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* jorgevc@fcfm.buap.mx

Abstract

There are economic and physical limitations when applying prevention and control strate-

gies for urban vector borne diseases. Consequently, there are increasing concerns and

interest in designing efficient strategies and regulations that health agencies can follow in

order to reduce the imminent impact of viruses like Dengue, Zika and Chikungunya. That

includes fumigation, abatization, reducing the hatcheries, picking up trash, information cam-

paigns. A basic question that arise when designing control strategies is about which and

where these ones should focus. In other words, one would like to know whether preventing

the contagion or decrease vector population, and in which area of the city, is more efficient.

In this work, we propose risk indexes based on the idea of secondary cases from patch to

patch. Thus, they take into account human mobility and indicate which patch has more

chance to be a corridor for the spread of the disease and which is more vulnerable, i.e. more

likely to have cases?. They can also indicate the neighborhood where hatchery control will

reduce more the number of potential cases. In order to illustrate the usefulness of these

indexes, we run a set of numerical simulations in a mathematical model that takes into

account the urban mobility and the differences in population density among the areas of a

city. If we label by i a particular neighborhood, the transmission risk index (TRi) measures

the potential secondary cases caused by a host in that neighborhood. The vector transmis-

sion risk index (VTRi) measures the potential secondary cases caused by a vector. Finally,

the vulnerability risk index (VRi) measures the potential secondary cases in the neighbor-

hood. Transmission indexes can be used to give geographical priority to some neighbor-

hoods when applying prevention and control measures. On the other hand, the vulnerability

index can be useful to implement monitoring campaigns or public health investment.

Author summary

A disease is called vector-borne when it is not transmitted directly among humans, but in

a human-vector-human way. Examples of major importance, due to its epidemiological

magnitude, are Dengue, Chikungunya and Zika tropical diseases, for which the main
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vector is the Aedes aegypti mosquito. Usually, some indexes are used to measure the

potential damage that such a disease could cause, which concern infectivity and entomo-

logical issues, human mobility and geographical density, etc.

We consider a mathematical epidemiological model which takes specifically into

account these spatial factors (mobility, density), and propose a set of new risk indexes

which give information about how the epidemic spread could occur, and where the out-

breaks could take place. These indexes come from a preventive perspective, and they also

pay attention to the epidemic dynamics. Consequently, they potentially allow to proceed

in the correct places, and before troubles have arisen. We think these new tools could

eventually help health agencies in the design of efficient and effective strategies on preven-

tion and control of vector-borne diseases epidemics.

Introduction

Dengue, Zika and Chikungunya are deseases of major concern in many countries [1, 2]. In

particular, Dengue is of major importance due to its epidemiological magnitude [3, 4]. On the

other hand, in many countries Zika and Chikungunya can be considered as new diseases for

which a great portion of the population is susceptible. This feature make them a major epide-

miological threat.

These three deseases are vector borne, transmitted by the bite of Aedes aegypti mosquito [1,

5]. Thus the greatest efforts in prevention and control are in reducing the mosquito popula-

tion. This can be done by spying or by reducing the hatcheries. The A. aegypti is a domestic

species in the sense that it oviposit its eggs in human made containers with clean water, so it is

principally found around houses [4, 6]. The containers used by the mosquitoes for reproduc-

ing can be trash in yards or streets filled with water from rain, drums that some people use to

accumulate water in case it goes scarce, or even pools and swimming pools [7]. In addition to

fumigation, other strategies has been implemented to control vector reproduction capacity,

like picking up unprocessed trash and abatization. The implementation of information cam-

paigns like promoting to cap water recipients, the use of repellents and mosquito nets, or even

visit the physician at first symptoms have been also important.

Implementing this measures cost money, so in big to medium cities is not normally possible

to apply them in all the urban area, and a lot less in a whole country. Thus, local governments

are forced to take a decision about which measures to implement with the resources at hand

and where they are going to be implemented [8]. Thus, in the process to better manage the

resources they always face the following questions: Where should control measures be imple-

mented? Which kind of measures should be implemented in order to get the best impact in

controlling the dispersion of the disease?

Nowadays, the traditional control and preventive measures are based on population indexes

[5, 9, 10]. That means that if the larvae density is higher than a certain empirically pre-estab-

lished threshold, alert is raised, and in case there are enough resources, hatchery control is car-

ried out. These traditional indexes used by entomologists have the following disadvantages.

