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A b s t r a c t - - F r o m  the viewpoint of biological stoichiometry, a mathematical model of vascular tu- 
mor treatment with chemotherapy techniques is proposed utilizing a system of delayed differential 
equations representing the change in mass of healthy cells, competing parenchyma cells, chemother- 
apy, and the number of blood vessels within the tumor. In the absence of treatment,  mathematical 
analysis of the model equations with regard to invarianee of nonnegativity, boundedness of solutions, 
nature of equilibria, permanence, and global stability are analyzed. It is shown that  the system can be 
permanent, but whenever the boundary equilibrium is stable, the interior equilibrium of the system 
cannot be globally stable for at least small values of time delay. Further, in this case, persistence 
cannot occur at least for small values of the time delay. Necessary and sufficient conditions for Hopf 
bifurcation to occur are also obtained by using the time delay as a bifurcation parameter. Finally, 
based on all these qualitative behaviors of the model, a continuous treatment for tumor growth is 
considered. The analysis is carried out both analytically and numerically. (D 2005 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - V a s c u l a r  tumor, Stoichiometry, Growth hypothesis, Permanence, Hopf bifurcation. 

1. I N T R O D U C T I O N  

Cancer is a multistage malignant disease in which certain cells proliferate in disregard of the regu- 
latory mechanisms that  act to regulate the growth of healthy cells. These cells then biotransform 
to stages of greater malignancy, characterized by oncogene act ivat ion/mutat ion,  heterogeneity, 
invasion, and metastasis,  [1-4]. In general, such a cellular proliferation is called neoplasia and, 

hence, cancer is sometimes referred to as a neoplastic disease. The te rm tumor  which denotes 
swelling is commonly used to refer to neoplasm, while cancer is a general te rm for all malignant 
neoplasms. A malignant tumor  or cancer is a configuration of neoplastic cells in an anatomic or- 
gan or tissue such that  these cancer cells differ from healthy cells in histopathologie, morphologic, 

immunologic, and cytokinetic characteristics, [3,5]. 
Having a tumor  has been known as a deadly disease of mankind. Studies in cell and molecular 

biology show some cancers coerce surrounding healthy ceils into a servile role in the tumor  stroma. 
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Moreover, these same cancer ceils not only compete with those healthy cells for resources, but  also 

compete with each other and against healthy cells throughout  the body for the same resources, 
including oxygen, nutrients, and space. Onc important  resource over which cancer and healthy 
ceils may compete is phosphorus. Many lines of evidence suggest that  cancer cells up-regulate 
ribosome synthesis, a process tha t  requires large amounts of phosphate, [6-8]. In addition, certain 
cancer-related genes, both tumor suppressors (gatekeepers) like p53 and oncogenes, including 
members of the myc family, are involved in regulating production of ribosomes, [9-11]. Additional 
studies indicate that  cancer cells with larger, more active nucleoli proliferate more rapidly in 
vivo, [12]. Since the nucleolus is the site of rDNA transcription and the initial stages of ribosome 
formation, these results highlight ribosome biogenesis as a central process in tumor biology. 

Biological stoichiometry is the study of the balance of energy and multiple chemical elements 
in biological systems [13]. The growth rate hypothesis proposes tha t  ecologically significant 
variations in the relative requirements of an organism for C, N, and P are determined by its 
mass-specific growth rate because of the heavy demand for P-rich ribosomal RNA under rapid 
growth [14]. Numerous experimental data show that  P-rich animals are usually sensitive to the 
P-content  of their foods, suffering strong declines in growth and reproduction when consuming 
food low in P,  making them vulnerable to erratic population dynamics and possible extinction 
in environments that  do not supply sufficient P [13]. 

Biological stoichiometry and the growth rate hypothesis have strong relevance for tumor biol- 
ogy. The idea of modelling cancer interactions with healthy tissue from the viewpoint of biological 
stoichiometry and the growth rate hypothesis was first proposed by Kuang et al. [15]. However, 
their work did not consider treatment.  Here, we incorporate chemotherapy treatment  with the 
model developed in [15] (see [15] for the derivation of the model) and testify the effect of t reatment 
on the tumor growth. Current therapeutic approaches centered on destroying individual cancer 
cells or slowing their reproduction, while increasingly successful for many cancers [16], may be 

inherently limited in their ability to defeat many forms of cancer [17]. However, by applying a 
stoichiometric perspective to bet ter  reflect the multivariate material demands and transactions 
of the players, we might be bet ter  able to turn the tables of competition in favor of the patient. 
It is within this context our studies of t reatment for such tumor growth may be significant. 

The organization of the paper is as follows. In the next section, we develop our model. In Sec- 
tion 3, we discuss the invariance of nonnegativity, boundedness of solutions, nature of equilibria, 
permanence, and global stability in the no t reatment  case. In the section that  follows, we look at 
the continuous t reatment  case: we discuss the existence, local, and nonlocal stability of relevant 
equilibria, and check the effects of the time delay on the stability of solutions. These are done 

both analytically and numerically. 

2. T H E  M O D E L  

The model consists of three ordinary differential equations and one-functional differential equa- 
tion, altogether simulating the interactions between the normal cells, parenchyma (cancerous) 
cells, blood vessels within the tumor, and chemotherapy agents. Let x( t )  and y(t) be the mass 
of healthy and cancer cells, z(t)  is the number of blood vessels within the tumor,  and u(t) is the 
mass of chemotherapy agents. Then, the model is given as 

= x(t) min (1, - dx - ( a -  
x(t) + y(t) + z(t)l 

kh I 
p lx ( t )u ( t )  

al  + x ( t )  ' 

[ ( P~ )min(1,L)-dy-(b-dy) y(t)+z(t)] y(t) = y(t)  brain 1 , ~  kt 
psy( t )u( t )  

a2 + y ( t )  ' 

~(t) = cy(t  - T) -- dzz(t)  p3z(t)u(t)  
a3 + 4 0  ' 

(1) 
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clx(t) c2y(t) _caz(t) ] 
it(t) = A -- ~ + a~T-~( t )  + a 2 ~ y ( t )  + a3 + z(t)]  u(t) ,  

L -  g(z 
Y 

P¢ = P - (nx  + m y  + nz) ,  

with initial conditions 

(1)(cont.) 

X(t) ~- ¢1(0)  = 3:(0) > 0, y ( t )  --  •2(0) ~ 0, 

z ( t )  = ¢3(0)  = 4 0 )  _> 0, < 0 < 0, 

~ ( 0 )  - u0 ___ 0. 

Here, the chemotherapy is the combination of several chemical agents, which acts like a predator 
on both healthy and cancer cells. The growth rate of heathy tissue decelerates as the mass of 

both the healthy and tumor tissue approaches kh. A similar situation does not apply to the 

tumor. The tumor growth rate is only modified by the relationship between tumor mass and 

tumor carrying capacity, kt; mass of healthy tissue has no effect on the tumor. The parameters 
in the model can be interpreted as follows: 

a,b are the maximum per capita rates at which healthy cells and tumor cells pro- 

liferate, respectively, in a phosphorus-rich environment. 
kh,k t are respective carrying capacities of healthy cells and tumor cells. 

d~,dy represent the respective constant per capita mortality of healthy cells and tu- 

mor cells. 

pi, i = 1, 2, 3 are the predation coefficients of u on z, y, and z. 

ai, i = 1, 2, 3 determine the rate at which x, y, z, in the absence of competition and predation, 

reach carrying capacities. 
ci, i = 1,2,3 represent the combination rates of the chemotherapy agent with the cells. 

