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Abstract

The main limitation blueon designing epidemic control strategies bluelies in

their economic and social costs. Thusblue, a practical and efficient approach

takes into consideration these factors. Most epidemics evolve in a structured

population, bluebeing the geographical structure the most evident. In this situ-

ation, bluehaving a criteria bluefor identifying the most effective locations where

control measures bluecan optimize available resources blueis desirable. In this

paper, a regional index based on the final blueepidemic size predicted by a

metapopulation model is proposed. An efficient algorithm to calculate explicit

blueindex values was developed, and different control strategies that used the

recommended index were compared with others that do not take bluethe index

information into account. We found that the proposed index bluerepresents an

easy and fast criterion to guide simple control strategies. This bluetype of index

blueoffers a new powerful approach where the information encoded in a deter-
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ministic mathematical model can be summarized to guide realistic and practical

control strategies bluefor disease bluespreading and epidemics.

Keywords: Mathematical epidemiology, epidemic final size, SIR

meta-population model, selecting controlling patches.

1. Introduction

At present, bluehuman-to-human transmitted diseases (influenza, H1N1,

measles, blueSARS-CoV2) bluerepresent a primary concern in most countries

(Fraser et al. (2009)), bluesince a large part of the population is liable to catch

them, turning these diseases into a recurring threat worldwide. An epidemic out-5

break of these kind typically bluespreads over broad geographical areas where

many zones of different social and environmental characteristics are affected (Lee

et al. (2018); Angelo et al. (2019)). The most conspicuous and recent example is

the propagation of blueSARS-CoV2 that resulted in a pandemic. The extended

nature of an epidemic leads to a structured and blueinhomogeneous spread of10

the disease among the affected zones (Chinazzi et al. (2020)). This structured

evolution of the disease bluedevelops not only spatially, but also in time, affect-

ing some zones first and then propagating to other regions in complex ways (Lee

et al. (2012)). The complex propagation of bluea disease bluecomplicates the

desing of efficient control strategies bluewhere economic and human resources15

are limited. A natural approach would be to bluedetermine where to apply

control strategies in order to minimize the potential impacts that epidemics

can cause. This approach would require real-time information blueregarding

the spread of the disease bluein each affected zone, bluethus demanding human

and economic resources. A more straightforward approach would be bluehaving20

each zone labeled by an index that blueidentifies its potential blueimpacts due

to the pandemic. By blueidentifying the bluerelevance of the disease severity

in a specific zone, it is possible to direct the available resources for prevention

measures and control strategies to the most potentially affected sites.
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blueThe epidemic final size, a term developed in the context of mathematical25

epidemiology, is essential to measure the severity of the pandemic (Brauer et al.

(2019); Martcheva (2015); Miller (2012); Magal et al. (2018)). Previous studies

(Brauer et al. (2019); Martcheva (2015); Miller (2012)) have calculated bluethe

epidemic final size using models blueonly for homogeneously mixed populations.

In order to overcome this limitationblue, modeling epidemics on metapopulation30

networks blueproves useful (Colizza & Vespignani (2008); Balcan & Vespignani

(2012); Pastor-Satorras et al. (2015)). The blueutilization of metapopulation

networks to model epidemics allows us to describe a more realistic scenario at the

cost of increasing bluetheir mathematical complexity. Although bluecomputer

technology to solve these problems numerically currently exists, in practice,35

the resulting models may consist of hundreds of equations. blueThat is the

case, for instance, when patches blueare used to represent cities, or, even more,

bluepostal code. blueIn these situations, an efficient algorithm will help to

reduce both memory and CPU usage.

The complexity of this type of model can be used to analyze the components40

that describe their dynamics bluemore efficiently. This allows us to generalize

some traditional concepts of epidemiology. In particular, bluewe understand the

final size of the disease blueas a single quantity in models describing a single

group. However, in (Magal et al. (2018)), a multi-group model is used in order

to calculate the total bluenumber of infected individuals in each separate group.45

Analogous bluefinding have been registered in metapopulation models, where

there is a final size of the disease for each patch in addition to the entire system’s

final size. The bluemulti patch final size has been previously addressed for some

stochastic models in (Miller (2012)), where relevant quantities are provided in

terms of an bluea priory individual’s infection probability.50

In this paper, we blueconsider the final size for a single patch blueas the local

final size of the disease, and the final size of the entire system blueas the final

global size. blueTaking the final size of the disease blueas a way to measure the

epidemic severity, we propose that the set of local final sizes of the disease in a

metapopulation model can guide some control strategies.55
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The control strategies that can be designed bluewith the information blueof

the set of local final sizes aim to reduce bluethe disease impact in most affected

areas in a highly connected context. It is worth bluenoting that the aim of these

strategies is different from other more common control strategies, bluewhich is

to reduce total cases regardless of the local severity in different regions.60

In this article, we propose a SIR model in a metapopulation network de-

scribed bluethrough differential equations. We deduct the set of local final sizes

of the disease blueanalytically. The obtained mathematical expression implic-

itly provides the actual value of the final size. blueIn this manner, we develop

an efficient algorithm to calculate the final size values. We then supply a crite-65

rion based on the final size bluein order to to select the patches blueand apply

local control. The guided control strategy will be compared with a strategy of

control for randomly selected patches. This comparison will help to corroborate

the benefits of a guided strategy in contrast with a random strategy.

This article is organized as follows: in section 2, we describe the SIR epidemic70

model in networked populations connected by human mobility. blueThen, we

analytically derive the epidemic final size expression. In section 3, we describe

the proposed iterative algorithm to estimate the final epidemic size in each

patch. In section 4, we propose a criterion to select the controlling patch. In

section 5, we bluenumerically illustrate the effectiveness of the algorithm by75

comparing two different types of network structures. blueFinally, in section 6

we present bluethe conclusions.