First, they are reactive and not preventive, because of the measures are taken once a high den-

sity of mosquitoes population is detected and nothing is done to prevent its growth before

that. Second, even if vector density is one of the main factors promoting the disease transmis-

sion, this kind of indexes overlook other important factors like human density and mobility

[11, 12].
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Human mobility and density play an important role not only in outbreaks but also in the

maintenance of endemic states [12–16]. Thus, either an strategy to reduce the impact of an

outbreak or an strategy to eliminate an endemic situation should take into account these

human factors [17, 18] (See [19] to look some current methods to prevent malaria disease

importation in countries by classifying human movement in: people in the eliminating region,

during transit, in the endemic region, and upon return to the eliminating country.). This is

also true because of these kind of indexes do not take into account the dynamics of the disease

that is determined by the transmission mechanisms [20–23].

In this work, we derive risk indexes based in the idea of secondary cases. Then, we obtain

explicit expressions for them in the frame of a dynamical mathematical model for the spread

of Aedes aegypti borne diseases. We propose a model within a meta-population framework

with a Lagrangian approach in order to take into account human intra-urban mobility. The

proposed indexes arise in a natural way from the dynamical model using the theory of dynam-

ical systems and networks [14, 24–28].

We focus our attention in two types of indexes. One of them, is a measure of the potential

transmission and spread of the disease caused by human behavior. The other kind of index is a

measure of the transmission caused by the particular spatial distribution of mosquitoes. Specif-

ically, information campaigns targeted at promoting some convenient behaviors like going to

hospitals at first symptoms, use of repellents, mosquito nets and large cloths can be guided by

the human transmission risk index (TRi). This is so, because this transmission risk index is a

measure of the potential secondary infections the inhabitants of a particular neighborhood

cause in the whole system. On the other hand, abatization, fumigation and hatchery elimina-

tion targeting at reducing vector population can be guided by the vector transmission risk

index (VTRi). This index is a measure of the potential secondary cases that the mosquitoes of a

certain neighborhood cause in the system. Thus, this set of indexes can be used to guide a com-

plex strategy in which the resources focused in changing vector population or human habits

do not necessarily are applied in the same place. In addition to this, we also find useful the vul-

nerability risk index (VRi) to guide monitoring actions of early warning protocols as this index

measures the potential secondary cases in a particular neighborhood caused by the whole

system.

Even if this indexes can be used to guide control measures they are build to guide preven-

tion measures, thus they are independent of an outbreak state. This is a main difference

between the proposed risk indexes and optimal control strategies where the state of the epi-

demics needs to be known thus being reactive and not preventive.

While the proposed indexes consider population densities, they also take into account

human mobility, so they can be used to propose a global control strategy. That means that the

risk indexes take into account that a neighborhood with important human inward flux and

outward flux has more chance to be a corridor for the spread of the disease. Thus, the kind of

questions that can be answered using these indexes are: Which area is more likely to act as a

corridor and which is more vulnerable, i.e. more likely to have cases? In which neighborhood

the hatchery control will reduce more the number of potential cases? In which neighborhood

will the resource allocation be more effective in surveillance of cases and immediate attention?

Materials and methods

Risk indexes

We look for to define summary measures that capture important information of how a virus

transmitted by a vector (like the A. aegypty mosquito) is spread in a region. Let O be the spatial

region where the vector-borne disease transmission will be analyzed. Such region could be a
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006234 February 12, 2018 3 / 18

https://doi.org/10.1371/journal.pntd.0006234


city or a village which can be divided into N disjoint subregions Oi, such as neighborhoods,

which we call patches. Thus, O ¼ [N
i¼1

Oi. Hosts and vectors coexist, but each patch has its

particular social and ecological features, i.e. human population, transportation and mobility

habits of the inhabitants, and mosquitoes density can differ from one neighborhood to other.

Because of the A. aegypty has a very limited range of flight, the virus is mainly spread

among patches just by human mobility. In general, the spread process caused by human

mobility is as follows. An individual that normally is in patch i (a resident) travels to patch k,

where they becomes infected by a mosquito. Then they travels again to an other patch j, where

a mosquito there is infected by them. The result is that the virus was spread from patch k to

patch j by a resident from patch i. We can illustrate the generality of this with two particular

cases. When i = j, it corresponds to an individual introducing the disease in their own patch

because they got infected in a different patch. On the other hand, i = k represents a case when

an already infected individual travel to a different patch and spread the virus in that particular

patch.

