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Abstract—From the viewpoint of biological stoichiometry, a mathematical model of vascular tu-
mor treatment with chemotherapy techniques is proposed utilizing a system of delayed differential
equations representing the change in mass of healthy cells, competing parenchyma cells, chemother-
apy, and the number of blood vessels within the tumor. In the absence of treatment, mathematical
analysis of the model equations with regard to invariance of nonnegativity, boundedness of solutions,
nature of equilibria, permanence, and global stability are analyzed. It is shown that the system can be
permanent, but whenever the boundary equilibrium is stable, the interior equilibrium of the system
cannot be globally stable for at least small values of time delay. Further, in this case, persistence
cannot occur at least for small values of the time delay. Necessary and sufficient conditions for Hopf
bifurcation to occur are also obtained by using the time delay as a bifurcation parameter. Finally,
based on all these qualitative behaviors of the model, a continuous treatment for tumor growth is
considered. The analysis is carried out both analytically and numerically. © 2005 Elsevier Ltd. All
rights reserved.
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1. INTRODUCTION

Cancer is a multistage malignant disease in which certain cells proliferate in disregard of the regu-
latory mechanisms that act to regulate the growth of healthy cells. These cells then biotransform
to stages of greater malignancy, characterized by oncogene activation/mutation, heterogeneity,
invasion, and metastasis, [1-4]. In general, such a cellular proliferation is called neoplasia and,
hence, cancer is sometimes referred to as a ncoplastic disease. The term tumor which denotes
swelling is commonly used to refer to neoplasm, while cancer is a general term for all malignant
neoplasms. A malignant tumor or cancer is a configuration of neoplastic cells in an anatomic or-
gan or tissue such that these cancer cells differ from healthy cells in histopathologic, morphologic,
immunologic, and cytokinetic characteristics, [3,5].

Having a tumor has been known as a deadly disease of mankind. Studies in cell and molecular
biology show some cancers coerce surrounding healthy cells into a servile role in the tumor stroma.

Research of HIF partially supported by the Natural Sciences and Engineering Research Council of Canada, Grant
NSERC OGP 4823.

0895-7177/05/$ - see front matter (© 2005 Elsevier Ltd. All rights reserved. Typeset by ApS-TEX
doi:10.1016/j.mcm.2004.09.008



1090 W. Liuv AND H. I. FREEDMAN

Moreover, these same cancer cells not only compete with those healthy cells for resources, but also
compete with cach other and against healthy cells throughout the body for the same resources,
including oxygen, nutrients, and space. Onc important resource over which cancer and healthy
cells may compete is phosphorus. Many lines of evidence suggest that cancer cells up-regulate
ribosome synthesis, a process that requires large amounts of phosphate, [6-8]. In addition, certain
cancer-related genes, both tumor suppressors (gatekeepers) like p53 and oncogenes, including
members of the myc family, are involved in regulating production of ribosomes, [9-11]. Additional
studies indicate that cancer cells with larger, more active nucleoli proliferate more rapidly in
vivo, {12]. Since the nucleolus is the site of TDNA transcription and the initial stages of ribosome
formation, these results highlight ribosome biogenesis as a central process in tumor biology.

Biological stoichiometry is the study of the balance of energy and multiple chemical elements
in biological systems [13]. The growth rate hypothesis proposes that ecologically significant
variations in the relative requirements of an organism for C, N, and P are determined by its
mass-specific growth rate because of the heavy demand for P-rich ribosomal RNA under rapid
growth [14]. Numerous experimental data show that P-rich animals are usually sensitive to the
P-content of their foods, suffering strong declines in growth and reproduction when consuming
food low in P, making them vulnerable to erratic population dynamics and possible extinction
in environments that do not supply sufficient P [13].

Biological stoichiometry and the growth rate hypothesis have strong relevance for tumor biol-
ogy. The idea of modelling cancer interactions with healthy tissue from the viewpoint of biological
stoichiometry and the growth rate hypothesis was first proposed by Kuang et al. [15]. However,
their work did not consider treatment. Here, we incorporate chemotherapy treatment with the
model developed in [15] (see [15] for the derivation of the model) and testify the effect of treatment
on the tumor growth. Current therapeutic approaches centered on destroying individual cancer
cells or slowing their reproduction, while increasingly successful for many cancers [16], may be
inherently limited in their ability to defeat many forms of cancer [17]. However, by applying a
stoichiometric perspective to better reflect the multivariate material demands and transactions
of the players, we might be better able to turn the tables of competition in favor of the patient.
It is within this context our studies of treatment for such tumor growth may be significant.

