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Renewal stochastic processes with correlated events: Phase transitions along time evolution
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We consider renewal stochastic processes generated by nonindependent events from the perspective that their
basic distribution and associated generating functions obey the statistical-mechanical structure of systems with
interacting degrees of freedom. Based on this fact we look briefly into the less-known case of processes that
display phase transitions along time. When the density distribution ψn(t) for the occurrence of the nth event at
time t is considered to be a partition function, of a “microcanonical” type for n “degrees of freedom” at fixed
“energy” t , one obtains a set of four partition functions of which that for the generating function variable z and
Laplace transform variable ε, conjugate to n and t , respectively, plays a central role. These partition functions
relate to each other in the customary way and in accordance to the precepts of large deviations theory, while the
entropy, or Massieu potential, derived from ψn(t) satisfies an Euler relation. We illustrate this scheme first for an
ordinary renewal process of events generated by a simple exponential waiting-time distribution ψ(t). Then we
examine a process modeled after the so-called Hamiltonian mean-field model that is representative of agents that
perform a repeated task with an associated outcome, such as an opinion poll. When a sequence of (many) events
takes place in a sufficiently short time the process exhibits clustering of the outcome, but for larger times the
process resembles that of independent events. The two regimes are separated by a sharp transition, technically of
the second order. Finally we point out the existence of a similar scheme for random-walk processes.
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I. INTRODUCTION

A large class of stochastic processes are renewal processes
[1,2]. This class of sequences are generally used to model
independent identically distributed (iid) occurrences. The
renewal processes are concerned with the times of substitution
of components that are replaced as soon as they break down.
Here we recall [3,4] that this basic type of stochastic process
possesses all the elements of a statistical-mechanical system
and therefore can be couched in this language and benefit
from well-established methods and applications developed for
the study of systems with many degrees of freedom. The
common iid process maps into the noninteracting case, but
the most important potential application of this equivalence is
to the generalization of renewal processes to correlated events,
where the large body of knowledge accumulated in the study of
(short- or long-range) interacting particle or spin systems can
find interesting guidelines or clear-cut analogies for renewal
processes. One particular property that we present here is the
occurrence of phase transitions along time evolution.

The layout of the article is as follows. We start in Sec. II with
a concise description of a renewal process that involves the
transformation into Laplace space of the relevant probability
density functions and the use of generating functions [5]. In
Sec. III we make explicit the statistical-mechanical ensemble
structure, with only two pairs of conjugate variables, of the
renewal process and illustrate the form that the partition
functions take for the simple case of an exponentially decaying
waiting-time distribution density. In Sec. IV we apply the
saddle-point approximation in the evaluation of the partition
functions and show that the required Legendre transform
structure, the associated equations of state, and the Euler
relation [6] are present in the formalism for the renewal
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process. In Sec. V we consider a specific example of a
renewal process with correlated events that exhibits a phase
transition when the time variable increases. The renewal
process is representative, for instance, of an opinion poll and
is constructed to be equivalent to the statistical-mechanical
Hamiltonian mean-field (HMF) model of interacting particles
[7–9]. Finally in Sec. VI we summarize and discuss our results.

II. BASICS OF RENEWAL PROCESSES

Technically, an ordinary renewal process is a sequence of
partial sums of iid positive random variables. This process
may be thought of as a sequence of points in time when the
lifetimes of some objects of the same type ends and they are
replaced by new ones. The renewal process counts the number
of renewals in the interval [0,t), hence such a renewal counting
process is a random piecewise constant function. A convenient
analytical procedure to determine the properties of this kind
of process is that of Montroll [5]. It is resumed as follows:
Let ψ(t) be the (normalized) waiting-time distribution density
for a single event and ψn(t) the distribution density for the
occurrence of the nth event at time t . For iid events these
densities are linked via

ψn(t) =
∫ t

0
dt ′ ψ(t − t ′) ψn−1(t ′), n > 1, (1)

or in Laplace space by

ψ̂n(ε) = [ψ̂(ε)]n, (2)

where

ψ̂(ε) =
∫ ∞

0
dt exp(−εt) ψ(t) and

ψ̂n(ε) =
∫ ∞

0
dt exp(−εt) ψn(t). (3)
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We shall consider throughout this paper time variables to be
dimensionless. A generating function for the ψn(t) is defined
via the z transform

