
Python and OpenGLPython and OpenGL

Richard P. Muller
Materials and Process Simulation Center

California Institute of Technology
June 29, 2000

© 2000 Richard P. Muller 2

What are 3D Graphics?What are 3D Graphics?

• Traditional 2D graphics only store two-dimensional
information
– x,y coordinates
– Images look like they're drawn on the screen

• 3D graphics hold three-dimensional information
– x,y,z coordinates
– Transform image before drawn to screen
– Graphics boards accelerate the transformations
– Lots of special features are also enabled, most of which we'll

ignore.

© 2000 Richard P. Muller 3

What is OpenGL?What is OpenGL?

• Silicon Graphics (RIP) created the Graphics Library
– Sometimes referred to as DGL
– Only ran on SGI Hardware

• SGI made a open standard version of this
– http://www.opengl.org
– Licensed and ported to different machines

• There is a free clone of the software available at
– http://www.mesa3d.org
– Can port anywhere

© 2000 Richard P. Muller 4

OpenGL FamilyOpenGL Family

• GL
– The basic GL library. Only primitive commands

• GLU
– "GL Utilities"
– More complex commands, e.g. drawing cylinder

• GLX
– "GL for X-Windows"
– Commands for drawing GL shapes in X

• GLUT
– "GL Utilities Toolkit"
– More sophisticated windowing features, spheres, etc.

© 2000 Richard P. Muller 5

Aside: OpenGL and GamesAside: OpenGL and Games

• Game manufacturers like OpenGL
– Quake, Diablo, etc.

• OpenGL-compatible graphics boards are massed
produced and become cheaper

• No longer need $20k workstation to do molecular
graphics!

• Ending? Microsoft pushing people toward Direct3D...

© 2000 Richard P. Muller 6

Caveats before we beginCaveats before we begin

• We'll only look at a small subset of OpenGL
– Balls
– Sticks
– Lighting

• OpenGL is fairly difficult
– We'll begin defining libraries to make it a bit easier
– More help is welcome!

© 2000 Richard P. Muller 7

Hello, WorldHello, World

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

glutInit("Hello, World")
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |GLUT_DEPTH)
glutInitWindowSize(400,400)
glutCreateWindow("Hello, World")
glClearColor(0.,0.,0.,1.)
glutSetDisplayFuncCallback(display)
glutDisplayFunc()
glutMainLoop()

© 2000 Richard P. Muller 8

Hello, World OutputHello, World Output

• Yawn!

© 2000 Richard P. Muller 9

OpenGL CallbacksOpenGL Callbacks

• The line
glutSetDisplayFuncCallback(display)

defines a callback function.
– Just like tk used callbacks last week.
– "display" is the name of the function that draws the screen

• Here's the display callback:
def display():

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
glutSwapBuffers()
return

– doesn't do anything yet
– Uses double buffering

© 2000 Richard P. Muller 10

Other OpenGL CallbacksOther OpenGL Callbacks

• Mouse
– The mouse interaction is setup using:

glutSetMouseFuncCallback(mouse)
glutMouseFunc()

• Motion
– The motion interaction is setup using:

glutSetMotionFuncCallback(motion)
glutMotionFunc()

• Keyboard
– The keyboard interaction is setup using:

glutSetKeyboardFuncCallback(keyboard)
glutKeyboardFunc()

© 2000 Richard P. Muller 11

Building on Hello WorldBuilding on Hello World

• Hello, World didn't do anything other than poping up a
window.

• Obviously we want to do more sophisticated graphics
• Display Lists are ways of holding objects to draw and

redraw.
– We can have multiple display lists and flip through them
– Right now we're just going to create one
– We'll also only just put one item on the list, which is a little

silly, since display lists are made to do complicated renderings.
– Display lists only have to be constructed once, which means

that we can put all kinds of complex stuff on the lists and call it
multiple times.

– Items put on the display lists are also executed in C, and thus
render quickly.

© 2000 Richard P. Muller 12

Display ListsDisplay Lists

def init_display_list():
glNewList(list_number,GL_COMPILE)
glPushMatrix()
glTranslatef(0.,1.,-1.) #move to where we want to put object
glutSolidSphere(1.,5.,5.) # make radius 1 sphere of res 5x5
glPopMatrix()
glEndList()
return

def display():
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
glCallList(list_number)
glutSwapBuffers()
return

© 2000 Richard P. Muller 13

Sphere OutputSphere Output

• Yuck!
• What happened?