Hence, they are proportional to p~, i = 1, 2, 3. 
P is the homeostatically regulated total amount of phosphorus within the organ. 

m represents the mean amount of phosphorus (g) per kilogram of parenchyma 

cells. 

n is the mean amount of phosphorus per kilogram of healthy ceils, including both 

healthy organ tissue and vascular endothelial ceils within the tumor stroma. 

A represents the continuous infusion rate of chemotherapy. 

is the washout rate of chemotherapy at the site. 

r represents the time it takes for vascular endothelial ceils to respond to angio- 

genic growth factors, divide, degrade their basement membranes, migrate to 

the site of growth and mature into working endothelium. 
c~ is the mass of cancer cells that  one unit of blood vessel can just barely be 

maintained. 

g measures the sensitivity of tumor tissue to the lack of blood. 

All constants are positive. To make this model more realistic, we impose certain inequalities 

among the parameters. It is well known that cancer cells grow at a much faster rate than normal 

cells. The chemotherapy agents must be considerably more effective in killing cancer ceils than 

in killing normal cells in order for the treatment to be effective. This leads to the inequalities 

b > a, P2>>Pl .  

At this point, we establish some important properties of system (1). 
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LEMMA 1. All  solutions wi th  posi t ive initial values remain positive. 

PROOF. By uniqueness of solutions, since x m 0 is a solution of the first equation of (1), no 

solution with x( t )  > 0 at any time t _> 0 can become zero in finite time. Similarly, the same is 

true for y(t) .  Since/~(0) = A > 0, no solution u(t)  of (1) with u(t)  > 0 can become zero. With 

the same argument as in [18], z(t)  must remain positive provided that  y(t)  is positive on t _> - r ,  
which it is. | 

THEOREM 1. Sys tem (1) is dissipative provided that  there exists an M > 0 such that  11¢211 -<- M. 

PROOF. Sincc the initial conditions are nonnegative, then so are the solutions. From (1), we 
have 

dx  < x(ao - a lx ) ,  dy < y(bo - b2y). 
dt - dt 

It follows from standard comparison theory that 

lim supx(t)  < a11ao, liln supy(t)  < b21bo . 
t---~OO t ---+ oO 

Let T be so large that  0 _< y(t)  <_ bolb2 for t > T. Then, we have 

dz 
- -  < b ~ Z b o c -  d z z ,  
d r -  

which then implies, again using a comparison theorem and after some computations, that  

lim sup z(t)  < d21b~lboc, 
t ---+OC 

where 

a P  a a - dx bP b b - dy 
ao - n k h f  dx, a~ = ~ h f  + kh bo m k h f  dy, b2 ~ h f  d- kt 

Now, we have that  

giving 

du 
- - < A - ~ u  
d t -  

lira supu(t)  ~ ~ - IA .  
t - -~  OO 

Hence, the region ~ = { ( x , y , z , u )  E R~_ : 0 < x < a l l ao ,O  <__ y <_ b~lb0,0 < z < d-~lb~lboc, O <_ 
u <_ ~-ZA} is an attracting invariant region proving the property. I I  

3. T H E  N O  T R E A T M E N T  C A S E  

Depending on the initial conditions, a trajectory can either converge to an attractor, or diverge 

to infinity. In our system, the attractor may be an equilibrium, a limit cycle, or a higher- 
dimensional subset of phase space. Knowing the conditions for which we can obtain all these 

possibilities, enables us to better understand the long term behavior of our system that  is crucial 

to the outcome of therapy. We first determine the type of dynamics that  can arise in the system 

without the presence of the drug and then study the case with drugs. The rationale behind this 

is to use the information about the drug-free system when designing chemotherapeutic protocols. 

When we stop the treatment, we would like the patient to be "cured", or to be inside the basin 
of attraction of the cancer-free fixed points of this new drug-free system. It is also of interest to 

study how the delay r affects the behavior of our system and how each element contributes to 

the overall stability. Here, the model is modified to the form 

:~(t) = x( t )  1, n--~h f -- d~ - (a - d~) x( t )  
kh 

P~ min(1, L) - dy - (b - dy) y(t)  kt ~(t) = y(t)  bmin  1 , ~  

= c y ( t  - , 9  - d z z ( t ) ,  
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with initial conditions 

x ( t )  : (~1(0) = X(0) > 0, y ( t )  : (~2(0) ~ 0, z ( t )  = 03(0)  : Z(0) ~ 0, --T < 0 < 0. 

The growth rate is limited by nutrients and decreases whenever the concentration of extracellular 
phosphorus drops below n. The same applies to tumor cells. Therefore, our analysis throughout 
the paper is simplified by the assumption that 

P. 
n k t ~  < 1, L > 1. (3) 

Clearly, equation (3) implies that 
P~ 

m k h f  

3.1. 

- - < 1 .  

A s y m p t o t i c  B e h a v i o r  a n d  H o p f  B i f u r c a t i o n  

3 .1 .1 .  E q u i l i b r i a  

System (2) has a trivial equilibrium E0(0, 0, 0) and a one-dimensional equilibrium E~(~, 0, 0). 
The two-dimensional equilibrium is E2(0, ~), ~). Finally, a possible interior equilibrium is E3(x*, 
y*~ Z*). 

By solving the algebraic equation 

a ( P  - nx )  

n k h f  

we obtain 

X 
d ~ - ( a - d ~ ) ~  h =0 ,  

a P  - n k h f  d~: 

gives 

n[a 4- (a - dx) f]"  

Similarly, solving the algebraic system with x = 0 

b ( P  - m y  - ~ z )  
m k h f  -- dy - (b - dy) y 4- z kt =0 ,  

cy - d~z = O, 

k t d z (bP  - m k h f d y )  

1) ---- bk t (mdz  4- nc) 4- m k h f ( b  - dy)(c  4- d~)'  

Again, by solving the system 

we have 

where 

m a  a - dx 
a 2 - -  + - -  

f n k h  kh ' 

C ~= ~ .  

a ( P  - n x  - m y  - ~ z )  _ d x ( a  - d~  ~̀j + y + z O, 
n k h f  kh 

b ( P -  n x -  m y -  n z )  y + z 
- d~  - (b - d ~ ) - U - ,  = o ,  

m k h f  

cy - dzz  = O, 

x* a0 (a~l 1 ~zz) 
-- + y*, 

a l  

y ,  = (aobl -a lb0)  dz 

(a2bl - a l b 2 ) d z + ( a 3 b l  - a lb3)c '  

Z* cy* z - -  

dz ' 

a a - d x a3=~+ k~ nb 
b l - -  

m f k h '  

nbkt  + r n f k h ( b  - d~) 
53 

m f k h k t  
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3.1.2.  Character i s t i c  equat ion  

In order to de te rmine  the s tabi l i ty  of an equi l ibr ium E ( x ,  y, z), we l inearize sys t em (2) abou t  E 
and ob ta in  

w'( t )  A w ( t )  + B w ( t  - r) ,  

where 

= (x(t) ,  y ( t ) ,  T, 

ao - 2a~x - a2y - a3z 

A = - b l y  

0 

B =  0 , 
C 

--a2x --a3x 1 
bo - blx  - 2b2y - b3z -baY  l 

0 - d~  J 

where matr ices  A and B are compu ted  at  the  equi l ibr ium under  considerat ion.  T h e  s tabi l i ty  is 
de te rmined  by comput ing  the  roots  of the  character is t ic  equat ion  

det (A  + B e  - ~  - AI)  = o. (4) 

3 .1 .3 .  N o n p e r s i s t e n c e  

THEOREM 2. Suppose  the interior equilibrium E3(x*, y*, z*) exists. W h e n e v e r  either, (or both)  

(i) ao < a2~ ÷ a3z, or 

(ii) bo < b12, 

then sy s t em (2) is nonpersis tent  for aii r > 0 provided dz(2b2~ + b3~ - bo) > ebaL On the other 

hand, i f  dz(2b2~) + b3z - bo) < cb3z, then sys tem (2) is nonpers is tent  at least for small values of  
the t ime delay. 

