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Super-Rough Dynamics on Tumor Growth
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The growth of a cultivated typical brain tumor is studied in this work. The tumor is analyzed both
dynamically and morphologically. We have measured its fractal dimension to bedf � 1.21 6 0.05.
From its dynamical behavior we determine the scaling critical exponents of this circular symmetry
system which are compatible with the linear molecular beam epitaxy universality class. A very
important feature of tumor profiles is that they aresuper-rough, which constitutes the first (1 1 1)-
dimensional experiment in literature with super-roughness. The results obtained from the dynamics
study make manifest two very surprising features of tumor growth: Its dynamics is mainly due to
contour cells and the tendency of an interface cell to duplicate is a function of the local curvature.
[S0031-9007(98)07545-0]

PACS numbers: 87.22.As, 47.53.+n, 47.54.+r, 68.35.Ct

Over the past two decades, many systems exhibiting
rough interfaces in their development process have been
successfully described by means of scaling analysis, a
powerful tool used in the study of fractal geometry. In
this way processes such as fluids invading porous media,
fire fronts, crystal growth, etc. [1], have been understood.
In the field of biology, we can find a large variety of
systems which develop rough interfaces. Among the most
interesting and important ones are growing tumors. The
shape of the tumor profile will allow us to study and
classify the type of tumor according to its geometry and
dynamics. The contour form is a valuable indication of
the tumor dynamics behavior, something that has also been
observed in tumoral cells. The form of the contour cell
determines the number and type of cell exchange channels.
Moreover, the morphology of single cells may determine
its malignant nature, as we learned in a very enlightening
paper of Losaet al. [2]. This result has been extrapolated
to the case of tumors to predict their malignant nature.
There are several works where the fractal dimension of
tumors has been measured with the aim to classify them
and determine their malignant nature [3]. On the other
hand, there have been different attempts to construct a
mathematical model describing tumor growth [4–9], but
they are too restrictive in their hypothesis. In this paper we
propose a purely descriptive mathematical model derived
from the study of the time evolution of tumor growth,
which will serve to draw some conclusions about the
mechanisms of this growth process.

We have grown four brain tumorsin vitro from the
cellular stable line C6 of rat astrocyte glioma. Approxi-
mately 103 104 partially dissociated cells were plated
on 35 mm diameter Petri dishes, in a volume of5 ml
of medium (a mixture of Dulbecco’s modified Eagle’s
medium (DMEM) and F12 Ham’s mixture (F12) in a

1:1 ratio) in a 5% CO2 and 95% humidity atmosphere.
Once attached, fresh medium was added up to a volume
of 2 ml, and the cells were maintained in these conditions
for several days. This procedure allowed cells to grow
mainly on the plate surface; i.e., for our purposes the tu-
mor can be considered a two-dimensional system. The
four tumors were photographed during their growth by
using an inverted microscope equipped with a contrast fil-
ter and a coupled photocamera. We will henceforth label
these tumorsA, B, C, andD. Growing times range from
about 50 hours (tumorA) up to 311 hours (tumorD). The
analysis of the tumor evolution is based on the shape
of their profiles. The photographs were scanned into
a personal computer, achieving a final resolution of
1.3 mm�pixel, and the profiles were hand traced. Some
typical tumor profiles are shown in the inset of Fig. 1.

FIG. 1. Fractal dimension of the tumorB calculated with the
box-counting method att � 0h (up triangles),21h (circles),
29h (squares), and52h (down triangles). The inset shows
snapshots of tumor interface corresponding at the same times.
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In order to characterize the tumors morphometrically
we have used the box-counting fractal dimension. In
Fig. 1 we show the box counting analysis results for the
interface of tumorB at four different times. The value
obtained for the fractal dimension isdf � 1.21 6 0.05.
The same analysis has been made on the other three
tumors, and the values obtained fordf are the same within
the error bars. We stress that the measureddf value is
independent of both time and experiment.