2. Epidemic final size in a networked population.

We consider a human population, geographically located at n distinguishable

regions called patches, and connected by the mobility of individuals. We assume80

that each patch is inhabit by a well-mixed population of size Ni, where the sub-

index i ∈ {1, ..., n} represents the patch label. Let, respectively, Si(t), Ii(t) and

Ri(t) the number of susceptible, infected and recovery residents from patch i

at time instant t; such that Ni = Si(t) + Ii(t) + Ri(t) remains constant all the
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time.85

Based on the Lagrangian modeling approach (Bichara et al. (2015); Velázquez-

Castro et al. (2018)), the mobility of individuals among patches is described by

the residence-time matrix P = (pij)
n
i,j=1 whose entries satisfy:

0 ≤ pij ≤ 1 ; and

n∑
k=1

pik = 1 ∀i, j ; (1)

where pij describes the fraction of time that residents from patch i spend in

patch j. It is worth noting that the matrix P represents a network of patches

connected by directed and weighted links. In blueFigure (1) we show an example

of a networked population and its corresponding residence-time matrix.

Due to mobility, the effective number of individuals already present in patch90

i is given by wi =
∑n
j=1 pjiNj ; where the fraction of Ni residents that remains

in its own patch is given by piiNi; and the fraction of Nj neighboring residents

that daily visit patch i is pjiNj , with j = 1, . . . , n. In this context, the inflow

of infected visitors on patch k is given by:

Fk =
1

wk

n∑
j=1

pjkIj ; (2)

which embody both the fraction of infected individuals coming from neighboring95

patches and the own infected in patch k. Then, the disease dynamics in the

networked population is described by the following set of 3n ODE’s:

Ṡi = −
n∑
k=1

βk(pikSi)Fk , (3)

İi =

n∑
k=1

βk(pikSi)Fk − γiIi , (4)

Ṙi = γiIi , (5)

for i = 1, . . . , n; the parameter γi > 0 describes the recovery rate of infected

residents from patch i and, βk is the risk of infection in patch i.

We define the initial condition in each patch as follows: Si(0) = Ni, Ii(0) = 0,100

Ri(0) = 0 for i = 2, . . . , n; and S1(0) = N1 − 1, I1(0) = 1, R1(0) = 0. That is,
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Figure 1: a) An example of a networked population where each node is a geographical region

called patch inhabited by a well-mixed population, and where the directed links represent the

individuals mobility among patches (the square node represents the patch where the outbreak

started). b) The corresponding representation of the residence-time matrix, whose entries pij

describes the proportion of time that residents from patch i spend in patch j and satisfy Eq.

(1).

by convention, we assume that at the beginning of the epidemic the patch with

label k = 1 has a single infected resident, while the other patches are populated

by susceptible individuals.

By substituting Fk (Eq. (2)) into the Eqs. (3)-(5), the SIR epidemic model105

in a networked population can be rewritten as:

Ṡi = −Si
n∑
j=1

βijIj , (6)

İi = Si

n∑
j=1

βijIj − γiIi , (7)

Ṙi = γiIi , (8)
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for i = 1, . . . , n; where the effective risks of infection are given by:

βij =

n∑
k=1

βk
pikpjk
wk

; ∀i, j ∈ {1, ..., n} . (9)

That is, the metapopulation network model described by equations (3)-(5),

where a set of separated well-mixed sub-populations is considered, can be rewrit-

ten as an epidemic model of a single well-mixed population, where individuals110

are classified according to their patch of residence; in other words, the system

of equations (6)-(8) could be interpreted as a multi-group epidemic model, with

βij the rate contact among residents from patch i and j. It is worth mentioning

that the multi-group model (6)-(8) is equivalent to the epidemic model analyzed

by Pierre Magal et. al in (Magal et al. (2018)), where human mobility among115

patches is not considered. In Figure (3) we show an example of the dynamical

behavior of the effective SIR epidemic model (6)-(8), with the network topology

and residence-time matrix given in Figure (1).

In the context of mathematical epidemiology, the final size is the total pro-

portion of individuals who have been infected during the epidemic (Brauer120

et al. (2019); Miller (2012)). A common methodology to asses this is through

the mathematical expression of the final proportion of recovered individuals

Ri(∞)/Ni; i.e., with the explicit solution of the recovery compartment (Eq.

(8)) divided by the total population and evaluated the limit as time approaches

to infinity.125

In order to derive an explicit expression for Ri(∞)/Ni in each patch, we

sum and integrate the susceptibles Si(t) (Eq. (6)) and infected Ii(t) (Eq. (7))

compartments, and obtain:

−γ−1i
∫ ∞
0

(
Ṡi(t) + İi(t)

)
dt =

Ni − Si(∞)

γi
=

∫ ∞
0

Ii(t)dt ; (10)

where we have used:

Ii(∞) = lim
t→∞

Ii(t) = 0 , and Ni = S(0) + I(0) ∀i. (11)
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Figure 2: Dynamical behavior of the SIR epidemic model in a networked population (6)-(8).

The dashed red curve represents the mean value over the patches trajectories. The population

sizes Ni, and the patch risk of infection βi, for i = 1, . . . , 15 are uniformly random selected

in the ranges [10, 000, 30, 000] and [1.5, 2.5] respectively; the recovery rate γi = 0.7 for all

patches.

On the other hand, we obtain from Eq. (6) and Eq. (10) :

log

(
Si(0)

Si(∞)

)
=

n∑
j=1

βij

∫ ∞
0

Ij(t)dt =

n∑
j=1

βij
Nj − Sj(∞)

γj
, (12)

then Si(∞) = Si(0)e−θi ; where130

θi(S1, . . . , Sn) =

n∑
j=1

βij
Nj − Sj(∞)

γj
, for i = 1, . . . , n . (13)

The functions θi(S1, . . . , SN ) determines the total number of new infections

generated in patch i caused by infected travelers who visit such patch.