PROOF. Clearly, the  t r iv ia l  equi l ibr ium is a hyperbol ic  saddle point .  T h e  character is t ic  equat ion  
abou t  E1 (2, 0, 0) is given by 

a0 - 2a1~ - A - a 2 Y  --a3x 
0 bo - b12 - A 0 
0 ce -x~ - d z  - A 

= 0 .  

Hence, the eigenvalues are 

a P  - n f k h d ~  
A1 = ao - 2a12. = < O, 

n f k h  
nbd~kh + bP(a  - d~) 

A 2 = b 0 - b 1 2 r =  mkh[a + (a - d~)f] - dY' 

A3 = - d z  < O. 

In the case b0 < b12, all eigenvalues are negat ive  and E1 is a sympto t i ca l l y  s table  for all r _> 0. 
Therefore ,  a necessary  condit ion for the t u m o r  growth  is b0 > b12, i.e., 

P > [b(a - d z ) ] - l [ ( a  - d z ) m f k h d y  + (amdy - bndx)kh]. 

Let  (i) hold. Eva lua t ing  the  Jacob ian  ma t r i x  abou t  E2(0, ~), 2), gives 

J = I 
a0 - a2~) -  a3~ 0 0 7 

- b l ! )  bo - 2b2~) - b3~ - b a l i  • 
0 ce -xT - d z  
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F i g u r e  1. A s o l u t i o n  for m o d e l  (2) w i t h  a = 3, p --  60, f = 0.67, n = 10, k h : 

20, kt = 10, b = 3.01, d= = 1, dy = 0.3, m = 20, d= = 0.2, c = 0.654. Here ,  

E 2 ( 0 , 0 . 2 1 3 , 0 . 6 9 8 )  is l oca l l y  s t a b l e  a t  l e a s t  for r < 8.4. T h e  i n t e r i o r  e q u i l i b r i u m  
E3(0 .002 ,  0.231, 0.698) c a n n o t  be  g l o b a l l y  s t a b l e  a n d  s y s t e m  (2) is n o n p e r s i s t e n t  a t  
l e a s t  for ~- < 8.4. 

1600 

Hence, one of the eigenvalues is 

A = a o  - a2~-- a3~, 

which is negative by assumption. The other roots satisfy 

A 2 - ( b o - 2 b 2 ~ - b a ~ - d z ) A -  (b0 - 2 b 2 f i - b a ~ )  d z + c b a ~ e  -~"  = 0 .  (5) 

It follows from Freedman and Rao [19] that  equation (5) has all roots with negative real parts 
for ~- >_ 0 if dz(2b2~) + b3~. - bo) > cbaL On the other hand, if dz(2b2?) + b j :  - bo) < cb3~., then E2 
is asymptotically stable for 0 < ~- < dz(2b2~) + ba~. - bo)/cba~.. 

C O R O L L A R Y  1. Whenever  E2 is stable in the x-direction, then the interior equilibrium E3 cannot 
be globally stable for sys tem (2), at least for small t ime delays. 

PROOF. It follows from Theorem 2 that  stability of E2 implies nonpersistence, at least for small 
values of delay. Hence, global stability cannot hold as it implies persistence of the system under 
consideration. 

3.1.4.  P e r m a n e n c e  

In this section, we shall prove that  the instability of boundary equilibria implies that  system (2) 
is permanent.  Thus, we prove the open problem in [15]. Before starting our theorem, we give 
some definitions. 

Let f~ = { (x ,y ,z )  ERa+ : 0 <_ x << a l l a o ,  0 < y < b~lbo, 0 < z < d21b~lboc}. Then, it is easy 
to show that  [~ is an attracting invariant region for system (2). 
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DEFINITION 1. System (2) is said to be uniformly persistent if  there is an 7] > 0 (independent of 
initial data) such that every solution (x( t ), y( t ), z( t ) ) with nonnegative initial conditions satisfies 

l iminfx( t )  _> r/, l iminfy( t )  > r/, l iminfz ( t )  > V. 
t~oo t ---* OO t---+ OO 

DEFINITION 2. System (2) is said to be permanent if  there exists a compact region ~o C int f~ 
such that every solution of equation (2) with nonnegative initial conditions will eventually enter 
and remain in region f~o. 

Clearly for a dissipative system uniform persistence is equivalent to permanence. 

THEOREM 3. System (2) is permanent provided 

a2dz + aae ao al 

b2dz + bac < ~o < b--~" 

PROOF. Since we have uniform boundedness of solutions of system (2), we only need to show 

system (2) is uniformly persistent. I t  follows from Definition 1 tha t  uniform persistence means 
strictly positive solutions are eventually uniformly bounded away from the boundary. To obtain 

persistence, two techniques have been employed: verifying tha t  invariant sets in the boundary 
of the feasible region are not a t t ractors  and constructing Lyapunov-like functions. We shall 

analyze the boundary  flow following techniques established in [20]. The basic idea of proving 
Theorem 3 is to show tha t  all dynamics are trivial on the boundaries of R~_, tha t  all equilibria 
are hyperbolic and aeyclic, and tha t  no equilibrium is asymptot ical ly  stable. By acyclicity, we 
mean that  equilibria which are connected to other equilibria through a chain of saddle connectors 
are not eventually connected to themselves (see [21] for a formal definition). 

For the convenience of description, we first present the uniform persistence theory for infinite- 
dimensional systems from [20]. Let X be a complete metric space. Suppose tha t  X ° is open, 
dense in X and X ° c X, 3/o c X, X o U X  ° = X, X o A X  ° = O. Assume tha t  S(t) is a C  o 
semigroup on X satisfying 

X ~ X °, 
s ( t ) :  Xo-  Xo. (6) 

Let Sb(t) = S(t)]Xo and let Ab be the global a t t ractor  for Sb(t). 

LEMMA 2. Suppose that S(t) satisfies equation (4) and we have the following: 

(i) there is a to >_ 0 such that S(t) is compact for t > to, 
(ii) S(t) is point dissipative in X ,  

(iii) Ab = UxCAb w(x) is isolated and has an aeyclie covering 2VI, where 2~I = {MI,  M2,. . . , M~}, 
(iv) W~(M~) n X ° - 0 for i = 1 , 2 , . . . , n .  

Then, Xo is a uniform repellor with respect to X °, i.e., there is an e > 0 such that for any x E X °, 
limt~oo inf d(S(t)x,  )2o) >_ e, where d is the distance of S( t )x  from Xo. 

Now we sketch a proof tha t  the boundary  planes of R~_ repel the positive solutions of system (2) 
uniformly. Let us define 

c ,  = {(O,,  42 ,e3)  c c ( [ - ; ,  0], : ¢1(0) = 0,42(0)  = 0,0 

C2 = {((~1, ¢2, ¢3) E C ([--T, 0 ] ,R 3)  : (~1(0) = 0, ¢2(0)¢3(0 ) • 0 ,0  E f--T, 0]},  

63 = { (¢1 ,¢2 ,¢3)  C C ( [ - T ,  0],R~_) : ¢1(0) ~ 0 ,¢2(0 ) -- 0,0 C [ - % 0 ] } .  