ψ(t ; z) ≡
∞∑

n=1

ψn(t) zn, (4)

so that

ψ̂(ε; z) ≡
∫ ∞

0
dt exp(−εt) ψ(t ; z) =

∞∑
n=1

ψ̂n(ε) zn. (5)

Use of Eq. (2) turns ψ̂(ε; z) into a geometric series that when
convergent becomes

ψ̂(ε; z) = [ψ̂(ε) z]/[1 − ψ̂(ε) z]. (6)

The functions ψn(t) and ψ(t ; z) are recovered from ψ̂n(ε)
and ψ̂(ε; z), respectively, via inverse Laplace and inverse
z transforms. The average time between events, or period, T

is given by the first moment of ψ(t),

T ≡
∫ ∞

0
dt t ψ(t) = − d

dε
ln ψ̂(ε)

∣∣∣∣
ε=0

< ∞, (7)

whereas the average number of events 〈n(t)〉 of a renewal
sequence when the last event occurs at time t [10] is

〈n(t)〉 ≡
∑∞

n=1 n ψn(t)

ψ(t ; 1)
= z

d

dz
ln ψ(t ; z)

∣∣∣∣
z=1

. (8)

Therefore, if the most common calculation aim is to
determine ψn(t) or 〈n(t)〉 for any given waiting-time ψ(t)
distribution, use of ψ̂(ε) in Eqs. (2) and (6) followed by
inverse transformation is an expedient method.

Here we recapture [3,4] a precise interpretation of the
above expressions while calling attention to the fact that it
is not restricted to iid processes. That is, the functions ψn(t),
ψ̂n(ε), ψ(t ; z), and ψ̂(ε; z) can be seen to be partition functions
associated with an equilibrium statistical-mechanical system
of n degrees of freedom arranged in configurations with energy
measured by a time t . Below we detail that in the large t

and n limits these functions can be evaluated via the saddle-
point approximation and that this central statistical-mechanical
property leads to equations of state and entropies or free
energies related via Legendre transforms, where the variables
ε and μ ≡ ln z appear to be conjugate to the variables t and n,
respectively.

III. STATISTICAL ENSEMBLES FOR RENEWAL
PROCESSES

We observe that Eq. (5), ψ̂(ε; z) = ∑∞
n=1 ψ̂n(ε) zn, has

the form of the expression for the grand canonical partition
function of a thermal system if we were to consider that
the number of events n represents the number of particles
or degrees of freedom, ε the inverse temperature, and z the
activity, and therefore ψ̂n(ε) plays the role of the canonical
partition function. Having considered that ψ̂n(ε), the Laplace
transform of ψn(t) in Eq. (3), plays this role, the formal
analogy can be extended by identification of ψn(t) as the
microcanonical partition function where t is the energy.

Further, the generating function ψ(t ; z) would then be seen as
the partition function corresponding to an ensemble of fixed
energy t and activity z. [For iid random variables ψ̂n(ε) is given
by Eq. (2), and the corresponding thermal system is made
of identical noninteracting degrees of freedom with ψ̂(ε) the
canonical partition function per degree of freedom.]

The scope of this analogy can be further assessed by
defining the following entropies or Massieu potentials [6]:

Sε,μ ≡ ln ψ̂(ε; z), Sε,n ≡ ln ψ̂n(ε),

St,μ ≡ ln ψ(t ; z), St,n ≡ ln ψn(t), (9)

where we have introduced the “chemical potential” μ ≡ ln z.
(These quantities may be negative since the arguments of the
logarithms may be less than unity. Notice that these arguments
are probability densities or their Laplace and/or z transforms,
while in ordinary statistical mechanics the arguments are
configuration numbers or their transforms.) If for large n a
thermodynamic limit or a large deviations property [11] arises,
then these potential functions would be related via Legendre
transforms involving the pairs of conjugate variables (n,μ) and
(t,ε) and mediated via the corresponding equations of state.
An Euler relation of the type

St,n = tε − nμ (10)

would hold, and attention should be paid in the evaluation of
Sε,μ = ln ψ̂(ε; z) as a cursory inspection of repeated Legendre
transforms would imply Sε,μ = St,n − tε + nμ = 0. Below
we show that Eq. (10) holds with a nonzero Sε,μ.