To describe the dynamics of tumor growth we study the
scale-invariant behavior of the profiles. The dynamics of
many physical systems exhibiting rough interfaces can be
characterized by a set of critical exponents obtained from
scale-invariant properties of certain physical quantities.
The first one is the mean tumor radius, the first order
moment of the interface position,�r� � N21

PN
i�1 ri�t�,

whereN is the number of points of the tumor interface
and ri are the distances of these points from the center
of mass of the tumor. Another important quantity is
the second order moment of the interface position as a
function of the arc lengthl and timet:

w�l, t� �

(
1
l

X
riel

�ri�t� 2 �ri�l�2

)1�2

L

, (1)

where �?�l means the local average of subsets of arc
length l, and �?	L is the average over all of the system.
This quantity measures the interface width and provides
a measure of local fluctuations of the interface at about
its local average value. A system with circular symmetry
showing negligible overhangs compared with the system
size behaves like a linear system with a time dependent
size. This result has been tested using different methods
for determining the critical exponents [10]. The width
function of these rough interfaces, depending on the arc
lengthl and timet, shows the scaling behavior

w�l, t� �

Ω
tb if t ø ts ,
la if t ¿ ts .

(2)

with a the roughness exponent,b the growth exponent,
and ts the saturation time which depends on the window
size, wherez is the dynamical exponent, which charac-
terizes the time scaling behavior of the lateral correlation
length, lc 
 t1�z . These three critical exponents are re-
lated throughz � a�b, as in linear geometry. Although
this description is valid for a great variety of physical
systems, there exist some cases in which it is not valid.
When the local widthw�l, t� differs from the global width
w�L, t�, we can definealoc and a, the local and global
roughness exponents, respectively, as

w�l, t� 
 laloc , w�L, t� 
 La , t ¿ ts , (3)

with L being the whole contour length of the circular
interface.

There are some systems in which the surface has
a global roughness exponenta . 1 [1,11–13]. These
systems are termed super-rough. In these cases, the local

surface width does not saturate as in (3), but crosses over
to a new behavior in the intermediate time regimelz ø
t ø Lz , characterized by a different growth exponent
b�, w�l, t ¿ lz� 
 ltb� , where b� � b 2 aloc�z. A
scaling showing this behavior is known asanomalous
scaling [14]. The interface Fourier transform gives us the
power spectrum

S�k, t� � k2�2a11�s�kt1�z� , (4)

where s is the structure factor which shows the scaling
behavior

s�u� �

Ω
const if u ¿ 1 ,
u2�2a11� if u ø 1 .

(5)

By applying this scaling analysis to the tumors we obtain
some very interesting results. In Fig. 2 we can observe
the time evolution of the mean radius, measured from
the tumor center of mass. Note that the four curves
have been shifted in order to match the initial radius at
t � t0. The radius grows linearly with time [15]. As
shown in Fig. 2, the interface speed growth obtained is
�y� � 2.9 6 0.1 mm�h. This result is striking because
the growth rate is assumed to be exponential in tumor
literature [16,17].

In Fig. 3 we plot the local width of the interfaces
of tumor D at several times. We can establish for the
local roughness exponent the valuealoc � 0.87 6 0.05.
Notice thatdf 1 aloc � 2.08 6 0.10, in good agreement
with the exact result 2 (the Euclidean dimension) [18].
The global interface roughness exponent,a, is obtained
from the power spectrum of the tumor interfaces. As
shown in Fig. 4 the power spectrum decays ask2m with
m � 2a 1 1 � 4.0 6 0.2, hencea � 1.5 6 0.1.

This result (a . 1) indicates that tumor interfaces
are super-rough, i.e., they exhibitanomalous scaling.
Super-rough interfaces have been observed experimen-
tally in crystal growth in (2 1 1)-dimensions, where
super-roughness is marginal [19,20].
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FIG. 2. Time evolution of the tumors mean radii showing a
linear behavior [tumorA (up triangles), tumorB (circles), tumor
C (squares), and tumorD (down triangles)]. In the inset we
can see the fit for early times.
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FIG. 3. Local width of tumorD vs window size at times�
48h (circles), 72h (squares),144h (triangles),168h (pluses),
and311h (stars). From the initial slope of the curves we obtain
the local roughness exponentaloc � 0.87 6 0.05. In the inset,
data are collapsed using exponentsa � 1.5 andz � 4.0.