If Co = C1 U C2 U Ca and C O = int C([--T, 0], R~),  it suffices to show tha t  there exists an e0 > 0 
such tha t  for any solution ut of system (2) initiating from C °, l i m t ~ + ~  inf d(ut, Co) > e0. To 
this end, we verify below tha t  the conditions of Lemma 2 are satisfied. I t  is easy to see tha t  C O 
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and Co are positively invariant. Moreover, Conditions (i) and (ii) of Lemma  2 are clearly satisfied. 

Thus, we only need to verify Conditions (iii) and (iv). There are three constant solutions E0, El ,  
and E2 in Co, corresponding, respectively, to x(t) = y(t) = z(t) = 0; x = 2, y(t) = z(t) = 0; and 
~( t )  = 0, y ( t )  _ 9,  4 t )  = ~(t ) .  

In the following, we shall show tha t  if invariant sets Eo, El ,  and E2 are isolated, then 
{E0, El ,  E2} is isolated and is an acyclic covering. To do this, we need to prove tha t  any solution 
of system (2) initiating from Ci will remain in Ci, i = 1, 2, 3, which is easily shown. I t  is obvious 

that  E0 is isolated invariant. The proof of isolated invariance of E1 and E2 will follow. 

We show tha t  W~(Ei )NC ° = 0, i = 0, 1,2. Taking the case o f i  = 1 as an example to show the 
method,  we assume the contrary, i.e., W~(E1) ~ C o ~ (~. Then, there exists a positive solution 
(x(t), y(t), z(t)) of system (2) such that  

( a ~ ° l ° )  
(~(t), y(t), z(t)) ~ , o, o , a s t  --* +oc.  

Let to > 0 be sufficiently large such that  

a 0  a o  
- - - c o  < z ( t )  < - -  + c o ,  
a l  a l  

-co < z(t) < c0, for t > to, 

where eo > 0 is sufficiently small. Then, 

dy(t) > Y [  b° bl(a~11 ) 1 d-~- +co - b2y - baco . 

Hence, we have 

l iminfy(t)  > bob1 [al ao (b l  +ba~ ] 
t-~+~ - ~ l a  K1 bo \ b-EK-) c° > 0 ,  

which contradicts limt__,+~y(t) = 0. Hence, Ws(E1) K/ C O = 0. Therefore, we are able to 
conclude from Lemma  2 tha t  Co repels the positive solutions of system (2) uniformly, and hence, 
the conclusion of Theorem 3 follows. 

3.1.5.  G l o b a l  s t a b i l i t y  

Here, we consider the problem of global stability of the interior equilibrium E3 defined in 
the previous section. We use ideas similar to Shukla [22]. However, we note that  his proof is 
incomplete as he did not establish the boundedness of the solutions. For an arbi t rary  solution 
of (2), we define a positive definite function V by 

V(x(t) ,y( t ) ,z ( t ) )  = al [x(t) - x* - x* ln ( ~ , )  ) ] + a 2  [y(t) - y* - y* ln ( ~ , )  ) l 

+12b~/j 1 [ y ( t  + s) - y*]~ ds + ~ (z(t) - z*) 2 , 
(7) 

where Ctl, ct 2 are positive constants to be determined later. 

The t ime derivative of V along the solutions of (2) is given by 

~z __-- 0~1( x __ x , ) ( a o  _ a l  x _ a2y - aaz) + oL~(y - y*)(bo - blX, - -  b2y - b3z) 

+ 1 b 2 ~ 2  [(y _ y , ) 2  _ (y( t  - ~-) - y*)2] + (z - z*)(cy(t - 7) - d~z). 
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Figure 2. A solution for model (2) with a = 3, p = 150, f ---- 0.67, n = 10, kh = 10, 
kt ----- 3, b = 6, d= = dy : 1, rn = 20, dz = 0.2, c = 0.08. Here, E1(8.825,0,0) and 
E2(0, 1.677, 0.671) are unstable. System (2) is permanent and the interior equilibrium 
E3(7.342, 0.714, 0.286) is globally stable, independent of the delay. 

100 

After  some a lgebra ic  man ipu la t ions ,  we ob t a in  

= - ( x  - x * ,  v - y * ,  z - z * ) 1 M ( x  - x * ,  v - y * ,  z - z * )  r 

1 c ( z -  z*) 
~b2~2 (y(t  - 7) - y*) - b ~  

(8) 

where  the  vec tor  ( x - z * ,  y - y * ,  z - z * )  T denotes  the  t r a n s f o r m a t i o n  of  vec tor  ( x - x * ,  y - y * ,  z - z * )  

and  [ ] M = a2al  + b l a 2  b2a2 baa2 . 

asa l  bsa2 2 (dz - (2b2a2)-lc 2) 

To ensure  t h a t  V" is nega t ive  defini te  a long the  solut ions,  we shal l  choose a l ,a2  such t h a t  M is 

pos i t ive  definite.  As a resul t ,  we have the  following theorem.  

THEOREM 4. The interior equilibrium E3(x*, y*, z*) for sys tem (2) is globally stable provided 

there exist o~ 1 > O, O~ 2 > 0 such that  M is posi t ive definite. 

3.1.6. Stability and Hopf b i f u r c a t i o n  

As shown in the  previous  section,  a s tab le  b o u n d a r y  equ i l ib r ium impl ies  E3 (x*, y*, z*) canno t  

be g loba l ly  s table ,  a t  leas t  for smal l  ~- and  t h a t  the  sys t em is nonpe r s i s t en t  for such a delay. Thus,  

i t  is of  in te res t  to  know if E3 can be local ly  s table .  We now address  ourselves  to  th is  quest ion.  

C o m p u t i n g  the  cha rac te r i s t i c  po lynomia l  (4) a b o u t  E3, we o b t a i n  

H(A) =: P(A) + Q(A)e -~''- = A a +p2A 2 + p l / ~  + P 0  / -  (ql A + qo) e-AT = O, (9) 
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where 

Pl = ( a o  -- 2alx* -- a2y* -- azz*)(bo - blx* - 2b2y* - baz*) - dz(dz - P 2 )  - a2blX*y*, 

p z = d z - a o - b o + ( 2 a l + b l ) x * + ( a 2 + 2 b 2 ) y * + ( a l + b a ) z * ,  

Po =- dz(pl  + dz(dz - P 2 ) ) ,  

ql = c b  - 39* , 

qo = - c ( a l b l  + a2b3)x*y*. 

(10) 

Note  tha t  when the delay T = 0, equat ion (9) becomes 

A3 + P2 A2 ÷ (Pl -b ql)A ÷ P0 + qo = 0. (11) 

By the Routh-Hurwi tz  criteria, necessary and sufficient condit ions for solutions A to have negative 
real par ts  are 

Po + qo > O, Pz ÷ qx > O, p2(pl + ql) > Po + qo. (12) 

W h e n  w ¢ 0, there are m a n y  ways in which we can determine if there  is a root  of the  characterist ic  

equat ion (9) with a positive real part.  Geometr ic  a rguments  can be used to establish the  stabil i ty 
of an equilibrium, such as those used by Mahaffy in [23], where the a rgument  principle is used to 

count  the number  of zeroes of the characterist ic  equat ion (9) on the r igh t -hand side of  the  complex 

plane. However, in this case, we will resort to  some results by Cooke and van den Driessche in 
Theorem 1 of [24]. 

