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Abstract-Deterministic models describing mechanisms underlying tumor growth, suppression, 
and regrowth are proposed and fit to kinetic data on B cell lymphoma in mice. It is demonstrated 
that either a modest change in the effectiveness of killer cell suppression, or the existence of a variant 
nonimmunogenic clone of the tumor cells, can explain the regrowth of a tumor after initial suppression. 
Adjuvant immunotherapy after establishing the cancer dormancy is modeled as a stimulated increase 
of the flow of killer cells into the tumor or a local increase of the rate of proliferation of these cells in 
a tumor. We modeled the immunotherapy consisting of impulse injections of immune lymphocytes 
in the vicinity of the tumor. Our numerical experiments show that this immunotherapy does not 
completely destroy the tumor, although thereafter the tumor may persist in a dormant cancer state 
or have its regrowth markedly delayed. @ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Tumors that originate in the body via a variety of mechanisms usually grow slowly. Many months 

or years may be needed for the existence of such a tumor to manifest itself. This near-steady- 

state existence of a tumor is described by the term cancer donnancy [1,2]. Cancer dormancy is 

a well-recognized clinical phenomenon in which malignant cells persist for a prolonged period of 

time with little or no increase in the tumor cell population. This state may occur naturally or 

following apparently-effective therapy. 

There are at least two plausible independent pathways to the clinically “quiescent state” of a 

tumor. The first pathway corresponds to intrinsic properties of the tumor cells (related to the ex- 

pression of suppressor genes, production of growth, and/or antigrowth factors and corresponding 

receptors, etc.). The second pathway corresponds to approachin, m an equilibrium of interaction 

between the growing tumor cell population and various cellular and molecular components of the 
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immune system. In either or both situations, the tumor appears to be dormant. Nevertheless, 
tumor dormancy is not necessarily a stable state. Many factors-concomitant infection, stress, 
immunodepression events, changes in endocrine status, etc.-may disturb the balance between 
the host and the dormant tumor. 

We will present a mathematical model for tumor growth and suppression below and show that 
this model can describe the regrowth of a dormant tumor by either of two distinct mechanisms. 
The first mechanism is a modest decrease in the efficiency of immune-suppression of the tumor 
which, prior to this decrease, has been able to maintain an equilibrium state wherein the tumor 
does not exhibit growth. Variants of this mechanism have been studied in [3,4]. The second 

mechanism we explore is the existence of a mutant clone of tumor cells which is not effectively 
suppressed by an immune response, and hence , grows unchecked, except for natural constraints 
imposed by nutrient resources. 

In our model, tumor growth is reversed and then held in check by the continual attack of 
killer cells; however, when the equilibrium relationship between the killer cell and the tumor cell 
populations is suitably perturbed, the tumor “escapes” control and grows. 

2. SINGLE CLONE MODEL FOR TUMOR REGROWTH 

Let c(t) denote the number of cancer cells present at time t, measured in units of one million 
cells. Let e(t) denote the number of cytotoxic killer cells present at time t, measured in units of 
one million cells. Then the growth-rate of the cancer cell population is defined by the differential 

equation 
c’(t) = kc(t) (1 - be(t)) - ape(t)c(t). 

The term Icc(1 - be) is the intrinsic rate of tumor cell growth. The parameter k is the maximal 

rate of tumor-cell growth (when b = 0, the tumor grows at the rate k,) and the parameter b is 
t,lie reciprocal of the maximal tumor cell population size; i.e., l/b = (the maximum number of 

tumor cells permitted to arise)/lO”. 
The term apec specifies the rate of destruction of tumor cells. We cassume that killer cells bind 

with tumor cells, and that when this occurs then either 

(1) the tumor cell is destroyed, or 
(2) the killer cell is destroyed or inactivated. 

