction number R 0 of the metapopulation network. 

3.1. Metapopulation network model 

We consider a network composed of N patches, each one inhabited by an homogeneously mixing population of N hk

humans and N vk vectors, where k ∈ { 1 , 2 , . . . , N} is the patch label. Let S k ( t ), I k ( t ), R k ( t ) be the number of residents that are

susceptible, infected and recovered; let M k ( t ) and V k ( t ) be the number of susceptible and infected vectors in the k th patch,

respectively. 

We assume that there exists a flux of human mobility among patches, while vectors remain in the same patch all the

time (in Fig. 2 we draw an schematic representation of the human mobility between two patches). In order to incorporate

human mobility in the SIR-SI model (1) and (2) , we consider the dwell-time matrix P = [ p i j ] N×N , whose entries p ij ≥ 0, for

i, j = 1 , . . . , N, describe the fraction of time during a day hosts in patch i spend in patch j [5,17] . The dwell-time matrix

should satisfy 
∑ N 

j=1 p i j = 1 for all i . 

The effect of human mobility in the spread of a vector-borne disease is introduced by substituting the last term at

right hand of the Eq. (1) by the function f , which describes the human mobility over the metapopulation network of
k 
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susceptible residents from k th patch, and how they contract the arbovirus due to the bite of infected vectors that live in

patches that they visit. Additionally, the last term at right hand of the Eq. (2) is replaced by the function g k , which describes

the human mobility over the metapopulation network of the infected residents from any patch, and how they interact with

susceptible vectors in patch k . In this context, the SIR-SI model with human mobility between the N patches is expressed

as the following system of 5 N non-linear ordinary differential equations: 

Patch k 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ S k = μhk (N hk − S k ) − f k (S k , I v ) , 
˙ I k = −(γk + μhk ) I k + f k (S k , I v ) , 
˙ R k = γk I k − μhk R k , 

˙ M k = �k − μv k M k − g k (M k , I h ) , 
˙ V k = −μv k V k + g k (M k , I h ) ;

(6) 

where k = 1 , 2 , . . . , N is the index that label each patch; μhk , μvk , γ k and �k are the parameters described in Table 1 for

the k th patch; I v = (V 1 , V 2 , . . . , V N ) and I h = (I 1 , I 2 , . . . , I N ) . 

Let w hi = 

∑ N 
τ=1 p τ i N hτ be the effective number of humans that spend their time in patch i , including both own residents

and visitors of the neighboring patches. We interpret w hi as the tourist attraction of the patch i since it indicates the amount

of humans that daily visit it. Then, the term S k p kj / w hj is the proportion of susceptible humans that travel from patch k to

patch j and, I j p jk / w hk is the proportion of infected hosts of patch j that travel to patch k . With these terms we can define

the functions f k and g k for patch k as: 

f k (S k , I v ) = 

N ∑ 

j=1 

β j V j 

S k p k j 

w h j 

, (7) 

and 

g k (M k , I h ) = 

N ∑ 

j=1 

βk M k 

I j p jk 

w hk 

. (8) 

The dynamical behavior of the metapopulation network (6) for N = 2 , N = 3 , and for N = 6 patches connected in a star

topology configuration, and for different values of the dwell-time p ij , it will be illustrated in the section Numerical examples.

But before that, in the next section we compute the basic reproduction number R 0 using the NGM methodology described

previously. 

3.2. Computing R 0 with the NGM methodology 

As we described in the previous section, in order to get the NGM we separate from the Eq. (6) the infected subsystem

as follows: 

˙ I k = −σhk I k ︸︷︷︸ 
H 1 k 

+ f k (S k , I v ) ︸ ︷︷ ︸ 
T 1 k 

, 

˙ V k = −μv k V k ︸ ︷︷ ︸ 
H 2 k 

+ g k (M k , I h ) ︸ ︷︷ ︸ 
T 2 k 

;

for k = 1 , . . . , N. Here, σhk = γk + μhk . It is straightforward to show that the collection of transition functions H 1 k , H 2 k ; and

transmission functions T 1 k , T 2 k satisfy the assumptions proposed in [19,26] and also described in the Section 2.2 of this

paper. Then, the transition and transmission matrices are given by: 

H = 

⎡ 

⎢ ⎣ 

[ 
∂H 1 i 

∂ I j 

∣∣∣
D 

] 
N×N 

[ 
∂H 1 i 

∂V j 

∣∣∣
D 

] 
N×N [ 

∂H 2 i 

∂ I j 

∣∣∣
D 

] 
N×N 

[ 
∂H 2 i 

∂V j 

∣∣∣
D 

] 
N×N 

⎤ 

⎥ ⎦ 

= 

[ 

diag { σhi } O N 

O N diag { μv i } 

] 