To help us examine the validity of this formal structure,
in the following section we determine the above partition
functions for the particular iid random variable case of
an exponential waiting-time density ψ(t) = b exp(−bt). One
obtains

ψ̂(ε; z) = bz(b + ε − bz)−1, (11)

ψ̂n(ε) = bn(b + ε)−n, (12)

ψ(t ; z) = bz exp(−bt + btz), (13)

and

ψn(t) = (bt)n

n!
exp(−bt), (14)

where we recognize in the last equation the distribution density
of a Poisson process.

IV. ANALOGY WITH STATISTICAL MECHANICS

The asymptotic solution of ψ̂n(ε) for n >> 1 can be found
by use of the steepest-descent approximation of the inverse z

transform of ψ̂(ε; z):

ψ̂n(ε) = 1

2πi

∮
dz exp{(n − 1)[− ln z

+ (n − 1)−1 ln ψ̂(ε; z)]}. (15)

One obtains

ln ψ̂n(ε) � −(n − 1) ln z0 + ln ψ̂(ε; z0), (16)
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where z0 can be eliminated in favor of n via the steepest-
descent condition

n − 1 = z
d

dz
ln ψ̂(ε; z)

∣∣∣∣
z=z0

. (17)

It is then possible to write

ψ̂n(ε) = exp Sε,n, (18)

where Sε,n = ln ψ̂n(ε) is the Legendre transform Sε,n =
−(n − 1)μ0 + Sε,μ0 of Sε,μ0 = ln ψ̂(ε; z0). For the exponential
waiting-time density ψ(t) = b exp(−bt) this transformation
leads to the equation of state

n − 1 = 1 + bz0(b + ε − bz0)−1 (19)

and to the Massieu potential

Sε,n = ln

[
bn−1

(b + ε)n−1

(n − 1)n−1

(n − 2)n−2

]
. (20)

In the limit n → ∞ Eq. (12) is recovered.
Similarly, the asymptotic solution of ψn(t) for n >> 1 is

obtained with the use of the steepest-descent approximation of
the inverse Laplace transform of ψ̂n(ε),

ψn(t) = 1

2πi

∫ c+i∞

c−i∞
dε exp{n[ετ + ln ψ̂(ε)]}, (21)

where τ ≡ t/n. One obtains

n−1 ln ψn(nτ ) � ε0τ + ln ψ̂(ε0), n >> 1, (22)

where ε0 can be eliminated in favor of τ via the steepest-
descent condition

τ = − d

dε
ln ψ̂(ε)

∣∣∣∣
ε=ε0

. (23)

In taking the limit n → ∞ also t → ∞ but τ is kept finite. We
can therefore write

ψn(t) = exp St,n, (24)

where St,n = ln ψn(t) is the Legendre transform St,n =
−tε0 + Sε0,n of Sε0,n = ln ψ̂n(ε0). For exponential waiting
times ψ(t) = b exp(−bt) this transformation leads to the
equation of state

t = n(b + ε0)−1, (25)

and to the Massieu potential

St,n = ln[(btn−1)n exp(n) exp(−bt)]. (26)

Therefore Eq. (14) is recovered in the limit n → ∞ [when we
notice that the Stirling approximation of the factorial is part of
Eq. (26)].

Last, following an analogous procedure, the asymptotic
form for ψ(t ; z) for n >> 1 is given by

ψ(t ; z) = exp St,μ, (27)

where the Massieu potential St,μ for ψ(t) = b exp(−bt),

St,μ = ln[btz exp(1 + bt + btz)], (28)

is obtained as the Legendre transform St,μ = tε0 + Sε0,z of
Sε0,μ = ln ψ̂(ε0; z) with

t = (b + ε0 − bz)−1. (29)

Equation (28) is consistent with Eq. (13) in the limit n → ∞.
To make explicit the observance of the Euler relation

Eq. (10) we note that the inverse Legendre transform that
yields Sε,μ from Sε,n0 , Sε,μ = (n0 − 1)μ + Sε,n0 , requires

μ = − d

d(n − 1)
n ln ψ̂(ε)

∣∣∣∣
n=n0

= − ln ψ̂(ε), (30)

so that Sε,n0 = n0 ln ψ̂(ε) = −n0μ and Sε,μ = (n0 − 1)μ +
Sε,n0 = −μ. This leads to

St0,n0 = t0ε − (n0 − 1)μ + Sε,μ = t0ε − n0μ. (31)

We note that the existence of the Euler relation for a
system with only two pairs of conjugate variables does not
imply the vanishing of the thermodynamic potential, Sε,μ,
associated with two consecutive Legendre transforms of the
basic potential, St,n, a homogeneous function of order one
in both variables t and n [6]. Notably, the partition function
ψ̂(ε; z) associated with the variables ε and μ remains a
fundamental and most useful quantity for the description of
the renewal process.