(The event that both cells are destroyed is deemed negligible.) 
The parameter p is the proportion of tumor cells bound with killer cells that will be destroyed. 

and 1 - p is the proportion of tumor-cell-killer-cell bound pairs where the killer cell is destroyed. 
The parameter a is defined so that a(1 - p) is the rate of killer cell destruction (after binding 
with a tumor cell), and ap is the rate of tumor cell destruction (after binding with a killer-cell). 
Note that 1 - a is the rate of neither cell killing the other after binding, and unbinding to try 
again. Thus, ay is the “kinetic” constant that multiplies e and c to form the overall tumor-cell 
destruction rate term ayec. 

The growth-rate of the killer-cell population (which changes size as new killer cells are attracted 
and arrive via the lymph system) is defined by the differential equation 

e’(t)=?-+ ((f$;)) e(t) - de(t) - (a(1 - p)c(t)) e(t). 

The parameter r is the base rate of arrival of killer cells at the tumor via the lymph system: 
we take r to be a derived parameter defined a.s eed, where ec = 0.3 (0.3 million is our estimate 
of t,he number of killer cells present in the absence of tumor cells taken from [3,4]). The term 
(f(t)c/(y + c))e is the additional rate of both local proliferation and arrival of killer cells due to 
the chemokine and cytokine stimulation signals induced by the tumor-cell population of size c. 

The expression f(t)c/(g + c) is a logistic growth rate expression in which ,f(t) = if f = 0 
then %r else if t < u then 0 else w. (The notation “if D, then El else Ez” defines a function with a 
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discontinuity, so that “if D then El else &” is the value of the expression El when the condition D 

holds, and is the value of the expression &, otherwise.) The parameter v is the maximal rate of 

logistic growth of killer-cell population due to tumor growth, and the parameter u is the delay 

t,ime of the immune response before “new” killer cells can be applied to attack the tumor; i.e., ‘~1 is 

t,be time for precursor cells to mature into killer cells. The function f “cancels” the additional 

growth term until t > U. The parameter g is the midpoint (IC-50) logistic parameter in the 

additional arrival rate term. The parameter d is the natural rate of death of killer cells. Finally, 

the term a(1 - p)ce is the rate of killer-cell death or inactivation due to the presence of Hz02, 

gangliosides, cytolytic peptides produced by the tumor, etc. 

We have used the experimental data due to [5], where BCLl lymphoma tumor cells were 

injected into the spleens of chimeric mice, and the resulting tumor growth was followed. In 

particular, we are given the mean number of tumor cells at various times seen in four groups of 

mice (numbered 0, 1, 2, 3). These seeded tumors were initially of approximate size 0.5 million 

cells per mouse in Group 0, 0.5 million cells per mouse in Group 1, five million cells per mouse in 

Group 2, and 50 million cells per mouse in Group 3. In Groups 1, 2, and 3, the resulting tumors 

respond to the action of the immune system. Group 0 mice have no immune response; tumor-size 

dat,a from this group will be used to help estimate the parameters that define tumor growth by 

fitt,ing the pure growth model c’(t) = kc(t)(l - be(t)) with c(0) = 0.5. 

It is appropriate to both fit and view the data and our fitted models in logarithmic form; 

doing this is equivalent to weighting the data to assume the error in the tumor-size observations 

is more nearly log-normal than normal. The main purpose, however, is to introduce convenient 

units for both fitting and viewing. In order to fit the data, we replicated our model for each 

of the Group 1, 2, and 3 data-sets, and introduced the pure-growth differential equation model 

mentioned just above for the Group 0 data. We have assumed that the initial number of killer 

cells contained in the spleen of the chimeric mice of Groups 1, 2, and 3 is 0.3 million, so we used 

t,he initial conditions e(0) = e0 for each replicated differential equation, where eo = 0.3. This 

indicates that eol0” is the number of killer cells that were initially present when the tumor cells 

were injected. 