T h e y  define the function 

F ( y )  = [P(iy)[ 2 - [ Q ( i y ) [  2, 

and analyze the funct ion F ( y ) ,  giving condit ions under  which equat ion (9) is stable as a function 

of T. T h e y  also gives conditions under  which stabil i ty changes m a y  occur  as the delay T is 

increased and show tha t  in these cases the equilibrium is unstable  for large enough 7. In short,  

they  showed: (a) suppose tha t  if F ( y )  = 0 has no positive roots, then  if (9) is stable at  v = 0, it 
remains stable for all r _> 0, whereas if it is unstable at r - 0, it remains  unstable  for all r _> 0, 
(b) if F ( y )  = 0 has at least one positive root  and each positive root  is simple, then as v increases, 

stabil i ty switches may  occur,  and there exists a positive f such tha t  (9) is unstable  for all T > "?, 

and as v varies from 0 to ¢, at most  a finite number  of stabil i ty switches may  occur.  

Following the steps in this theorem, it is s t ra ightforward to check the stabil i ty of the equilibrium 
and find condit ions for cancer growth.  In this case, F ( y )  is found to be 

F ( y )  = y6 + m2y4 + rely2 + too, 

where 

m2 = p 2 2 - 2 p l ,  

Let  y2 = x. Then,  F ( y )  becomes 

rnl - - p 1 2 - - 2 p o P 1 - - q 1 2 ,  mo = po 2 -- qo 2. 

F l (x )  = z 3 + m2x 2 + m i x  + too. (13) 

Now, we will employ a l emma from [25] which we state here. 

LEMMA 3. De/~ne 

1 4 3 2 
,'~ ~__ ?Ttl 3 --  71t227921 2 + ~ 7 7 t 2  ?Yt0 - -  ~?rt2?g/1Tgt 0 - -  /nO 2. 
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Suppose  that  m o >  O. Then,  

(I) necessary and sufficient conditions for cubic equation (13) to have at least one simple 

posi t ive  root  for ¢ are: 

(i) either 

(a) m2 < O, ma > O, and m2 2 > 3///,1, or 

(b) m l  < O, and 

(ii) 7 < O; 
(II) necessary and sumeien t  conditions for cubic equation (13) to have no posi t ive  real roots 

for x are either o f  the  following, 
(i) 3 m l  > m 2  2, 

(ii) 3 m l  = m 2  2, 

(iii) m2 2 > 3 m l ,  a n d 3 , > O  or 

(iv) m22 > 3m 1 and 7 <- O, m2 > O, and m l  > O. 

Based on L e m m a s  1 and  2 and me thods  in [24], we ob ta in  the  following s tabi l i ty  theorems.  

THEOREM 5. Suppose  that  m22 > 3ml ,  ")/ ~ 0, m 2 > 0, and m l  > O. Then,  

1. if  Po + qo > O, Pl q- ql > O, PZ(Pl q- ql) > Po q- qo, the s tabi l i ty  o f  equilibrium E3 is 
independen t  o f  delay "r and it remains stable for all 7- >_ O, 

2. i f  po + qo <<_ O, or Pl + ql <_ O, or P2(Pl + ql) <_ Po + qo, the  stabil i ty  o f  equil ibrium Ea does 

not  depend  on ~" and it remains unstable for all T >_ O. 

THEOREM 6. Suppose  that  rn2 2 > 3ml ,  7 -> 0. Then,  

1. i f  (12) holds, the stabil i ty  o f  equil ibrium E3 is independent  o f  delay T and it remains  stable 

for all ~- >_ O, 

2. i f  (12) does not  hold, E3 remains unstable for all ~" >_ O. 

THEOREM 7. A s s u m e  that  either (a) m2 < 0, m l  >_ O, and m2 2 > 3 m l ,  or (b) m l  < 0 and 

~/ < O. Then,  there exists a posi t ive ~ such that  

1. i f  po + qo > 0, Pl + ql > 0, P2(Pl + qa) > Po + qo, the equil ibrium E3 remains  stable for 

0 < T < ¢, and becomes unstable for all T >_ ~, 

2. i f  po + qo <_ O, or Pl + ql <_ O, or P2(Pl + ql ) <_ Po + qo, the equil ibrium E3 remains  unstable 
for all ~- >_ ~. As  7- varies from 0 to ~, at mos t  a finite n u m b e r  o f  s tabil i ty  switches m a y  

OCCHr. 

In cancer chemotherapy, stability switching is a very important issue in the design of a drug 

protocol. We must keep in mind that in many cases the drugs can prevent vascular endothelial 

precursor cells from continuing through their immigration, maturation into vascular endothelia 

cells, thus, trapping them at some points, where the cells die from natural cause. This effect can 

be interpreted as an increase in the delay 7. But as we have seen here, this trapping may have 

adverse effects, since it may cause a fixed point to become unstable when it was stable initially 

(Theo rem 7). On the  o ther  hand,  the same proper t ies  can be used to  the  clinicians advantage,  
if we are cer ta in  t h a t  our p a r a m e t e r s  are in the s tabi l i ty  switching region and  the  equi l ibr ium is 
unstable.  In this case, it m a y  be possible to  use the  same t r a p p i n g  mechan i sm to stabil ize the  

cancer-free equil ibrium. 

Now by apply ing  T h e o r e m  1 in [24], it is also s t ra ight forward  to check for possible Hopf  
bi furcat ions  when we increase the delay ~-. The  impor t ance  of Hopf  b i furca t ions  in this context  

is t h a t  at  the  bi furcat ion point  a limit cycle is formed a round  the  fixed point ,  thus,  result ing in 
s table  per iodic  solutions. T h e  existence of per iodic  solut ions is of  significance in cancer models  
because it implies t h a t  the  cancer levels may  oscillate a round  a fixed point  even in the  absence 
of any t r ea tmen t .  Such a phenomenon  has been observed clinically and is known as "Jeff 's  
P h e n o m e n o n "  [25]. In this section, we will prove t ha t  such a H o p f  b i furca t ion  can occur.  Here,  
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we are interested in the bifurcat ion of the coexistence of three populat ions .  Hence, we consider 
the characterist ic  equat ion (9) and rewrite it as 

A 3 + p 2 A  2 + p l A  + p o  + (qlA + qo)e -~'-  = O. (14) 

Let A = u + iv (u ,  v E R)  and rewrite (14) in terms of its real and imaginary  par ts  as 

ua -- 3uv2 ÷ P2 (u 2 -- v 2) + p l u  + Po = e - u r  [qlv sin@T) + (q lu  + qo) cos(vr)] ,  
(15) 

3 u 2 v  _ ~3 ~_ 2 p 2 u v  + p l v  = e - ' ` r  [ ( q l u  -t- q0) s i n ( v T )  - -  q l v  c o s @ r ) ] .  

Let f be such tha t  u(¢)  = O. Then,  the above equat ions reduce to 

P2 ~2 - p0 = q19 sin(9¢) + q0 cos(0F), 
(16) 

~3 + Pl~ = q0 sin(5~) - q z ~  c o s ( ~ ) .  

It  follows by taking the sum of squares tha t  

~6 _}_ (p22 _ 2pl) ~4 ~_ (pl 2 _ 2p0P2 - ql 2) ~2 _~ p02 _ qo 2 =_ 0. (17) 

Suppose tha t  Vl is the last positive simple root  of equat ion (17). We now show tha t  with this 

value of ~1, there is a ~1 such tha t  u ( f l )  = 0 and v(¢1) = ~1. Given ~1, equat ion  (16) can be 
wri t ten as 

A cos(¢191) + B s i n ( f , ~ l )  = C, 
(18) 

A sin(f191) - B CO8('FlVl) = D, 

where C 2 + D 2 = A 2 -+-/~2 = G 2, say, where G > 0. The  equat ions 

A = G c o s a ,  
(19) 

B -- G s i n a  

determine a unique a c [0, 27r]. Wi th  this value of a ,  we have 

G cos(¢191) c o s a  + G sin(¢l~l) s i n a  = C, 

Gsin(¢191) c o s a  - G cos(~191) s i n a  = D. 