V. AN EXAMPLE OF A RENEWAL PROCESS WITH
CORRELATED EVENTS

As an illustration of how developments in the statistical
mechanics of interacting particle or spin systems may have
meaningful translations to renewal processes, we present here
features of a renewal process with correlated events. We take
inspiration from the so-called Hamiltonian mean-field (HMF)
model [7–9] to point out the occurrence of phase transitions
along time evolution.

Consider a sequence of events, each of which, besides
taking place at a given time t , assigns values to two scalar
quantities τ and θ , the first within the time interval 0 � τ � t

taken by the event, and the second within a fixed finite interval,
say, 0 � θ � 2π . For instance, the process may represent an
agent (or agents) that performs a repeated task with outcome
(τ,θ ) that is not independent of those for all the previous
events. A string of such n events is described by the sequence
of triplets [(t1; τ1,θ1), . . . ,(tn; τn,θn)]. The two collections of
values (τ1, τ2, . . . , τn) and (θ1, θ2, . . . , θn) are used to construct
two additional time variables, Tn, the “idle” time, and Wn,
the “active” time, respectively, that together comprise the total
time taken by the sequence of n events, i.e.,

tn = Tn + Wn. (32)

The idle time Tn is simply given by

Tn =
n∑

i=1

τi, (33)

whereas the active time Wn measures the dispersion of
the values (θ1, θ2, . . . , θn) over the unit circle, being large
when these are spread out over (0,2π ) and small when they
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concentrate around a given θ . Although there are many options
to define Wn, for definiteness we chose it to be determined by

Wn = 1

2n

n∑
i,j=1

[1 − cos(|θi − θj |)] � t, (34)

where all pairs (θi , θj ) are equally considered. (We recall
that time variables are considered dimensionless.) Clearly, the
condition (32) imposes a restriction in the possible values
of the sequences (τ1, τ2, . . . , τn) and (θ1, θ2, . . . , θn). As
a more specific illustration of this kind of process let us
suppose there is an opinion poll organization that sends an
agent (or group of pollsters) to take a survey that consists of a
succession of n completed questionnaires obtained in the time
interval (0,t). Each respondent has a tag θ that quantifies a
characteristic of the population surveyed, such as age, race,
home environment, etc., and therefore Wn reflects the degree
of coverage bias, in, for instance, the consideration of young
voters, minorities, or rural areas. The time τ associated with
each respondent measures wasted time in collecting opinions,
since some people do not answer calls, or refuse to answer
the poll, or do not give candid answers, and consequently Tn

represents the extent of nonresponse bias.
The probability density of occurrence of the nth event at

time t with outcome (θ,τ ), ψn(t ; τ,θ ), is evaluated in terms of
the statistics of occurrence of the previous n − 1 events. This is
best prescribed in terms of the Laplace transform of ψn(t ; τ,θ )
with respect to t , ψ̂n(ε; τ,θ ). Specifically, the renewal process
is given by

ψ̂n(ε; τ,θ ) ≡ exp[−ε〈δtn(τ,θ )〉n−1], (35)

where the average 〈· · ·〉n−1 is performed over all possible
values of (τ1,θ1), . . . ,(τn−1,θn−1), and

δtn(τ,θ ) = Tn + Wn − Tn−1 − Wn−1. (36)

The analogy with the HMF model becomes evident when
it is seen that Eq. (35) corresponds to Widom’s particle
insertion formula when applied to the thermal system (for
vanishing chemical potential μ) [12,13]. The roles of the
number of particles, their positions (in the unit circle), inverse
temperature, energy, kinetic energy, and potential energy of
the HMF model, are given, respectively, by n, θi , ε, tn, Tn,
and Wn. (With no loss of generality a coupling constant in the
potential energy term of the ferromagnetic HMF model has
been set equal to unity.) In our notation, the Helmholtz free
energy of the HMF model in the limit n → ∞, obtained via
the saddle-point approximation [7–9], is