The secondary cases caused by a single infected individual at a completely susceptible popu-

lation, normally called the basic reproduction number R0, is one of the most important sum-

mary measures that describe the severity of an epidemic outbreak. In what follows we extend

this idea to include geographical information of where the secondary cases where produced

and which is the origin of the infected hosts.

First we denote RðvÞkj as the secondary human infections of residents from patch j produced

by an infected vector in patch k in the disease-free state. In a similar way, we define RðhÞik as the

number of vector secondary cases in patch k caused by a single infected resident in patch i.
These quantities can be hard or even impossible to be measured directly, but they may be

inferred once a mathematical model for the disease is proposed.

A natural way of deriving useful risk measures from these quantities is to obtain the second-

ary infections RðhÞi generated by a single individual of patch i in the total susceptible population

of the system:

RðhÞi ¼
XN

j¼1

XN

k¼1

RðhÞik RðvÞkj : ð1Þ

Here RðhÞik RðvÞkj is the number of human-human secondary infections that a resident of patch i
generated in residents of patch j that were produced in patch k. Summation in k is to take into

account all the possible places where the contagion could take place. Summation in j is to

account for all the secondary human infections that a single resident of i produces in all the

system. Thus RðhÞi is a measure of the contagion capacity of residents from the patch i.
On the other hand, the classic definition of risk is the probability of occurrence of an

unwanted event multiplied by the consequence of the event [29]. Following this definition, the

transmission risk index TRi is the probability Pi that a resident of patch i gets infected, multi-

plied by the secondary cases it generates (See Fig (1)). Thus, it is given by

TRi ¼ PiR
ðhÞ
i ð2Þ

and indicates the risk of the neighborhood i to become the main disperser of the disease at the

beginning of an epidemic.

Vector-borne disease risk indexes in spatially structured populations
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On the other hand, the number of secondary cases of patch j residents caused by a single

infected resident of patch i is given by

XN

k¼1

RðhÞik RðvÞkj : ð3Þ

The summation in the previous expression accounts for the vector contagions in all patches.

We can now define a Vulnerabiliy Risk index VRj for patch j as (See Fig (1))

VRj ¼
XN

i¼1

XN

k¼1

Pi RðhÞik RðvÞkj : ð4Þ

Finally, we define the Vector Transmission Risk index VTRi as the secondary human infec-

tions RðvÞi caused by an infected vector in patch i multiplied by the probability of a vector of

patch i becomes infected at the beginning of an epidemic. Then the VTRi is expressed as

VTRi ¼
~Pi 1 � 1 �

1

wi

� �Nvi
� �

RðvÞi ; ð5Þ

where ~Pi is the probability of the original infected host is in patch i, irrespective of where they

came from. Also, 1 � 1 � 1

wi

� �Nvi
� �

is the probability of it gets bitten by a mosquito in patch

i, and RðvÞi is calculated as

RðvÞi ¼
XN

j¼1

RðvÞij : ð6Þ

In this case RðvÞi represents the system-wide secondary human infections caused by a single

infected vector in patch i. This index will be important just in the cases when the number of

Fig 1. Schematic draw of a metapopulation network with human mobility. At the right we represent the measure of the Transmission Risk index (2) and, at the left,

we represent the Vulnerability Risk index (4).

https://doi.org/10.1371/journal.pntd.0006234.g001
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mosquitoes is large, so we can approximate it by

VTRi ’
~Pi 1 � e� Nvi=wið ÞRðvÞi for Nvi � 1 : ð7Þ

Model description

Our model aims to capture the dynamics of a virus transmitted by vectors (like the Aedes
aegypty mosquito). Important viruses transmitted by this species are Dengue, Zika and Chi-

kungunya. In order to take into account human mobility and density population within the

city, we divided it into different areas or neighborhoods that we will call patches. In each patch

hosts and vectors coexist, and every one has its particular social and ecological features, i.e.
human population, transportation and mobility habits of the inhabitants, and mosquitoes den-

sity can differ from one neighborhood to other. In addition, hosts travel among patches. In

this sense, patches are said to be connected.

The model is thus built in two steps. First we build a general model for a single patch, that

describes the dynamics of a vector-borne disease in a single patch. After that, we extend the

local model for multiple patches, representing the whole city and mobility effects.

Single patch model. We consider that for a given subregion Oi, with i 2 {1, 2, . . ., N},

hosts and vectors are homogeneously mixed. Furthermore, we assume host population can be

classified in susceptible, infectious and recovered. On the other hand, vector population is clas-

sified in susceptible and infectious. Let Nhi, Shi, Ihi and Rhi denote the number of total, suscepti-

ble, infectious and recovered host individuals, respectively, and analogously let Nvi, Svi and Ivi

denote number of total, susceptible and infectious vector individuals respectively of patch Oi at

a certain time. Thus, we have Nhi = Shi + Ihi + Rhi and Nvi = Svi + Ivi at any time.

