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Abstract

Coexistence of apparently similar species remains an enduring paradox in ecology.

Spatial structure has been predicted to enable coexistence even when population-level

models predict competitive exclusion if it causes each species to limit its own

population more than that of its competitor. Nevertheless, existing hypotheses conflict

with regard to whether clustering favours or precludes coexistence. The spatial

segregation hypothesis predicts that in clustered populations the frequency of intra-

specific interactions will be increased, causing each species to be self-limiting.

Alternatively, individuals of the same species might compete over greater distances,

known as heteromyopia, breaking down clusters and opening space for a second

species to invade. In this study we create an individual-based model in homogeneous

two-dimensional space for two putative sessile species differing only in their

demographic rates and the range and strength of their competitive interactions. We

fully characterise the parameter space within which coexistence occurs beyond

population-level predictions, thereby revealing a region of coexistence generated by a

previously-unrecognised process which we term the triadic mechanism. Here

coexistence occurs due to the ability of a second generation of offspring of the rarer

species to escape competition from their ancestors. We diagnose the conditions under

which each of three spatial coexistence mechanisms operates and their characteristic

spatial signatures. Deriving insights from a novel metric — ecological pressure — we

demonstrate that coexistence is not solely determined by features of the numerically-

dominant species. This results in a common framework for predicting, given any pair of

species and knowledge of the relevant parameters, whether they will coexist, the

mechanism by which they will do so, and the resultant spatial pattern of the community.

Spatial coexistence arises from complementary combinations of traits in each species

rather than solely through self-limitation.
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Introduction

It is a common maxim in ecology that in order for two species to coexist, each

must limit the growth of its own population more than that of the other [1]. This

prediction can be intuitively derived from an expectation that individuals of the

same species will compete more strongly for identical resources. Such niche-based

models of coexistence have substantial empirical and theoretical support [2].

Nevertheless, numerous examples exist where an apparently weaker species

persists alongside a stronger competitor [3].

Competitive interactions among individuals occur over limited distances. For

sessile organisms, such as plants or corals, the degree of competition experienced

by any individual is influenced principally by others in its immediate

neighbourhood [4, 5]. Furthermore, restricted dispersal makes it inevitable that

populations and communities will have spatial structure [6]. Traditional

ecological studies have tended to focus on the characteristics of entire

populations, such as average sizes, growth rates, or density, and it is only in recent

times that the importance of spatial patterning of individuals has been fully

appreciated. When localised interactions outweigh population-level effects, levels

of competition averaged across individuals become uninformative. Spatial

organisation can therefore have major implications for the emergent properties of

natural systems, including the coexistence of species [7].

We define spatial coexistence as occurring when the spatial structure of a

community permits multiple species to persist indefinitely even when this would

not be possible were all individuals to experience average environmental

conditions [8]. There are many means by which this can occur, including trade-

offs among species in rates of colonisation, competition and longevity [9], or

through variation in environmental quality in space or time [10, 11]. In this study

we seek the minimum conditions for two species to coexist in a uniform

environment without the need for strict trade-offs.

Spatial organisation can either promote or preclude coexistence, though the

former is expected when it causes competition within species to exceed that

between. There are two means by which this might occur. The first is frequency-

based: aggregation within species increases the frequency of intra-specific

interactions relative to inter-specific, termed the spatial segregation hypothesis

[12]. Multiple experimental studies have demonstrated that clustering of species

enables coexistence, especially of weaker competitors [13–17]. The second is

distance-based: the scale over which individuals of the same species interact might

be greater than between species, a process known as heteromyopia [18].

Individuals of the dominant species become spread out, creating interstices in

their spatial pattern which can be colonised by another species. This implies that it

is the breakdown of aggregations which promotes coexistence. A debate has

therefore developed surrounding the question of whether aggregation favours or

impedes coexistence [18–20].

A common feature of most studies to date is that the problem posed is

invariably how an inferior competitor is able to persist. In contrast, we believe that
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coexistence should be seen as a two-sided process; understanding the structure of

a mixed community requires us to integrate the complementary forces driving the

population dynamics of all participants.

In this study we generate a novel individual-based model for two-species

competition in a uniform environment in which our species can differ in their

demographic rates (birth, death, reproduction) and the intensity and range of

competition. We explore the parameter space representing a wide range of

potential species and show that the spatial structure of communities allows

coexistence to occur even when population-level predictions suggest it to be

impossible. We thereby reconcile existing theories within a common framework

and reveal a previously unrecognised mechanism through which spatial structure

enables the coexistence of similar species. Through this we demonstrate that

spatial coexistence depends on complementary traits rather than self-limitation.