SinceNi = Si(t)+Ii(t)+Ri(t) remains constant all the time and, by Eq. (11),

when t → ∞ we get that Ri(∞) = Ni − Si(∞). Then, the explicit expression

for the epidemic final size in a given path i is135

Ri(∞)/Ni = 1− Si(0)e−θi/Ni . (14)

Note that, although blueEq. (14) gives an explicit form of the final size of
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the epidemic for each patch, solving it analytically represents a problem of great

difficulty due to its implicit dependence on the terms S1(∞), . . . , Sn(∞).

In the next sectionblue, we propose an iterative algorithm to estimate the

value of Eq. (14).140

3. Iterative algorithm to calculate the epidemic final size in each path.

One of the main difficulties in evaluating the epidemic final size in a given

patch i with Eq. (14), lies in the implicit dependence on S1(∞), . . . , Sn(∞) of

the function θi (Eq. (13)). That is, it requires to know the analytical solution of

the SIR epidemic model (6)-(8) and evaluate the limit as time goes to infinity.145

To answer this problem, we propose to rewrite Eq. (14) as a set of difference

equations, such that after iterating it a given number of time steps, we obtain

the value of Ri(∞), for i = 1, . . . , n.

Let xki ∈ R+ a set of continuous variables representing the number of infected

individuals in patch i at discrete time step k ∈ N. Based on Eq. (14) multiplied150

on both sides by Ni, we propose the following set of n difference equations which

describes the evolution of variables xki :

xk+1
i = fi(x

k
1 , . . . , x

k
n) = Ni − Si(0)e−θ

k
i , for i = 1, . . . , n ; (15)

where fi : Rn −→ R is a differentiable map, and

θki ≡ θki (xk1 , . . . , x
k
n) =

n∑
j=1

βij
xkj
γj
, for i = 1, . . . , n . (16)

By defining the vector Xk = (xk1 , . . . , x
k
n)T ∈ Rn, the set of differences

equations (15) could be expressed in compact form as:155

Xk+1 = F (Xk) ; (17)

with F (Xk) = (f1(Xk), . . . , fn(Xk))T ∈ Rn. For a given initial condition X0, a

solution of (17) is a real sequence (Xm)m∈N, that satisfies blueEq. (17) for m ≥

0. In blueFigure (3) we show the evolution of the variables xki for the networked
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population presented in blueFigure (1.a) (and the corresponding residence-time

matrix show in blueFigure (1.b). A sample of three variables are shown in this160

figure in order to illustrate the convergence of blueEq. (17) after ten iterations,

approximately, and setting the initial condition as X0 = (1, . . . , 1)T . The red

dashed lines in blueFigure (3) are the corresponding values of the recovery

compartment evaluated in the limit as time goes to infinity Ri(∞); which is

evaluated by solving numerically the SIR epidemic model (6)-(8) and extract the165

last value of the time series of the recovery compartment (See blueFigure (3.c)).

That is, we can corroborate numerically, that the set of difference equations

(15) convergence to the value of Ri(∞) which when dividing by Ni, gives us the

desired value of the epidemic final size. The following proposition guarantees

the convergence of blueEq. (17).170

Figure 3: Evolution of the set of difference equations (15) for the networked population shown

in blueFigure (1). For this figure a sample of the dynamics of three variables are shown in

order to better illustrate the convergence of the equations when the initial condition is setting

as X0 = (1, . . . , 1)T . The red dashed lines are the corresponding values of Ri(∞) taking from

the numerical solution of the SIR epidemic model (6)-(8).
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Proposition 1. Let F : Rn −→ Rn a differentiable map of the form

F (Xk) = (N1 − S1(0)e−θ
k
1 , · · · , Nn − Sn(0)e−θ

k
n)T ;

with Xk = (xk1 , . . . , x
k
n)T ∈ Rn and, θki ≡ θki (xk1 , · · · , xkn) = C1x

k
1 + · · ·+Cnx

k
n >

0, ∀i ∈ {1, ..., n}; with {Cl}nl=1 a set of positive constants. Let Xk+1 = F (Xk) =

F k+1(X0) the (k+1)-th iteration of the map F , with k ∈ N; X0 ∈ Rn the initial

condition and, F k(X0) ≡ F ◦ · · · ◦ F (X0) the k times composition of F (X0).

If X0 = (1, · · · , 1)T ∈ Rn, then the solution of the difference equation (17)175

converges.

The proof of proposition (1) can be consulted in Appendix A. In general,

we demonstrate by induction, that each entry i of Xk is bounded superiorly by

Ni, and are monotonous increasing, from analysis in R in metric spaces and the

fact that a sequence in Rn converges if at each input i the ordered sequence180

converges, we proof that the sequence (Xm)m∈N, with m ≥ 1, converges. It is

worth mentioning that when Eq. (14) has a unique solution, the proposition (1)

converges to the limit Ri(∞), for i = 1, . . . , n.

Based on the set of difference equations (15) we propose the following algo-

rithm to calculate the epidemic final size in each patch:185

Algorithm 1: Iterative algorithm to calculate the epidemic final size.

Input: {Ni, Si(0), βi, γi}ni=1; P = (pij)
n
i,j=1.

Output: {R1(∞)/N1, . . . , Rn(∞)/Nn}.

Data: Setting X0 = (1, · · · , 1).

1 for k ∈ [0,m] do

2 Xk+1 = F (Xk) = F k+1(X0)

Data: Setting Ri(∞)/Ni = Xm
i /Ni.