Hence, 

(20) 

a e o s ( , Y l V  1 - Ct) = C ,  G sin(~19] - a) = D. (21 )  

These equat ions determine ¢ 1 9 1 - a  uniquely in [a/v1, (a+27r) /91] .  To apply  the  Hopf  bifurcation 

theorem as s ta ted  in [26], we state  and prove the following theorem. 

THEOREM 8. Suppose  tha t  equat ion (17) has at least  one s imple  pos i t i ve  root  and vl  is the  last 

such root. Then,  iV(el)  = ie l  is a s imple  root  o f  equat ion (14) and u ( r )  + i v ( r )  is dif ferentiable 

wi th  respec t  to z in a ne ighborhood o f  z = el .  

PROOF. To show tha t  iV(el) = iv1 is a simple root,  we investigate equat ion  (14) 

H ( A )  = A 3 4- p2A 2 4- p lA  + Po + (qlA + qo)e -~"  = O. 

Any double root A satisfies 
H(A) = 0, /:/(A) = 0, 

where 

/:/(A) = 3A 2 + 2p2A + p l  q- (ql - 7-qlA - r q o ) e - X L  (22) 
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Subs t i tu t ing  A = i/h and ~- = ¢1 into (14),(22) and equat ing  real and imag ina ry  par ts ,  if i v l  is a 
double root,  we ob ta in  

p29~ - P0 = qlVl s in(~lel)  + q0 CO8(91¢1) ,  
(23) 

p191 - 93 = -q191 cos(~1¢1) + qo sin(Ol¢l),  

and 
395 - Pl = (ql - ¢1q0) COS(91¢1) -~" VlT"lql sin(91¢l), 

(24) 
2p2~1 = (ql - elqo) sin(Oil)  + VlWlql cos(via-l). 

Now, equa t ion  (16) can be wr i t t en  as h(~l)  = 0, where  

h ( v )  ~- (p2 v2 - p o )  2 n t- (pl  v - v3)  2 - q21v2 - q02: (25) 

Jz(v) = 2 ( p l y  2 -- PO) 2p2v + 2 ( p l y  -- v 3) (Pl -- 3v 2) -- 2vql 2. (26) 

By  subs t i tu t ing  (23) and (24) into (25),(26), we obta in  

h ( v l )  = h (Vl )  = 0. 

I t  follows t h a t  91 is a double root  of equat ion  (25) and t h a t  h(Ol) = h(Ol) = 0, which is a 

cont radic t ion  since we have assumed t h a t  91 is a s imple root  of (17). Hence,  i91 is a s imple root  

of equa t ion  (14), which is an analyt ic  equat ion.  By  using the  analy t ic  version of the implicit  
funct ion t heo rem [27], we can see t h a t  u(7-) + i v (T)  is defined and  analy t ic  in a ne ighborhood  of 
T = T1- T h e  proof  is complete!  | 

Next ,  to  es tabl ish  Hopf  b i furcat ion at  7- = f l ,  we need to verify the  t ransversa l i ty  condit ion 

d--u-u ¢ 0 .  
d r  7=~1 

By  different iat ing equat ions  (15) wi th  respect  to  w and se t t ing  u = 0 and v = vl ,  we obta in  

du ~=~ vd E ~=~ A1 ~ - B1 = P0~l s in (~ l f l )  - Pl"V~ cos(~l~l) ,  

(27) 
B1 du d_.~v 

T='F1 -~- A1 ~=e~ = PlV~ sin(91¢l) + p 0 v l  cos(91fl) ,  

where  
A1 = Pl - 39~ + f l  [ql cos(~1¢1) - q191 sin(91¢a) - q0 cos(~1¢1)], 

(2s) 
B1 = 2p291 + ¢1[q0 sin(91T1) - qlVl COS(Vl"F1) - -  ql sin(Ol¢l)]. 

d u  dv  Solving for 27,, ~ f rom (27) wi th  the  help of (16), we have 

du  = 92 [304 + 2 ( p 2  _ 2 p l )  ~2 -I- p l  2 - 2p2P0 - ql  2] (29) 

d~" , .=~ A1 z + B12 

Let  z = ~ .  Then ,  equat ion  (17) reduces to 

(I)(z) = Z 3 -~ (p22 -- 2p l  ) Z 2 -~- (p l  2 --  2 p 2 P O  - -  ql 2) Z @ p02 --  q02. 

Hence,  
d(I) 
d--~ = 3z2 + 2 (p22 - 2p~) z + p ~  - 2p2Po - q ~ .  

As 92 is the  last posi t ive single root  of equat ion  (17), t hen  

--d=~_~ > 0. 
dz  z~v21 

Therefore,  
du _ o~ d ~  

~-=~-1 A12 + B12 dz  z=r,~ 

We summar i ze  the preceding details in the following theorem.  

> 0 .  
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THEOREM 9. Suppose that (17) has at least one simple positive root  and "Vl iS the last such 
root. Then, a Hopf bifurcation occurs as r passes through ¢1. On the other hand, i f  (17) has no 
positive real roots, then the interior equilibrium E* is locally asymptotically sable for all values 
O f  7-. 

4. T H E  C O N T I N U O U S  T R E A T M E N T  C A S E  

Here, we consider the full model (1). Again equilibria are derived and listed. We study the 
local stability of some relevant equilibria by analytical and numerical methods. 

4.1. Equilibria 

In this case, we denote the equilibria by variations on F and again some of them are physio- 
logically nonfeasible. As in the no treatment case, the trivial equilibrium F0(0, 0, 0, ~ - IA)  always 
exists. The following equilibria may or may not exist: 

El(Y:, 0, 0, ~), F2(0, 9, ~, ~), f f3(x*,y*,z*,u*).  

Here, the symbols that  are the same as in the no treatment case may have different values. 
Equilibrium F1 exists provided that  the algebraic system 

aPe x p l  u - -  O, 

nfk---~ - dx - (a - d=) fib al + x (30) [ clx] 
A -  ~ + a l + x j U = O  

has a positive solution. System (30) has a positive solution provided that  the quadratic equation 

al(~ + Cl)X 2 + (a12~ -- ao~-- aocl) x + p l A  - aoal~ = 0 (31) 
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has a positive solution. Here, a0, al are defined in the previous section. If 

p l A <  aoaa~, (32) 

then equation (31) has a unique positive solution. Necessary and sufficient conditions for (31) to 
have two positive solutions are 

a12¢ < a0 (~ + e l ) ,  

(a12~ - ao~ - ao~x) ~ (33) 
aoal~  < p l A  < 

4al (~ + Cl) 

From the above, we have proved the following lemma. 

LEMMA 4. I f  (32) holds,  then F1 exists uniquely.  I f  (33) holds,  then there ex i s t  t w o  d i s t inc t  

equi l ibr ia  of t y p e  F1. 

Although the other equilibria F2 and F3 may exist, sufficient conditions for their existence are 
not easily obtained. In Section 4.3.2, we will present some numerical examples to illustrate cases 
when these equilibria exist. 