In Table 1 we describe each parameter interpretation and its reference value.

For the sake of simplicity, in this subsection we will omit the patch index i. We consider no

total hosts population change ( _Nh ¼ 0), which is reasonable for a short period of time in

which an outbreak occurs. On the other hand, for vectors population we use a logistic popula-

tion model. The carrying capacity parameter C of vector population plays a major role, since it

is related with the socio-environment features of the subregion that bounds vector population

growth. In specific, carrying capacity is the maximal load of mosquitoes (or vectors) that

environment can support in a given patch. If vital resources for the mosquitoes were unlim-

ited, the susceptible mosquitoes Sv would grow at a rate α (ignoring mortality); however, the

factor 1 − Nv/C takes into account the decrease of the per-capita reproductive rate of mosqui-

toes due to the saturation of hatcheries.

Table 1. Description and estimated value of the model parameters ([30, 31]).

Parameter Description Value

β Effective infectious vector biting rate (global successfully number of bites, per day, per

mosquito)

[0.2, 0.67]

β0 Effective susceptible vector biting rate (global successfully number of bites, per day, per

mosquito)

[0.2, 0.67]

γ Recovery rate of hosts (per day, per capita) 1/7

αi Number of eggs laid per day for every female mosquito in the i-th patch 5

Ci Carrying capacity of hatcheries for adult female mosquitoes in the i-th patch [100,

10000]

μi Per-capita mortality rate of adult female mosquitoes in the i-th patch 1/8

https://doi.org/10.1371/journal.pntd.0006234.t001
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On the other hand, the hosts population dynamics is described by a SIR type model. The

coupling of both models give rise to the following system of differential equations:

_Sh ¼ � bIv
Sh

Nh
; ð8Þ

_I h ¼ bIv
Sh

Nh
� g Ih ; ð9Þ

_Rh ¼ g Ih ; ð10Þ

_Sv ¼ a Nv 1 �
Nv

C

� �

� b
0 Sv

Ih

Nh
� m Sv ; ð11Þ

_I v ¼ b
0 Sv

Ih

Nh
� m Iv : ð12Þ

As usual, a susceptible vector becomes infectious when it bites an infectious host. Then, in

eqs (8) and (9), β Iv is the total number of effective number of bites per unit of time. This bites

are the ones that come from infected mosquitoes. From the total number of bites, only a por-

tion Sh/Nh affects susceptible hosts. In eqs (11) and (12), β0 Sv is the effective number of bites

performed by susceptible vectors, from which only a fraction Ih/Nh involve infectious hosts.

Note that in the stationary points

I�h ¼ I�v ¼ 0 ; N�h ¼ Nh ¼ S�h þ R�h and N�v ¼ S�v ¼ ~C ;

where ~C ¼ ð1 � ðm=aÞÞC is the effective carrying capacity.

In order to illustrate the vector-borne disease dynamics for a single patch, we show in Fig 2

the time series of each one of the variables of the system (8)–(12) by selecting the parameter

values given in Table 1. In regards of the carrying capacity parameter C, we select the following

values: 500, 1000 and 2000. For each of these ones, we select as initial condition of the system

the values ½Sho; Iho;Rho; Svo; Ivo� ¼ ½1000; 1; 0; ~C; 0�.
Multiple connected patches model with hosts dwell time. In this section we extend the

local model described by eqs (8)–(12) to the setting of multiple connected patches. Human

mobility among distinct patches of O play an important role in the propagation of infectious

diseases, and specifically of vector-borne ones. Consider an scenario where resident hosts of

the i-th patch spend a period of their day (relevant with respect to vector activity) over the j-th

patch. If there are infectious vectors in patch j, and some of them bite someone of these suscep-

tible visitants, then these human hosts will bring the disease to patch i. In this way, some

vectors in patch i may also get infected, which at the same time will potentially infect, in subse-

quent days, both resident hosts in the i-th patch and visitors coming from other patches. On

the other hand, infected visitants from patch i could infect susceptible vectors in patch j in case

they were bitten, producing same result in visited patch j.
Consequently, realistic models of vector-borne diseases spread demand a deep enough

comprehension of this phenomena. In “small” regions, as cities are, human mobility among

neighborhoods is usually repetitive and frequent. For instance, people go to work and return

home almost every day, or go to the cinema or visit a friend, and then come back home in the

same day. Furthermore, most of urban mobility within a city is by far caused by day-trippers.