Where m ∈ N is the number of iterations and, Xm
i is the i-th entry of the

vector Xm. It is worth remarking that the above algorithm can be performed in

few blueiterations, which means that it could be numerically implemented with

little computational cost; and it does not require to solve the set of equations190

numerically or analytically (6)-(8).
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Remark: Theories as fixed point could be considered to demonstrate the

existence and uniqueness of solutions to Eq (14). For example, P. Magal et.al

in Magal et al. (2018) have used this theory to demonstrate the existence and

uniqueness of the set of difference equations (14); but, unlike our working hy-195

potheses, P. Magal considers an irreducible transmission; that is, the matrix,

whose entries are given by parameters βij , is irreducible non-negative. In Ap-

pendix B we discuss a methodology to rewrite Eq. (14) as an equivalent fixed

point problem without imposing any restriction to the matrix composed of pa-

rameters βij . Furthermore, we present a theorem that could be used to guaran-200

tee the existence and uniqueness of the solution of Eq. (14). Since this problem

is out of the scope of this work, we leave them indicated as an open problem for

future research works.

In the following section we use the above proposed algorithm to select patches

where a control protocol can reduce the number of infected individuals on the205

entire network.

4. Criterion to select controlling patches and control protocols.

Given the residence-time matrix P , the number of inhabitants in each patch

Ni, the risk of infection βi and the recovery rate γi, the algorithm 1 blueallows

us to calculate the total proportion of individuals that will become infected in210

each patch. That is, with the set of difference equations proposed in blueEq.

(15), we can know a priori bluewhich patches will have the maximum number

of infected inhabitants. blueWith this information, it is possible to design a

control protocol over specific patches instead of blueimplementing a reactive

selection of the controlling patches, where the control is applied randomly as215

outbreaks appear on the patches.

blueAs our main hypothesis, we propose that by controlling the patches with

the highest Ri(∞) bluevalue, calculated after iterating blueEq. (15), blueit is

possible to reduce the number of infected individuals blueinside the network

and bluein the most affected patch. In order to corroborate bluethis hypothesis,220
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we propose and compare two forms of controlling patches selection: random,

and targeted. For bluethe latter, we use two indexes to guide the selection.

The absolute final size index (AFS) blueis defined as the maximum over the set

{R1(∞), . . . , Rn(∞)}, and the relative final size index (RFS) blueis defined as

the maximum over the set {R1(∞)/N1, . . . , Rn(∞)/Nn}. blueIn other words,225

the RFS index takes into account the proportion of infected individuals in each

patch.

blueWe also propose as control protocol reducing the risk of infection βi in

the selected patch i. This bluereduction is the most common form of control in

mathematical epidemiology, and it is usually related blueto the implementation230

of social measures, bluesuch as quarantine, school and workplace closures, cam-

paigns to promote physical distancing bluebetween individuals, hand hygiene,

wearing mask, isolating patients, among others measures. This form of control

is modeled via a control parameter u ∈ [0, 1], which is introduced into the SIR

model (6)-(8) as follows:235

Ṡi = −Si
n∑
j=1

(1− uδi)βijIj , (18)

İi = Si

n∑
j=1

(1− uδi)βijIj − γiIi , (19)

Ṙi = γiIi , (20)

where δi = 1, if the patch with index i is the selected patch to be controlled,

and δi = 0, blueif otherwise.

blueUsing the above protocol and the two proposed strategies to select the

patches to be controlled (random and targeted), in the next section, we analyze

and compare the following scenarios numerically:240

• blueThe disease spread over a networked population that does not apply

any control protocol.

• blueThe disease spreads over a networked population where control is

applied to a random selected patch.
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• blueThe disease spreads over a networked population where control is245

applied by selecting the patch with the aid of the AFS or RFS index.

blueThese simulated strategies are intended to show and compare whether

the AFS and RFS indexes could serve as reliable indicators of which patches are

more convenient to control. The protocol indicates that a single patch must be

controlled to observe its effects; however, this does not account for a complete250

control strategy proposal.

5. Numerical examples

Recent studies in the field of complex networks blueagree that networks such

as cities, airports, traffic flows, blueand other urban systems evidence the small-

world (Ding (2019); Volchenkov & Blanchard (2008); Mansilla & Mendozas255

(2010)) and the scale-free effect. The first effect is characterized by the presence

of links that reduce the distance among nodes, which we call bridging links.

blueThe second effect is identified by the presence of highly connected nodes

called hubs. A remarkable example of a network with hubs is the blueairport

network (Guida & Maria (2007)). In order to illustrate the use of the AFS260

and RFS indexes as criteria to select the controlling patch, we use two different

algorithms to construct graphs with bridging links and hub nodes.

The first type of graph we consider is constructed with the algorithm pro-

posed by M. E. J. Newman and Duncan Watts (Newman & Watts (1999)).

blueWe denote the graph constructed bluewith this algorithm blueas NWG.265

The first step in the algorithm is to generate a regular graph ( i.e., a graph

where the nodes have the same number of connections). blueThen an extra

link (usually referred to as bridging link) is added between pairs of nodes with

independent probability p. blueThese bridging links reduce the shortest path

length of the NWG, understanding path lengt as the smallest number of links270

in a path that connect any pair of nodes.

The second type of graph we consider is generated with the algorithm pro-

posed by Albert-Lázló Barabásis and Réka Albert (Barabási & Albert (1999)).
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Parameter Description value

Ni Population size [10.000 , 1.000.000]

γi Effective recovery rate 0.7

βi Effective infection rate [1.5 , 2.5]

u Control parameter 0.5

Table 1: blueIn each simulation, for i = 1, . . . , 15, Ni is chosen randomly with a normal

distribution, in order to model a network with large and small populations while the choice

of βi for each simulation, it is also chosen randomly with a normal distribution.

blueWe denote bluethe graph constructed with this algorithm as BAG. The al-

gorithm begins with an initial number of connected nodes, bluethen, new nodes275

are added to the network iteratively. Each new node connects with m already

present nodes in the network following the preferential attachment principle.

One of the main structural features of a graph constructed with this algorithm

is the presence of hub nodes.