4.2. Loca l  S t a b i l i t y  

Here, tile Jacobian matr ix around a general equilibrium F ( x ,  y,  z,  u)  is 

p l x  
al l  --a2 x - -a3x  

a l + x  

M = 

- b l y  a22 - b a y  
P2Y 

a 2 + y  

p3 z 

a a + z  
0 e - x r  dz 

a l  Cl U a2c2u  aac3u  

(al -t- x) 2 (a2 + y)2 (aa + z) 2 a33 

where 

al l  = ao - 2 a l x  - a2y - aaz 

4.2.1.  Analys i s  o f  F0 

p l a l  u 

(al + z) 2' 

a22 = bo - b l x  - 2b2y - baz p2a2u (a2 + y)2, 

c , x  ~2y eaz  
a33 = - -  ~ + - -  ~- -t- . 

al  + x a2 + y aa + z J 

It is quite easy to get the eigenvalues associated with the trivial equilibrium F0 which are 

AI °) = a0 > 0, 

A~ °) = b0 > 0, 

A (°) = - d z  < 0, 

a(o) = _ ~  < o. 

Hence, F0 is a hyperbolic saddle point. 
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4 . 2 . 2 .  A n a l y s i s  o f  F1 

In this case, the Jacobian  mat r ix  is given by 

-ao - 2a12 plaint 
(~1 + 2) 2 

0 
M1 0 

alCl~t 
(~1 + 2) 2 

Hence, two eigenvalues are 

p~2 
- a 2 2  - a 3 2  

a l + 2  
bo - blX 0 0 

e -xr  - d z  0 

{ elX 
~ ~ 2 ~ C 2 ~ ~ 3 1  C3 ~ 

- \ ~  + al  + :~,1 

A~ 1) = b0 - blx, A~ I) -d~ .  

Other  eigenvalues satisfy 

where 

~(A)-  {All) [ A 2 -  Wr (A)A + det ( A ) = 0 ,  i =  1 , 4 } ,  

[ a0 - 2a12 (al -t- :~)2 al  + 
A =  ( + 

alcl~t 
7 1 7 7 ) ~  - -  e al -I- X ,1 

By the Routh-Hurwi tz  cri ter ia  [28], if Tr  (A) < 0 and det  (A) > 0, then  the eigenvalues of A have 
negative real parts.  If 2 > ao/2al,  then  

T r ( A ) = a o - 2 a 1 2 -  [ plalgt ClX ] 
( a 1 + 2 )  2 + ~ + a - 1 + 2  <0 ,  

( plal~2 + (2a12 - ao) ~ + al + 2,1 > O. det (A) - (al  + 2)2 

As a result,  we have the following lemma. 

LEMMA 5. I f 2  > ao/2al,  then the real par t s  of eigenvalues A~ 1) and ~(41) are negative. 

Based on L e m m a  5, we obta in  the following theorem. 

THEOREM 10. Suppose that 2 > ao/2al and bo # b12. I f  b0 > b12, then F1 is a hyperbolic 
saddle point. On the other  hand,  ifbo < hi2, then F1 is asymptotically stable. 

4 . 2 . 3 .  A n a l y s i s  o f  F2 

In this case, the Jacobian  ma t r ix  is given by 

M2 = 

o o o 
- b l y  M(22) -b3/] - M  (2) 

0 e -~'T - d z  - ~/r(2) ~'34 
--allc1 ,& -M(4 2) _M(4 2) _M(424 ) 

where 

M ~  ) = ao - a2~) - a3~ - a l l p l  ~, M ~  ) = bo - 2b2~' - b3~, 
p2a2~ 

(a2 q- £)2,  

a2 + y -'-34 a3 + z '  = a3 +---~,1 ' 

a2c~* M(4~)_ azc3~ M(4~I - (a~ + 312' (a3 + ~12" 
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Hence, one of the eigenvalues is 

Other eigenvalues satisfy 

where 

A~ 2) = ao - a2~ -- a3~ -- a71pl  ~. 

A3 -~p2 A2 + p l A  +po + ( q l A + q o )  e -A~ = O, (34) 

P2 = d z -  ~z(2) - ~z(2) " " 2 2  ~'~44 , 

~/r(2) ~/r(2) - dz (~z(2) Az(2)~ ~z(2) ~/r(2) ~/r(2) A/r(2) 
P l  . . . .  22 "~"~44 ~ , " : 2 2  -~ " " 4 4  // - - ' " 3 4  " " 4 3  - - " ' ~ 2 4  " " 4 2  , 

z ~/r(2) as(2) ,~ a/r(2) ~jf(2) _L n/r(2) ̂ /r(2) nz(2) 

q l  = b 3 y ,  

b M (2)~ ~(2) ~(2) q0  - -  - -  3 44 ~4- -  ~'~24 ~'~42 • 

Equation (34) is the characteristic polynomial (9) in the previous section with new coefficient 
values. Computing 7, m2, ml,  m0 and employing the same arguments as before, we have the 
following theorems. 

T H E O R E M  11. Suppose  that  ~7t2 2 > 3ml, 7 -< 0, m2 > 0, and rnl > O. Then,  

1. i f  Po + qo > O, Pl + ql > O, P2(Pl + ql) > Po + qo, the  s tabi l i ty  o f  equil ibrium F2 is 
independent  o f  delay m and it remains stable for all ~- >_ O, provided that  ao < a2[l + a32 + 
a{lpl~t ,  

2. i f  po + qo <_ O, or pl  + q l  _< 0, or p2(pl + ql ) <_ po + qo, the s tabi l i ty  o f  equil ibrium F2 does 
not  depend  on m and it remains unstable for a11 m >_ O. 

THEOREM 12. Assume that  either (a) m2 < 0, rn~ > 0, and m22 > 3 m l ,  o r  ( b )  m 1 < 0 and 
7 < O. Then,  there exists a posi t ive f such that  

1. i f p o  + qo > 0, Pl + ql > 0, P2(Pl ÷ ql) > Po + qo, equil ibrium F2 remains stabIe for 
0 < ~- < ~ when  ao < a2[l + a3~ + a~lpl(~, and becomes unstable for ali ~- >__ ?, 

2. i f  po + qo <_ O, or pl + ql <- O, or P2(Pl + ql) <- po + qo, equil ibrium F2 remains unstable 
for a1I ~- >_ ¢. As  ~- varies from 0 to f ,  at most a finite number of  stabil i ty  switches may 
Occur.  

4.3. G loba l  S t ab i l i t y  

Note that  if F1 is achieved, then healthy cells eventually win the competition with the cancer 
cells, which is the most desirable result. F3 represents the coexistence of all four populations. 
In this section, we derive criteria for the global stabilities of F1 and F3 with respect to solutions 
initiating in int R~_. 

