4 Conclusion and Further Research

We demonstrated koparallel revrite systems can be designed lwpleition pro-
cesses. Of course, this is only ery limited and rudimentary description ofvino
genetic programming techniques support the design of hierarchical (program or
data) structures. Extensions of the GLP/GP laboratarg currently desloped

and implemented with respect to the feliog areas:

* using fitness functions that measure similarities amongtgrprocesses in
order to infer L-systems for (sequences ofjyeasstructures,

* including gravth functions into fitnessvaluation,

* extending the set of interpretation functions,

* extension to contd-sensitve, stochastic and table L-systems.

Another important area of research are genetic operators that support hierarchical,
modularized expression evolution. A variant of the described GLP system will be used
for the design of artificial neural networfs.

References

1. Antonisse, H.JA GrammefBased Genetic Algorithnin: G. Ravlins (ed.), Bun-
dations of Genetic Algorithms, San Mateo, 1991.

2. Jacob, C., Rehdgi.,Evolution of neual net achitectues by a hiearchical gram-
mar-based gnetic systemICNNGA93, International Conference on Neural Net-
works and Genetic Algorithms, Innsbruck, Austria, 1993.

3. Jacob, C.]Jyped epressions eolution of artificial nervous system® appear in:

ICANN'94, International Conference on Artificial Neural Neiks, Sorrento,

Italy, 1994.

Kinnear K.E., Advances in Genetic 8gramming MIT Press, London, 1994.

5. Koza, J.R.Genetic Pogramming On the Pogramming of Computerby Means of
Natural SelectionMIT Press, London, 1993.

6. Lindenmayer A., Rozenbey, G. (eds.),Automata, Languges, Deelopment
North-Holland, 1975.

7. Lindenmayer A., Mathematical models for cellular int@ction in deelopment
Parts | and II, Journal of Theoretical Biology 18, 1968, pp. 280-315.

8. Peitgen, H.-O., J@ens, H., Saupe, DChaos and Factals New Frontiers of Sci-
ence, Springe¥erlag, 1993, p. 363.

9. Prusinkiavicz, P, LindenmayerA., The Algorithmic Beauty of PlantSpringer
Verlag, 1990, pp. 1if

H

5. The GP laboratory isimplemented in C and Mathematica. Currently the user inter-
faceisrealized through Mathematica notebooks and will be extended by aNeX TSTEP
based graphical user interface (Mathematica is atrademark of Wolfram Research, Inc.
NeXTSTEP isatrademark of NeXT Computers, Inc.)

6. Alternative approachsfor neural net design with the expression evolution system are
described in [2] and [3].

3 Virtual Genetic L-System Laboratory

In order to test and support problemspecific generation eolditeon of expres-
sions within the etended genetic programming paradigm we are designing a vir-
tual GLP laboratory as one part of our genetic programmingrarmment
MathEvolvica. The folloving examples should ge a brief impression of the sur-
prisingly easy formation of complestructures wen with \ery small populations
(between 10 and 20 indduals per generation) ander a short period of genera-
tions. The simple problem to be sety was to generate L-systems that form a
complex structure (with a number di<b < 100 branches) and with the majority
of tree end points (leas) situated outside the inner cubg lithin the outer
cube boundaries with gard to the horizontal x and %-directions (figure 5).
The number of L-system iterationsaw/fixed to 3. The axiom and L-rulpgres-
sions had to bewelved. The fithessalue f(g;) for each indridual L-system

genotypeg;, 1<i <N, to be maximized as defined as
1+ penalty (g;)

f(g) =Db(g)) penalty (g) = kzzpenalty(xk, 9)
where penalty (x,, g;) is the portion ofx, leaf coordinates lying within the spec-
ified boundaries with each lea having coordinates of the fornfx,, x,, X;) . The
following figures she a collection of interpreted L-systems all dexd from a
single genotype by applying crosss and mutation \er 20 generations. The
phenotypes deelop to densely paek structures with broad branching.