2 N×2 N 

and 

T = 

⎡ 

⎢ ⎢ ⎣ 

[
∂T 1 i 
∂ I j 

∣∣∣
D 

]
N×N 

[ 
∂T 1 i 
∂V j 

∣∣∣
D 

] 
N×N [ 

∂T 2 i 
∂ I j 

∣∣∣
D 

] 
N×N 

[ 
∂T 2 i 
∂V j 

∣∣∣
D 

] 
N×N 

⎤ 

⎥ ⎥ ⎦ 

= 

[ O N [ ηi j p i j ] N×N 

[ κi p ji ] N×N 
O N 

] 

2 N×2 N 

for i, j = 1 , . . . , N. Here, diag { σ hi } is a N × N diagonal matrix, O N is the null matrix of dimension N , ηi j = β j N hi /w h j , and

κi = βi �i /μv i w hi . Note that the DFE state is D = (N h 1 , 0 , 0 , �1 /μv 1 , 0 , . . . , N hN , 0 , 0 , �N /μv N , 0) ∈ R 

5 N . 

Then, according to Diekmann et al. [20] , the NGM is given by the following 2 N × 2 N block matrix: 

K = T H 

−1 = 

(
O N B 

h 

B 

v O N 

)
, (9) 
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where B h = [ ηi j p i j /μv j ] N×N and B v = [ κi p ji /σh j ] N×N for i, j = 1 , . . . , N. 

Using the result given in [27,28] for the determinant of a block matrix, and the property det(αA ) = αn det(A ) with A a

square n × n matrix and α ∈ R , we get the following characteristic polynomial of the NGM (9) : 

−p(λ) = 

∣∣∣∣λI N −B 

h 

−B 

v λI N 

∣∣∣∣ = d et 
∣∣λI N − B 

h (λI N ) 
−1 B 

v 
∣∣d et | λI N | = d et 

∣∣λ2 
I N − W 

∣∣ . 
Here, I N is the N × N identity matrix and we have defined W = B h B v , whose entries are given by: 

W i j = R 

2 
0 i 

(
N hi 

w hi ︸︷︷︸ 
ρi 

)2 

p ii p ji + 

N ∑ 

k =1 
k � = i 

R 

2 
0 k 

(
N hi N hk 

w 

2 
hk ︸ ︷︷ ︸ 

φik 

)
p ik p jk . (10)

R 0 i is the local basic reproduction number for the i th patch (given by Eq. (5) ), ρi = N hi /w hi represents the density of

residents from patch i and φi j = N hi N h j /w 

2 
h j 

is a gravitational-like term that amplifies or dampes the influence of the mobility

of the residents of i . 

The above result shows that the basic reproduction number is the square root of the spectral radius of the W matrix,

that is: 

R 0 = 

√ 

ρ(W ) . (11)

It is worth noting that in the absence of mobility ( p 11 = · · · = p NN = 1 and p i j = 0 ∀ i � = j) we get W = diag{ R 2 
01 

, . . . , R 2 
0 N 

}
and the basic reproduction number for the metapopulation network becomes equal to the maximum of the local basic

reproduction numbers R 0 i . This reflects the fact that even in the absence of mobility, the index R 0 is able to indicate that

a disease outbreak can occur in the metapopulation network although it only occurs in a single patch. As a side note, due

to its relation with the risk matrix, the global R 0 ( Eq. (11) ) also depends on the parameters described in Table 1 throughout

the local R 0 i ( Eq. (5) . 

On the other hand, it is worth highlighting the case of N = 2 patches ( Fig. 2 ), from which we get the following charac-

teristic polynomial of the 2 × 2 matrix W : 

p(λ) = 

∣∣∣∣−λ2 + W 11 W 12 

W 21 −λ2 + W 22 

∣∣∣∣ = λ4 − λ2 Trz(W) + det(W) , 

where 

W 11 = ρ2 
1 p 

2 
11 R 

2 
01 + φ12 p 

2 
12 R 

2 
01 , (12)

W 12 = ρ2 
1 p 11 p 21 R 

2 
01 + φ12 p 12 p 22 R 

2 
02 ; (12)

and W 22 , W 21 are obtained by changing 1 → 2 in Eq. (12) . Since the dwell-time parameters are always positive, the maximum

eigenvalues and therefore the exact expression of R 0 for two patches is given by 

R 0 = 

√ 

ρ(W ) = 

1 √ 

2 

(
Trz ( W ) + 

√ 

( Trz(W) ) 2 − 4 det(W) 

)1 / 2 

. (13)

