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Introduction

In a recent paper, Bascompte & Solé (1994) have
explored the dynamics of a metapopulation version
of a familiar model for density-dependent population
growth (Hassell 1975 ; Hassell et al. 1976) ; namely,

N/+l = A'N/(l +aNt)~ﬂ' eqn 1

Here N is the population density in successive gen-
erations, f and ¢+ 1, A is the finite rate of increase of
the population, and a and f are constants defining the
density-dependent survival. The stability properties of
this model hinge solely on 4 and f, as shown in Fig. 1a.
Bascompte & Solé (henceforth referred to as ‘B&S’)
applied this model to a grid or array of local popu-
lations which they linked with dispersal to four nearest
neighbours, with the aim of exploring how such spatial
structure affects the population dynamics. Using the
Coupled Map Lattice formalism (Kaneko 1993), they
express their model as:

Ny (i) = AN DI+ aN (i, )] P+ DV2N(r)
eqn?2

where D is the diffusion rate and
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VEN(r) = N(i— L))+ NG+ 1)+ N, j—1)

+N/(i,j+1)—4N(i,j). eqn3
This diffusion term defines the individuals that dis-
perse to the four adjacent cells, and those that immi-
grate from these cells.

Bascompte & Solé’s results are surprising: as dis-
persal rate is increased, the dynamics become increas-
ingly unstable, and thus increasingly diverge from
those of the non-spatial, homogeneous model (eqn
1). Figure 1b, reproduced from B&S and based on
numerical simulations, illustrates this. More gener-
ally, we have obtained an analytic criterion for the
constant equilibrium solution to become unstable. For
periodic boundary conditions on an » x n lattice, this
stability criterion is (Rohani, May & Hassell, unpub-
lished)
0= p1—2A"") < 2(1—yD). eqn4
We have defined 6 for notational convenience. The
constant y — 4 for n> 1, being slightly smaller for
small values of n (so that, for fixed D, the stability
criterion is slightly easier to satisfy for small arrays).
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Fig. 1. (a) Regions of stable and unstable population dynamics obtained from equation 1. The unstable region includes both
limit cycles and chaotic behaviour (after Hassell 1975). (b) The comparable figure showing the effects on the stable region in
(a) of different levels of diffusion (D) in Bascompte & Solé’s model. Notice that larger values of diffusion decrease the size of

the stable region (from Bascompte & Solé 1994).
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The essentials of this result are independent of the
exact form of the density dependence in equations 1
and 2. Note that for D — 0 we recover the standard
stability result § < 2, for the homogeneous case. But
as D increases, the system becomes less stable up to
the point D = 1/4 where all individuals move.

B&S’s results are counter-intuitive. One would
expect increasing dispersal between the local popu-
lations to bring the spatially structured model closer
to its non-spatial equivalent (by more effectively link-
ing the separate local populations), as recently noted
by Ruxton (1994), also in a comment on B&S’s paper.

In this note, we show that B&S’s counter-intuitive
results arise solely from the biologically impossible
way that the dispersal function (equation 3) is for-
mulated within B&S’s model. Couched as a discrete
analogue of a reaction—diffusion equation, their model
fails to segregate the processes of survival and disper-
sal. As a result, the same individuals may simul-
taneously fail to survive and yet disperse. At its most
extreme, this leads to the production of negative local
population densities. B&S were aware of this occur-
rence of negative populations, but thought it valid
artificially to ‘correct’ the values to N, (i, j) = 0. Avoid-
ing this problem by using a biologically sensible model
completely changes B&S’s conclusions : spatial struc-
ture now has no effect on the stability boundaries
shown in Fig. la. We illustrate this by segregating
competition and dispersal (e.g. larvae compete for
resources and adults disperse) and by defining a frac-
tion u of potential dispersers (adults) that move
equally to the eight nearest neighbouring cells (Has-
sell, Comins & May 1991, 1994 ; Comins, Hassell &
May 1992). This parameter relates directly to D in
equation 2 (u = 4D).