IVe used the MLAB mathematical and statistical modeling system from Civilized Software Inc., 

Bethesda, RIID, (see www. civilized. corn [6]) to fit our models and draw the corresponding graphs, 

since MLAB is especially designed to deal with differential equation models, including large systems 

of stiff equations. For the four data-sets used, fitting our model consists of fitting four functions 

defined by seven differential equations to estimate the eight parameters d, u, o, p, u, k, b, 

and y. This fitting required various exploratory computations and careful search of the parameter 

space for suitable initial guesses that lead to physiologically-plausible values. Our result is d = 

0.5910007682, u = 28.05445851, v = 0.524999404, p = 0.9982002827, a = 0.138698686, k = 

0.1877015458, b = 0.001880059483, and g = 0.1607110637. Note particularly that 28 days is 

an appropriate estimate of the maturation time for CD8+ cytotoxic T lymphocytes. Figure 1 

shows this fit. Note that for Groups 1, 2, and 3, the tumor growth is suppressed and enters a. 

equilibrium state of apparent dormancy. The limiting stable steady state of our model in this 

situation may be interpreted as the tumor dormant state. 

Now, if we modify our model to have the parameter p change from 0.9982002827 to 90 percent 

of that value after 150 days, then tumor regrowth is exhibited as shown in Figure 2. This is 

clone by replacing p in our seven differential equations by the expression h(t), and defining /l(t) = 

if t < 150 then p else 0.9p. This result indicates that a modest decrease in immune response 

efiectiveness, corresponding to a small increase in the proportion 1 -p of killer lymphocytes being 

inactivated by tumor cells, dramatically changes the outcome of the disease. 

It is worthwhile to note that suitably changing the parameters w, d, or k can produce a similar 

regrowth event. However, increasing the parameter g from 0.16 to 5 did not change approaching 

the trmior dormancy steady state. Thus, our modeling suggests that regrowth of a dormant tumor 

may be associated with diminishing immune system activity, caused by a variety of mechanisms. 
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J/Iany immune functions are reduced with age [7] or chronic stress [8]. We explored the effect of 
diminishing the various immunological parameters in our model; we observed that slowly reducing 
the parameters p, v, d, or lo with age induced regrowth of the dormant tumor. Figure 3 shows 
that introducing a linear reduction of parameter 2, causes the tumor to leave the dormant state 
and regrow to a very large mass by 250 to 300 days after the initial challenge. The rate of tumor 
regrowth is about three times slower than the rate of primary tumor growth. This result agrees 

with the experimental data of Sui et al. [5] and Vitetta et al. [2]. The simulation of regrowth with 
diminishing immune activity shown in Figure 3 was done by linearly decreasing the parameter 7~ 
by replacing w with the expression ~(1 - p(t - q)), w lere Q = 150 days and p = 0.002 (l/day). 1 

3. TWO CLONE MODEL FOR TUMOR REGROWTH 

Another explanation of tumor regrowth is that there is a small population of immune-resistant 

cancer cells that are either initially-present or that develop and which grow unchecked by the 
action of killer cells. We can explore the behavior of such an aberrant clone population by 
introducing a pure growth model for such a population via the differential equation m’(t) = 

0.33km(t)(l - b(m(t) + c(t))) with m(O) = SC(O) an d modifying the growth term kc(t) (1 - k(t)) 

to be Icc(t)(l - b(m(t) + c(t))) in the differential equation that defines the function c. The 
parameter s is the proportion of the initial population of cells that matches the size of the initial 
population of aberrant immune-resistant cells. 

Thus, the two clones model for cancer regrowth is written 

c’(t) = kc(t) (1 - b (c(t) + m(t))) - ape(t)c(t), 

m’(t) = 0.33/W(t) (1 - b (172(t) + C(t))) , 

e’(t) =r+ ((~~)~[~~)) e(t) - de(t) - (4 - p)c(t)) e(t), 

with c(0) = CQ, m(0) = SCO, e(0) = eo, and f(t) = if t < u then 0 else v, where eo = 0.3 and CO is 
variously equal to 0.5, 5, and 50. 