Figure 4: Time series of the SIR model (18)-(20) in a NWG and selecting the controlling patch

with the AFS index. Red line represent the patch selected with the AFS index and green line

the patch selected randomly. The dynamics without control are in blueFigures (a), (b) and

(c); by selecting the controlling patch with the AFS index are in blueFigures (d), (e) and (f);

and by selecting the controlling patch with a random strategy in blueFigures (g), (h) and (i).
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For each one of these graphs, we perform an ensemble of one hundred nu-280

merical simulations, where, for each simulation run, bluewe solve the system of

equations blue(18)-(20) with a new NWG or BAG realization constructed with

the parameters NWG p = 0.3 and BAG m = 2. blueIn Table(1), we describe

each epidemiological parameter interpretation and its reference value. Later, to

define the residence-time matrix P , we model two possible scenarios: blueone285

of high mobility, where the parameters pij are randomly chosen bluewithin the

range of [0, 1] and, blueone of low mobility where values for pii > 0.7 are ran-

domly chosen, which implies a low population mobility between patches and a

higher fraction of time in its own patches. Next, for each simulation run, we

bluenumerically solve the model (18)-(20) three times. blueFor the first one,290

we do not control any patch. blueFor the second one, we select the controlling

patch with the AFS or RFS index. blueFinally, for the third simulation, we

bluerandomly select the controlling patch with uniform distribution. blueThe

value of the control parameter u is included in Table (1).

In blueFigure (4), we show an example blueof the epidemic dynamics in a295

NWG from the ensemble of numerical simulations with high mobility. We select

the controlling patch with the AFS index. In each row, we display the time

series of the SIR model (18)-(20) bluewith no control (blueFigures (4.a), (4.b)

and (4.c)), blueby controlling the patch selected with the AFS index (blueFig-

ures (4.d), (4.e) and (4.f)), and blueby controlling the patch randomly selected300

(blueFigures (4.g), (4.h) and (4.i)).

It is worth noting that blueby applying no control, the peak of the infected

curve for the patch selected with the AFS index (red line in blueFigure (4.b))

reached around 376, 000 blueinfections. When control over bluethis patch is

applied, the peak of the infected curve is reduced to bluean approximate of305

338, 000 blueinfections (red line in blueFigure (4.e)). blueWhen control is ap-

plied to a randomly selected patch, the peak of the infected curve is reduced to

around 371, 000 blueinfections (red line in blueFigure (4.h)). Furthermore, we

observe that blueby implementing a control protocol to the patch selected with

the AFS index, the number of blueinfections can also be reduced in other NWG310
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Figure 5: Time series of the SIR model (18)-(20) in a NWG and selecting the controlling

patch with the RFS index. Red line represents the patch selected with the RFS index and

green line the patch selected randomly. The dynamics without control are in blueFigures (a),

(b) and (c); by selecting the controlling patch with the RFS index are in blueFigures (d), (e)

and (f); and by selecting the controlling patch with a random strategy in blueFigures (g), (h)

and (i).

patches. blueFor example, the peak of the infected curve for the randomly blue-

selected patch reached around 174, 000 blueinfections when no control is applied

(green line in blueFigure (4.b)), but when a control protocol is implemented to

the patch selected with the AFS index, the peak of the infected curve for the

bluerandomly selected patch reaches to around 153, 000 blueinfections (green315

line in blueFigure (4.e)). blueIf the control is applied over bluethis randomly

selected patch, the peak of its infected curve reaches around 172, 000 blueinfec-

tions (green line in blueFigure (4.h)).

In the context of epidemiology, a public health strategy to control an epi-

demic outbreak is usually quantified by how much it reduces the peak of the320

infected curve in order blueto no overwhelm hospital capacities. blueFollowing

this idea, we use the bluepeak reduction in the controlling patches as a measure

bluefor the effectiveness of a selection patch strategy. blueFor each strategy, a

different patch is selected to implement the control protocol. Thus, in order to
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decide which control strategy is more effective, we compare the joint infections325

from the controlling patches of both strategies at the blueoutbreak peak. The

strategy that reduced more infections in both patches altogether was bluecon-

sidered as the most effective. In this framework, we propose to quantify the

effectiveness of the controlling patch selection as follows: let I1 bluebe the in-

fected curve of the patch selected with the AFS (or RFS) index (red curve in330

the example of blueFigure (4)), and let I2 bluebe the infected curve for the

patch randomly selected (green curve in the example of blueFigure (4)). Next,

we define the sum of the maxima of I1 and I2 for each selection strategy, i.e.,

Σno.ctr, Σidx.ctr and Σrnd.ctr are the sum of max(I1) and max(I2) bluerespec-

tively, for the cases when no control is applied to any patch, when bluepatches335

are selected with one of the proposed indexes, and when bluea controlling patch

is randomly selected. Then, for a given simulation run in the ensemble we define

effectiveness as

Erun =


1 if Σno.ctr − Σidx.ctr ≥ Σno.ctr − Σrnd.ctr

0 otherwise

(21)

If Erun = 1, the controlling patch selection with the AFS (or RFS) index for the

simulation run bluewill be more effective than a random selection, and the op-340

posite bluewill happen if Erun = 0. For instance, in Figure (4) we observe that

Σno.ctr is around 550, 000 (blueFigure (4.b)), Σidx.ctr is around 491, 000 (blue-

Figure (4.e)) and, Σrnd.ctr is around 543, 000 (blueFigure (4.h)). blueTherefore,

Erun = 1 for this simulation run.