4.3.1. G loba l  s t ab i l i t y  of  F1 

In int R~_, we choose the Liapunov function, 

V ( x ( t ) , y ( t ) , z ( t ) , u ( t ) ) = a l  I x ( t ) - : ~ - : ~ l n  ( f - ~ ) ]  + ~ 2 y ( t ) +  lz2( t )  

+  2v2 [y(t + .)]2 ds + 7 3(u(t) - 
T 

(35) 
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where a t ,  a2, a3 are positive constants  to be determined later. The  derivative of (35) along 

solutions of (1) is given by 

plUX ] 
= a l ( X  - -  X )  a o  a l x  -- a2y -- a3z 

al + x  

F/bo - blX -- b2y - b3z p ~ u y  I q + a 2 y  [ a2 +yJ 

p3uz_ 
+ 2 a 2 b 2 [ y 2 - - ( y ( t - - T ) )  2 ] + z  c y ( t - 7 ) - d z z  a 3 + z ]  

+ - - + ~ - ~ / ~  . 
al + x a2 + y 

(36) 

After some comput ing,  we obtain  

g = - a l  (al - a l l  )(X - X)2 - a2 ( ~b2 - a22) y2 - (dz + a33)z 2 

1 
~b20~ 2 [(y(t - z )  - c (b2a2)- l z]  2 - a3(  ~ -[- a44)(u - ~)2 

- { ( a 2 a l  + bla2)(x  - ~)y + (a12a1 + a~la3)(~  - ~ ) (x  - ~) + b3a~yz 

+a3c~l(X-- X)Z + a l 4 a 3 z ( u - -  zt) -k (a2p2  + a13a3)  y ( u - -  fz) } a2 

where 

Pl u Pl c2u P2 u 
= , - -  - -  - - ,  a 2 2  - -  , a l l  (al q- x ) (a l  q- x) a12 al q- :r '  a13 a2 q- y a2(a2 + y) 

alClU c3 u p3 u c 2 Cl:~ 
a21 = (al -- x ) (a l  -k x ) '  a14 -- a3 + z '  a33 -- (a3 + z) 2a2b2 '  a44 -- a2 q_ :~ 

Therefore,  we have 

_ 1 _  1[ 
. . . . . .  Z (37) 

where 

2(al  - a l l ) a1  a l a l  + bla2 a3a l  a12az + a21aa 

a2a l  ~- bla2 2 ( l b 2  - a22/c~2 b3a2 p 2 a 2 1 a 2 + a 1 3 a 3  

a3al  b3a2 2(dz + a33) a14 

a12a 1 q- a21a 3 p2a21a2 q- a l 3 a  3 a14 2(~ q- a44 ) 

To ensure t h a t  1/- is negative definite along the solutions, we shall choose a l ,  a2, a3 such tha t  

the terms -~/1 is positive definite. As a result, we have the following theorem. 

THEOREM 13. Suppose  that  the interior equil ibrium F1 exists. Then,  F1 is globally stable 
provided there exist a l ,  a2, a3 such that  F/I1 is posit ive definite. 
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F i g u r e  6. A s o l u t i o n  for m o d e l  (1) w i t h  a = 3, P = 60, f = 0.67, n = 10, k h = 10, 

k t  = 3, b = 6, dz  = d u = 1, m = 20, dz = 0.2, c = 0.3, p l  = 0.0008,  p2 = 0.08, 
P3 = 0.09, a l  = 2, a2 = aa  = 3, c l  = 0.0024,  c2 = 0.04, ca = 0.03, A = 200, ~ = 20. 
Here ,  F1 (2.6015,  0, 0, 9 .9887)  is g l o b a l l y  s t ab l e ,  i n d e p e n d e n t  of  delay.  T h e  n u m b e r  of  
b l o o d  ves se l s  d r o p s  to  ze ro  v e r y  fas t  f rom t h e  b e g i n n i n g  of t h e  t r e a t m e n t .  T h e  i n i t i a l  

c o n d i t i o n s  a re  x (0)  = 1, ¢2 (0 )  = 3, -~-  < 0 < 0, z(0)  = 4, u (0 )  = 14. 

400 

4.3.2. Global stabili ty of F3 

In int R~_, we choose the Liapunov function, 

V ( x ( t ) , y ( t ) , z ( t ) , u ( t ) )  = a l  [ x ( t ) - x * -  x*ln (Xx(~)] +a2  [ y ( t ) - y * -  y* in (Yy(~) 1 

1 [ ~  1 1 
+ - ~ b 2  j _  [y(t + s) - y,]2 ds + ~ (z(t) z*) 2 + ~ (u(t) - . ) 2  

2 'r 

(38) 

where al,  a2 are positive constants to be determined later. The derivative of (35) along solutions 
of (1) is given by 

V = o ~  1 ( x  - x * )  [ a 0  - a l x  - a2y - a3z 

p3uz  
(39) 

I I C l X  + ( u - ~ * )  A -  4 + - -  
al + x  

+ c2_.______~y + u . 

as + y a3 + z ] 
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After  some comput ing ,  we o b t a i n  

~z = -Ozl (al  - b l l )  (X - X*)2 - a2 ( ~ b 2  - b22) (y - y*)2 - (dz + b33) (z - z*) 2 

l b 2 c t  2 [ ( y ( t - T ) - y * ) - - c ( b 2 0 z 2 )  - 1 ( z - z * ) ]  2 ( ~ q _ b 3 1 + b 4 1 q _ b 5 1 ) ( u  - , ) 2  

- { a 3 a l  (x  - x* )  (z - z*)  + ( b l 2 a l  d- b32) (u  - u*)  (x  - x* )  Jr- (b34 + b52) (z  - z*)  (u  - u* )  

-~- ( a 2 0 q  d- /)10~2) (x  -- x* )  (y --  y* )  d- b30~2 (y --  y*)  (z --  z*)  d- (b21~2 d- b42) (y  - y*)  (u  - u * ) } ,  

where  

b l l  = p l u  b12 - Pl b21 - P ~  
(a  I + x* )  (a 1 ~- x ) '  a 1 -[- x * '  a 2 ~- y * '  

ClX* 
b 2 2 =  p2u b31 - -  - -  b32 = 

(a2 ~ -y* ) (a  2 - - y ) '  a l A c X  *' 

alClU 

( a l  ~- x * ) ( a l  -[- X ) '  

a3P3 u c 2 * 
533 = (a3 -F z * ) ( a 3  q- z)  2 6 2 a 2 '  534 - -  a3P3Z*q- z* ' b41 - a2C2yq- Y*, 

b42 ~ a2c2u b51 - c 3 z ~ *  b52 = a3c3tt 
(a2 + y*)(a2 + y) '  aa + z*'  (a3 + z*)(aa + z)" 

1 0  

Trajectories of Populations in the Case of Treatment with Any Delays. 
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Figure 7. A solution for model  (1) with a = 3, P = 150, f = 0.67, n = 10, k h = 10, 
kt = 3, b = 6, d= = du = 1, m = 20, dz = 0.2, c = 0.09, pl  = 0.0005, p2 = 18, 
P3 = 2, a l  = 20, a2 ~- a3 = 800, Cl = 0.01,c2 = 36, ca = 8, A = 200, ~ = 80. Here, 
the interior equil ibrium F3 (7.238, 0.9224, 0.5, 2.4986) is globally stable, independent  
of delay. The  initial conditions are x(0) = 7.5, q~2(0) = 0.5, - r  < 0 < 0, z(0) -- 0.3, 
u(O) = 10. 

600 
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T h e r e f o r e ,  we h a v e  

where 

1 - * z *  ) I / = - ( x  x * , y - y * , z - z * , u - u * ) ~ M 2 ( x  x * , y - y , z -  , u - u  * T 

[ ]2 
c 

-lb2 22 (y(t  7) - y*) - b- (z - z*)  

(40) 

= 

2 ( a l  -- b l l ) a l  a2al  ÷ blee2 a a a l  b32 -k b l 2 a l  

a o1+ 1o  
k / 

a a a l  baa2 2(dz q- b33) b34 + b~2 

b32 + b12al b42 + b21ct2 b34 + b52 2(~ + b31 + b41 + b51) 

To ensure that  l? is negative definite along the solutions, we shall choose a l ,a2  such that  the 
terms 2f/2 is positive definite. As a result, we have the following theorem. 

THEOREM 14.  Suppose  that  the interior equilibrium F3 exists. Then,  F3 is globally stable 

provided there exist Ctl ,a2 such that  iVI 2 is posit ive definite. 
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