We can estimate the value of s that causes the total tumor size c(t) + m(t) to rise to the value 
500 after 290 days by simultaneously curve-fitting replicates of the function c(t) + ,m(t) to the 
point (290,500) for Groups 1, 2, and 3, along with the data for each group of chimeric mice. NJe 

also fit these model functions to the additional da.ta point (110, l), corresponding to 10” being 
the number of dormant tumor cells present initially at days 100 to 110 as estimated in [l]. MLAB 
permits such simultaneous fitting of many functions indirectly defined by differential equations. 
We obtained s = 4.081604 . 10m5 f 1.86. 10P5. The result is shown in Figure 4. 

4. SIMULATION OF IMMUNOTHERAPY FOR 
AN ESTABLISHED DORMANT CANCER 

Inducing an increased presence of various cytokines, chemokines, and/or other immunomodula- 
tors in tumor tissue may augment the function of the immune system, and this can accomplished 
via. vaccine agents without serious toxicity, provided a rational approach is used [9]. Such t,hera- 
peutic vaccine agents can indirectly enhance the influx of killer cells into tumor tissue. 

In Figure 5, we show the results of numerically simulating the effects of changing the dynamics 
of the immune system via various vaccine regimes, thus modifyin g its action on an established 
dormant tumor. Such a change will result in reducing the tumor mass. However, this response 
is temporary, and tumor regrowth may occur after stopping the immunotherapy and thereby 
reducing the influx of killer cells. 

Figure 5a shows the result of increasing the flow of killer cells into a dormant tumor in three 
steps due to three imagined vaccine immunization treatments administered on day 180, day 194, 
and day 215. The modeled tumor is characterized by the parameters of a “normal” mouse 
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obtained by fitting and exhibited in Figure 1. In this case, we assume the vaccination provokes 
a temporary rise in the size of the population of killer cells available to attack the t,umor: this 
increase is independent of the (dormant) tumor-size. This is done by modifying the “base arrival 
rate” 0.3d by multiplying by factors that are temporarily greater than one, corresponding to each 
vaccine injection. 

The therapeutic effect of vaccination shown in Figure 5a was modeled by the following equa- 

tions. . 

e’(t) = q(t)(0.3d) + e(t) - de(t) - a(1 - p)e(t)c(t), and 

c’(t) = kc(t) (1 - be(t)) - upe(t)c(t), with 

f(t) = if t < u then 0 else 21. 

The effects of the vaccinations are described by the “multiplier” function cl, where 

cl(t) = fl(t).fdt)h(t), and 
fl(t) = 1 +.w(t,u1), 

j2(t) = 1 + w (hU2) 7 

f3(t) = 1 + ‘w (t, ug) , and 

w(t, z) = if t < z then 0 else 60 (exp(-0.35(t - 2)) - exp (-0.4(t - z)) . 

The function w(t, Z) is 0 until time Z; at time z it rises to a maximum of nearly three at about. time 
,-+7 (indicating a four-fold increase of the arrival-rate of killer cells); and thereafter, exponentially 

decays to nearly zero by day z + 18. 
WC used the initial conditions e(0) = 0.3, c(0) = 50, and the parameter values used for Figure 1, 

together with ~1 = 180, ‘~2 = 194, and ~3 = 215. 
Figure 5b shows the result of modeling such imagined immunizations beginning ten days after 

tumor regrowth has started in a mouse with a diminished immune response as modeled in Figure 2; 
thus, the vaccinations occur at days 160, 174, and 195. Also, in this case, we assullle our 
vaccine works by increasin, v the proliferation of killer cells in response to the logistic tumor size 

function. rather by increasin, m the arrival rate independently of the tumor size. This is done by 
multiplying the tumor-size dependent growth term for the killer cell population by factors which 
are temporarily greater than one, rather than modifying the base arrival rate as done above. 
Also. we assume that, alt,hough the number of killer cells increases in response to vaccination. 
t,heir effectiveness, as measured by the parameter p, remains diminished at a level 10% lower than 
t,he L~norn~al” mice modeled in Figure 1. 