Materials and Methods

Simulation model

Our study is based upon a stochastic individual-based model (IBM) representing

a notional community in which two sessile species with overlapping generations

occupy a uniform environment. The code can be accessed as a git repository

hosted at https://github.com/jorgevc/IBM-ecology-simulator.git. Individuals

occur at sites determined by a two-dimensional grid (x, y co-ordinates). When

reproducing it is assumed that individuals are limited in their ability to disperse

offspring. Similarly, competition among individuals for resources only takes place

within a fixed radius. The spatial patterns that arise are therefore a direct

consequence of the dispersal of individuals and their interactions rather than any

external driver. The parameters of the model are defined in Table 1. To develop

the system we used standard procedures employed in simulations of statistical

mechanics [21].

The arena was a two-dimensional square lattice of 150 units, giving a total

22,500 sites, with periodic boundaries forming a torus to prevent inward

propagation of edge effects. Birth and death events took place in continuous time.

The starting density of each species in the lattice was r1~r2~0:2 (the final

output in the stationary state is not affected by this value). A relatively high

starting density was chosen since invasibility was not used as the coexistence

criterion within this study; an assessment of the implications of this distinction is

reserved for the Discussion.

Initial individuals were distributed according to an homogeneous Poisson

process (complete spatial randomness). In order to compensate for stochastic

fluctuations due to the finite size of the system we present results based on

ensemble averages. Each ensemble is composed of 20 realisations. The averages

therefore have fluctuations equivalent to those of a single simulation performed

on a lattice of 22,5006205450,000 sites. The use of discrete space in our

simulations is an optimisation to increase computational speed; results would not
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differ for ‘continuous’ space, which in modelling terms effectively means a lattice

of higher resolution.

The frequency with which an individual belonging to species i makes an

attempt to produce an offspring is given by the birth rate bi. The site occupied by

the new offspring is chosen with equal probability among all sites that are closer or

equal to the distance s
(b)
i from its parent. If the randomly chosen site is already

occupied then production of an offspring is prevented. Death of individuals can

occur due to both intrinsic and extrinsic causes and therefore requires more than

one parameter. The intrinsic death rate of species i, that which would occur in the

absence of any competition, is given by di. Inter-specific competition among

individuals is defined as ci,j which is the rate at which an individual of species j

acquires resources, potentially resulting in the death of an individual of species i.

It is therefore an active process, expressing the ability of an individual to deplete

resources and thereby kill (at least indirectly) its neighbours. This rate is uniform

in space but with a maximum radius given by s
(c)
i,j . This means that an individual

of species j selects with equal probability a site within a distance s
(c)
i,j with a rate ci,j.

If the chosen site is occupied by an individual of species i, that individual dies. The

intra-specific competition parameter is a special case equivalent to ci,i. It is the rate

at which an individual of species i acquires resources, potentially resulting in the

death of another individual of species i, uniform in space with a maximum radius

s
(c)
i,i . This treatment of interference competition as an active process differs from

that more commonly used whereby a focal individual’s likelihood of mortality is a

function of the number of neighbours, in other words a passive process. The two

treatments are mathematically equivalent and can be related by a similarity

transformation. For a detailed discussion of the choice of active competition in

this study and its implications see S1 Note.

An individual was chosen at random and the probability of a birth or death

event calculated according to the corresponding rates. A computing time step was

counted each time that on average all individuals of the system had been updated,

and a generation was defined as being when on average all individuals had

attempted to reproduce once. The simulation was automatically stopped when the

change in total community density (r1zr2) fell below 5|10{5 in 20 time steps.

This arbitrary criterion was established during preliminary investigations to be a

Table 1. Parameter definitions from the stochastic individual-based model used to develop the simulations.

Parameter Definition

ri Density of species i measured as proportion of occupied sites

bi Birth rate of species i

s
(b)
i

Dispersal radius s of new offspring of species i

di Intrinsic death rate of species i

ci,j Competition rate by which species j kills species i

s
(c)
i,j

Competition radius within which species j can kill species i

doi:10.1371/journal.pone.0114979.t001
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robust indicator of long-term outcomes, ensuring that we were close to the

stationary state while reducing the risk of extinctions due to finite size fluctuations

[22]. See S1 Fig. for an example of population density changes over time.

We obtained phase diagrams of the coexistence region for systems in which

interactions occurred either over long or short distances, or over relatively longer

distances for either the common or rare species. This was accomplished by

running multiple simulations beginning with values of c2,1~0, d2~0:25 and then

with independent increments of 0.01 in each until c2,1~0:52, d2~0:52. All other

parameters remained fixed (b1~b2~1, d1~0:4, c1,1~c2,2~0:2, c1,2~0). This

represents a total of 28,080 simulations for each composite phase diagram.

