Python and OpenGL

Richard P. Muller
Materials and Process Simulation Center

California Institute of Technology
June 29, 2000

What are 3D Graphics?

e Traditional 2D graphics only store two-dimensional
Information

- X,y coordinates
- Images look like they're drawn on the screen
e 3D graphics hold three-dimensional information
- X,Y,z coordinates
- Transform image before drawn to screen
- Graphics boards accelerate the transformations

- Lots of special features are also enabled, most of which we'll
ignore.

1t “}
5 B0 8 © 2000 Richard P. Muller 2
3 iE

What is OpenGL?

e Silicon Graphics (RIP) created the Graphics Library
- Sometimes referred to as DGL
- Only ran on SGI Hardware
e SGI made a open standard version of this
- http://www.opengl.org
- Licensed and ported to different machines
e There iIs a free clone of the software available at

- http://www.mesa3d.org
- Can port anywhere

SIS
o flhg © 2000 Richard P. Muller 3
3 iE

OpenGL Family
e GL

- The basic GL library. Only primitive commands
e GLU

- "GL Utilities"

- More complex commands, e.g. drawing cylinder
e GLX

- "GL for X-Windows"
- Commands for drawing GL shapes in X

e GLUT
- "GL Utilities Toolkit"
- More sophisticated windowing features, spheres, etc.

<y .
% 18 8 © 2000 Richard P. Muller 4
3 iE

Aside: OpenGL and Games

e Game manufacturers like OpenGL
- Quake, Diablo, etc.

e OpenGL-compatible graphics boards are massed
produced and become cheaper

 No longer need $20k workstation to do molecular
graphics!
e Ending? Microsoft pushing people toward Direct3D...

SIS
o flhg © 2000 Richard P. Muller 5
3 iE

Caveats before we begin

e We'll only look at a small subset of OpenGL
- Balls
- Sticks
- Lighting
e OpenGL is fairly difficult
- We'll begin defining libraries to make it a bit easier
- More help is welcome!

SIS
o flhg © 2000 Richard P. Muller 6
i iE

Hello, World

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

glutinit("Hello, World")

glutinitDisplayMode(GLUT _DOUBLE | GLUT_RGB |GLUT_DEPTH)
glutlnitWindowSize(400,400)

glutCreateWindow("Hello, World")

glClearColor(0.,0.,0.,1.)

glutSetDisplayFuncCallback(display)

glutDisplayFunc()

glutMainL oop()

© 2000 Richard P. Muller 7

Hello, World Output

=] E3

e Yawn!

© 2000 Richard P. Muller

MSE

OpenGL Callbacks

 Theline
glutSetDisplayFuncCallback(display)

defines a callback function.
— Just like tk used callbacks last week.
— "display"” isthe name of the function that draws the screen
o Here'sthedisplay callback:
def display():
glClear(GL_COLOR BUFFER BIT|GL_DEPTH BUFFER BIT)
glutSwapBuffers()
return
— doesn't do anything yet
— Uses double buffering

© 2000 Richard P. Muller 9)

i,

FES
x
i 3
% J
& g

e

Other OpenGL Callbacks

e Mouse
- The mouse interaction is setup using:
glutSetM ouseFuncCal lback(mouse)
glutM ouseFunc()

e Motion
- The motion interaction is setup using:
glutSetM otionFuncCallback(motion)
glutM otionFunc()

e Keyboard

- The keyboard interaction is setup using:

glutSetK eyboardFuncCallback(keyboard)
glutK eyboardFunc()

f

1.'"|

,_p)

[“

© 2000 Richard P. Muller

10

Building on Hello World

Hello, World didn't do anything other than poping up a
window.

Obviously we want to do more sophisticated graphics

Display Lists are ways of holding objects to draw and
redraw.

We can have multiple display lists and flip through them
Right now we're just going to create one

We'll also only just put one item on the list, which is a little
silly, since display lists are made to do complicated renderings.

Display lists only have to be constructed once, which means
that we can put all kinds of complex stuff on the lists and call it
multiple times.

Iltems put on the display lists are also executed in C, and thus

render quickly.

© 2000 Richard P. Muller 11

Display Lists

def init_display list():
gINewList(list._number,GL_ COMPILE)
glPushMatrix()
gl Trandatef(0.,1.,-1.) #move to where we want to put object
glutSolidSphere(1.,5.,5.) # make radius 1 sphere of res 5x5
glPopMatrix()
glEndList()
return

def display():
glClear(GL_COLOR _BUFFER BIT|GL_DEPTH _BUFFER_BIT)
glCallList(list_number)
glutSwapBuffers()

return -
» M5€

© 2000 Richard P. Muller

Sphere Output

i Hello World

e Yuck!

e What happened?
- Didn't add lights!