Note that in the particular case in which there is not human mobility, i.e. p 12 = p 21 = 0 and p 11 = p 22 = 1 , the risk

matrix is given by W = diag{ R 2 01 , R 
2 
02 } . That is, the eigenvalues of W are λw 1 = R 2 01 and λw 2 = R 2 02 , which implies that R 0 =

max { R 01 , R 02 } . On the other hand, when the mobility is extreme, that is, the residents of a given patch spend most of

their time in the other patch, we have that p 11 ≈ p 22 ≈ 0, which implies that p 12 ≈ p 21 ≈ 1. According to (12) , we have that

 ≈ diag{ φ12 R 
2 
02 

, φ21 R 
2 
01 

} , which implies that R 0 = max { √ 

φ12 R 02 , 
√ 

φ21 R 01 } . Furthermore, in this case the gravitational-like

terms are φ12 = N h 2 /N h 1 and φ21 = N h 1 /N h 2 = 1 /φ12 , while, according to Eq. (12) , the risk in patch 1 is W 11 = φ12 R 
2 
01 and

in patch 2 is W 22 = R 2 02 /φ12 . From the above expressions we corroborate that if N h 2 > > N h 1 , then the risk in patch 1 could

increase while in patch 2 could decrease. 

On the other hand, we propose to call W the risk matrix for the metapopulation network, since we can assess with its

entries W ij the secondary cases generated in patch j due to the presence of an infected human in patch i and the human

mobility among patches. The above is calculated under the assumption that the residents in all the patches are in the

susceptible state. It is worth mentioning that W ij is similar to the basic reproduction number in the sense that it estimates

the severity of the disease over the patch j due to the inclusion of an infected human in the patch i . 

With the entries of the W matrix we define the risk of a vector-borne disease in patch j due to the presence of an

infected human in some neighboring patch as follows: 

Risk in patch j = 

N ∑ 

k =1 

W k j . (14)

In the next section we use the expressions of R 0 for two patches ( Eq. (13) ) and N patches ( Eq. (11) ) and the patch risk

( Eq. (14) ) in order to analyze, numerically, the effect of the dwell-time parameter p ij on the values of the basic reproduction

number. 
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Fig. 3. (a) R 0 for the case 1 ( R 01 = 1 . 04841 and R 02 = 0 . 89536 ) and for different values of the dwell-time parameters. (b) Dynamics of the infected humans 

in each patch with p 12 = 0 . 4 and p 21 = 0 . 8 , from which R 0 = 0 . 97662 . (c) Dynamics of the infected humans in each patch with p 12 = 0 . 99 and p 21 = 0 . 7 , 

from which R 0 = 1 . 119 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical examples 

Due to the great variety of factors involved in a metapopulation network, including the topology configuration, the num-

ber of patches, the heterogeneity on the local parameters, the direction of the links, in this section we select some specific

scenarios to illustrate the role of human mobility on the dynamics of the vector-borne disease. In particular we numerically

analyze the two and three patches systems, and a network of patches connected in a star topology from which we obtain

some conclusions that are expected to be valid for more complex topologies. 

4.1. The two patches system 

In order to illustrate the effect of human mobility on the disease spread of two patches ( Fig. 1 ), in particular to the value

of R 0 , we assume that both subpopulations have the same number of humans ( N h 1 = N h 2 = 10 , 0 0 0 ) and the same entomo-

logical parameters and human birth-mortality rates given in Table 1 . Hereafter, we will use these same parameter values in

all the numerical examples to define the dynamics of each patch. In what follows, we select the constant recruitment rate

of vectors �i (for i = 1 , 2 ) according to the criteria �i < N hi σhi μ
2 
v i /β

2 
i 

for selecting the local basic reproduction number such

that R 0 i < 1; or we select �i > N hi σhi μ
2 
v i /β

2 
i 

to guarantee that R 0 i > 1 (See Eq. (5) ). The different values of the parameter

�i in each patch can be interpreted as a scenario with ecological diversity in the metapopulation network, where some

geographical zones have better conditions for the vector reproduction (as climate, temperature, pluviosity). 

We consider the following three cases of study: Case 1) without mobility, the local reproduction number of patch 1 is

R 01 > 1 and R 02 < 1 for patch 2. This case is selected in order to look for the possibility that even if R 01 > 1 the mobility

could led to a global R 0 < 1. Case 2) both are smaller than one ( R 01 < 1 and R 02 < 1). In this case, we analyze if the mobility

could make an epidemic to appear R 0 > 1 even when without mobility there would not be an epidemic. Finally, case 3) both

are bigger than one ( R 01 > 1 and R 02 > 1). This case is chosen to investigate the possibility that human mobility could avoid

an epidemic to appear in this extreme situation. 

Case 1 : We search for the existence of values for the mobility p ij that could avoid an epidemic. In absence of human

mobility ( p 12 = p 21 = 0) this case is characterized by a potential outbreak in patch 1 ( R 01 > 1) but not in patch 2 ( R 02 < 1).

