Object Oriented Programming in
Python

Richard P. Muller
Materials and Process Simulations Center
California Institute of Technology
June 1, 2000




Introduction

o We've seen Python useful for
— Simple Scripts
— Numerical Programming
o Thislecture discusses Object Oriented Programming
— Better program design
— Better modularization

SIS
o flhg © 2000 Richard P. Muller 2
3 iE




What is an Object?

e A software item that contains variables and methods

e Object Oriented Design focuses on

— Encapsulation:

dividing the code into a public interface, and a
private i nplenentation of that interface

— Polymorphism:
the ability to overl oad standard operators so that

t hey have appropri ate behavi or based on their
cont ext

— Inheritance:

the ability to create subclasses that contain
speci alizations of their parents

\_LH"_'-'\;;':'
= g
55
Lt
g
Drcuud?”

© 2000 Richard P. Muller




Namespaces

o Atthesmplest level, classes are Ssmply namespaces
cl ass nyfunctions:
def exp():
return O

>>> mat h. exp( 1)
2.71828. ..

>>> nyfunctions. exp(1)
0

|t can sometimes be useful to put groups of functions in their
own namespace to differentiate these functions from other
similarly named ones.

<y .

s %

& B 8 © 2000 Richard P. Muller 4
i




Python Classes

* Python contains classes that define objects
— Objects are instances of classes

Init  isthe default constructor

cl ass at om
def _init_(self,atno, x,y,z):
self.atno = atno
self.position = (Xx,YV, z)

self refers to the object itself,
likethisin Java.

T £
4 S
=
% | 'Q © 2000 Richard P. Muller S




Example: Atom class

cl ass atom

def init_ (self,atno,x,y,z):
self.atno = atno
sel f.position = (X,VY, 2)

def synbol (sel f): # a cl ass net hod
return Atno_to_Synbol [ at noj

def  repr__(self): # overloads printing
return ' %l 9%40. 4f 9%0. 4f 9%0. 4f' %

(self.atno, self.position[0],

sel f.position[1],self.position[2])

>>> at = atom(6,0.0,1.0,2.0)
>>> print at

6 0.0000 1.0000 2.0000
>>> at . synbol ()

© 2000 Richard P. Muller




Atom class

e Qverloaded the default constructor

» Defined class variables (atno,position) that are persistent and
local to the atom object

« (Good way to manage shared memory:

— instead of passing long lists of arguments, encapsul ate some of this data
Into an object, and pass the object.

— much cleaner programs result
» Qverloaded the print operator

e We now want to use the atom class to build molecules...

SIS
o flhg © 2000 Richard P. Muller 7
i iE




Molecule Class

cl ass nol ecul e:
def init_ (self,nane=" Generic'):
sel f. name = nane
self.atomist =[]
def addaton(sel f,atom:
self.atom i st.append(aton
def __repr_ (self):

str = 'This is a nolecule naned %\n' % sel f. nane
str = str+' 1t has % atons\n' %l en(self.atomist)

for atomin self.atonli st:
str = str + "atom + '\n'
return str

© 2000 Richard P. Muller




Mg

-:"|_

/

Using Molecule Class

>>> nol = nol ecul e(' Water')

>>> at = aton(8,0.,0.,0.)

>>> nol . addat on{ at)

>>> nol . addat on{aton(1,0.,0.,1.))
>>> nol . addat on{aton(1,0.,1.,0.))
>>> print nol

This is a nol ecul e naned Wat er

It has 3 atons

8 0.000 0.000 0.000

1 0.000 0.000 1.000

1 0.000 1.000 0.000

« Notethat the print function calls the atoms print function

— Codereuse: only have to type the code that prints an atom once; this
means that if you change the atom specification, you only have one

5 © 2000 Richard P. Muller 9

“‘éﬁa{@

& placeto update.
, MG




Inheritance

cl ass gm nol ecul e( nol ecul e):
def addbasi s(self):
self.basis =[]
for atomin self.atomist:
self.basis = add _bf (atom sel f. basi s)

e _Init_, repr ,and_ addatom aretaken from the parent
class (molecule)

* Added anew function addbasis() to add a basis set

* Another example of code reuse
— Basic functions don't have to be retyped, just inherited
— Lessto rewrite when specifications change

TUHIE 2.
ST
X b3
i =
- ! k
=

© 2000 Richard P. Muller 10 )




Overloading parent functions

cl ass gm nol ecul e( nol ecul e):
def _ repr_ (self):
str ="M Rul es!\n'
for atomin self.atomist:
str = str + "atom + '\n'
return str

 Now weonly inherit __init__ and addatom from the parent
 Wedefineanew version of __repr  specially for QM