The organization of the paper is as follows. In the next section, we develop our model. In Sec-
tion 3, we discuss the invariance of nonnegativity, boundedness of solutions, nature of equilibria,
permanence, and global stability in the no treatment case. In the section that follows, we look at
the continuous treatment case: we discuss the existence, local, and nonlocal stability of relevant
equilibria, and check the effects of the time delay on the stability of solutions. These are done
both analytically and numerically.

2. THE MODEL

The model consists of three ordinary differential equations and one-functional differential equa-
tion, altogether simulating the interactions between the normal cells, parenchyma (cancerous)
cells, blood vessels within the tumor, and chemotherapy agents. Let x(¢) and y(¢) be the mass
of healthy and cancer cells, z(¢) is the number of blood vessels within the tumor, and (t) is the
mass of chemotherapy agents. Then, the model is given as

(1) = 2(t) [a min (1, %) —d, —(a—d;)

z(t) +y(t) + Z(t)} _ paz(t)u(t)
kp, a; +z(t)’

o 0 Pe \ o ¥ @) pey()ult)
i(t) = y(t) [bm (1,—mkhf> (1,L) —dy — (b—d) ] (1)

ke ag +y(t)’

ey ~ paz(t)u(t)
z(t) = ey(t — 1) — d,z(t) o L 20 )
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() — A — c1z(t) coy(t) caz(t) y
) =A—|¢+ P SR S (t),

L o(z — ay) (1){cont.)

Y

P, =P — (nx +my + nz),

with initial conditions

2(t) = ¢1(8) = 2(0) > 0, y(t) = $a(0) 2 0,
2(t) = 6a(8) = 2(0) >0,  —r <O <0,

Here, the chemotherapy is the combination of several chemical agents, which acts like a predator
on both healthy and cancer cells. The growth rate of heathy tissue decelerates as the mass of
both the healthy and tumor tissue approaches kj. A similar situation does not apply to the
tumor. The tumor growth rate is only modified by the relationship between tumor mass and
tumor carrying capacity, k:; mass of healthy tissue has no effect on the tumor. The parameters
in the model can be interpreted as follows:

a,b are the maximum per capita rates at which healthy cells and tumor cells pro-
liferate, respectively, in a phosphorus-rich environment.
kn,k; are respective carrying capacities of healthy cells and tumor cells.
d,dy represent the respective constant per capita mortality of healthy cells and tu-
mor cells.
pi, t =1,2,3 are the predation coefficients of u on z, y, and z.
a;, 1 =1,2,3 determine the rate at which z, v, z, in the absence of competition and predation,
reach carrying capacities.
c;, 1 =1,2,3 represent the combination rates of the chemotherapy agent with the cells.
Hence, they are proportional to p;, 1 =1,2,3.
P is the homeostatically regulated total amount of phosphorus within the organ.
m represents the mean amount of phosphorus (g) per kilogram of parenchyma
cells.

n is the mean amount of phosphorus per kilogram of healthy cells, including both
healthy organ tissue and vascular endothelial cells within the tumor stroma.

A represents the continuous infusion rate of chemotherapy.

¢ is the washout rate of chemotherapy at the site.

T represents the time it takes for vascular endothelial cells to respond to angio-
genic growth factors, divide, degrade their basement membranes, migrate to
the site of growth and mature into working endothelium.

« is the mass of cancer cells that one unit of blood vessel can just barely be
maintained.

g measures the sensitivity of tumor tissue to the lack of blood.

All constants are positive. To make this model more realistic, we impose certain inequalities
among the parameters. It is well known that cancer cells grow at a much faster rate than normal
cells. The chemotherapy agents must be considerably more effective in killing cancer cells than
in killing normal cells in order for the treatment to be effective. This leads to the inequalities

b>a, P2 > pi.

At this point, we establish some important properties of system (1).
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LEMMA 1. All solutions with positive initial values remain positive.

Proor. By uniqueness of solutions, since x = 0 is a solution of the first equation of (1), no
solution with z(t) > 0 at any time ¢ > 0 can become zero in finite time. Similarly, the same is
true for y(¢). Since 4(0) = A > 0, no solution u(t) of (1) with u(t) > 0 can become zero. With
the same argument as in [18], z(t) must remain positive provided that y(¢) is positive on ¢ > —7,
which it is. |
THEOREM 1. System (1) is dissipative provided that there exists an M > 0 such that ||¢2|| < M.