It is also very important (as far as applications are concerned) that this kind of motion follows

patterns that can be measured, predicted or estimated.

Vector-borne disease risk indexes in spatially structured populations
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There have been two distinct approaches in the literature in order to model the effects of

mobility in epidemiology; the Lagrangian and the Eulerian approach. The Lagrangian

approach tracks the visits effect without explicitly modeling the flux of people. This approach

is more natural applied when modeling short term repetitive mobility patterns like the ones

previously mentioned for a city. The Eulerian approach describes the actual flux of people.

This approach is useful in modeling any kind of migration.

We are interested in repetitive day-trippers mobility patterns, thus it is convenient to follow

a Lagrangian approach. We introduce a set of parameters fpijg
N
i;j¼1

with the following meaning:

for each pair i and j with 1� i� N and 1� j� N, pij is simultaneously (see the S1 Appendix):

Fig 2. Time series of the model (8)–(12) for different values of the carrying capacity C, and the parameters values given in Table 1 with β = 0.67.

https://doi.org/10.1371/journal.pntd.0006234.g002
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• The average fraction of people from patch i that is in patch j at any time. That means that the

number of individuals from patch i who are in patch j is pij Nhi, at any time.

• The probability, at any time, to find a host from patch i in patch j.

• The average fraction of time (a day or the corresponding time unit measure) that people

from patch i spend in patch j. That is why it is also called host dwell time [21].

Furthermore, as pij represent fractions we have the following conditions on mobility param-

eters:

0 � pij � 1 and
XN

j¼1

pij ¼ 1 :

In terms of this quantities, the number of individuals who are in patch j is given by

wj ¼
XN

i¼1

pij Nhi ð13Þ

at any time t, regardless the patch where they are coming from (that is, including both own res-

idents and day-trippers).

Now we are ready to write the global model of multiple connected patches. Starting from

the local model, namely (8)–(12), we couple each local dynamic taking into account human

mobility in the terms discussed before, obtaining the following system of 5N differential equa-

tions: for each i = 1, . . ., N

_Shi ¼ �
XN

j¼1

b Ivj

pij Shi

wj
; ð14Þ

_I hi ¼
XN

j¼1

b Ivj

pij Shi

wj
� g Ihi ; ð15Þ

_Rhi ¼ g Ihi ; ð16Þ

_Svi ¼ ai Nvi 1 �
Nvi

Ci

� �

�
XN

j¼1

b
0 Svi

pji Ihj

wi
� mi Svi ; ð17Þ

_I vi ¼
XN

j¼1

b
0 Svi

pjiIhj

wi
� mi Ivi : ð18Þ

We proceed to explain the above equations. With respect of eqs (14) and (15), for a fixed i,
for each j with 1� j� N, β Ivj is the total number of bites of infectious vectors to hosts per day

in patch j. From which, only a portion are on susceptible ones to become sick in the i-th patch.

Since pij is the average fraction of people from patch i in patch j, and assuming this average is

independent of the susceptible or infectious populations, then pij Shi is the number of suscepti-

ble hosts from patch i who are in patch j. Thus, if wj is the number of people in patch j, the por-

tion of susceptible hosts from patch i among people in patch j is pij Shi/wj. According to these

interpretations, β Ivj pij Shi/wj is the rate of new infected hosts from patch i being infected in

patch j. Finally, we add over all patches j to get the total number of infected hosts from patch i.

Vector-borne disease risk indexes in spatially structured populations
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Analogously, in eqs (17) and (18), β0 Svi is the number of bites performed by susceptible vec-

tors in patch i, pji Ihj is the number of infective human visitors of patch i coming from patch j,
and pji Ihj/wi is the fraction of infectious hosts from patch j in patch i. Consequently, β0 Svi pji

Ihj/wi is the number of infected vectors per unit time in patch i caused by human hosts from

patch j. Finally, we add over all patches j to get the total number of infected vectors in patch i.
The entire mobility configuration is determined by the N × N coupling matrix P ¼ ðpijÞ

N
i;j¼1

,

whose entry corresponding to the row i and column j is pij. P is a right stochastic matrix

(its entries are probabilities and its rows sum one) non necessarily symmetric (i.e. in general

pij 6¼ pji).