© 2000 Richard P. Muller 13

MSGH

Lighting Models

glEnable(GL_CULL_FACE)

glEnable(GL_DEPTH_TEST)

glEnable(GL_LIGHTING)

lightZeroPosition =[10.,4.,10.,1.]

lightZeroColor = [0.8,1.0,0.8,1.0] # greenish

glLightfv(GL _LIGHTO, GL_POSITION, lightZeroPosition)
glLightfv(GL_LIGHTO, GL_DIFFUSE, lightZeroColor)
glLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 0.1)
glLightf(GL_LIGHTO, GL_LINEAR_ATTENUATION, 0.05)
glEnable(GL_LIGHTO)

© 2000 Richard P. Muller 14

MSGH

Output of Lit Sphere

=] E3

i Hello World

e A little more
Interesting...

© 2000 Richard P. Muller

15

MSGH

More Iinteresting display list

gINewList(1,GL_COMPILE)

glPushMatrix()

gl Trandatef(0.,1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glPushMatrix()

gl Trandatef(0.,-1.,0.) #move to where we want to put object
glutSolidSphere(1.,20.,20.) # make radius 1 sphere of res 10x10
glPopMatrix()

glEndList()

© 2000 Richard P. Muller 16

Define Cameras

e Cameras let you define the specific viewpoint from
which to look at the scene.
- Let you do things like rotate, move in/move out, pan, etc.
- Camera code:
glMatrixMode(GL_PROJECTION)
gluPerspective(40.,1.,1.,40.) # angle, aspect ratio, near clip, far clip
glMatrixMode(GL_MODELVIEW)
gluL ook At(
0,0,10, # cameraposition
0,0,0, # where camerapoints
0,1,0) # which direction is up
glPushMatrix()

© 2000 Richard P. Muller 17)

Two sphere output
i Hello World H=] E3

e Finally starting to
get a bit interesting

e Now we can look at
Interacting with the
spheres.

MSE

© 2000 Richard P. Muller 18 J

Rotating the Graphics

e We want to redefine our display(), mouse() and
motion() functions so we can rotate the balls

e Very simple code
e Can also do scaling and translation the same way.

© 2000 Richard P. Muller 19

Updated mouse function

def mouse(button,state,x,y):

global beginx,beginy,rotate

If button == GLUT_LEFT_BUTTON and state == GLUT_DOWN:
rotate = 1
beginx = X
beginy =y

If button == GLUT_LEFT_BUTTON and state == GLUT_UP:
rotate =0

return

© 2000 Richard P. Muller 20

Updated motion function

def motion(x,y):
global rotx,roty,beginx,beginy,rotate
If rotate:
rotx = rotx + (y - beginy)
roty = roty + (X - beginx)
beginx = X
beginy =y
glutPostRedisplay()
return

DR Ay
LR E]
% §
i, -
o
e
]

© 2000 Richard P. Muller

21

Updated display function

def display():
glClear(GL_COLOR BUFFER BIT|GL_DEPTH _BUFFER_BIT)
glLoadldentity()
gluLookAt(0,0,10,0,0,0,0,1,0)
glRotatef(roty,0,1,0)
glRotatef(rotx,1,0,0)
glCallList(1)
glutSwapBuffers()
return

L'i'"'_'-'\;;':..,l
ﬁ i
s % i
- 2)
oy oy ;ﬁ,
"“\t R
“Qnguus

© 2000 Richard P. Muller 22

: Hello World _[O] : Hello, World . |O]

25 M€

© 2000 Richard P. Muller

Render Library

e A framework for molecular 3d graphics

e Render module
- Inputs the files

e RenderLib module
- Canvas class: top-level drawing object
- Camera class: handles camera rotations
- Lights class
- Objects class: the display list
- EventManager class: the callbacks

e RenderData module
- Atom colors, radii, etc.

¢ "{;
> 1K g © 2000 Richard P. Muller 24
o i T

Output from the Render library

<TTe

© 2000 Richard P. Muller

25

Final Thoughts

e The commands aren't any easier in Python than in C

e However, you don't have to worry about compiling or
porting on different platforms
- | run the same code on Windows98 and Irix-6.4

e This lets you focus on what you're doing with the

rendering rather than the technology behind the
rendering.

© 2000 Richard P. Muller 26

References

e Books

- OpenGL Programming Guide, OpenGL Architecture Review
Board, Addison Wesley

- OpenGL Programming for the X Window System, Mark Kilgard,
Addison Wesley

e Web Pages
- Python/OpenGL/Tk site: http://www.python.de

r;g;f e,
2, 1§ & © 2000 Richard P. Muller 27
3 iE