Here we consider �1 = 55 . 4208 and �2 = 40 . 4208 ; using Eq. (5) we get the following values for the local reproduction

number: R 01 = 1 . 04841 and R 02 = 0 . 89536 . In Fig. 3 a we show the values of R 0 (see Eq. (13) ) by varying the dwell-time

parameters p 12 and p 21 in the range [0,1]. 

In Fig. 3 b we show the dynamics of human infections in both patches. In this example we select the dwell-time parame-

ters p 12 = 0 . 4 and p 21 = 0 . 8 , which according to (13) , the basic reproduction number is R 0 = 0 . 97662 ; that is, the DFE state

is stable and thus there would not be a global epidemic. Furthermore, the risk in patch 1 (defined according to Eq. (14) ) is

1.00552 and for patch 2 is 0.895318. We observe that the risk index is a good indicator of local outbreaks. 

As an other example of the risk index utility to predict local outbreaks, we select p 12 = 0 . 99 and p 21 = 0 . 7 , from which

R 0 = 1 . 07184 ; and the risk in patch 1 is 0.630716 and 1.27012 for patch 2. In Fig. 3 c we can see that a disease outbreak

occurs mainly in patch 2 as indicated by the risk index, even though its local basic reproduction number is less than one. 

Case 2 : We want to know if human mobility can led to an outbreak even if in the absence of mobility there would not

be one. In this case we select � = 47 . 4208 and � = 49 . 4208 ; which according to (5) , the values of the local reproduction
1 2 
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Fig. 4. (a) R 0 for the case 2 ( R 01 = 0 . 9697 and R 02 = 0 . 9900 ) and for different value of the dwell-time parameters. (b) Dynamics of the infected humans 

in each patch with p 12 = 0 . 3 and p 21 = 0 . 98 , from which R 0 = 1 . 0614 . (c) Dynamics of the infected humans in each patch with p 12 = 0 . 98 and p 21 = 0 . 2 , 

from which R 0 = 1 . 0505 . 

Fig. 5. (a) R 0 for the case 3 ( R 01 = 1 . 0 0 05 and R 02 = 1 . 0 0 02 ) and for different value of the dwell-time parameters. (b) Dynamics of the infected humans in 

each patch with p 12 = 0 . 5 and p 21 = 0 . 7 , from which R 0 = 1 . 0012 . (c) Dynamics of the infected humans in each patch with p 12 = 0 . 97 and p 21 = 0 . 3 , from 

which R 0 = 1 . 0664 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

numbers are R 01 = 0 . 9697 and R 02 = 0 . 9900 for patch 1 and 2 respectively. In Fig. 4 a we show the values of R 0 by varying

the values of the dwell-time parameters in the range [0,1]. As a first example, we select p 12 = 0 . 3 and p 21 = 0 . 98 , and

using Eq. (5) we get R 0 = 1 . 0614 . We thus conclude that human mobility can drive to an epidemic. Even more, by using

Eq. (14) we get that the risk in patch 1 is 1.3107 and for patch 2 is 0.6098, that is, a disease outbreak is observed mainly in

patch 1 as we can observe in Fig. 4 b. On the other hand, by selecting p 12 = 0 . 98 and p 21 = 0 . 2 , we get R 0 = 1 . 0505 and the

largest number of infected humans occurs in patch 2 ( Fig. 4 c); whose risk is 1.2955 while for patch 1 is 0.6251. We observe

that the local risk as defined above is a good indicator of the local severity of the outbreak. 

Case 3 : This set of simulations are selected to evaluate the risk index as an estimator of the epidemic severity in each

patch. For this case we select �1 = 50 . 4408 and �2 = 50 . 4708 ; then, according to (5) , the values of the local reproduction

numbers are R 01 = 1 . 0 0 02 and R 02 = 1 . 0 0 05 for patch 1 and 2 respectively. In Fig. 5 a we show the values of R 0 by varying

the parameters p 12 and p 21 in the range [0,1]. In this case there are not values for R 0 less than one. Thus we weren’t able to

find a value for the mobility that can avoid a global outbreak when both local R 0 i > 1. Even throw, we observe that the risk

index of each patch indicates which one will be more affected by the epidemic. For example, if p 12 = 0 . 5 and p 21 = 0 . 7 , we

get from Eq. (5) that R 0 = 1 . 0012 and, the risk is 1.042 for patch 1 and 0.9589 for patch 2. On the other hand, if we select

p 12 = 0 . 97 and p 21 = 0 . 3 we get R 0 = 1 . 0 6 64 and the risk in patch 1 is 0.6723 and in patch 2 is 1.3290, which according to

Fig. 5 c, it is the patch with the highest number of infected humans. 
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Fig. 6. The proposed scenarios for the human mobility in three connected patches. (a) An out-flow of humans of patch 3 to patch 1 and 2 is described by 

the dwell-time matrix P out . (b) An in-flow of humans that comes from patch 1 and 2 and arrive to patch 3 is described by the dwell-time matrix P in . 