By way of example, we perform a numerical simulation (See Fig (3)) for a network of N = 5

patches coupled in the following configuration:

Pe:g:1 ¼

0:4143 0:2922 0:2934 0 0

0:3340 0:3597 0 0:3061 0

0:3773 0 0:6226 0 0

0 0:6658 0 0:1307 0:2034

0 0 0 0:3954 0:6045

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

: ð19Þ

For this example we chose, uniform randomly, the dwell-time parameters pij (for i, j = 1,

. . ., 5), the same parameters values given in Table 1 for all the patches but we vary the carrying

capacity taken from a power law probability distribution in the range Ci 2 [100, 1000]. It is

also worth to mention that we select the connection pattern configuration described by the

matrix (19) in order to emulate, as close as possible, a scenario where some patches are most

visited than another ones. Based on the empirical Taylor’s power law [32] from ecology, that

relates the variance of the number of individuals per unit area to the corresponding mean by a

power law relationship. We select the carrying capacity from a power law distribution, as this

kind of population clustering has been observed in populations of Aedes aegypti [33]. In

regards of the initial conditions, we assume that at the initial time there are not infectious host

and vectors; i.e. Ihi(t = 0) = Ivi(t = 0) = 0 for almost all values of the index i. In this example we

select randomly a single patch and we introduce an infected host, that is Ihj(t = 0) = 1 for a

given randomly selected patch j. The initial number of susceptible hosts Shi(t = 0) 2 [500,

1000] were taken from a power law distribution in order to imitate a metapopulation network

with some patches that condense a great number of residents like habitational neighborhoods

compared to the other patches representing commercial or low density neighborhoods.

Svi(t = 0) = Ci(1 − μi/αi) for all i and the rest of the variables start at zero.

Results

Expressions for the indexes

In order to find an explicit expression for the secondary human cases RðvÞkj caused by a single

infected mosquito in patch k, we have to multiply the rate of infections generated from mos-

quitoes of patch k to visitors from patch j, i.e.
b Shj pjk Ivk

wk
times the characteristic duration time

that a mosquito remains infected, 1/μk. Then we evaluate this quantity with a single infected
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vector in the disease-free equilibrium. That is

RðvÞkj ¼
b Shj pjk Ivk

mk wk

�
�
�
�

Shj¼Nhj ;Ivk¼1

¼
bNhjpjk

mkwk
: ð20Þ

In a similar way, from the proposed model an explicit expression for secondary vector

infections in patch k that were caused by travelers from patch i at the beginning of an epidemic

Fig 3. Time series of the multiple patch connected according to the dwell-time matrix Pe.g.1 given in (19).

https://doi.org/10.1371/journal.pntd.0006234.g003
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is

RðhÞik ¼
b
0 pik Nvk

gwk
: ð21Þ

Thus, RðhÞi is given by

RðhÞi ¼
XN

j¼1

XN

k¼1

RðhÞik RðvÞkj ¼
b b

0

g

XN

k¼1

pik Nvk

mk wk
: ð22Þ

If we assume that each person in the system has equal chance of starting the outbreak, then we

have a particular case where Pi = Ni/Nh, and the transmission risk index becomes

TRi ¼
Nhi

Nh
RðhÞi ¼

b b
0 Nhi

gNh

XN

k¼1

pik Nvk

mkwk
: ð23Þ

In a similar way, the vulnerability index takes the form

VRj ¼
XN

i¼1

XN

k¼1

Nhi

Nh
RðhÞik RðvÞkj ¼

b b
0 Nhj

gNh

XN

k¼1

pjkNvk

mkwk
; ð24Þ

and finally the vector transmission risk is

VTRi ’
wi

Nh
1 � e� Nvi=wi
� �

RðvÞi ; ð25Þ

where

RðvÞi ¼
XN

j¼1

RðvÞij ¼
b

mi
; ð26Þ

and we have taken the particular case where ~Pi ¼
wi
Nh

. For the sake of simplicity, we consider

this simple case. However, other probability distributions which take into account well known

factors of introduction of vector-borne diseases into a population, as importation by travellers

or some trading businesses, could be considered at this point.

Numerical simulations

In order to show how the risk indexes can be used to guide control strategies we simulate an

ensemble of Dengue outbreaks using the model (14)–(18). First we perform an ensemble of

200 simulations with parameter values shown in Table 1. For each simulation, we choose ran-

domly the initial infected host individual. We used 5 patches and the number of humans and

carrying capacity in each patch was taken randomly in the range 4000-10000 and 1000-2800

respectively. See Table 2 for the particular values. We used two types of mobility matrix: the

first is an unrestricted mobility, where any average fraction of people from patch i can go to

any other patch j; the second type of tested mobility matrix resembles a network constructed

with the Barabasi-Albert algorithm [34], in which there exist patches that are more visited than

others. The particular mobility matrices used in the first and second type of mobility are

labeled with P1 and P2, respectively, and its corresponding values are showed in the S1

Appendix.