011r model is given by the following differential equations: 

c’(t) = 0.3d + q(t) 
((;Y:::;)) 

e(t) - de(t) - a(1 - p)e(t)c(t), wiicl 

c’(t) = h(t)kc(t) (1 - k(t)) - ape(t)c(t), with 

.f(t) = if t < ‘~1 then 0 else V, and 

h(t) = if t < 150 then p else 0.9~. 

The effect,s of the vaccinations are here described by t,he “multiplier” function, cl. defined in 
terms of the functions fl, f2, f3, and UJ given above; fl, f2, f3, and w are defined as they were 
above, except that ~1 = 160, 212 = 174, and ug = 195. 

1% used the initial conditions e(0) = 0.3, c(0) = 50, and the parameter values used for Figure 2. 
t,ogether with ~1 = 160, ~2 = 174, and ~3 = 195. 

Figure 5c shows the result of our simulation of the effect of immunotherapy by injecting immune 
memory cells in a mouse with a regrowing tumor due to a diminished immune response as modeled 



in Figure 2 (and Figure 5b). We assumed that, soon after injection, the memory cells will increase 

the immune response to the tumor due to enhanced stimulation of the production of killer cells 
for a period of about 150 days. This mechanism of adaptive immunothera.py is modeled with the 

different,ial equations 

e’(t) = 0.3d + q(t) ((;y;;;)) e(t) - de(t) - a(1 - p)e(t)c(t), and 

c’(t) = h(t)kc(t) (1 - be(t)) - qe(t)c(t), with 

f(t) = if t < 11, then 0 else ‘u: and 

/l(t) = if t < 150 then p else 0.9p. 

The effects of the vaccinations are here again described by the “multiplier” funct,ion. q. defined 

in terms of the functions .fl, fi, fs, and 11); fl, fz, and f3 are defined as they were above, except 
t,hat, 11~1 = 160, 112 = 174, and 113 = 195. The function ‘w has the same form as before, except 
that it. has been “lengthened” (by changin g 0.35 to 0.35/10 and 0.4 to 0.4/10) to correspond to 

im enhanced rate of proliferation of killer cells proportional to the logistic tumor size for a time 
period of about 150 days. We used t,he initial conditions e(0) = 0.3, c(0) = 50, and the parameter 

values used for Figure 2, toget,her with ~1 = 160, us = 174, and ~3 = 195. 
Figure 5d depicts the simulated situation where we modeled administering a “cyt,ostatic” drug 

t,hat has the effect of reducing the logistic growth-rate parameter k that governs the rate of 
t 1mior regrowth: this might be an agent that reduces the tumors’ nutrient supply. for example. 

In particular, we again used a reduced immune response mouse as described in Figure 2 which 
exhibits t,umor regrowt,h starting at clay 150. We imagine administering a drug that cuts the 
\-illur of li: in half on clay 170. This is done mat,hematically by replacing k: with the function 
X(t) = if t < 170 then k: else k/2. 

5. DISCUSSION 

Animal models of tumor dormancy are essential for understanding fundamental aspects of can- 

cer biology and for exploring therapeutic strategies that may reduce the risk of tumor relapse [l]. 
Nevertheless, tumor dormancy has received surprisingly little scientific attention and experimen- 
tal studies have been minimal. In this article, we have focused on the mathematical analysis of 
~vell-est,Ablishecl data of BCLl lymphoma induced in chimeric mice [5] and explored its prognosis 
rintler various assumptions. 