Fig. 7. (a) R 0 for N = 3 patches ( R 01 = 0 . 7767 , R 02 = 0 . 8953 and R 03 = 4 . 5643 ) and for different values of the dwell-time parameters in the matrix P out . (b) 

Dynamics of the infected humans in each patch with p 31 = 0 . 2 and p 32 = 0 . 2 , from which R 0 = 2 . 0215 . (c) Dynamics of the infected humans in each patch 

with p 31 = 0 . 6 and p 32 = 0 . 4 , from which R 0 = 3 . 2817 . 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. The three patches system 

Here we extend the numerical analysis of two connected patches by assuming that a third one is added. In order to

analyze the effect of the mobility caused by the residents of the new patch, which we label with the index 3 from now on,

we assume that its local reproduction number is such that R 03 > 1, while for the other patches are R 01 < 1 and R 02 < 1. That

is, we consider that without the third patch, the DFE state for the two patches system is stable. 

We propose the following two scenarios: (1) in the first one there exists an out-flow of humans of patch 3 to patch 1

and 2 (See Fig. 6 a) and (2) there exists an in-flow of humans that comes from patch 1 and 2 and arrive to patch 3 (See

Fig. 6 b). For the first and second scenario, we propose the following dwell-time matrices: 

P out = 

( 

0 . 5 0 . 49 0 . 01 

0 . 5 0 . 49 0 . 01 

p 31 p 32 p 33 

) 

, P in = 

( 

0 . 9 − p 13 0 . 1 p 13 

0 . 1 0 . 9 − p 23 p 23 

0 0 1 

) 

;

with p 33 = 1 − p 31 − p 32 . It is worth noting that we have fixed the values of the dwell-time parameters between patches 1

and 2 such that the R 0 between them is smaller than one. Even more, for the P out matrix we have assumed that p 13 = p 23 =
0 . 01 in order to guarantee that the value of the effective population in patch 3 (also named the patch touristic attraction

w h 3 ) is a nonzero number. 

In Fig. 7 a we show the values of the reproduction number R 0 by assessing the spectral radius of the risk matrix ( Eq. (11) )

constructed with P out and varying the dwell-time parameters p 31 and p 32 in the range [0,1]. We select the constant recruit-

ment rate of vectors for each patch as �1 = 30 . 4208 , �2 = 40 . 4208 and �3 = 1050 . 42 ; with these values we get the fol-

lowing local reproduction numbers ( Eq. (5) ): R = 0 . 7767 , R = 0 . 8953 and R = 4 . 5643 . In Fig. 7 b we show the dynamics
01 02 03 
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Fig. 8. (a) R 0 for N = 3 patches ( R 01 = 0 . 9900 , R 02 = 0 . 9491 and R 03 = 4 . 5643 ) and for different values of the dwell-time parameters in the matrix P in . (b) 

Dynamics of the infected humans in each patch with p 13 = 0 . 05 and p 23 = 0 . 87 , from which R 0 = 2 . 3713 . (c) Dynamics of the infected humans in each 

patch with p 13 = 0 . 4 and p 23 = 0 . 2 , from which R 0 = 1 . 9761 . 

Fig. 9. A network with N = 6 patches connected in a star topology configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the infected humans in each patch with p 31 = 0 . 2 and p 32 = 0 . 6 . With those values in the dwell-time parameters, the

reproduction number of the three-patch system ( Eq. (11) ) is R 0 = 2 . 02156 . The risks ( Eq. (14) ) in patches 1 and 2 are 0.8138

and, for patch 3 it is 5.9219 which corresponds to the patch with the highest number of infected humans. On the other

hand, a major damage occurs in patch 1 and 2 when p 31 = 0 . 6 and p 32 = 0 . 4 , from which R 0 = 3 . 2817 , as we can see in

Fig. 7 c. It is worth noting that for these values of the dwell-time parameters, the risk ( Eq. (14) ) in patch 1 and 2 is 10.9185,

while for the patch 3 is 0.4885. Showing again that the risk index is an indicator of local outbreak intensity. 