PRrROOF. Since the initial conditions are nonnegative, then so are the solutions. From (1), we

have p p
T
I < z(ag ~ a12), d_zt/ < y(bo — bay).

It follows from standard comparison theory that
lim supz(¢t) < al_lao, lim supy(t) < b2_1b0.
t—00 t—oo

Let T be so large that 0 < y(t) < bglbg for t > T. Then, we have
dz

= < by thoc —d, 2,

which then implies, again using a comparison theorem and after some computations, that

tlim sup z(t) < d; b5 hoe,

where
aP a a—d bP b b—d
- S 4, -2 L b=y, b= 3
0= St Nt TR kT TR R
Now, we have that
du
2T A —
7 = A—¢&u

giving
lim supu(t) < ¢7'A.
t—o0

Hence, the region R = {(z,y,2z,u) € Ri 0<x < al—lao,O <y< b;lbo,O <z< d;lb;1b00,0 <
u < £71A} is an attracting invariant region proving the property. |

3. THE NO TREATMENT CASE

Depending on the initial conditions, a trajectory can either converge to an attractor, or diverge
to infinity. In our system, the attractor may be an equilibrium, a limit cycle, or a higher-
dimensional subset of phase space. Knowing the conditions for which we can obtain all these
possibilities, enables us to better understand the long term behavior of our system that is crucial
to the outcome of therapy. We first determine the type of dynamics that can arise in the system
without the presence of the drug and then study the case with drugs. The rationale behind this
is to use the information about the drug-free system when designing chemotherapeutic protocols.
When we stop the treatment, we would like the patient to be “cured”, or to be inside the basin
of attraction of the cancer-free fixed points of this new drug-free system. It is also of interest to
study how the delay 7 affects the behavior of our system and how each element contributes to
the overall stability. Here, the model is modified to the form

(t) = z(t) [a min (1, %) —d, — (o —d,) X yk(,i) ha Z(t)] ,

y(t) = y(t) {b min (1, %) min(1, L) — d, — (b — dy)%tz(t)] , (2)
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with initial conditions
z(t) = ¢1(0) = z(0) > 0, y(t) =d2(0) 20, =z(t)=¢3(0) =2(0)>0, —7<6<0.

The growth rate is limited by nutrients and decreases whenever the concentration of extracellular
phosphorus drops below n. The same applies to tumor cells. Therefore, our analysis throughout
the paper is simplified by the assumption that
P.
nkhf

<1, L>1 (3)

Clearly, equation (3) implies that
€

— < 1.
mkhf
3.1. Asymptotic Behavior and Hopf Bifurcation

3.1.1. Equilibria

System (2) has a trivial equilibrium Ey(0,0,0) and a one-dimensional equilibrium Ei(Z,0,0).
The two-dimensional equilibrium is Fy(0, 7, £). Finally, a possible interior equilibrium is E3(z*
y*,2").

By solving the algebraic equation

y

a(P — nz) x
— — _— —_— d —
o f d. — (a I)kh 0,
we obtain
_ aP — nkp fd,
I=— —
nla + (a — dy)f)
Similarly, solving the algebraic system with x = 0
b(P — my —nz) y+z
- d,—(b—-d =0
mkhf dy ( y) kt ’
cy ~d,z =0,
gives
R ked,(bP — mky, fd,) . c .
- z = —1UY.
Y= Bko(md, + nc) + mEnf(b—dy)(c+ d;)’ 4.’
Again, by solving the system
a(P —nzx — my — nz) T+y+z
—dy(a—d, =0,
nkn f (@ —do)—m
b(P — nx — my — nz) y+z
—d, b—d =0,
mkhf Yy ( y) kt
cy—d,z=0,
we have
» G0 92 € o«
I—al (a1+dz>y’
y* _ (a0b1 - a1bo) d.
(a2b1 - albg) dz + (a3b1 - albg)c’
2t = oy
=
where
ma a—d; a a—d, nb nbk, + mfkp(b—d,)
fa == = —— b =
Tk T TR T e R e B m Tk
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3.1.2. Characteristic equation

In order to determine the stability of an equilibrium E(z,y, z), we linearize system (2) about £
and obtain

w'(t) = Aw(t) + Bw(t — 1),

where

w(t) = (x(t),y(t),2(1)