© 2000 Richard P. Muller 11




Adding to parent functions

Sometimes you want to extend, rather than replace, the parent
functions.

cl ass gm nol ecul e( nol ecul e):

def __init_ (self,nane="Ceneric", basi s="6-31G*"):
self.basis = basis
nol ecule. init__ (self, nane)

add additional functionality T

to the constructor call the constructor

for the parent function

© 2000 Richard P. Muller 12




Public and Private Data

o Currently everything in atcom/moleculeis public, thus we could
do something really stupid like
>>> at = atom(6,0.,0.,0.)
>>> at.position ="' Gape Jelly'

that would break any function that used at.poisition

* Wetherefore need to protect the at.position and provide
accessors to this data
— Encapsulation or Data Hiding
— accessors are "gettors' and " settors'

o Encapsulation is particularly important when other people use
your class

ﬂ-.ﬁ &
2, 1§ & © 2000 Richard P. Muller 13
3 iE




Public and Private Data, Cont.

 |n Python anything with two leading underscoresis private
a, ny_vari abl e
* Anything with one leading underscore is semi-private, and you
should feel guilty accessing this data directly.
b
— Sometimes useful as an intermediate step to making data private

ﬂ-.ﬁ J‘h}
2, 1§ & © 2000 Richard P. Muller 14
3 iE




34

Encapsulated Atom

cl ass atom
def init_ (self,atno,x,y,z):
self.atno = atno
self. position = (x,y,z) #position is private
def getposition(self):
return self. position
def setposition(self,Xx,vy,2z):
self. position = (x,y,z) #typecheck first!
def translate(self,x,y, z):
x0,y0,z0 = self. position
self. position = (x0+x, yO+y, zO+z)

GROWIE S, 3
- 3 | 15 MEG
Ké;‘ :/3! © 2000 Richard P. Muller .

&




Why Encapsulate?

e By defining a specific interface you can keep other modules
from doing anything incorrect to your data

« By limiting the functions you are going to support, you leave
yourself free to change the internal data without messing up
your users

— Write to the Interface, not the the Implementation

— Makes code more modular, since you can change large parts of your
classes without affecting other parts of the program, so long as they
only use your public functions

(5 oh
% ) 5 © 2000 Richard P. Muller 16
3 iE




Classes that look like arrays

 Overload getitem (self,index) to make aclass act like an

array

cl ass nol ecul e:
def _ getitem (self,index):
return self.atomist[index]

>>> ol = nol ecul e(' Water') #defined as before

>>> for atomin nol: #use like a list!
print atom

>>> nol [0] .translate(1.,1.,1.)

* Previous lectures defined moleculesto be arrays of atoms.

 Thisallows usto use the same routines, but using the molecule
class instead of the old arrays.

¢ An example of focusing on the interface!

E'- - I
% ¥ £ © 2000 Richard P. Muller 17




Classes that look like functions

« Overload call (sdf,arg) to make aclass behavelike a
function
cl ass gaussi an:

def _init_(self, exponent):
sel f. exponent = exponent
def call_(self,arq):

return mat h. exp(-sel f.exponent*arg*arg)

>>> func = gaussian(1l.)
>>> func(3.)
0. 0001234

2
45?) © 2000 Richard P. Muller 18

—
oo
=

o
- )
=
»Lw !
K.; R4
e L
Lr E




Other things to overload

__setitem (self,index,value)
— Another function for making a class look like an array/dictionary
— gindex] = vaue
__add (sdlf,other)
— Overload the "+" operator
— molecule = molecule + atom

e mul_(saf,number)
— Overload the"*" operator
— zeros = 3*[0]
__getattr _ (self,name)
— Overload attribute calls

— We could have done atom.symbol () this way

(5 oh
% ) 5 © 2000 Richard P. Muller 19
3 iE




Other things to overload, cont.

del  (sdlf)
— Overload the default destructor
— del temp_atom

len_ (self)
— Overload the len() command
— natoms = len(mol)
__getdice (sdf,low,high)
— Overload dlicing
— glycine = protein[0:9]
__cmp__ (self,other):

— On comparisons (<, ==, etc.) returns -1, O, or 1, like C's strcmp

ﬂ-.ﬁ }}
2, 1§ & © 2000 Richard P. Muller 20
3 iE




References

e Design Patterns. Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides (The Gang of Four) (Addison Wesley, 1994)

» Refactoring: Improving the Design of Existing Code, Martin
Fowler (Addison Wedley, 1999)

e Programming Python, Mark Lutz (ORA, 1996).

© 2000 Richard P. Muller 21