We average the effectiveness measure 〈Erun〉 proposed in (21), bluefor the345

one hundred simulations generated with the NWG in the high mobility scenario.

blueWe observe that, bluefor 59 % of the simulation runs, the effectiveness is

Erun = 1, that is, the patch selection strategy with the index reduces the peak

of the infected curves better than a random selection.

blueOn one hand, blueFigure (5) shows an example of the epidemic dy-350

namics when the controlling patch is selected with the RFS index and a high
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Figure 6: Time series of the SIR model (18)-(20) in a BAG and selecting the controlling patch

with the AFS index. Red line represents the patch selected with the AFS index and green

line the patch selected randomly. The dynamics without control are in blueFigures (a), (b)

and (c); by selecting the controlling patch with the AFS index are in blueFigures (d), (e) and

(f); and by selecting the controlling patch with a random strategy in blueFigures (g), (h) and

(i).

mobility scenario. It is worth noting that the patch blueselected with the RFS

blueindex does not correspond to the path with the highest peak in the infected

curve. Furthermore, bluein the example shown in blueFigure (5), the controlling

bluerandomly selected patch has a bigger maximum of blueinfections compared355

to the patch selected with the RFS blueindex. However, the effectiveness of

the controlling patch selection is Erun = 1 in this numerical run since Σno.ctr is

around 589, 000 (blueFigure (5.b)), Σidx.ctr is around 541, 000 (blueFigure (5.e))

and, Σrnd.ctr is around 578, 000 (blueFigure (5.h)).

On the other hand, blueFigures (6) and (7) blueillustrate two examples of360

the epidemic dynamics bluein a networked population with a BAG structure

and a high mobility scenario. Both figures show bluetheir respective dynamics

when the AFS and RFS blueindexes are used to select the controlling patch. We

observe that for these numerical runs, the effectiveness is Erun = 1. However,

Table (2) blueshows that the percentage of cases in which effectiveness equals one365
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are 53% and 25% for the AFS and RFS indexes respectively bluewhen averaging

over the ensemble of simulations. That is, when the network structure is given

by the BAG bluein a high mobility scenario, the random selection strategy is

more effective than a selection bluemade with our proposed indexes. However,

when we perform an ensemble of one hundred bluesimulations run with the370

BAG in bluea low mobility scenario, we notice (Table (2)) that the effectiveness

of our selection strategy blueincreases to 87% and 72%. We also blueobserve

an increase in our proposed patch selection strategy when blueperforming an

ensemble of run simulations for a NWG in bluea low mobility scenario, (Table

(2)).375

Another possible strategy bluefor selecting a controlling patch blueconsists

in selecting a highly connected patch. blueIn order to analyse this scenario and

bluecompare it with a selection strategy guided by the AFS and RFS bluein-

dexes, we perform an ensemble of one hundred run simulations for the NWG

and BAG. blueIn this case, instead of selecting a random patch, we select bluea380

highly connected patch bluefor each run simulation. blueSimilar as before, we

perform one hundred simulations for a high mobility bluescenario, and one hun-

dred simulations for a low mobility scenario. Table (2) blueshows the effective-

ness average 〈Erun〉 (averaged over the ensemble of simulations). It is worth

noting that for a low mobility scenario, the patch selection guided by our pro-385

posed indexes is more effective bluethan the highly connected patch selection.

blueHowever, selecting the patch with the highest number of connections is more

effective bluefor a high mobility scenario (in the sense that, locally, bluethe re-

duction of the infected curve peak is bigger) than bluedoing the selection with

the AFS and RFS indexes.390

blue In order to observe the effect on the entire network of the local control,

we calculate the peak and the epidemic final size of the entire system in different

scenarios. Figure 8 shows the peak of infection when controlling different patches

for different values of the control parameter. In Figure 9, the comparison is

based on the final size of the epidemic in the entire network.395

blueAs can be seen, the proposed control strategies based on the AFS and
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RFS indexes outperform even strategies in which the most connected patch is

selected for control. This is a nontrivial result that can be explained by the fact

that the indexes not only consider the connectivity of the patch, but also the

size of the population and the mobility of individuals.400

blueIn Figure (8), the maximum of the epidemic in the entire system is also

reduced using a strategy based on the proposed index. Thus, finding the place

where the control strategy will be optimal can also help controlling the global

peak of the epidemic.

blueIn Tables (3) and (4), we can observe some properties of the NWG405

and BAG networks respectively. Although the most connected patches have

a higher degree compared to the patches selected with the proposed indexes,

sometimes this is not the most adequate information to select the patch to

control. Something similar happens with the clustering measure, where both the

most connected patch and those selected with some of the indexes have relatively410

similar measures in NWG networks. In the case of a BAG network, although

this measure does differ from the cases indicated above, it does not provide good

information to indicate where the control measure should be applied. Although

the betweenness centrality measure indicates that the patches selected by the

indexes are not important in terms of network structures, we observe that control415

measures are more effective when is control is applied. That is, this is not a

good indicator to locate where the control measure should be applied. Finally,

when observing the topological properties of the patches randomly selected in

either NWG or BAG networks, it is evident from Figures (8) and (9), that

control will be more effective on the patches selected with the AFS and RFS420

indexes, even though these properties are similar to those of the patches selected

by the proposed indexes. This regards the measures as irrelevant indicators for

identifying the best location to apply the control measure in the NWG or BAG

networks.
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Figure 7: Time series of the SIR model (18)-(20) in a BAG and selecting the controlling patch

with the RFS index. Red line represents the patch selected with the RFS index and green line

the patch selected randomly. The dynamics without control are in blueFigures (a), (b) and

(c); by selecting the controlling patch with the RFS index are in blueFigures (d), (e) and (f);

and by selecting the controlling patch with a random strategy in blueFigures (g), (h) and (i).