– Didn't add lights!

© 2000 Richard P. Muller 14

Lighting ModelsLighting Models

glEnable(GL_CULL_FACE)
glEnable(GL_DEPTH_TEST)
glEnable(GL_LIGHTING)
lightZeroPosition = [10.,4.,10.,1.]
lightZeroColor = [0.8,1.0,0.8,1.0] # greenish
glLightfv(GL_LIGHT0, GL_POSITION, lightZeroPosition)
glLightfv(GL_LIGHT0, GL_DIFFUSE, lightZeroColor)
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.1)
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.05)
glEnable(GL_LIGHT0)

© 2000 Richard P. Muller 15

Output of Lit SphereOutput of Lit Sphere

• A little more
interesting...

© 2000 Richard P. Muller 16

More interesting display listMore interesting display list

glNewList(1,GL_COMPILE)

glPushMatrix()
glTranslatef(0.,1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glPushMatrix()
glTranslatef(0.,-1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glEndList()

© 2000 Richard P. Muller 17

Define CamerasDefine Cameras

• Cameras let you define the specific viewpoint from
which to look at the scene.
– Let you do things like rotate, move in/move out, pan, etc.
– Camera code:

glMatrixMode(GL_PROJECTION)
gluPerspective(40.,1.,1.,40.) # angle, aspect ratio, near clip, far clip
glMatrixMode(GL_MODELVIEW)
gluLookAt(

0,0,10, # camera position
0,0,0, # where camera points
0,1,0) # which direction is up

glPushMatrix()

© 2000 Richard P. Muller 18

Two sphere outputTwo sphere output

• Finally starting to
get a bit interesting

• Now we can look at
interacting with the
spheres.

© 2000 Richard P. Muller 19

Rotating the GraphicsRotating the Graphics

• We want to redefine our display(), mouse() and
motion() functions so we can rotate the balls

• Very simple code
• Can also do scaling and translation the same way.

© 2000 Richard P. Muller 20

Updated mouse functionUpdated mouse function

def mouse(button,state,x,y):
global beginx,beginy,rotate
if button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:

rotate = 1
beginx = x
beginy = y

if button == GLUT_LEFT_BUTTON and state == GLUT_UP:
rotate = 0

return

© 2000 Richard P. Muller 21

Updated motion functionUpdated motion function

def motion(x,y):
global rotx,roty,beginx,beginy,rotate
if rotate:

rotx = rotx + (y - beginy)
roty = roty + (x - beginx)
beginx = x
beginy = y
glutPostRedisplay()

return

© 2000 Richard P. Muller 22

Updated display functionUpdated display function

def display():
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
glLoadIdentity()
gluLookAt(0,0,10,0,0,0,0,1,0)
glRotatef(roty,0,1,0)
glRotatef(rotx,1,0,0)
glCallList(1)
glutSwapBuffers()
return

© 2000 Richard P. Muller 23

Output with RotationsOutput with Rotations

© 2000 Richard P. Muller 24

Render LibraryRender Library

• A framework for molecular 3d graphics
• Render module

– Inputs the files

• RenderLib module
– Canvas class: top-level drawing object
– Camera class: handles camera rotations
– Lights class
– Objects class: the display list
– EventManager class: the callbacks

• RenderData module
– Atom colors, radii, etc.

© 2000 Richard P. Muller 25

Output from the Render libraryOutput from the Render library

© 2000 Richard P. Muller 26

Final ThoughtsFinal Thoughts

• The commands aren't any easier in Python than in C
• However, you don't have to worry about compiling or

porting on different platforms
– I run the same code on Windows98 and Irix-6.4

• This lets you focus on what you're doing with the
rendering rather than the technology behind the
rendering.

© 2000 Richard P. Muller 27

ReferencesReferences

• Books
– OpenGL Programming Guide, OpenGL Architecture Review

Board, Addison Wesley
– OpenGL Programming for the X Window System, Mark Kilgard,

Addison Wesley

• Web Pages
– Python/OpenGL/Tk site: http://www.python.de