Parameter values were chosen based on prior investigation which had determined

that they encompassed the full range of potential outcomes within this system. We

found the stationary densities of both species for each set of values and note where

they do not fall to zero for either species, i.e. both species are maintained

indefinitely. The phase diagrams obtained by keeping {c2,1, d2} fixed and altering

other parameters have similar properties to those presented here, which are

therefore used to illustrate a more general set of principles. Invasion analyses were

conducted for a subset of parameter combinations and in all cases confirmed the

outcome.

To convey the underlying spatial pattern of individuals we present the pair

correlation function gi,j(r), a robust descriptor of spatial pattern structure [23, 24].

It is obtained from the first derivative of Ripley’s K(r) function [25], which gives

the expected number of points within a distance r summed across all points in the

pattern and divided by its average density l. It can be estimated as

K̂(r)~
Sn

i~1S
n
j~1Iij(r)

nl
ð1Þ

where r is the distance from each point i, Iij(r) is 1 for each j within r of i and

otherwise 0, and n is the total number of points. This provides a cumulative

function which can be converted to the pair correlation function g(r)~
K ’(r)

2pr
. In

ecological terms it describes the ‘plant’s-eye perspective’ (sensu [5]) of

neighbourhood density at increasing distance r. If densities are independent at a

given distance, gi,j(r)<1. When gi,j(r)w1, pairs of individuals are more abundant

than the spatial average, while gi,j(r)v1 indicates that they are less abundant.

The Mean-Field Approximation

We begin by defining when two species are expected to coexist if all individuals

experience average conditions. These null expectations were obtained from a spatially-

explicit extension of the classic Lotka-Volterra competition equations, referred to

hereafter as the Mean Field Approximation (MFA), and using the same parameters as

in Table 1. The dynamics of the mean density ri of species i can be described as:

Spatial Complementarity and the Coexistence of Species
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_ri~ribi 1{
X

j

rjk
(b)
j,i

 !
{ridi{ri

X
j

k
(c)
i,j ci,jrj ð2Þ

In this equation k represents the ratio between the observed density of

competitors around a given individual and the mean density of the whole system.

When kw1, individuals experience a greater density of competitors than would be

expected based on average conditions, while the opposite is true for kv1. Hence

k
(b)
j,i captures the difference from the mean density of competitors of species j

experienced by an individual of species i when it attempts to reproduce. Likewise

k
(c)
i,j is the difference from the mean density of species i experienced by species j

when it obtains resources. This is a useful construct as it quantifies how

competition rates change as the result of spatial structure. It is related to the

widely-used Ripley’s K(r) function (equation 1; [25]) since for a given radius s it

is equivalent to the value of K(r) divided by the area of integration. Note that in

our study k is a state variable and not a parameter, as in some previous

treatments. A generalised derivation is provided in S2 Note.

When the spatial structure of the system is not taken into account, the

competition experienced by any single individual is the mean competition exerted

by all others, irrespective of distance. It is equivalent to the behaviour of a

community with homogeneous density equal to the mean of the entire system

(k
(b)
i,j ~k

(c)
i,j ~1). Equation (2) for a community of two species reduces to the well-

known Lotka-Volterra model:

_r1~r1b1 1{r1{r2ð Þ{r1d1{r1c1,2r2{(r1)2c1,1

_r2~r2b2 1{r1{r2ð Þ{r2d2{r2c2,1r1{(r2)2c2,2

ð3Þ

A stability analysis on the stationary solutions of (3) reveals that the following

condition is necessary for coexistence to occur

(b1zc1,1)(b2zc2,2)w(b1zc1,2)(b2zc2,1) ð4Þ

This is a generalisation of the commonly-stated condition that intra-specific

competition must exceed inter-specific [1] but taking into account the reduction

of the birth rates due to overall density. When the left hand side of (4) is equal to

the right the species are ecologically equivalent and the dynamics will be driven by

ecological drift [26].

Based upon these equations, the region within which coexistence occurs for an

arbitrary pair of parameters is illustrated in Fig. 1. Similar figures can be generated

through the choice of any pair of parameters from Table 1 which include either of

the inter-specific competition parameters (c2,1 or c1,2) and one with an
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independent direct effect on the population density of a single species (e.g. its rate

of births b or death d). By varying two parameters, while keeping all others fixed,

the model can lead to either competitive exclusion of one species, stable

coexistence, or founder control whereby the species with an initial numerical

advantage (determined by chance) comes to dominate.

Ecological pressure and local interactions

It is therefore apparent that whether a species has a greater inter-specific

competition rate (ci,j) is not a reliable criterion by which to infer its numerical

dominance. Instead we propose an additional descriptor of the state of a

population which we refer to as the ecological pressure acting upon it. Ecological

pressure is defined as the sum of demographic forces that a particular population

experiences. The change in density of a population _ri is inversely related to the

ecological pressure it experiences Pi, and the units of ecological pressure can be

chosen such that _ri~{Pi. The minus sign comes from the conceptual

interpretation of ecological pressure as the forces that the environment exerts over

the species (and not the species over its environment). This means that if the

ecological pressure over a species in a community is positive the density of that

species decreases, and vice versa if it is negative.