Next we evaluate R 0 for a second example for which we use the P in matrix and we select the following values of the

constant recruitment rate of vector for each patch: �1 = 49 . 4208 , �2 = 45 . 4208 and �3 = 1050 . 42 ; from the above values

we get the following local reproduction numbers ( Eq. (5) ): R 01 = 0 . 9900 , R 02 = 0 . 9491 and R 03 = 4 . 5643 . In Fig. 8 b we show

the dynamics of human infections for p 13 = 0 . 05 and p 23 = 0 . 87 , from which using Eq. (11) , we get R 0 = 2 . 3713 and the

risk ( Eq. (14) ) in patch 1 is 1.9082, in patch 2 is 5.915, and in patch 3 is 6.4373. It is worth noting that the patch 1 has

the smallest risk value and for that reason, it has the smallest number of infected humans as we can see in Fig. 8 b. On the

other hand, in Fig. 8 c we show the dynamics of human infections for p 13 = 0 . 4 and p 23 = 0 . 2 , from which R 0 = 1 . 9761 and

the risk in patch 1 is 3.6078, in patch 2 is 2.070, and in patch 3 is 6.6656. It is worth noting that in the above example, the

maximum risk value corresponds to the patch with the highest number of infected humans. 

4.3. A network with star topology configuration 

We consider a network with N = 6 patches connected in a star topology configuration (see Fig. 9 ). Scale-free networks,

for example, are characterized by the presence of central nodes (or hubs) which are connected with a great number of

nodes compared with the rest of the nodes. In order to study the effect of human mobility over the disease dynamic in

the metapopulation network, we consider a situation where the local reproduction number of the central patch is bigger

than the rest of the patches as we describe in Table 2 . Here we assume that each patch is occupied by N hi = 10 , 0 0 0 (for

i = 1 , . . . , 6 ) residents and we select the constant recruitment rate of vectors such that the local reproduction number in

each patch is bigger than one in each patch (See Table 2 ). Then the introduction of an infected human in any patch will
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Table 2 

The selected numerical values of constant recruitment rate of 

vectors in each patch for the star network. We also show the 

corresponding values of the local reproduction numbers R 0 i 
( Eq. (5) ) and the patch risk ( Eq. (14) ) for each case explored 

in the numerical examples. 

Patch �i R 0 i Risk (case 1) Risk (case 2) 

1 60.421 1.094 1.386 1.414 

2 65.421 1.139 1.524 1.539 

3 70.421 1.182 1.754 1.770 

4 75.421 1.233 1.477 1.513 

5 80.421 1.263 1.728 1.736 

6 180.421 1.891 1.771 1.081 
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Time
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a) Case 1
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b) Case 2

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6

Fig. 10. Disease dynamics of the model (6) for N = 6 patches connected in a star topology. a) case 1, where the dwell-time matrix is P case 1 ( Eq. (15) ) and 

b) case 2, with dwell-time matrix given by P case 2 ( Eq. (16) ). 

 

 

 

 

 

 

 

 

 

 

 

cause a disease outbreak as we see in Fig. 10 a, where we solve numerically (using the fourth order Range–Kutta method)

the system (6) by introducing an infected human in the central node and using the following dwell-time matrix: 

P case 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 634 0 0 0 0 0 . 365 

0 0 . 546 0 0 0 0 . 453 

0 0 0 . 326 0 0 0 . 673 

0 0 0 0 . 668 0 0 . 331 

0 0 0 0 0 . 464 0 . 535 

0 . 16 6 6 0 . 166 0 . 166 0 . 16 6 6 0 . 16 6 6 0 . 16 6 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (15) 

With this matrix and using Eq. (11) , the reproduction number R 0 of the star network is R 0 = 1 . 277 and the risk of a

vector-borne disease for each patch ( Eq. (14) ) are given in Table 2 . As we see in Fig. 10 a, the central patch is the most

affected by the disease outbreak since 4.214% of its population become infected (also note that it is the patch with the

highest risk value), while for the patch 1 is 3.223%, for patch 2 is 3.635%, for patch 3 is 4.118%, for patch 4 is 3.682% and for

patch 5 is 4.244%. 

Next, by reducing the flux of the residents of patch 6 to other patches (that is, reduce p 6 i , for i = 1 , . . . , 5 ) we can change

the dynamics of human infections of the central patch as we show in Fig. 10 b, where we solve numerically the system

(6) with the following dwell-time matrix: 

P case 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 634 0 0 0 0 0 . 365 

0 0 . 546 0 0 0 0 . 453 

0 0 0 . 326 0 0 0 . 673 

0 0 0 0 . 668 0 0 . 331 

0 0 0 0 0 . 464 0 . 535 

0 . 0188 0 . 0188 0 . 0188 0 . 0188 0 . 0188 0 . 905 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (16) 

It is worth noting in Table 2 that for this second case we reduce the risk of the central patch (the patch with label 6)

from 1.771 to 1.081. Even more, for this second example the central patch has the smallest value in the risk index which,

according to the numerical simulation, is reflected in the fact that such patch has also the smallest value in the number of

infected humans. In specific, the number of infected residents of patch 6 is 3.063%, while for the patch 1 is 3.318%, for patch
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2 is 3.877%, for patch 3 is 4.592%, for patch 4 is 4.082% and for patch 5 is 4.794%. Compared with the case 1, we also reduce

the reproduction number ( Eq. (11) ) to R 0 = 1 . 258 . However, the cost of reducing the epidemic outbreak in the central patch

is to increase an average of 0.484% the number of infected humans in the other patches. 

