
Object Oriented Programming in Object Oriented Programming in
PythonPython

Richard P. Muller
Materials and Process Simulations Center

California Institute of Technology
June 1, 2000

© 2000 Richard P. Muller 2

IntroductionIntroduction

• We've seen Python useful for
– Simple Scripts
– Numerical Programming

• This lecture discusses Object Oriented Programming
– Better program design
– Better modularization

© 2000 Richard P. Muller 3

What is an Object?What is an Object?

• A software item that contains variables and methods
• Object Oriented Design focuses on

– Encapsulation:
dividing the code into a public interface, and a
private implementation of that interface

– Polymorphism:
the ability to overload standard operators so that
they have appropriate behavior based on their
context

– Inheritance:
the ability to create subclasses that contain
specializations of their parents

© 2000 Richard P. Muller 4

NamespacesNamespaces

• At the simplest level, classes are simply namespaces
class myfunctions:

def exp():

return 0

>>> math.exp(1)

2.71828...

>>> myfunctions.exp(1)

0

• It can sometimes be useful to put groups of functions in their
own namespace to differentiate these functions from other
similarly named ones.

© 2000 Richard P. Muller 5

Python ClassesPython Classes

• Python contains classes that define objects
– Objects are instances of classes

class atom:

def __init__(self,atno,x,y,z):

self.atno = atno

self.position = (x,y,z)

__init__ is the default constructor

self refers to the object itself,
like this in Java.

© 2000 Richard P. Muller 6

Example: Atom classExample: Atom class

class atom:

def __init__(self,atno,x,y,z):

self.atno = atno

self.position = (x,y,z)

def symbol(self): # a class method

return Atno_to_Symbol[atno]

def __repr__(self): # overloads printing

return '%d %10.4f %10.4f %10.4f' %

(self.atno, self.position[0],

self.position[1],self.position[2])

>>> at = atom(6,0.0,1.0,2.0)

>>> print at

6 0.0000 1.0000 2.0000

>>> at.symbol()

'C'

© 2000 Richard P. Muller 7

Atom classAtom class

• Overloaded the default constructor
• Defined class variables (atno,position) that are persistent and

local to the atom object
• Good way to manage shared memory:

– instead of passing long lists of arguments, encapsulate some of this data
into an object, and pass the object.

– much cleaner programs result

• Overloaded the print operator

• We now want to use the atom class to build molecules...

© 2000 Richard P. Muller 8

Molecule ClassMolecule Class

class molecule:

def __init__(self,name='Generic'):

self.name = name

self.atomlist = []

def addatom(self,atom):

self.atomlist.append(atom)

def __repr__(self):

str = 'This is a molecule named %s\n' % self.name

str = str+'It has %d atoms\n' % len(self.atomlist)

for atom in self.atomlist:

str = str + `atom` + '\n'

return str

© 2000 Richard P. Muller 9

Using Molecule ClassUsing Molecule Class

>>> mol = molecule('Water')

>>> at = atom(8,0.,0.,0.)

>>> mol.addatom(at)

>>> mol.addatom(atom(1,0.,0.,1.))

>>> mol.addatom(atom(1,0.,1.,0.))

>>> print mol

This is a molecule named Water

It has 3 atoms

8 0.000 0.000 0.000

1 0.000 0.000 1.000

1 0.000 1.000 0.000

• Note that the print function calls the atoms print function
– Code reuse: only have to type the code that prints an atom once; this

means that if you change the atom specification, you only have one
place to update.

© 2000 Richard P. Muller 10

InheritanceInheritance

class qm_molecule(molecule):

def addbasis(self):

self.basis = []

for atom in self.atomlist:

self.basis = add_bf(atom,self.basis)

• __init__, __repr__, and __addatom__ are taken from the parent
class (molecule)

• Added a new function addbasis() to add a basis set
• Another example of code reuse

– Basic functions don't have to be retyped, just inherited
– Less to rewrite when specifications change

© 2000 Richard P. Muller 11

Overloading parent functionsOverloading parent functions

class qm_molecule(molecule):

def __repr__(self):

str = 'QM Rules!\n'

for atom in self.atomlist:

str = str + `atom` + '\n'

return str

• Now we only inherit __init__ and addatom from the parent
• We define a new version of __repr__ specially for QM