The spatial Lotka-Volterra model (equation (2)) can be obtained from the

following form for the ecological pressure on species i:

Pi~{ribizribi

X
j

rjk
(b)
j,i zridizri

X
j

k
(c)
i,j ci,jrj: ð5Þ

Ecological pressure may change over time for various reasons. These include

fluctuations in the densities of one or more species, variation in external abiotic

Fig. 1. Phase diagram of competition outcomes over values of c2,1 and d2 predicted by the Mean Field
Approximation (MFA; see Methods for details). All other parameters fixed: b1~b2~1, d1~0:4,
c1,1~c2,2~0:2, c1,2~0.

doi:10.1371/journal.pone.0114979.g001
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factors, or even shifts in the spatial organisation of the community. The

relationship between Pi and _ri allows inference of the actual ecological pressure in

natural systems from measurements of the change in population density over

time. This is important because it provides a potential means to assess the

performance of a theoretical model by comparing the predicted ecological

pressure with the observed demographic change.

Over a finite period of time dt, the actual change in population density dri can

be found by the series expansion

dri~{Pi:dt{ _Pi:
dt2

2
z � � � , ð6Þ

where _Pi denotes the total time derivative of Pi. The concept of ecological pressure

is useful in this study because calculating how it changes as a result of variation in

the range or strength of interactions allows us to account for changes in

population densities or outcomes of competition. When the system is in a

stationary state, i.e. both populations are at equilibrium, the total ecological

pressure is zero. By altering the parameters of one or more species we can identify

how ecological pressure will change as a result. For example, in a two species

system the ecological pressure over species j (equation (5)) will be diminished by

reducing the inter-specific competition range of the other species (s
(c)
j,i ), which in

turn enables an increase in the population density of species j.

Results

Model outputs

When compared to the results of spatially-explicit simulations of the individual-

based model, the mean-field approximation fails to accurately predict the region

of parameter space within which coexistence occurs. This effect is particularly

pronounced when interactions occur over short ranges, as expected in nature

when individuals are most influenced by their nearest neighbours.

With long range dispersal, mean-field predictions are almost recovered,

regardless of the values of the competition range (Fig. 2a). This is expected since

offspring are able to escape from regions of high density, removing the constraints

on recruitment imposed by spatial population structure. The parameter space

within which stable coexistence occurs becomes smaller when the dispersal range

s(b) is short, making coexistence less likely (Fig. 2b). This is the result of a

reduction in population-level birth rates due to a higher density of individuals

near their parents, i.e. the number of successful offspring decreases. Localised

dispersal and short range interactions for both species lead to a reduction in the

parameter space for coexistence in comparison with long range interactions

(Fig. 2c). This is in agreement with a previous mathematical result [27] and

occurs because the area from which the parents obtain resources is reduced,

making competition in the local neighbourhood more intense, thus reducing even

further the number of successful offspring near their parents.

Spatial Complementarity and the Coexistence of Species
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Only when dispersal is highly localised is the region of coexistence modified by

the ranges of competitive interactions. Some parameter combinations decrease the

potential for coexistence (Fig. 2b, 2c), while others allow coexistence in regions

where it was not predicted by the MFA (Fig. 2d). These results are robust to

alternative parameter values (e.g. S2 Fig.).

The transition from coexistence to competitive exclusion in the simulations

occurs due to continuous changes in the densities (r) of each species, rather than

a sharp boundary (Fig. 3). Fig. 3a demonstrates that there is an important region

of parameter space in which despite species 2 being competitively weaker

(c1,2vc2,1) it is numerically dominant (i.e. the red line is above the blue). From

Fig. 3b we can see that the susceptibility of a species’ population density to

Fig. 2. Coexistence diagrams for a system of two species obtained by changing the values of the inter-
specific competition rate of species 1 (c2,1) and the intrinsic death rate of species 2 (d2). All other
parameters fixed at b1~b2~1, d1~0:4, c1,1~c2,2~0:2, c1,2~0. Each point represents the outcome of 20
realisations of the model (see Methods). Blue circles: only species 1 survives; red squares: only species 2
survives; brown rhombus: coexistence. Solid black lines represent predictions based on the mean-field
approximation. The table above each diagram shows the values of the range of dispersal s(b), inter-specific

and intra-specific competition (s(c)
i,i , s

(c)
i,j ). a) long range dispersal; b) localised dispersal; c) short-range

interactions with equal values for both species; d) variation in intra- and inter-specific competition ranges
among species. Definition of parameters in Table 1; specimen patterns based on c) and d) are shown in S3
Fig.

doi:10.1371/journal.pone.0114979.g002
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changes in its intrinsic death rate is greater (i.e. a steeper slope) when another

species is present, even as a minority element. These patterns reinforce our view

that complementarity is central to understanding coexistence, since the density of

each species responds to the presence of the other; it is not merely the case that an

inferior competitor fits around the pattern generated by the stronger species.