5. Concluding remarks 

Using a metapopulation network model with human mobility and the Next Generation Matrix (NGM) methodology, we

prove that it is possible to evaluate the basic reproduction number R 0 for vector-borne diseases by calculating the spectral

radius of the risk matrix W , whose dimension is N × N (with N the number of patches). The entries of W ij determine the

secondary infections that are generated in patch j due to the inclusion of an infected human in patch i into a complete

susceptible system. The use of the matrix W reduce the computational difficulty of calculating R 0 , because of in the NGM

methodology it is necessary to find the spectral radius of a 2 N × 2 N matrix. We prove that the elements of W depend on

dwell-time parameters p ij , the local basic reproduction numbers R 0 i , for i = 1 , . . . , N (that is, the basic reproduction number

of each patch when it is not connected), the densities of humans, and the gravitational-like term N hi N h j /w 

2 
h j 

, where N hi and

w hi are the number of residents and the tourist attraction of the i th patch, respectively. 

We relate the matrix W with a risk index based in [17] . This index can be used to locally evaluate the vulnerability of

each patch, while the R 0 can be used to estimate the disease damage globally. Using these theoretical results, we numerically

study the parametric sensitivity of R 0 with respect to the dwell-time parameters p ij . By means of particular cases we found

two non trivial effects on R 0 due to mobility. The first one is that even if the local R 0 i of the patches is less than one, human

mobility can led to a global R 0 greater than one. The second one is that even if one local R 0 i is greater than one, particular

values of the mobility led to a global R 0 less than one. This suggests that in a disconnected stable scenario, i.e. R 0 i < 1, ∀ i ,

some structures of human mobility can trigger a disease outbreak in the metapopulation network ( R 0 > 1). On the contrary,

in an unstable disconnected scenario, i.e. ∃ i such that R 0 i > 1, human mobility can dampen the disease outbreak ( R 0 < 1).

Furthermore, we observe that for a metapopulation network connected in a star topology configuration, it is also possible to

reduce the number of infected humans in the most connected patch by decreasing the flux of humans that leave the patch.

Acknowledgments 

Authors acknowledge Benemérita Universidad Autónoma de Puebla-VIEP financial support through projects 00279

granted to JVC and 00463 granted to AAH, call 2017, and also CONACYT financial support of AAH, BBC and MSB through

“Cátedras CONACYT para Jóvenes Investigadores 2016” program. The authors thankfully acknowledge the computer resources,

technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México, CONACYT

network of national laboratories. 

References 

[1] Carvalho FD , Moreira LA . Why is aedes aegypti linnaeus so successful as a species? Neotropical Entomol 2017;46(3):243–55 . 
[2] Kraemer MUG , Sinka ME , Duda KA , Mylne A , Shearer FM , Barker CM , Moore CG , Carvalho RG , Coelho GE , Bortel WV , Hendrickx G , Schaffner F ,

Elyazar IR , Teng HJ , Brady OJ , Messina JP , Pigott DM , Scott TW , Smith DL , Wint GW , Golding N , Hay SI . The global distribution of the arbovirus vectors
Aedes aegypti and Ae. albopictus. eLife 2015;4:E08347 . 

[3] World Health Organization. Zika Situation Report. Technical Report, World Health February 2016;. 

[4] World Health Organization. Chikungunya Fact Sheet n327. 2017. http://www.who.int/news-room/fact-sheets/detail/chikungunya. 
[5] Bichara D , Castillo-Chavez C . Vector-borne diseases models with residence times a Lagrangian perspective. Math Biosci 2016;281:128–38 . 

[6] Alberto MYA , Andreia NSH , Sandro M , Chiara P , Vittoria C . Human mobility networks and persistence of rapidly mutating pathogens. R Soc Open Sci
2017;4:160914 . 

[7] Brockmann D . Human mobility and spatial disease dynamics. Rev Nonlinear Dyn Complex 2010;2:1–24 . 
[8] Cosner C , Beier JC , Cantrell RS , Impoinvil D , Kapitanski L , Potts MD , Troyo A , Ruan S . The effects of human movement on the persistence of vector-borne

diseases. J Theor Biol 2009;258(4):550–60 . 

[9] Manore CA, Hickmann KS, Hyman JM, Foppa IM, Davis JK, Wesson DM, Mores CN. A network-patch methodology for adapting agent-based models for
directly transmitted disease to mosquito-borne disease. J Biol Dyn 2015;9(1):5272. doi: 10.1080/17513758.2015.1005698 . 