© 2000 Richard P. Muller 12

Adding to parent functionsAdding to parent functions

• Sometimes you want to extend, rather than replace, the parent
functions.

class qm_molecule(molecule):

def __init__(self,name="Generic",basis="6-31G**"):

self.basis = basis

molecule.__init__(self,name)

call the constructor
for the parent function

add additional functionality
to the constructor

© 2000 Richard P. Muller 13

Public and Private DataPublic and Private Data

• Currently everything in atom/molecule is public, thus we could
do something really stupid like

>>> at = atom(6,0.,0.,0.)

>>> at.position = 'Grape Jelly'

that would break any function that used at.poisition
• We therefore need to protect the at.position and provide

accessors to this data
– Encapsulation or Data Hiding
– accessors are "gettors" and "settors"

• Encapsulation is particularly important when other people use
your class

© 2000 Richard P. Muller 14

Public and Private Data, Cont.Public and Private Data, Cont.

• In Python anything with two leading underscores is private
__a, __my_variable

• Anything with one leading underscore is semi-private, and you
should feel guilty accessing this data directly.

_b

– Sometimes useful as an intermediate step to making data private

© 2000 Richard P. Muller 15

Encapsulated AtomEncapsulated Atom

class atom:

def __init__(self,atno,x,y,z):

self.atno = atno

self.__position = (x,y,z) #position is private

def getposition(self):

return self.__position

def setposition(self,x,y,z):

self.__position = (x,y,z) #typecheck first!

def translate(self,x,y,z):

x0,y0,z0 = self.__position

self.__position = (x0+x,y0+y,z0+z)

© 2000 Richard P. Muller 16

Why Encapsulate?Why Encapsulate?

• By defining a specific interface you can keep other modules
from doing anything incorrect to your data

• By limiting the functions you are going to support, you leave
yourself free to change the internal data without messing up
your users
– Write to the Interface, not the the Implementation
– Makes code more modular, since you can change large parts of your

classes without affecting other parts of the program, so long as they
only use your public functions

© 2000 Richard P. Muller 17

Classes that look like arraysClasses that look like arrays

• Overload __getitem__(self,index) to make a class act like an
array

class molecule:

def __getitem__(self,index):

return self.atomlist[index]

>>> mol = molecule('Water') #defined as before

>>> for atom in mol: #use like a list!

print atom

>>> mol[0].translate(1.,1.,1.)

• Previous lectures defined molecules to be arrays of atoms.
• This allows us to use the same routines, but using the molecule

class instead of the old arrays.
• An example of focusing on the interface!

© 2000 Richard P. Muller 18

Classes that look like functionsClasses that look like functions

• Overload __call__(self,arg) to make a class behave like a
function

class gaussian:

def __init__(self,exponent):

self.exponent = exponent

def __call__(self,arg):

return math.exp(-self.exponent*arg*arg)

>>> func = gaussian(1.)

>>> func(3.)

0.0001234

© 2000 Richard P. Muller 19

Other things to overloadOther things to overload

• __setitem__(self,index,value)
– Another function for making a class look like an array/dictionary
– a[index] = value

• __add__(self,other)
– Overload the "+" operator
– molecule = molecule + atom

• __mul__(self,number)
– Overload the "*" operator
– zeros = 3*[0]

• __getattr__(self,name)
– Overload attribute calls
– We could have done atom.symbol() this way

© 2000 Richard P. Muller 20

Other things to overload, cont.Other things to overload, cont.

• __del__(self)
– Overload the default destructor
– del temp_atom

• __len__(self)
– Overload the len() command
– natoms = len(mol)

• __getslice__(self,low,high)
– Overload slicing
– glycine = protein[0:9]

• __cmp__(self,other):
– On comparisons (<, ==, etc.) returns -1, 0, or 1, like C's strcmp

© 2000 Richard P. Muller 21

ReferencesReferences

• Design Patterns: Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides (The Gang of Four) (Addison Wesley, 1994)

• Refactoring: Improving the Design of Existing Code, Martin
Fowler (Addison Wesley, 1999)

• Programming Python, Mark Lutz (ORA, 1996).