6. Conclusion425

The concept of final size of the epidemic can be generalized to blueencom-

pass structured metapopulatons models bluein order to indicate the local sever-

ity blueof an epidemic instead of blueits global severity. Using a mathemat-

ical model, an implicit expression for the local final size of the epidemic was

found. We propose an iterative algorithm to estimate the epidemic final size in430

a networked population composed blueof patches connected by the mobility of

individuals. The local final size was used to propose control protocols. We use

the algorithm as a methodology to select a controlling patch from where blueto

apply a control action, bluethus reducing the cases of infected individuals in the

network. In this context, with the aim of bluehelping decision-makers to design435

preventive blue(instead of reactive) control actions, we introduce two indexes:

the absolute final size (AFS) index, which takes into account the total final size

on each patch, and the relative final size (RFS) index, which considers the local

population size. To evaluate the effectiveness of these indexes, we compare three
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Percentage of times that the AFS or RFS

index outperforms the other selection strategy.

Graph Index Comparing with patch Low mobility High mobility

selection strategy

NWG AFS random 96 % 59 %

NWG AFS highly connected 98 % 39 %

NWG RFS random 90 % 40 %

NWG RFS highly connected 95 % 19 %

BAG AFS random 87 % 53 %

BAG AFS highly connected 99 % 21 %

BAG RFS random 72 % 25 %

BAG RFS highly connected 94 % 3 %

Table 2: Percentage of times that a control strategy based on the proposed indexes was

better than another control strategy in an ensemble of 100 simulations. The first column is

the type of graph used in the simulations, the second column indicates whether Absolute Final

Size index (AFS) or Relative Final Size index (RFS) were used. The third column indicates

the alternative strategy to which the proposed strategy was compared. The random patch

strategy consists of selecting a random patch to apply the control. The most connected patch

strategy consists of selecting the highly connected path to applied the control. The fourth

column is the percentage of times the control strategy based on AFS or RFS outperforms

the alternative strategy when there is low mobility between patches. The fifth column is

the percentage of times the control strategy based on AFS or RFS index outperforms the

alternative strategy when there is high mobility between patches.

forms of selecting and controlling bluea patch: a selection guided by the AFS440

(or RFS) index, a random selection, and bluea selection of the most connected

patch. We bluealso consider two different algorithms to construct graphs: the

bluegraph proposed by M.E.J. Newman and D. Watts (NWG), and bluethe one

proposed by R. Albert and A.L. Barabási (BAG). The control strategies guided

by the AFS and RFS blueindexes are the bluemost appropriate when human445

mobility is low, as Table 2 blueshows. We hypothesize that low human mo-

bility enhances the effects of the network bluestructure in the propagation of

23



Figure 8: bluePeak epidemic size of the entire network for different values of control parameter

u. In Figures (a) and (b) we observe that the control applied in the patches selected by the

AFS and RFS indices better reduce the epidemic globally in the NWG network, while in

Figures (c) and (d) we show that something similar is true but this time when the network

has a BAG structure.

the disease, thus a strategy that takes this structure and demographic inhomo-

geneities into account outperforms the others. blueMoreover, the population

differences in each patch lose bluerelevance at high mobility, making simpler450

strategies bluethat ignore this factor more efficient, blueeven though the peak

of infected individuals in the entire network is not always reduced. Our results

show that bluein many cases, strategies based on bluethese indexes can reduce

the blueoutbreak impact on the most affected regions. blueHowever, recent ex-

periences have shown that strategies to reduce the epidemic globally are not455

always the most effective. This is bluedue to the fact that health services may

be bluelocally saturated. In this blueregard, since the AFS and RFS indexes

are local indicators of the disease’s severity, they can be employed to locate

patches where health systems are prone to be saturated. It is bluetherefore

reasonable to bluededuce that local health infrastructure is proportional, or at460

least related, blueto the local population. Thus, bluedespite the slightly better
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Figure 9: blueFinal size of the epidemic on the entire network for different values of control

parameter u. In Figures (a) and (b) we observe that the control applied in the patches selected

by the AFS and RFS indices better reduce the epidemic globally in the NWG network, while

in Figures (c) and (d) we show that something similar is true but this time when the network

has a BAG structure.

performance of the AFS index over the RFS index, the latter can be used to

identify locations with low health care capacity bluethat are in danger of being

overwhelmed.

We expect that more complex strategies that combine the AFS and RFS in-465

dexes could generate bluemore balanced strategies, where the number of infected

individuals in the most contagious regions can be reduced without neglecting

the most vulnerable localities due to their inability to take care for the sick. We

believe that a topic for future research could consider the analysis of a control

strategy that uses the AFS and RFS indexes bluein a combined form.470
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Structural properties of the NWG network in the low mobility scenario.

Selection Degree Clustering Betweeness

method centrality

AFS 5 0.451314286 0.060282091

Random (AFS) 5 0.452268254 0.057029889

M Connect (AFS) 7 0.344693651 0.134575073

RFS 5 0.446650794 0.056686845

Random (RFS) 5 0.44364127 0.058447134

M Connect (RFS) 7 0.340757143 0.134926258

Table 3: blueComparison of some structural properties between the patches selected with the

AFS and RFS indices, the patches chosen at random, and the most connected patch of the

network in a low mobility scenario. The results are based on the average of the sum of all the

runs for each value of the control parameter u = 0, . . . , 9 in an assembly of 50 simulations for

each value of u.

Appendix A.475

We present the proof of proposition (1), which uses standard results of the

real analysis in R and Rn of metric spaces in convergence of bounded monotonic

sequence.

Proof of Proposition 1. By induction, we prove that the sequence (Xm)m∈N,

with Xk+1 = F (Xk) and initial condition X0 = (1, · · · , 1)T ∈ Rn, ∀k > 1 and480

m ≥ 1, is monotonic increasing. At what follows, Xk ≤ Xk+1 means that its

corresponding entries satisfy xki ≤ x
k+1
i , for all i ∈ {1, . . . , n}.