The assumption that, after the introduction of tumor cells (at time 0), no enhanced immune 

response occurred during the first 28 days after t,he mice were challenged with such injections 
was key to obtaining the excellent fits exhibited in Figure 1. The probability of inactivation 
of an immune killer cell after binding to a tumor cell is also a crucial parameter of the model. 
The value of p, as well as the numerical values of the other kinetic parameters of our model, are 
t,ypical of the kinetic characteristics of CD8+ cytotoxic T lymphocytes involved in t,he allogenic 

immune response in mice. 
R.ecent.ly. two dist,inct experimental groups [9,10] have reported that cytotoxic T lymphocytes 

are a major component in the regulation of tumor dormancy of BCLl lymphoma. This is fur- 
t,her confirmation that our killer cell population is primarily composed of CD8 ‘I’ lymphocytes 
RS assumed in (3,4]. It has been shown that immune T lymphocytes can recognize icliotype de- 
terminant,s of immunoglobulin molecules on the surface of B-cell lymphoma cells and can induce 
the local production of interferon-y (see [I]). 

We have studied two related mechanisms of tumor regrowth. The first model predicted that a 
smH11 permanent reduction in the level of antitumor immune response may provoke the regrowth 
of a monoclonal tumor from a dormant state. Reducing the probability of killing or inactivation 
of a tumor cell by an immune killer lymphocyte, or reducing the rate of arrival of the immune 
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lymphocytes into the tumor region, were the most critical factors in inducing t,he model t,o 
exhibit tumor regrowth. Various factors, i.e., aging, stress, infection, etc., may explain why such 
a. tumor-growth-inducing change might occur. Recently, Flood et al. [7] have observed a decline 
in a number of antigen-specific CD8+ cytotoxic T lymphocytes in mice with age and noted that 
t,his decline is associated with the susceptibility to an immunogenic tumor in such older animals, 
as our modeling corroborates. 

Our second two-clone tumor model also agreed with the experimental observations. Under 
t,he assumption that a small fraction (0.004%) of the tumor cell population injected initially 
into the mice is nonimmunogenic and that the growth of this clone is three times slower than the 
growth rate of the major immunogenic tumor cell population, this model unsurprisingly predicted 
eventual tumor regrowth. Unlike our first model, this second model also predicts that size of the 
t,umor after dormancy is determined by the initial number of injected tuiiior cells. Variability 

of initial doses of injected cells explains the high dispersion of the time of clinical detection 
of regrown tumor after dormancy [a], under the assumptions of our second moclel. Moreover. 
immunological abnormality of a minor fraction of BCLl lymphoma cells was reported in the 

same study [2]. 

Note t,hat the curves describing tumor regrowth presented above have distinct shapes. It would 

be interesting to see if tumor regrowth known to be due to immune system decline matches the 
regrowth profile in our first model while tumor regrowth due to the presence of a abnormal clone 
matches the regrowth profile of our second model. 

Conducting a comparative immunological and genetic analysis of abnormal cell patterns in the 
original tumor and in tumor cells after dormancy would provide key information to validate 01 

correct. our models. The abnormalities sought for could be defined by mutation or by epigenetic 
adaptation mechanisms. 

Clinical and experimental observation confirms that intensive limited-term ilnlliunothelal,y 
does not provide complete tumor elimination, as predicted via modeling. Immunothelapy may 
reduce tumor mass to a handful of cells; however, if the functional activity of the immune system 
is slightly impaired, tumor regrowth after immunization is likely. Model-fitting predicts t,hat the 
life time of killer cells is short (about two days). Long term maintenance of anticancer immunity 
after stopping immunotherapy could be improved if long-life immune memory cells could be 
activated during immunization. Our modeling thus suggests that immune memory killer cells 
could be a critical target for immunization and vaccination strategies against BCLl lymphoma. 

Moreover, memory cells could act to establish stable tumor dormancy and, perhaps in some cases, 

also eliminate dormant primary tumors and small metastatic tumors. 

Finally, it would be useful to analyze the data of [5] with other models of cancer clormancy and 
its regrowth. such as models which follow a Gompetzian growth law [12,13]. The development of 
I,hysical-chemical models which take into account the spatiotemporal distribution imd dynamics 
of tumor cells, immune cells, and cytokines as explored in [E-16], could be helpful in bet,tel 
understanding cancer regrowth mechanisms and in optimizin, m therapeutic strategies to reduce 

the risk of tumor relapse. 
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