According to the definition, the vulnerability index VRi stands for the expected number of

secondary human cases in patch i produced in a totally susceptible population by an initial

sick host, assuming we do not know where they comes from. Consequently, this index gives an

Vector-borne disease risk indexes in spatially structured populations

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006234 February 12, 2018 12 / 18

https://doi.org/10.1371/journal.pntd.0006234


idea of the severity of the epidemic in the corresponding patch at the very beginning of it: the

more large this index is, the more great the number of infected hosts will be in this patch. Con-

cretely, the patch with greatest vulnerability index VRi corresponds to the patch with more

infections at the first stages of the outbreak, as can be seen in Fig 4 for the above types of

mobility. Note that this picture could change as long as the epidemic evolves to a different

state from the initial totally susceptible one.

We then compare the effect of applying an specific control measure in any other patch (ran-

domly selected, for instance) with the effect of applying the same control measure but in the

patch indicated by an adequate index (in relation to the control measure).

Following the risk indexes definition, the transmission risk index TRi measures the trans-

mission power of a given patch; that is, the secondary cases an initial sick host in patch i pro-

duces in a complete totally susceptible population, weighted by the probability of patch i being

the initial focus of the epidemics. Then, the patch with highest transmission risk index TRi is

the candidate to become the main disperser of the disease at the fist stage of the epidemics.

This index can be linked with control measures on human populations. Therefore, the first

Table 2. Carrying capacity Ci and human population Nhi used in the simulations within each patch. R0 if patches where isolated and risk index values for two types of

networks.

Patch Ci Nhi R0 Unrestricted mobility Barabasi-Albert mobility

TRi VRi VTRi TRi VRi VTRi
1 1435.90 6587 2.31 0.92 0.22 0.19 1.70 0.22 0.19

2 2564.10 7292 2.93 1.30 0.42 0.52 1.13 0.39 0.39

3 1025.64 9791 1.60 1.68 0.16 0.22 1.18 0.11 0.12

4 2051.28 5875 2.92 1.07 0.33 0.26 1.01 0.43 0.46

5 1025.64 4354 2.40 0.86 0.15 0.08 0.81 0.14 0.12

https://doi.org/10.1371/journal.pntd.0006234.t002

Fig 4. Dynamics of the number of infected humans per patch in a network of 5 nodes for a fully connected network (a) and a Barabasi-Albert

network (b). In (a) the vulnerability index VRi indicates patch 3 (red line) as the most vulnerable and in (b) the most vulnerable as indicated by VRi is

patch 1 (red line). The most vulnerable patch corresponds to the one with more cases at the beginning of the epidemic (let say t� 50).

https://doi.org/10.1371/journal.pntd.0006234.g004
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tested control measure was the fast isolation of infected people by hospitalizing them as soon

as an infection is detected. We simulate this by increasing the recovery rate γ of a single patch.

Fig 5 shows, as expected, that this measure is more effective when applied in the patch with

greatest transmission index TRi than in any other patch, on average. One can see in Fig 5 that

the amount of total infected hosts Ih is the lowest one for t� 50 when the disease control mea-

sure is applied to the patch with largest transmission index TRi.

Finally, analogously to the previous one, the vector transmission risk index VTRi measures

the transmission power of a given patch taken into account its vector population; that is, the

secondary human cases an initial infectious vector in patch i produces in a complete totally

susceptible population, weighted by the probability of patch i being the initial focus of the epi-

demics, wherever the initial carrier host come from. Hence, the patch with largest vector trans-

mission risk index VTRi is the candidate to become initially the main disperser of the disease

at the beginning of the epidemics, regarding to the vector dynamics. This index can be linked

with control measures on vector populations. Accordingly, we consider here the reduction of

the local vector population as the control measure (resulting from abatization, fumigation,

hatchery elimination. . .). We simulate this by reducying the carrying capacity Ci (or directly

by removing the local vector population) of a single patch. As expected, the vector transmis-

sion risk index VTRi was able to indicate the patch where this strategy proved to be more effec-

tive to reduce the initial growth of the epidemic, on average (see Fig 6). That is, the amount of

total infected hosts Ih is the lowest one for t� 50 when the control is applied to the patch with

highest vector transmission risk index VTRi, compared to the other patches located control

strategy, and to the unchecked situation.

