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Introduction

o We've seen Python useful for
— Simple Scripts
— Numerical Programming
o Thislecture discusses Object Oriented Programming
— Better program design
— Better modularization
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What is an Object?

e A software item that contains variables and methods

e Object Oriented Design focuses on

— Encapsulation:

dividing the code into a public interface, and a
private i nplenentation of that interface

— Polymorphism:
the ability to overl oad standard operators so that

t hey have appropri ate behavi or based on their
cont ext

— Inheritance:

the ability to create subclasses that contain
speci alizations of their parents
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Namespaces

o Atthesmplest level, classes are Ssmply namespaces
cl ass nyfunctions:
def exp():
return O

>>> mat h. exp( 1)
2.71828. ..

>>> nyfunctions. exp(1)
0

|t can sometimes be useful to put groups of functions in their
own namespace to differentiate these functions from other
similarly named ones.
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Python Classes

* Python contains classes that define objects
— Objects are instances of classes

Init  isthe default constructor

cl ass at om
def _init_(self,atno, x,y,z):
self.atno = atno
self.position = (Xx,YV, z)

self refers to the object itself,
likethisin Java.
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Example: Atom class

cl ass atom

def init_ (self,atno,x,y,z):
self.atno = atno
sel f.position = (X,VY, 2)

def synbol (sel f): # a cl ass net hod
return Atno_to_Synbol [ at noj

def  repr__(self): # overloads printing
return ' %l 9%40. 4f 9%0. 4f 9%0. 4f' %

(self.atno, self.position[0],

sel f.position[1],self.position[2])

>>> at = atom(6,0.0,1.0,2.0)
>>> print at

6 0.0000 1.0000 2.0000
>>> at . synbol ()
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Atom class

e Qverloaded the default constructor

» Defined class variables (atno,position) that are persistent and
local to the atom object

« (Good way to manage shared memory:

— instead of passing long lists of arguments, encapsul ate some of this data
Into an object, and pass the object.

— much cleaner programs result
» Qverloaded the print operator

e We now want to use the atom class to build molecules...
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Molecule Class

cl ass nol ecul e:
def init_ (self,nane=" Generic'):
sel f. name = nane
self.atomist =[]
def addaton(sel f,atom:
self.atom i st.append(aton
def __repr_ (self):

str = 'This is a nolecule naned %\n' % sel f. nane
str = str+' 1t has % atons\n' %l en(self.atomist)

for atomin self.atonli st:
str = str + "atom + '\n'
return str
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Using Molecule Class

>>> nol = nol ecul e(' Water')

>>> at = aton(8,0.,0.,0.)

>>> nol . addat on{ at)

>>> nol . addat on{aton(1,0.,0.,1.))
>>> nol . addat on{aton(1,0.,1.,0.))
>>> print nol

This is a nol ecul e naned Wat er

It has 3 atons

8 0.000 0.000 0.000

1 0.000 0.000 1.000

1 0.000 1.000 0.000

« Notethat the print function calls the atoms print function

— Codereuse: only have to type the code that prints an atom once; this
means that if you change the atom specification, you only have one
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Inheritance

cl ass gm nol ecul e( nol ecul e):
def addbasi s(self):
self.basis =[]
for atomin self.atomist:
self.basis = add _bf (atom sel f. basi s)

e _Init_, repr ,and_ addatom aretaken from the parent
class (molecule)

* Added anew function addbasis() to add a basis set

* Another example of code reuse
— Basic functions don't have to be retyped, just inherited
— Lessto rewrite when specifications change
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Overloading parent functions

cl ass gm nol ecul e( nol ecul e):
def _ repr_ (self):
str ="M Rul es!\n'
for atomin self.atomist:
str = str + "atom + '\n'
return str

 Now weonly inherit __init__ and addatom from the parent
 Wedefineanew version of __repr  specially for QM
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Adding to parent functions

Sometimes you want to extend, rather than replace, the parent
functions.

cl ass gm nol ecul e( nol ecul e):

def __init_ (self,nane="Ceneric", basi s="6-31G*"):
self.basis = basis
nol ecule. init__ (self, nane)

add additional functionality T

to the constructor call the constructor

for the parent function
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Public and Private Data

o Currently everything in atcom/moleculeis public, thus we could
do something really stupid like
>>> at = atom(6,0.,0.,0.)
>>> at.position ="' Gape Jelly'

that would break any function that used at.poisition

* Wetherefore need to protect the at.position and provide
accessors to this data
— Encapsulation or Data Hiding
— accessors are "gettors' and " settors'

o Encapsulation is particularly important when other people use
your class
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Public and Private Data, Cont.

 |n Python anything with two leading underscoresis private
a, ny_vari abl e
* Anything with one leading underscore is semi-private, and you
should feel guilty accessing this data directly.
b
— Sometimes useful as an intermediate step to making data private
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Encapsulated Atom

cl ass atom
def init_ (self,atno,x,y,z):
self.atno = atno
self. position = (x,y,z) #position is private
def getposition(self):
return self. position
def setposition(self,Xx,vy,2z):
self. position = (x,y,z) #typecheck first!
def translate(self,x,y, z):
x0,y0,z0 = self. position
self. position = (x0+x, yO+y, zO+z)
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Why Encapsulate?

e By defining a specific interface you can keep other modules
from doing anything incorrect to your data

« By limiting the functions you are going to support, you leave
yourself free to change the internal data without messing up
your users

— Write to the Interface, not the the Implementation

— Makes code more modular, since you can change large parts of your
classes without affecting other parts of the program, so long as they
only use your public functions
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Classes that look like arrays

 Overload getitem (self,index) to make aclass act like an

array

cl ass nol ecul e:
def _ getitem (self,index):
return self.atomist[index]

>>> ol = nol ecul e(' Water') #defined as before

>>> for atomin nol: #use like a list!
print atom

>>> nol [0] .translate(1.,1.,1.)

* Previous lectures defined moleculesto be arrays of atoms.

 Thisallows usto use the same routines, but using the molecule
class instead of the old arrays.

¢ An example of focusing on the interface!
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Classes that look like functions

« Overload call (sdf,arg) to make aclass behavelike a
function
cl ass gaussi an:

def _init_(self, exponent):
sel f. exponent = exponent
def call_(self,arq):

return mat h. exp(-sel f.exponent*arg*arg)

>>> func = gaussian(1l.)
>>> func(3.)
0. 0001234

2
45?) © 2000 Richard P. Muller 18

—
oo
=

o
- )
=
»Lw !
K.; R4
e L
Lr E




Other things to overload

__setitem (self,index,value)
— Another function for making a class look like an array/dictionary
— gindex] = vaue
__add (sdlf,other)
— Overload the "+" operator
— molecule = molecule + atom

e mul_(saf,number)
— Overload the"*" operator
— zeros = 3*[0]
__getattr _ (self,name)
— Overload attribute calls

— We could have done atom.symbol () this way
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Other things to overload, cont.

del  (sdlf)
— Overload the default destructor
— del temp_atom

len_ (self)
— Overload the len() command
— natoms = len(mol)
__getdice (sdf,low,high)
— Overload dlicing
— glycine = protein[0:9]
__cmp__ (self,other):

— On comparisons (<, ==, etc.) returns -1, O, or 1, like C's strcmp
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