In Fig. 4 we illustrate three cases where spatial coexistence can be achieved

through localised interactions in regions where the MFA based upon the

expectations of the Lotka-Volterra equations fails to predict it. Each phase

diagram represents a particular combination of parameters, while the summary

statistics illustrate the intra- and inter-specific pair correlation functions

calculated at the point marked on the corresponding phase diagram. By

comparing the empirical correlation function with that expected under the MFA

we can observe the change in the dimensions of clusters caused by switching from

long-range interactions to localised. The correlation functions reveal that each

case exhibits a unique spatial pattern, thereby indicating different underlying

coexistence mechanisms.

Fig. 4a shows that short-range interactions (localised intra- and inter-specific

competition) promote coexistence outside the MFA predictions. Coexistence

occurs as a consequence of increased ecological pressure on the numerically-

dominant species due to intense intra-specific competition, following from

reduction of the range over which this occurs s
(c)
1,1. In conjunction there is a

reduction in ecological pressure on the rarer species due to shortening of the

inter-specific competition range of species 1 (s
(c)
2,1). This can be verified by

describing the change in ecological pressure for each species from equation 5:

Fig. 3. Typical density r of two species obtained from linear transects through the coexistence
diagram in Fig. 2c for the simulated communities. Blue line and circles: species 1; red line and squares:
species 2. a) for variation in c2,1 with d2~0:37, b) for variation in d2 with c2,1~0:2. All other parameters as Fig. 1.

doi:10.1371/journal.pone.0114979.g003
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dP1

{ds
(c)
1,1

~ {r1c1,1r1

dk
(c)
1,1

ds
(c)
1,1

w0

dP2

{ds
(c)
2,1

~ {r2c2,1r1

dk
(c)
2,1

ds
(c)
2,1

v0

ð7Þ

Fig. 4. Three examples of spatial coexistence beyond the predictions of the Mean Field Approximation (MFA) achieved through localised
interactions. Left column: phase diagrams obtained as in Fig. 2 with predictions of the MFA (solid black lines), though for clarity we omit individual points
representing each set of simulations. Circles indicate the point at which corresponding spatial pattern statistics were calculated. Middle column: the intra-
specific pair correlation function of species 1, g11(r), indicating the deviation from average density of individuals of the same species at distance r from any

single individual. Thin solid line is the identical function but with long-range interactions (s(c)
2,1~s(c)

1,1~s(c)
2,2~10), representing the MFA (as in Fig. 2a). Right

column: cross-pair correlation function of species 1 to species 2, g12(r). The deviation from the average density of species 2 at a distance r as experienced
by an individual of species 1 is proportional to the value of this function at r. Thin solid line is the cross-pair correlation in the case of long range interactions.

doi:10.1371/journal.pone.0114979.g004
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The phenomenon holds at least up to the first order in a time expansion of the

ecological pressure (equation (6)), given that individuals within species are

aggregated (
dk

(c)
1,1

ds
(c)
1,1

v0) and segregated between (
dk

(c)
2,1

ds
(c)
2,1

w0). This mechanism lies

behind the spatial segregation hypothesis [12], but note that enhanced coexistence

is only exhibited near the point of ecologically-equivalent species.

In Fig. 4b the numerically-dominant species 1 has shorter-range inter-specific

than intra-specific competition (s
(c)
2,1vs

(c)
1,1), generating an increase in the

coexistence region consistent with heteromyopia [18]. The reduction in ecological

pressure on the rarer species 2 arises because of the relatively shorter range of

inter-specific competition from the numerically-dominant species:

dP1

{ds
(c)
2,1

~0

dP2

{ds
(c)
2,1

~{r2c2,1r1

dk
(c)
2,1

ds
(c)
2,1

v0 ð8Þ

The effect holds at least up to the first order in time (equation (6)) with

segregation between species (
dk

(c)
2,1

ds
(c)
2,1

w0). The same process is also present in spatial

segregation but the lack of intensified intra-specific competition identifies it as a

distinct phenomenon.