−εψ̂n(ε) = −1

2
ln

(
ε

2π

)
− ε

2

+ max
x

[
− εx2

2
+ ln 2πI0(εx)

]
, (37)

where the auxiliary variable x satisfies

x = ε
I1(εx)

I0(εx)
, (38)

and where Ii(y) is the modified Bessel function of order i.
As has been reported [7–9], the HMF model exhibits two
equilibrium phases, indicated by the possible solutions of

Eq. (38). When ε < εc = 2 the variable x, identified as the
model’s magnetization M , vanishes, but x is nonzero for
ε > εc, increasing gradually as ε increases and reaching unity
as ε → ∞. These properties imply that the mean active time
〈Wn〉, the average of Wn over all sequences (τ1,θ1), . . . ,(τn,θn),
is given by 〈Wn〉 = (1 − x2)n/2, and that the relationship
between the time t and the amplitude ε (the caloric equation
for the HMF model) reads

t = n

2ε
+ 〈Wn〉 (39)

[7–9]. Thus, 〈Wn〉 displays a fixed maximum value 〈Wn〉 =
n/2 for ε < εc = 2, whereas it decreases and approaches zero
as ε → ∞. The two-phase behavior and its transition at εc is
reflected by the θ dependence of ψ̂n(ε; τ,θ ) when n 	 1. For
small ε the distribution is uniform in θ , but when ε > εc it
becomes peaked around a given (although arbitrary) value of
θ = φ. As we shall see below this feature is preserved in the
distribution for the original variable t ; i.e., there is a critical
time tc above which ψn(t ; τ,θ ) is uniform in θ and below
which it is peaked around a given θ = φ. The τ dependence of
ψ̂n(ε; τ,θ ) has an exponential form (Gaussian if written for the
“momentum” p = ±√

2τ ) for all ε. When n → ∞ Eq. (35)
leads to [9]

ψ̂n(ε; τ,θ ) =
√

ε

2π
exp (−ετ )

1

2πI0(εx)
exp(εx · θ ), (40)

where x = (x cos φ,x sin φ) and θ = (cos θ, sin θ ). The corre-
sponding expression for ψn(ε; τ,θ ), the inverse Laplace trans-
form of Eq. (40) obtained via the saddle-point approximation,
is

ψ(t ; τ,θ ) � C exp (x2 − 1/2)

(
x2 − 1/2

t − τ + x · θ

)1/2

×
{
I0

[
(x2 − 1/2)x

t − τ + x · θ

]}−1

, (41)

where C is a normalization constant. Following Refs. [8,9]
we evaluated the dependence of 〈Wn〉 /n on ε after solving
numerically Eq. (38). Subsequently we used this in Eq. (39) to
obtain the dependence of t/n on ε (shown in Fig. 1, where the
two-phase feature is evident). This allowed us to determine the
time dependence of the mean active time per event, 〈Wn〉 /n,
shown in Fig. 2, where it is observed that this quantity increases
monotonically with t until it saturates at a value of 1/2 at tc
and remains constant thereafter. Since 〈Wn〉 /n measures the
average spread of the tags θi , i = 1, . . . ,n, we conclude that for
short times t < tc this spread falls below its maximum, whereas
for larger times t > tc the maximum spread is always assured.
In terms of the opinion poll sets of n samples taken inside time
intervals t < tc suffer from coverage bias but are as free of it
as it is possible when the set of samples are collected within
time intervals t > tc. This feature is corroborated in Fig. 3,
where we show the θ dependence of ψn(t ; τ,θ ), t < tc, as
given by Eq. (41). When t > tc the density is flat, independent
of θ . Interestingly, sequences of n events that take place within
time intervals t < tc are correlated while those for t > tc are
not. When 〈Wn〉 /n < 1/2 there is on average no sufficient
time for the pollster to move to other locations or to switch to
different population groups; there is a repetition, or ordering
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∋
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n

FIG. 1. Dependence of t/n, t,n 	 1, on the Laplace variable ε

for the renewal process model of correlated events designed to be
analogous to the HMF model. The figure is equivalent to the caloric
equation of the HMF model and shows the two-phase behavior
described in the text.

in the set of samples. This generates a coverage bias. Similar
arguments can be elaborated in terms of the average idle time
〈Tn〉 /n = 1/(2ε) that in the example of an opinion poll is
reflected by the presence of nonresponse bias. A measure
of the correlations induced for t < tc is given by the time
derivative of 〈Wn〉 /n (one of several response functions) as
shown in Fig. 4. For t > tc the HMF model behaves effectively
as an ideal gas, and, as we can see from Figs. 3 to 4 , the
renewal process conforms to that of independent events for this
regime.