Discussion

We propose three risk indexes for the transmission of vector-borne diseases. Two of them are

related with the transmission risk of patches and the other one gives a measure of the

Fig 5. Dynamics of the infected population system-wide with control applied in different patches. (a) In a fully connected network the transmission

index TRi is greater in patch 3. (b) In a Barabasi-Albert network the patch with more transmissibility is number 1 as indicated by its TRi. The most effective

strategy is to reduce the infected hosts (by treatment and hospitalization) in the patch with greatest TRi.

https://doi.org/10.1371/journal.pntd.0006234.g005
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vulnerability of each patch. It is worth to notice their ability to localize epidemiological risk at

different nodes of a net.

The transmission indexes of a patch quantify the potential secondary cases that a first

infected individual or vector in this patch may generate system-wide.

On the other hand, the vulnerability index of a patch quantify the potential secondary cases

that a first infected individual in the system cause in the relevant patch.

Specifically, the transmission risk index TRi is the probability of a host in patch i became

the first infected host, times secondary human infections they would potentially cause. The

second index VTRi, called vector transmission risk index, is defined as the probability of a vec-

tor gets first infected in patch i, times secondary human infections it would potentially cause.

The vulnerability index VRi is secondary host infections in patch i averaged over a randomly

distributed initial infected human in the system.

These risk indexes can be used in different ways. First, they indicate optimal places to apply

prevention measures. They are also useful to guide the monitoring campaigns for an early

detection of epidemics. And finally, they can guide control and mitigating strategies at the

beginning of an outbreak.

For example, the transmission risk index TRi indicate that the patch with the greatest value

of it, is the best place to distribute repellents as a prevention strategy. Another control strategy

is to isolate by hospitalization infected individuals of such a neighborhood.

The vector transmission risk VTRi indicates the most suitable places where abatization and

fumigation campaigns will be more effective. Thus, when there are limited resources, the best

strategy is to give priority to the patches with higher values of the index. On the other hand,

the vulnerability risk index VRi can guide investments in health clinics. This would increase

the public health capacity in particular areas where many cases will likely arise. In addition to

this, as it is expected to find more cases in the neighborhood with highest VRi, this is a good

place for incidence monitoring. That will help in detecting increased anomalous endemic

states or an outbreak.

Fig 6. Dynamics of the infected population system-wide with control applied in different patches. (a) In a fully connected network the vector

transmission index VTRi is greater in patch 2. (b) In a Barabasi-Albert network the patch with largest vector transmissibility is number 4 as indicated by its

VTRi. The most effective strategy at the beginning of the outbreak is to reduce the carrying capacity in the patch with greatest VTRi.

https://doi.org/10.1371/journal.pntd.0006234.g006

Vector-borne disease risk indexes in spatially structured populations

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006234 February 12, 2018 15 / 18

https://doi.org/10.1371/journal.pntd.0006234.g006
https://doi.org/10.1371/journal.pntd.0006234


In order to illustrate these control measures, we compared a set of simulations in the frame

of a proposed particular model for vector-borne diseases spread in a multi-patch system for a

Dengue epidemics. In addition to vector and host densities, this model takes into account

human mobility. We have observed that an immediate medical attention gives benefits to the

whole population if the neighborhood with highest transmission risk TRi is prioritized. In con-

trast, reducing the hatcheries for example by abatization brings more benefits if the neighbor-

hood with highest vector transmission risk VTRi is prioritized. We observed in the simulations

that the risk indexes can also be used to design control strategies but just at the beginning of

the epidemic. The time these indexes give the best strategy during an epidemic depends on the

network structure. A complete study of the relationship among all possible network configura-

tions, the corresponding risk indexes values, and the most efficient strategies is out of the

scope of the current work. In order to apply these indexes in practical situations, it is necessary

to have estimations of the model parameters. With respect to this, entomological parameters

can be estimated using reported values in the literature at different temperatures [35, 36]. On

the other hand, the now ubiquitous tracking technologies based on mobile devices such as goo-

gle maps, twitter of even traffic cams, have opened the possibility to estimate with high resolu-

tion human mobility patterns. Finally, even if the carrying capacity of each patch is difficult to

measure, to stratify a region it is not necessarily to know its absolute value. It is just enough to

know the relative importance of it among the patches. This can be obtained by the usual field

work carried by the entomologist.
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