Finally, Fig. 4c shows coexistence via an additional mechanism which has not

previously been identified. The effect of changing d2 from Fig. 4b to Fig. 4c is to

transform species 1 from being numerically dominant to rare. At the lower bound

of the coexistence region, short-range inter-specific competition by the rare

species reduces the ecological pressure acting upon it. This can be seen from the

decrease in height of g1,1(r) in Fig. 4c (middle column) as a result of shortening

s
(c)
2,1. From the perspective of individuals of the rarer species there is a reduction of

conspecifics in its neighbourhood (i.e. reduced clustering), thereby reducing

intra-specific competition. This behaviour can only be predicted via the second

order term in equation (6), meaning it is observed only once a second generation

is born (grandchildren). For this reason we refer to it as a triadic mechanism; its

elucidation depends on third order spatial moments, i.e. a minimum of three

individuals.

This can be seen by demonstrating that there is no immediate change in the

ecological pressure on species 1 as a result of changing s
(c)
2,1 (see equation (8)). This

means that the simple linear term in the time expansion of ecological pressure

cannot account for the coexistence region in Fig. 4c. Only the second order in

time of equation (6) can account for this effect:
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dr

ds
(c)
2,1

~{
d _P1

ds
(c)
2,1

~{
LP1

Lk
(b)
1,1

d _k(b)
1,1

ds
(c)
2,1

{
LP1

Lk
(c)
1,1

d _k(c)
1,1

ds
(c)
2,1

{
LP1

Lk
(c)
1,2

d _k(c)
1,2

ds
(c)
2,1

ð9Þ

In general
d _k(b)

1,1

ds
(c)
2,1

=0 and
d _k(c)

i,j

ds
(c)
2,1

=0. For a further demonstration based on spatial

moments see S3 Note. To summarise, in the triadic mechanism it is the ability of

grandchildren to escape the competition of their grandparents which enables the

persistence of the rarer species. Note that it is the characteristics of the minority

species which dictate whether coexistence occurs.

Discussion

Our simulations determine the conditions under which coexistence between two

sessile species within a uniform two-dimensional environment is expected to

occur. We have combined two existing mechanisms for spatial coexistence, the

spatial segregation and heteromyopia hypotheses [12, 18], into a single scheme,

resolving an apparent contradiction between them regarding whether clustering

acts to maintain or prevent coexistence and determining the circumstances in

which each applies. Furthermore we have revealed an additional mechanism for

spatial coexistence which has not been previously recognised, which we describe as

a triadic mechanism, and which depends upon the characteristics of the minority

species rather than relying upon opportunities provided by the dominant.

A common feature of theory, simulation models and experiments in this field

to date has been an assumption that one species is competitively dominant (i.e.

causes greater reductions in standing levels of a resource [2]), and the apparent

paradox is the continued coexistence of an inferior competitor. In contrast, we

contend that coexistence should be seen as a two-sided process; understanding the

structure of a mixed community requires an integration of the complementary

forces structuring the spatial patterns of all participants, achieved by determining

the ecological pressure acting upon each of them. This altered perspective allows

for a reconciliation of apparently conflicting predictions.

The novel triadic mechanism is an emergent effect of dynamic changes in the

spatial structure of the community across multiple generations rather than a

direct escape from competition. Reducing the range of inter-specific competition

of the rare species (s
(c)
2,1) alters the community spatial structure, which through the

consequent reorganisation of spatial patterns reduces the ecological pressure on

itself. Fig 4c shows that the triadic mechanism promotes a less clustered

distribution of the rare species, thereby reducing intra-specific competition (as a

result of reducing local densities of conspecifics k
(b)
1,1 and k

(c)
1,1). The more

homogeneous distribution of the rare species occurs because reducing its inter-

specific competition range allows the other species to penetrate its clusters. The

competition that the dominant species exerts over the rare species does not
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increase greatly because it is already long-ranged, thus the relative distance

between individuals of the two species has a limited influence on coexistence.

The change in pattern is caused by the locations into which offspring

successfully recruit relative to their parents, which differ from those expected in

the presence of long range inter-specific competition. A minimum of three

generations — and thus three individuals — is required to observe this

mechanism (see S4 Note for a mathematical demonstration). The degree of

competition between pairs does not alter appreciably, but rather the joint

competitive effect of two ancestors on a third-generation offspring is reduced.

Hence we refer to it as a triadic mechanism. In addition, the time expansion of the

ecological pressure allows each moment equation from the hierarchy of dynamics

[28, 29] to be related with a time-related hierarchy of stages in the development of

a population, where the immediate changes can be described with only the

dynamic equations of the first moment, but a description of later stages requires

the dynamic equations of the second moments and so forth (see S3 Note for a

demonstration utilising second order moments).

The signal of the triadic mechanism can be detected via characteristic changes

in the shapes of the pair correlation functions (g(r) in Fig. 4c) which distinguish it

from the two alternatives. It is predicted to apply when the rarer species is the

stronger resource competitor and each individual competes with members of its

own species over greater distances. Note that it cannot be assumed that the

dominant competitor for resources is necessarily more numerous; in many cases a

dominant resource competitor can be outnumbered or even excluded by a

subordinate species (see Fig. 3b and [30]).