148. 795 230. 511 248. 346 203. 412

Fig. 5. : Collection of L-system turtle interpretations ded as mutants from the genotype of
the first L-system indgidual (upper left corner). Depicted numbers refer to phenotype fitness.

Axiom is then replaced by a wé&/ generatedAxiom term with aStack agument
expression resulting in a modified imitiual genotype (figure 3b).

L System LSystem
Axionp LRules..] /},Iles[...]
CSackD
F[0.8] RR[70] F[1.5] B[0.38] [RL[20] F[4.9]
@ Stack[F[0.7], ..] (b)

Fig. 3. : Pattern mutation on an L-system genotype

2.5.2 Pattern Crossover

Pattern crossover is used as a recombination operator which enalXelsamge of
structures of the same type betweerm twdividuals. Gven the tw expressions
in figure (4, top) a crosser templateT, (co) is chosen from pattern po&lool .,
with according ranking scheme. Suxbpeessions with head Rule meeting the
restrictions of templat@, (co) are selected randomly within eactpeession and
exchanged between the dwindividuals resulting in tw modified &pressions
(figure 4, bottom).

LSystem

Axiom[..] LRules

B[0.38] / RL[20] F[4.9]

F[1.4] YL[30] B[4.9]
Stack[F[0.7], ...]

Parent 1 Parent 2

LSystem LSystem

Axiom[...] LRules Axiom[...] LRules

F[1.4] YL[30] B[4.9] B[0.38] / RL[20] F[4.9]
Child 1 Child 2 Stack[F[0.7], ..]

Fig. 4. : Expression recombination: pattern crossover

tion among competing patternseViplain these ideas in detail for the mutation
and crosseer operators which rely on the templates defined in table 2.

Patter n-Operator Short explanation ...
Mutation mu Replace subterms of an expression meeting template con-
straints by newly generated, equivalent subexpressions.
Crossover co Exchange subexpressions meeting template constraints be-
tween two expressions.
Shrink sh Delete a subexpression.
Duplication du Duplicate a subexpression.

Permutation pe Permute expression arguments randomly, by left or right shift,
or by reversion.

Template Extr. te Extract a template from an expression. 'Successful’ templates
are inserted into the pattern pools.

Encapsulation ec Replace a subexpression by a single reference symbol.

Tab. 1: GP operators collectionoFoperand selection all the operators rely on operator
templates.

GP operator Rank Templatesfor selection of operator agruments

MutationT;(mu) 3 Axiom[i: *Stack /; QJi]]

Restrict mutation to expressions with head Axiom that have
a Stackexpression complying with a predicate Q astheir ar-
gument.

To(mu) 1 *LRules
Restrict mutation to expressions with head LRules.

Ta(mu) 2 LRule[*Left,Right[**]]
Restrict mutation to expressions with head Left appearing
within an LRule expression and with a Right term as right
context.

CrossoveiT(co) 1 *LRule[Left[*], Right[**, Stack[**], **]]
Restrict crossover to LRule expressions that contain at least
one Stack expression among the Right term arguments.

Tab. 2 : Pattern pool (templates) for GP operators

2.5.1 Pattern Mutation

To performpattern mutation on an indvidual expression (figure 3a) a mutation
templateT, (mu) is selected from the pattern poBbol,,, according to the pat-
tern ranks. Suppose the first template has been selected with predicate Q demand-
ing at least three guments for theStack term. The suberession with head

L System[Axiom[Stack[F[0.8],RR[70],_F[L.5]]],
LRulesL Rule[L eft[F[aBlank]]], Right[Stack[RL[110],F[2.],Stack[...] P[50]]],
LRule[L eft[PB[aBlank]]],Right[Stack[B[2.8],Stack[...], RR[70]]], _LRul€]]

These expressions are decoded into a parametrized bracketed L-system of the fol-
lowing form

w: F(0.8) RR(70) F(1.5)
P. F() - RL(110) F(2.) [..] P(50)
PB() — B(2.8)[..] RR(70)

which is then interpreted by a 3D-turtle as demonstratedeabo

2.4 Evaluation and reproduction of expressions

The population of L-system genotypes consists of symbolpressions (data
structures) the head symbols of which denote (abstract) data types for which
decoding, interpretation andiauation functions are easily definable by pattern
matching mechanisms. This enables simultaneous usefefeatif kinds of L-sys-
tem genotypes, e.g. nggng contet-free and contd-sensitve L-systems within
the same population by introducing amneontet-dependenCLSystem data type
with according interpretation functions. Fitnesses arevddrirom the L-system
interpretation functions so that each L-system genotypevesean associated
fitness walue.