Results

Our model retains competition from equation 1 for
describing the survival of juveniles within cells, but
now adopts a dispersal rule different from that in
equations 2 and 3 such that within any cell a fraction
u of the emerging adults move equally to the eight
nearest neighbouring cells, and hence a fraction 1 —u
remain behind. Reproduction is assumed to occur fol-
lowing dispersal, giving the model:

Nadinj) = Ny )L +aNy (6, )17 eqn 5a

Nriw1(6) = ANAMLS) —uNA () + .uNA./] eqn 5b

where N, and N, are, respectively, the density of
adults and larvae within a cell, and N, , is the average
number of adults over the eight neighbouring patches.
Note that this model could have been formulated to
have reproduction occurring prior to dispersal (e.g.
dispersal of first instar insect larvae), but this has no
effect in this case on the equilibrium stability proper-
ties.
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Fig. 2. The stability boundaries when the population is mod-
elled as in equation 4. The thick line represents the stability
boundary obtained with reflecting or periodic boundaries,
regardless of the grid size or the dispersal rate. This boundary
is identical to that obtained from the homogeneous model in
equation 1 (Fig. la); in other words, space has no effect
on stability. The dashed lines show the different stability
boundaries obtained from equation 4 when simulated with
absorbing boundaries and using grid sizes of 5x 5, 10x 10
and 20 x 20. In this case, stability is enhanced due to the
density-dependent loss of individuals from the population,
but this effect is only significant for relatively small grid sizes.
(Grids of 50 x 50 are not distinguishable from the solid line.)

Figure 2 contrasts the stability properties of this
model with that of B&S in Fig. 1b. For grids with
periodic boundary conditions, the stability boun-
daries are identical with those for the homogeneous
case, namely

0=p1—21"" < 2.

This result is true for all dispersal rates u, and for all
grid sizes. Furthermore, it does not depend on the
number or location of cells to which propagules
disperse, nor on the proportions migrating to different
cells; all that is required for equation 6 is that these
patterns of dispersal be the same for all cells. (For
proofs and a more detailed discussion, see P. Rohani
et al. (unpublished).) If the boundary conditions are
absorptive, such that individuals are lost to the system
from the cells around the edges of the lattice, then
equation 6 still holds in the limit #» > 1; in this case,
however, the stability domain gets slightly larger from
smaller arrays (because there is a density-dependent
loss to the total population which becomes pro-
portionately more significant as the grid size gets smal-
ler). This is not to say that spatial structure has absol-
utely no effect on the dynamics: within the unstable
region, self-organizing spatial patterns of abundance
do occur, and an example is given in Fig. 3. There are
also interesting differences between the dynamics at
the local and global scales as shown in Fig. 4.

eqn6

Conclusions

In this note, we show that the counter-intuitive results
of B&S, whereby increasing dispersal between local
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Fig. 3. The distribution of local population sizes in a grid
of 200 x 200 cells given by equation 4. The self-organized
structures observed are typical Turing patterns where regions
of low (black dots) and high (white dots) density coexist over
distances larger than the local patch scale. Parameter values:
a=0.01,u=0.9,8=10and A = 100. Picture obtained after
2000 time steps. Initial population size was set at 100 at one
corner of the grid, and fixed boundary conditions were used.

populations decreases stability, disappear when dis-
persal and mortality no longer act on the same indi-
viduals. The results emphasize how important it is
that assumptions about mortality and dispersal are
properly ordered in the organisms’ life cycle. An
important feature of these results is the lack of any
effect of spatial structure on the local stability proper-
tiesin Figs la and 2. A subsequent paper demonstrates
the generality of this conclusion for a broader range
of species interactions.
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Fig. 4. Bifurcation diagrams for local (a) and global (b)
populations (a single cell compared with the total popu-
lation), showing different dynamics at the different scales.
Lattice size = 10x 10 (fixed boundary conditions) and
a=0.01, y = 0.006 and A = 60. The initial population was
set at 100 in the central lattice cell and the first 3000 time

steps were discarded.
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