The triadic mechanism is the first to imply the importance of third-order

spatial correlations in coexistence, or three generations from a dynamic point of

view. The reduced range of inter-specific competition in the rare species does not

directly reduce the ecological pressure acting upon it, but only once its clusters

reduce in size as a result. The mechanism differs from the familiar competition-

colonisation trade-off [9] as the ability of the numerically subordinate species to

persist occurs as a result of the rearrangement of the community spatial structure

and not due to a strict phenotypic trade-off.

This demonstrates that simplistic views of individual interactions based on a

snapshot within in time, or from assessing the survival of offspring, are not always

sufficient to account for the behaviour of ecological communities. Previous

approaches to modelling spatially-structured systems have employed moment

equations which assume that third-order effects are trivial (e.g. [30, 31]). Our

work demonstrates that these cannot be dismissed, and sometimes it is necessary

to take into account interactions among more than two individuals. In this sense

coexistence can be regarded as an emergent property of spatially-structured

systems, the phenomenon depending upon complementary combinations of traits

in each species.

Results consistent with the triadic mechanism were obtained by [32] from field

data on seven species of annual plants in grasslands over two seasons. The larger-

seeded species, capable of exploiting resources over a greater area, were the most
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strongly recruitment-limited, and thus tended to be numerically subordinate. The

authors concluded that the competition-colonisation trade-off, which would also

be consistent with these characteristics, was not sufficient to maintain coexistence

in this system. Notably two of the species reduced their degree of clustering over

two years, matching the unique predictions of the triadic mechanism.

A related mechanism for multi-species coexistence is heteromyopia, where

simulation modelling predicts that increased spatial segregation of competing

dominants creates interstices in their pattern which can be exploited by an

invading species [18]. This also depends upon the range over which competition

occurs being greater within than between species. In this case, however, it is the

numerically-dominant species which exhibits this property. Few have looked for

evidence of the underlying assumption; in the only study of which we are aware,

no evidence was found in support [33]. The resulting patterns differ from those

predicted via the triadic mechanism (see Fig. 4b and S4 Fig.). Heteromyopia is

important only when the dominant species has a shorter inter-specific

competition range than intra-specific. In contrast, the triadic mechanism operates

when the inter-specific competition range of the subordinate species is shorter

than that of the dominant species. Heteromyopia acts by reducing the radius of

the clusters formed by the more abundant species, while its competitor remains

tightly aggregated. This allows it to be distinguished from the triadic mechanism

which leads to a more even distribution of the rarer species, though in principle

both could act simultaneously.

Finally, the spatial segregation hypothesis [12] is confirmed as enabling

coexistence, though only for species close to the point of equivalence in their life

history parameters. Previous mathematical results [27] are compatible with a

slightly modified version of the original hypothesis, showing that finite dispersal

and localised interactions lead to spatial structure that enhances the diversity of

similar species. Even when species are effectively identical, once some process such

as limited dispersal has created aggregations, these can stabilise despite an absence

of environmental variation, allowing competitive exclusion to be almost

indefinitely deferred [34]. Aggregation is further reinforced by mortality of

isolated individuals [34, 35]. Short-range dispersal is itself insufficient to generate

coexistence, and in fact tends to reduce its likelihood (Fig. 2c). The more similar

any two species are, the more comparable are the levels of intra-specific

competition which they experience through clustering. Hence neither gains a

strong competitive advantage and the reduction in ecological pressure through

segregation outweighs any increase from clustering.

Assessment of the ecological pressure acting on each species reveals that spatial

segregation and heteromyopia both cause similar reductions in competition

among species but spatial segregation is the only one to also increase within-

species competition. It is therefore the only case in which self-limitation through

spatial structuring can truly be said to enhance coexistence.

The effectiveness of spatial segregation in preventing competitive exclusion has

been demonstrated for sessile organisms in multiple studies, improving survival of

inferior competitors [15, 16] and usually favouring the minority species [14, 17],
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though not always [13]. Note however that clustering is not always beneficial; as

[30] demonstrates, a species can drive itself locally extinct through strong

competition within clusters, even when it is able to persist in monoculture. In

experimental trials with plants the strongest competitor suffered the greatest

penalty when clustered [15].

Within our simulations, coexistence is defined as joint stochastic boundedness,

such that both populations are expected to persist indefinitely [36]. Coexistence is

evident from the systems having reached a stable state. In the field, however,

confirming coexistence requires evidence of some process enabling a species to

persist despite the presence of its competitor, distinguishing it from mere co-

occurrence of non-interacting species [37]. The usual test is the ability of each

species to increase when rare, often known as the invasibility criterion [1, 37].