[10] Keeling MJ , Rohani P . Modeling infectious diseases in humans and animals. 1st ed. Princeton University Press; 2007 . 
[11] Massaro E , Ganin A , Perra N , Linkov I , Vespignani A . Resilience management during large-scale epidemic outbreaks. Sci Rep 2018;8:1–9 . 

[12] Gómez-Gardeñes J , Soriano-Paños D , Arenas A . Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks. Nat
Phys 2017;14:391–5 . 

[13] Quian VAZ , Kaiyuan S , Matteo C , Ana PyP , Dean Natalie E , Diana PR , Stefano M , Dina M , Piero P , Luca R , Margaret B , Elizabeth HM , Longine Ira M .

Spread of Zika virus in the americas. PNAS 2017;114(22):E4334–43 . 
[14] Hanski I . Metapopulation dynamics. Nature 1998;396(6706):41–9 . 

[15] Arino J , van den Driessche P . A multi-city epidemic model. Math Popul Stud 2003;10(3):175–93 . 
[16] Moulay D , Pigné Y . A metapopulation model for Chikungunya including populations mobility on a large-scale network. J Theor Biol 2013;318:129–39 .

[17] Velázquez-Castro J, Anzo-Hernández A, Bonilla-Capilla B, Soto-Bajo M, Fraguela-Collar A. Vector-borne disease risk indexes in spatially structured
populations. PLOS Negl Trop Dis 2018. doi: 10.1371/journal.pntd.0 0 06234 . 

[18] Heesterbeek JAP. A brief history of R0 and a recipe for its calculation. Acta Biotheoretica 2002;50(3):189–204. http://www.who.int/news-room/

fact-sheets/detail/chikungunya . 
[19] Brauer F , Castillo-Chavez C . Epidemic models. In: Mathematical models in population biology and epidemiology, 40. Springer; 2010. p. 393–403 . ch. 9

[20] Diekmann O , Heesterbeek JAP , Roberts MG . The construction of next-generation matrices for compartmental epidemic models. J R Soc Interf
2010;7(47):873–85 . 

[21] Iggidr ASM , Koiller J , Penna MLF , Sallet G , Silva MA . Vector borne diseases on an urban environment: the effects of heterogeneity and human circula-
tion. Ecol Complex 2017;3:76–90 . 

http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0001
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0001
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0001
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0002
http://www.who.int/news-room/fact-sheets/detail/chikungunya
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0003
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0003
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0003
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0006
https://doi.org/10.1080/17513758.2015.1005698
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0012
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0012
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0013
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0013
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0013
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0014
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0014
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0014
https://doi.org/10.1371/journal.pntd.0006234
http://www.who.int/news-room/fact-sheets/detail/chikungunya
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0018


14 A. Anzo-Hernández et al. / Commun Nonlinear Sci Numer Simulat 68 (2019) 1–14 

 

 

 

 

[22] Lee C , Sunmi C-C . The role of residence times in two-patch dengue transmission dynamics and optimal strategies. J Theor Biol 2015;374:152–64 . June
2015. 

[23] Pliego EP , Velázquez-Castro J , Collar AF . Seasonality on the life cycle of Aedes aegypti mosquito and its statistical relation with dengue outbreaks. Appl
Math Model 2017;50:484–96 . 

[24] Adams B , Boots M . How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epi-
demics 2010;2(1):1–10 . 

[25] Erickson RA , Presley SM , Allen LJS , Long KR , Cox SB . A dengue model with a dynamic Aedes albopictus vector population. Ecol Model

2010;221(24):2899–908 . 
[26] Martcheva M . Techniques for computing ro. In: An Introduction to Mathematical Epidemiology. Springer US; 2015. p. 104–16 . ch. 5. 

[27] Powell DP. Calculating determinants of block matrices, 2011. arXiv: 1112.4379 . 
[28] Silvester J . Determinants of block matrices. Math Gaz 20 0 0;8(501):460–7 . 

http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0021
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0021
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0021
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0023
http://arxiv.org/abs/1112.4379
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0024
http://refhub.elsevier.com/S1007-5704(18)30183-7/sbref0024

	The risk matrix of vector-borne diseases in metapopulation networks and its relation with local and global R0
	1 Introduction
	2 R0 for a single and isolated patch
	2.1 Single population model
	2.2 Computing the local R0i with the NGM methodology

	3 R0 for a metapopulation network and the risk matrix W
	3.1 Metapopulation network model
	3.2 Computing R0 with the NGM methodology

	4 Numerical examples
	4.1 The two patches system
	4.2 The three patches system
	4.3 A network with star topology configuration

	5 Concluding remarks
	 Acknowledgments
	 References