Thus, by construction our opinion poll renewal process
acquires all the properties of the HMF model, mainly its
second-order phase transition that separates two different
regimes. That is, for small t/n strings of n events cluster
around a given value of the tag θ symptomatic of an inefficient
poll, but for larger t/n the events display a uniform dispersal of
θ , suggesting the proper working of the sampling process. The
clustering of the tag θ when ε > εc is expressed by the Laplace
transform variable ε as it measures the width of ψ̂n(ε; τ,θ ).
There are other known interesting properties of the HMF
model such as the occurrence of long-lived, or quasistationary,
states for temperatures below the transition temperature, when
the system displays features of the high-temperature phase
uniform in θ [8,9]. These states would manifest also in the
renewal process as sequences of active times 〈Wn〉/n larger
than those shown in Fig. 3 for some range of values t < tc
close to tc.

VI. SUMMARY AND DISCUSSION

We have made use of the statistical-mechanical interpre-
tation of the basic elements that constitute the theory of

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t n
W

n
n

FIG. 2. Dependence of the active time per unit event 〈Wn〉/n for
n 	 1 on t/n for the renewal process model of correlated events
designed to be analogous to the HMF model. The figure shows the
two-phase behavior described in the text.

renewal processes. Our purpose for recapturing this analogy
is to facilitate the application of useful techniques and
approximations built up and tested through a large number
of studies of thermal systems. Potentially these methodologies
can have important effects in the study of complex systems
that originate outside ordinary statistical-mechanical physical
systems, in a variety of fields, in ecology, economy, sociology,
etc., where stochastic processes such as that for the renewing
of events often arise. The known parallels between renewal
processes and statistical mechanics are an indication of the
general, Laplace, and Legendre transform structure of large
deviations theory [11]. The saddle-point approximation is
central to this theory where a probability Pn obeys the form
Pn � exp(−ns) for n 	 1 with s a positive quantity indepen-
dent of n named the rate function [11]. Clearly, the Massieu

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

θ

ψ
n

FIG. 3. Dependence of ψn(t ; τ,θ ), n 	 1, on the θ when t < tc.
When t > tc the function ψn(t ; τ,θ ) is θ -independent.
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FIG. 4. Dependence of ∂(〈Wn〉/n)/∂(t/n), t,n 	 1, on t/n.

potentials Sε,n and St,n in Eqs. (18) and (24), respectively, when
written as Sε,n = −ns(ε) and St,n = −ns(τ ) comply with this
property. Thus we could describe renewal processes, familiar
in the probability theory domain, in this alternative language.
Nevertheless, because of our stated purposes we have used
a statistical-mechanical language. We have pointed out the
equivalence with large deviation theory when appropriate.
As a difference from the present statistical study of single
sequences of correlated events, sets of renewal sequences
dependent on each other (when uncoupled the sequences
are made of uncorrelated events) have been analyzed with

the use of multivariate distributions. For a recent application
see Ref. [14].

To exemplify the use of the parallelism between renewal
processes and statistical mechanics we devised a model
renewal process with correlated events that displays a phase
transition as time progresses. When n events take place within
a relatively short time interval their correlation is evident,
whereas for longer time intervals their statistical properties
are identical to those of independent events, and there is
a sharp transition between the two regimes. The renewal
process ensemble structure facilitated the description of this
model that we chose to portray, among several possible
options, in terms of a polling process, and with characteristics
taken straightforwardly from a well-known particle or spin
statistical-mechanical model, the HMF model [7]. There are
examples of phase transitions occurring along time evolution in
deterministic (as opposed to stochastic) systems. See Ref. [15]
and references therein.

We close by mentioning that correlated random-walk
processes on regular lattices, as described with the help of the
Fourier transform and generating functions [5], and for both
discrete- and continuous-time distributions, can be couched
into a partition function language just as we have shown
here for correlated renewal processes. Due to the sign of
the integers used to locate the walker in lattice space, the
ensuing statistical-mechanical formalism differs also from
the canonical type, basically by using the velocity instead
of the kinetic energy as the primary variable that describes
interacting particles.
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