In order to build the next generation of expressions a genetic opepaisrchosen
from an ‘operator poolOpPool = {op,, ..., 0ps} depending on its operator rank

. a, (i) a, (i) .

r (op;) . Each operatoop, performs a mapping(p,): G*' - G*’ fromana, (i) -
to aa, (i) -dimensional genotype vector whe@is the set of genotype expressions.
The individual genotypes are selected according to their fitness values (fithess propor-
tionate, rank-based or other selection schemes). The resulting, possibly modified ex-
pressions are entered into the next generation. The selection of genetic operators
terminates when the new population is filled up to its maximum size.

2.5 Variations on expressions

Size and shape of the@essions change dynamically during tivelation pro-

cess through genetic operatorable 1 gies an werview of operators we cur-
rently use. W introduce an alternate selection scheme for quiessions as
arguments for the genetic operators: (possibly constrained) pattervisig@tem-
plates used fongracting subrpressions for modification or recombination. This
enables operators to be applied only within predefixgdession contds where
context may \ary in the course of thevelution process. & the definition of ne
patterns and contés meta-operatordd, ec) are necessarypimilar to the pattern
pool for expression generation there is a pattern pBobl,, for each genetic
operatorop;; each pattern is associated with a rank number which controls selec-

Specialized meta-operators for rank adjustment take care about which patterns
enhance the pool and for which patterns focus is increased or decreased through ranks
adjustment.

/st Sltack@
*%
*Axiom L Rules LSvstem FIB|YI|Yr LRIClDRr | Stac
r
LRules Axiom[...] LRules |
| — Tr@ Integer B
= Rule _LRule /LRu\Ie LRule[...] Integer Rl’eaj
*Left *Right Left Right F
| i
: FL1 stack | Real
: RL[20]F[4.9
= FE|B|YI|Yr|RI|Rr|Sta < kF[0]7[] Ff'@
Stack(D) tack{F[0.7], -] Right Integer
|
Left ** E|B|YI|Yr|RI|Rr| Stack

*E|B|YI|Yr|RI|Rr |
aBlank | FfaBlanK] | ... | RrpBlank]

Fig. 2. : Pool of epression patterns. The coarse structure of the L-system description within the
centered circle isWilt by using the depictedkpression patterns. *X and **X stand foryasin-

gle expression or (non-empty) sequencexgressions with head X, respeetly. | denotes alter-
natives. Rittern ranks are depicted within small circles.

2.3 Expression generation

Evolution starts with random generation of an initial population of expressions.
Each expression is constructed from a start pattern in arecursive manner by com-
bining expressions from the expression pattern pool, always respecting the pat-
tern constraints as discussed in the previous section.

Generation of an L-system expression might result in the following generation
steps™:

LSystem[_Axiom,_LRules]

LSystem[Axiom[Stack| F, RR,_F]],_LRules]

LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],_LRules]

LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],
LRules[_LRule, LRule, LRule]]

LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],
LRules[LRule[_Left, Right],_LRule, LRule]]

4. Here * " and ‘_X’ represent formal parameters referring to any expression and ex-
pressions with heaX, respectively.

generally gives little insight into the relationship between L-systems and the figures
they generate. Algorithms reported in the literature up to now are still too limited to be
of practical value for complex structure formation [9, p. 39, 62]. Obviously an evolu-
tionary approach is sensible for points 3, 6 and 7. So what we need to support L-sys-
tem inference on an evolutionary basis is:

* functions togeneate (possibly codings of) L-systems that are subject to certain
constraints (alphabet, iterations, comisensitvity, parameters etc.),

* evaluationfunctions that return a fithess measure for each interpreted L-system,

* moadificationandselectionfunctions which enable interaedi L-system editing
as well as automatic control througlokitionary techniques.

