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What are 3D Graphics?

e Traditional 2D graphics only store two-dimensional
Information

- X,y coordinates
- Images look like they're drawn on the screen
e 3D graphics hold three-dimensional information
- X,Y,z coordinates
- Transform image before drawn to screen
- Graphics boards accelerate the transformations

- Lots of special features are also enabled, most of which we'll
ignore.
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What is OpenGL?

e Silicon Graphics (RIP) created the Graphics Library
- Sometimes referred to as DGL
- Only ran on SGI Hardware
e SGI made a open standard version of this
- http://www.opengl.org
- Licensed and ported to different machines
e There iIs a free clone of the software available at

- http://www.mesa3d.org
- Can port anywhere
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OpenGL Family
e GL

- The basic GL library. Only primitive commands
e GLU

- "GL Utilities"

- More complex commands, e.g. drawing cylinder
e GLX

- "GL for X-Windows"
- Commands for drawing GL shapes in X

e GLUT
- "GL Utilities Toolkit"
- More sophisticated windowing features, spheres, etc.
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Aside: OpenGL and Games

e Game manufacturers like OpenGL
- Quake, Diablo, etc.

e OpenGL-compatible graphics boards are massed
produced and become cheaper

 No longer need $20k workstation to do molecular
graphics!
e Ending? Microsoft pushing people toward Direct3D...
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Caveats before we begin

e We'll only look at a small subset of OpenGL
- Balls
- Sticks
- Lighting
e OpenGL is fairly difficult
- We'll begin defining libraries to make it a bit easier
- More help is welcome!
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Hello, World

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

glutinit("Hello, World")

glutinitDisplayMode(GLUT _DOUBLE | GLUT_RGB |GLUT_DEPTH)
glutlnitWindowSize(400,400)

glutCreateWindow("Hello, World")

glClearColor(0.,0.,0.,1.)

glutSetDisplayFuncCallback(display)

glutDisplayFunc()

glutMainL oop()
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Hello, World Output
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e Yawn!

© 2000 Richard P. Muller

MSE




OpenGL Callbacks

 Theline
glutSetDisplayFuncCallback(display)

defines a callback function.
— Just like tk used callbacks last week.
— "display"” isthe name of the function that draws the screen
o Here'sthedisplay callback:
def display():
glClear(GL_COLOR BUFFER BIT|GL_DEPTH BUFFER BIT)
glutSwapBuffers()
return
— doesn't do anything yet
— Uses double buffering
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Other OpenGL Callbacks

e Mouse
- The mouse interaction is setup using:
glutSetM ouseFuncCal lback(mouse)
glutM ouseFunc()

e Motion
- The motion interaction is setup using:
glutSetM otionFuncCallback(motion)
glutM otionFunc()

e Keyboard

- The keyboard interaction is setup using:

glutSetK eyboardFuncCallback(keyboard)
glutK eyboardFunc()
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Building on Hello World

Hello, World didn't do anything other than poping up a
window.

Obviously we want to do more sophisticated graphics

Display Lists are ways of holding objects to draw and
redraw.

We can have multiple display lists and flip through them
Right now we're just going to create one

We'll also only just put one item on the list, which is a little
silly, since display lists are made to do complicated renderings.

Display lists only have to be constructed once, which means
that we can put all kinds of complex stuff on the lists and call it
multiple times.

Iltems put on the display lists are also executed in C, and thus

render quickly.
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Display Lists

def init_display list():
gINewList(list._number,GL_ COMPILE)
glPushMatrix()
gl Trandatef(0.,1.,-1.) #move to where we want to put object
glutSolidSphere(1.,5.,5.) # make radius 1 sphere of res 5x5
glPopMatrix()
glEndList()
return

def display():
glClear(GL_COLOR _BUFFER BIT|GL_DEPTH _BUFFER_BIT)
glCallList(list_number)
glutSwapBuffers()

return -
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Sphere Output

i Hello World

e Yuck!

e What happened?
- Didn't add lights!
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Lighting Models

glEnable(GL_CULL_FACE)

glEnable(GL_DEPTH_TEST)

glEnable(GL_LIGHTING)

lightZeroPosition =[10.,4.,10.,1.]

lightZeroColor = [0.8,1.0,0.8,1.0] # greenish

glLightfv(GL _LIGHTO, GL_POSITION, lightZeroPosition)
glLightfv(GL_LIGHTO, GL_DIFFUSE, lightZeroColor)
glLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 0.1)
glLightf(GL_LIGHTO, GL_LINEAR_ATTENUATION, 0.05)
glEnable(GL_LIGHTO)
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Output of Lit Sphere
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i Hello World

e A little more
Interesting...
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More Iinteresting display list

gINewList(1,GL_COMPILE)

glPushMatrix()

gl Trandatef(0.,1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glPushMatrix()

gl Trandatef(0.,-1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glEndList()
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Define Cameras

e Cameras let you define the specific viewpoint from
which to look at the scene.
- Let you do things like rotate, move in/move out, pan, etc.
- Camera code:
glMatrixMode(GL_PROJECTION)
gluPerspective(40.,1.,1.,40.) # angle, aspect ratio, near clip, far clip
glMatrixMode(GL_MODELVIEW)
gluL ook At(
0,0,10, # cameraposition
0,0,0, # where camerapoints
0,1,0) # which direction is up
glPushMatrix()
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Two sphere output
i Hello World H=] E3

e Finally starting to
get a bit interesting

e Now we can look at
Interacting with the
spheres.
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Rotating the Graphics

e We want to redefine our display(), mouse() and
motion() functions so we can rotate the balls

e Very simple code
e Can also do scaling and translation the same way.
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Updated mouse function

def mouse(button,state,x,y):

global beginx,beginy,rotate

If button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
rotate = 1
beginx = X
beginy =y

If button == GLUT_LEFT_BUTTON and state == GLUT_UP:
rotate =0

return
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Updated motion function

def motion(x,y):
global rotx,roty,beginx,beginy,rotate
If rotate:
rotx = rotx + (y - beginy)
roty = roty + (X - beginx)
beginx = X
beginy =y
glutPostRedisplay()
return
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Updated display function

def display():
glClear(GL_COLOR BUFFER BIT|GL_DEPTH _BUFFER_BIT)
glLoadldentity()
gluLookAt(0,0,10,0,0,0,0,1,0)
glRotatef(roty,0,1,0)
glRotatef(rotx,1,0,0)
glCallList(1)
glutSwapBuffers()
return
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Render Library

e A framework for molecular 3d graphics

e Render module
- Inputs the files

e RenderLib module
- Canvas class: top-level drawing object
- Camera class: handles camera rotations
- Lights class
- Objects class: the display list
- EventManager class: the callbacks

e RenderData module
- Atom colors, radii, etc.
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Output from the Render library
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Final Thoughts

e The commands aren't any easier in Python than in C

e However, you don't have to worry about compiling or
porting on different platforms
- | run the same code on Windows98 and Irix-6.4

e This lets you focus on what you're doing with the

rendering rather than the technology behind the
rendering.
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