Base step: We proof that X0 ≤ X1; where X1 = (x11, . . . , x
1
n)T ∈ Rn, with

x1i = Ni − Si(0)e−θ
0
i and θ0i = C1x

0
1 + · · ·+ Cnx

0
n, for i = 1, . . . , n.

Since {Cl}nl=1 is a set of positive constants and the initial condition is X0 =

(1, · · · , 1)T , the term θ0i satisfy:

θ0i = C1 · 1 + · · ·+ Cn · 1 > 0 =⇒ e−θ
0
i < 1 ,

=⇒ (Ni − Ii(0))e−θ
0
i < Ni − Ii(0) ,

=⇒ Ii(0) < Ni − (Ni − Ii(0))e−θ
0
i .
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Structural properties of the BAG network in the low mobility scenario.

Selection Degree Clustering Betweeness

method centrality

AFS 3 0.404329004 0.07302829

Random (AFS) 3 0.368893595 0.072928162

M Connect (AFS) 8 0.166626374 0.402325477

RFS 3 0.357562093 0.069504309

Random (RFS) 3 0.385520779 0.070306525

M Connect (RFS) 8 0.168111655 0.393976366

Table 4: blueComparison of some structural properties between the patches selected with the

AFS and RFS indices, the patches chosen at random, and the most connected patch of the

network in a low mobility scenario. The results are based on the average of the sum of all the

runs for each value of the control parameter u = 0, . . . , 9 in an assembly of 50 simulations for

each value of u.

But Si(0) = Ni − Ii(0) and Ii(0) ≥ 1; then

1 ≤ Ii(0) < Ni − Si(0)e−θ
0
i = x1i ∀i ∈ {1, . . . , n}.

Therefore, 1 = x0i ≤ x1i for all the entries of X0 and X1 respectively; then485

X0 ≤ X1.

Inductive hypothesis: Assume that Xk ≥ Xk−1.

Induction step: We will show that Xk+1 ≥ Xk. The inductive hypothesis

implies that xki − x
k−1
i > 0, for i = 1, . . . , n. Since {Cl}nl=1 is a set of positive

constants, the summatory of the terms Ci(x
k
i − x

k−1
i ) satisfy

C1(xk1 − xk−11 ) + · · ·+ Cn(xkn − xk−1n ) ≥ 0 ,

=⇒ C1x
k
1 + · · ·+ Cnx

k
n ≥ C1x

k−1
1 + · · ·+ Cnx

k−1
n ,

=⇒ θki ≥ θk−1i ,

=⇒ e−θ
k
i ≤ e−θ

k−1
i .

Multiplying −Si(0) and summing Ni both sides, we get

Ni − Si(0)e−θ
k
i ≥ Ni − Si(0)e−θ

k−1
i =⇒ xk+1

i ≥ xki .
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Therefore, Xk+1
i ≥ Xk

i .

Hence the sequence (Xk)k∈N is monotonic increasing. The above also implies

that every entry of Xk is positive, then, from blueEq. (15) we get that xki < Ni,490

∀i ∈ {1, . . . , n}; that is, each entry i of Xk is bounded superiorly by Ni, with

this we conclude that (Xk)k∈N converge.

Appendix B.

We propose a methodology to prove the existence and uniqueness of the

solution of Eq. (14) which implies that Ri(∞) is the limit of the iteration495

convergence of Eq. (17). The key idea of our methodology is to posing the

existence and uniqueness of the solution of Eq. (14) as an equivalent fixed point

problem.

By rewriting Eq. (14) as Si(0)e−θi = Ni −Ri(∞) > 0, for i = 1, . . . , n, and

defining the number of individuals who do not contract the disease in patch i as500

yi = Ni − Ri(∞), the system of equations (14) can be written as a fixed point

problem for the vector function g = (g1, . . . , gn) given by

gi(Y ) = αie
∑n
j=1 βij

yj
γj (B.1)

with

αi = Si(0)e
−

∑n
j=1 βij

Nj
γj , for i = 1, . . . , n .

That is, the system of equations (14) can be rewritten as a vector equation of

the form gi(Y ), with Y = (y1, . . . , yn); then, proving the existence of a solution505

of the system of equations (14) is equivalent to proving the existence of a fixed

point for gi(Y ). For this propose, the following theorem could be used:

Theorem Appendix B.1. Burden & Faires (2001)[Theorem 10.6] Let D =

{(y1, y2, . . . , yn)t| ai ≤ yi ≤ bi , for each i = 1, 2, . . . , n} for some collection of

constants a1, a2, . . . , an and b1, b2, . . . , bn. Suppose g is a continuous function

from D ⊂ Rn −→ Rn with the property that g(Y ) ∈ D whenever Y ∈ D. Then
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g has a fixed point in D.

Moreover, suppose that all the component functions of g have continuous partial

derivatives and a constant q < 1 exists with∣∣∣∣∂gi(Y )

∂yj

∣∣∣∣ ≤ q

n
, whenever Y ∈ D,

for each j = 1, 2. . . . , n and each component function gi. Then the sequence

(Y (k))∞k=0, defined by an arbitrarily selected Y (0) in D and generated by

Y (k) = g(Y (k−1)), for each k ≥ 1

converges to the unique fixed point y∗ ∈ D and

‖ y(k) − y∗ ‖≤ qk

1− q
‖ y(1) − y(0) ‖ .

When we calculate the Jacobian matrix of the functional gi(Y ) we get:

Jg(Y ) = Ag(Y ), (B.2)

where A is a matrix whose elements are:

ail =

(
n∑
k=1

βkpikplk
γlwk

)
. (B.3)

Then, by imposing or finding the adequate conditions on the elements of the

matrix A so the hypotheses of the Theorem (Appendix B.1) are satisfied, we

could set the set parameter values that guarantee the existence and uniqueness510

of a fixed point and thus have a unique solution of the blueEq. (14).

We consider that this problem requires meticulous analysis worth of inves-

tigation in future research works.
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