In the following sections we discuss preliminary ideas about the use of evolution-
ary techniques for breeding populations of L-systems that describe growth processes
which are interpreted in a problemspecific domain and evaluated by a fithess measure
with respect to a target growth process.

2.2 Extended GP and GLP

Here we briefly describe what kind ofautionary algorithm system we use for
L-system deelopment and coding. Similar to the genetic programming (GP) par-
adigm introduced by J. dza [5] who uses LISP-Sxpressions our structures
undegoing adaptation are hierarchical, typegeessions (terms).

One of the main differences to the common GP paradigm is the use of higher-order
building blocks (‘patterns’) for expression generation and modification. The coarse
structures of problemdependent genotype expressions are generated by combining
‘macro-patterns’ taken from a predefined pattern goadl = {p,, ..., pu} (see the
example patterns around the centered circle in fig. 2). The combinable subexpressions
rely on a set of function symbols = {f,,f,, ..., fy} for each of which an arity range
A= {a,...,a} witha = (minarg(f), maxarg(f)) has to be specified.

Each expression from the pattern pool serves as a (possibly partial) descriptions of
“organism” genotypes for a problem dependent environment. Only the expression pat-
terns are used for expression generation, i.e. parametrized, possibly constrained, high-
level data structures serve as building blocks. Each of these paitaésnassociated
with a set of attributes as e.g. a number of predicates constraining the set of subexpres-
sions that can be ‘plugged in’. Another attribute is the patternmépl which serves
as a kind of fithess measure among patterns that compete for being selected as subex-
pressions during the expression generation proc&hss concerns patterns with the
same root symbol - as is the case with the recursive and non-recursive version of the
stackpattern - as well as with different function symbols within alternatives (fig. 2).

2. For an aternative grammar-based approach see[1]. An excellent overview of current
extensions and applications of GP can be found in [5]
3. Similar ranks control pattern selection of the genetic operators.

P(ay) : pitch for an anglex,

Pb(a,) : pitch back for an angle,,
Yi(ag) @ yaw left for an anglexg
Yr(ag) @ yaw right for an anglex,.

In the example system above we have quietly assumed a fixed rotation angle
a, = 90,a, = 60 and stepsize = 0.5 so we do not have to include these parame-
ters into the strings, however, this was only done in order to keep strings small.

Modular substrings can be marked by the bracket symbols [and]. For each string
of the forms,; [s,] s; the stringss;, s,, S; [1 L (G) are interpreted in sequence, how-
ever, after substring, has been interpreted and before starting to intesprbie turtle
is reset to its prior position and orientation after interpretatios, .oThis allows the
formation of tree-like structures and branches as the visualization of iterated turtle
movement for the example above shows (figure 1).

i i }%1

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Fig. 1. Artificial structure generated with DOL-system described in (1). The turtle is oriented
upward and its origin is situated at the big spot in the center

2 L-Systems and Genetic Programming

2.1 Synthesis of L-systems

The inference problem for L-systemsviives finding a proper axionw and
rewrite rulesP for a given structure or gmeth process, i.e. a sequence of struc-
tures. for the deelopment of an L-system for a particular (biological) species
one usually has to perform the folling steps [8]:

analyzation of the biological object,

informal rules definition,

definition of L-system axiom and rules,

computer simulation and interpretation of generated strings,
translation into a graphical output,

comparison of the artificial object with the betua of the real object,
correction of the L-system and repetition of the stepsalibnecessary).