Nevertheless, while invasibility is indicative, it is not on its own a satisfactory

criterion for determining stochastic boundedness of interacting populations (and

indeed can be violated [36] or even reversed [30]). This is problematic as

invasibility has become synonymous with coexistence in many treatments, despite

the likelihood of Allee effects overriding invasion by small initial populations. A

further finding from Fig. 3 is that transitions from coexistence to monodomi-

nance occur through smooth changes in the density of each species and do not

form sharp boundaries. This demonstrates that there is a large region of parameter

space within which a rare species can stably coexist without increasing its density.

The default state of a community is not the equal abundance of all species.

Individual-based models have great potential to provide new insights into

ecological theory and to advance long-established fields of study [38]. Most

theoretical studies to date (e.g. [18, 39]) have examined the passive reponses of

individuals to neighbourhood density, in contrast to our models, which employ

an active view of competition, documenting the resource acquisition of

organisms. In S1 Note we show the relation of the parameterisation employed in

previous works with that used here.

Competition in our system occurs for both space and an unspecified and

unmodelled resource which is obtained locally by individuals. While this can be

visualised as a plant obtaining nutrients or water from soil, indirect processes such

as apparent competition via shared natural enemies are able to generate long-

range interactions beyond the reach of any individual [10]. We do not consider

the case where interactions might be facilitative, which would further increase the

scope for multi-species coexistence. Likewise, while adaptive speciation provides

additional opportunities for coexistence [40], we assume that this takes place on a

longer timescale than considered here. It is noteworthy in this context that some

plant species seem to be least affected by competition with those species which are

more frequent neighbours — including conspecifics — suggesting adaptation to

spatial patterning [41]. Further potential for spatial coexistence is provided when

species have specialised resources that are distributed unevenly through either

space or time [10, 11]. Finally, in real systems, the role played by spatial patterning

can itself change through time in response to shifting environmental conditions
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[14]. These findings are not inconsistent with our model, which can be seen as

presenting the minimum conditions for spatial coexistence.

Our simulation study of spatial coexistence has combined existing theory into a

common framework and described for the first time a previously unrecognised

triadic mechanism whereby multiple species can co-occur in perpetuity. This is

the emergent outcome of interactions among individuals across three generations.

Through ecological pressure we have demonstrated that spatial coexistence arises

due complementary combinations of species traits rather than purely through self-

limitation of dominant competitors. In particular, the triadic mechanism depends

upon the traits of the rare species. Further tests are required to examine whether

these effects occur in nature; our models provide clear expectations for the

observed spatial patterns and resultant population dynamics. We anticipate that

the parameters of our system will be both intuitive and tractable, and look

forward to experimental tests of the principle of spatial complementarity.

Supporting Information

S1 Fig. Typical trajectory of population densities in a simulated two species

community prior to reaching a stationary state.

doi:10.1371/journal.pone.0114979.s001 (TIFF)

S2 Fig. Stability of the results to changes in competition intensity. Coexistence

diagrams with c1,2~0:2; all other parameters identical to Fig. 2 in Results. Dotted

line at d2~0:28 indicates the mean field coexistence boundary for c1,2~0 from

Fig. 2. All coexistence mechanisms apply in the appropriate regions of parameter

space, with an identical increase in (d) due to effects of spatial structure. This

holds regardless of the value of c1,2 chosen.

doi:10.1371/journal.pone.0114979.s002 (TIFF)

S3 Fig. Typical specimen patterns based upon iterations of the parameter

combinations shown in a) Fig. 2c and b) Fig. 2d with d2~0:31, c2,1~0:47. Blue:

species 1; red: species 2.

doi:10.1371/journal.pone.0114979.s003 (TIFF)

S4 Fig. Pair correlation functions for the a) numerically-dominant species and

b) rarer species when either heteromyopia or the triadic mechanism is present.

Heteromyopia reduces the radius of the clusters formed by the dominant species

(left), reducing inter-specific competition. The triadic mechanism promotes a

more uniform distribution of the subordinate species (right) reducing intra-

specific competition.

doi:10.1371/journal.pone.0114979.s004 (TIFF)

S1 Note. Active versus passive representation of the Lotka-Volterra equations.

doi:10.1371/journal.pone.0114979.s005 (PDF)

S2 Note. General derivation of the spatial Lotka-Volterra model.

doi:10.1371/journal.pone.0114979.s006 (PDF)
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S3 Note. Ecological pressure and spatial moments.

doi:10.1371/journal.pone.0114979.s007 (PDF)

S4 Note. Ecological pressure, competition across generations and the triadic

mechanism.

doi:10.1371/journal.pone.0114979.s008 (PDF)
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