We can obtainz from a scaled local width,w�l, t��la ,
vs scaled window size,l�t1�z, log-log plot. According to
(2) and (3), the local interface width curves at different
times should collapse onto one curve which exhibits two
different regimes, each with a characteristic decay. To
measure the dynamical exponent,z, we consider tumor
D because of its larger growth time. The inset of
Fig. 3 shows the collapse of tumorD, using a � 1.5
and z � 4.0. The exponent of the first regime ism �
aloc 2 a � 20.55 6 0.10 and that of the second regime
is m � 2a � 21.4 6 0.1. In the same way, and to
corroborate these latest values, we can obtaina and z
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FIG. 4. Structure factor at times� 48h (circles), 72h
(squares),144h (triangles), 168h (pluses), and311h (stars)
of tumor D. The shape of the curves provides us a global
roughness exponent ofa � 1.5 6 0.1. In the inset, data are
collapsed using exponentsa � 1.5 andz � 4.0.

from the collapse of the power spectrum of the interfaces.
It can be seen that the spectrum curves at different times
collapse onto a single universal curve. In the inset of
Fig. 4 we show a log-log plot ofS�k, t�k2a11 vs kt1�z for
a � 1.5 andz � 4.0.

In summary, we have obtained the following set of
critical exponents:aloc � 0.87 6 0.05, a � 1.5 6 0.1,
z � 4.0 6 0.2, b � 0.375 6 0.03, and b� � 0.15 6

0.05. This set of critical exponents values is compatible
with the well-known linear MBE (molecular beam epi-
taxy) growth model, which describes growth processes
dominated by surface diffusion and deposition, as in
crystal growth. This universality class has been found
in some deposition models [11,21,22]. The continuum
equation which describes this universality class is

≠h
≠t

� 2K
≠4h
≠x4 1 F 1 h�x, t� , (6)

where h is the interface height,K is the surface
diffusion coefficient, andh�x, t� is a random noise
with �h�x, t�� � 0 and correlations�h�x, t�h�x0, t0�� �
2Dd�x 2 x0�d�t 2 t0�. In our caseF represents a cell
division rate. This linear equation can be exactly solved
by using Fourier transformation, givinga � 1.5 and
z � 4, i.e., b � 3�8. In atomic deposition described by
MBE processes, atomic diffusion depends only on the
number of bonds which must be broken for diffusion to
take place instead of the local height of the interface. We
can gain further knowledge of the microscopic growth
process by means of the local curvature models [22,23],
which considers nonequilibrium growth models driven
by deposition and surface diffusion. In this model, the
relaxation process follows the rule that any particle de-
posited at the interface will choose the site that increases
the local curvature of the surface between itself and its
nearest neighbors. The number of bonds a particle may
form increases with the local curvature of the interface
at that point. If the local curvature radius is positive the
atom has a large number of neighbors and it is able to
diffuse easily. In the case of tumors, the cell division
plays the role of both deposition and surface diffusion.
Depending on the local curvature, the interface cells will
have, in some sense, a larger probability of duplicating.
A high positive local curvature corresponds to a high cell
duplication probability and vice versa. This result reveals
a new surprising and important feature of tumor growth.

Finally, we have shown that this type of tumor has a dy-
namical behavior described by a mathematical model. On
the other hand, it constitutes the first (1 1 1)-dimension
experiment developing super-rough interfaces. All of
these results can be effectively achieved only in cell cul-
ture, although it is important to assess the significance
of the results for the growth behavior of cells in animals.
The final goal of our research is to classify tumors accord-
ing to their dynamical behavior, as well as to establish a
connection between the physical environment of a tumor
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and the mathematical parameters. The latter would have
outstanding medical consequences as it reveals the mecha-
nism to control—or even to stop—the growth of a tumor.
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