NoohkwhpE

This shows that L-system synthesis is an overall difficult and sometimes tedious
process. But what methods do we have at hand for (automatic) generation of L-sys-
tems? As P. Prusinkiewicz [9] points out, random modification of production rules

1.1 DOL-systems

The conteat-free DOL-systemsare the simplest type of L-systemarfally a
DOL-system can be defined as a trigle= (%, P, w) wherez = {s,s,,...,s} is
an alphabet, P is an endomorphism defined & , and w, referred to as the
axiom, is an element of" . P is defined by aroduction map P: = - = with
s » P(s) for eachsO 3. Wheneer there is noxplicit mapping for a symbok
the identity mappind® (s) = s is assumed. In a deterministic L-system there is
at most one production rule for each symbols . The word sequenc&(G) gen-
erated byG is defined as
w® = Po(oo), ol = Pl((o), w? = Pz(oo),
whereP' denotes i-fold iteration oP and each stringo" ™ is obtained from the

preceding stringoo(i) = wf)wf)...wr;') by applying the production rules to ath

symbols of the stringo(') simultaneously:
o' = P")Pw)...P(!).

The language 06 is defined byl (G) = {Pi(oo);i 20} .

1.2 Turtleinterpretation of bracketed parametric DOL-Systems

Let us consider the follwing L-systemG:

s = {F,B,RI,Rr,P,Pb, VI, Yr}
w. F (1)
P: F - [F[RIF]F[RrF]F]

which generates the following sequence of strings:

Axiom; F
Iteration 1. [F[RIF] F[RrF] F]
lteration2: [[F[RIF] F[ReF] F] [RI[F[RF]F[RF]F]] [F[RIF] F[RF]F]]

[Rr[F[rRIOF] F[RrF] F]] [F[RIF] F[RrF] F]

These string sequences describe the fractal growth of an artificial structure. The
structure formation process can be easily visualized if we define the following inter-
pretation for the symbol§, B, RI, Rr, P, Pb, YI, Yr and [...]. A common interpreta-
tion is to let these symbols control the movement of an artificial object (usually known
as a ‘turtle’) which draws lines on its way in 2- or 3-dimensional space :

F(sy) : moveforward with astepsizeof s; rotate
B(s,) : movebackward with astepsizeof s, -~
Ri(a,) : rotateleft for anangle a, O y
Rr(a,) : rotateright for anangle a,, X yQN pitch

1. DO stands for deterministic with no context.

Genetic L-System Programming

Christian Jacob

Chair of Programming Languages, Department of Computer Science,
University of Erlangen-Nirnbgr Martens-Str3, D-91058 Erlangen, German
email: jacob@informatik.uni-erlangen.de

Abstract. We present the Genetic L-System Programming (GLP) paradigm
for evolutionary creation and delopment of parallel rerite systems (L-
systems, Lindenmayesystems) which prdde a commonly used formal-
ism to describe deelopmental processes of naturagjamisms. The L-sys-
tem paradigm will be x@ended for the purpose of describing time- and
contet-dependent formation of formal data structures representimgtee
rules or computer programsxf@essions).

With GLP two methods gleaned from nature are combined: simulated e
lution and simulated structure formation. A prototypical GLP system
implementation is described. Controlledotution of comple& structures is
exemplified by the deslopment of tree structures generated by theano
ment of a 3D-turtle.

1 L-Systems

The deelopment of an ganism may [...] be consided as theecution of a
‘developmental psgram’ present in the fertilizedgg. The cellularity of higher
organisms and their common BN:omponents foe us to consider geloping
organisms as dynamic collections of agmiately pogrammed finite automata.
A cental task of deelopmental biolgy is to disceer the underlying algorithm
for the couse of deelopment.

Aristid Lindenmayer and Grgerz Rozenber [6]

Morphogenesis or formation of structures in nature amayd the result of com-

plex growth processes. The central idea of L-systems is that structure formation
can be interpreted as thregution of ‘programs’ or sgrite rules. In nature there

is no blue print for an ganism, instead ‘rule systems’ tellwdo huild organels

and hav to combine these parts to form a complete and functioniggnasm.

These programs are highly parametrized where the parameters are set by the
ernvironment in which deelopment and interaction processestakace.

Parallel rewrite systems or L-systems [7] provide a useful formal model for the
description of developmental processes in organisms. We will give some rudimentary
definitions for context-free L-systems with stacking capability. As it is in general very
difficult to create an L-system simulating some special growth process we will intro-
duce an evolutionary method (GLP) supporting L-system inference.