[ap — 2017 — asy — a3z —asx —asx
A= —biy bo — bix —2boy — bz —bsy |,
I 0 0 —d,
0 0 0
B=10 0 0/,
10 ¢ O

where matrices A and B are computed at the equilibrium under consideration. The stability is
determined by computing the roots of the characteristic equation

det (A+ Be™™ —AI) = 0. (4)

3.1.3. Nonpersistence

THEOREM 2. Suppose the interior equilibrium Ez(z*,y*, z*) exists. Whenever either, (or both)
(i) ap < arf + a3, or
(ii) by < 017,

then system (2) is nonpersistent for all 7 > 0 provided d,(2byij + b3 — by) > cbz?. On the other

hand, if d,(2byy + b3z — bg) < cbsz, then system (2) is nonpersistent at least for small values of
the time delay.

ProoF. Clearly, the trivial equilibrium is a hyperbolic saddle point. The characteristic equation
about F1(z,0,0) is given hy

ag — 20,1@ - A —asZ —a3T
0 by —bi1T — A 0 = 0.
0 ce™ AT —d, — A

Hence, the eigenvalues are

aP —nfkyd,
)\1 :a0—2alj: _—nfl;:]%——h-_ <0,
-  nbd,ky + bP(a — d,)
A2 =bo = b7 = mkpla+ (a —d.)f] Ay,
A3 = —d, < 0.

In the case by < b7, all eigenvalues are negative and E; is asymptotically stable for all 7 > 0.
Therefore, a necessary condition for the tumor growth is by > b1 Z, i.e.,

P > b(a —d)] " (a — dy)mfknd, + (amdy, — bnd;)kp).
Let (i) hold. Evaluating the Jacobian matrix about F5(0, 9, 2), gives
ag — agg — a3z 0 0

J = by bo — 2bog — b3z  —b32
0 ce A —d,
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Trajectories of Populations in the Absence of Treatment with 7=8.
1 T T T T T T T
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0.2 .

0.1F .

oo 0
: _

0 200 400 600 800 1000 1200 1400 1600

time t (days)

Figure 1. A solution for model (2) with a = 3, p = 60, f = 0.67, n = 10, kj, =
20, ks = 10, b = 3.01, dz = 1, dy = 0.3, m = 20, d; = 0.2, ¢ = 0.654. Here,
E5(0,0.213,0.698) is locally stable at least for 7 < 8.4. The interior equilibrium
E3(0.002,0.231,0.698) cannot be globally stable and system (2) is nonpersistent at
least for 7 < 8.4.

Hence, one of the eigenvalues is
A=ap —agy —asz,
which is negative by assumption. The other roots satisfy
A2 — (b — 2bo) — b3z — d,) A — (bg — 2boi) — b32) d, + chaze™ T = 0. (5)

It follows from Freedman and Rao [19] that equation (5) has all roots with negative real parts
for 7 > 0 if d.(2bo 4+ b3z — bg) > cbzz. On the other hand, if d,(2b23 + b32 — bo) < cb3Z, then Es
is asymptotically stable for 0 < 7 < d,(2bo7 + b3Z — bg)/cbsz.

COROLLARY 1. Whenever E, is stable in the xz-direction, then the interior equilibrium E3 cannot
be globally stable for system (2), at least for small time delays.

ProOF. It follows from Theorem 2 that stability of Fy implies nonpersistence, at least for small
values of delay. Hence, global stability cannot hold as it implies persistence of the system under
consideration.

3.1.4. Permanence

In this section, we shall prove that the instability of boundary equilibria implies that system (2)
is permanent. Thus, we prove the open problem in [15]. Before starting our theorem, we give
some definitions.

Let Q = {(z,y,2) € R} : 0 <z < a;lag, 0 <y <bylhy, 0< 2z <d;lhy boc}. Then, it is easy
to show that (2 is an attracting invariant region for system (2).
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DEFINITION 1. System (2) is said to be uniformly persistent if there is ann > 0 (independent of
initial data) such that every solution (x(t),y(t), z(t)) with nonnegative initial conditions satisfies

litm infz(t) > n, liminf y(t) > n, litm inf 2(t) > n.

00 t—o00

DEFINITION 2. System (2) is said to be permanent if there exists a compact region €}y € int{}
such that every solution of equation (2) with nonnegative initial conditions will eventually enter
and remain in region Q.

Clearly for a dissipative system uniform persistence is equivalent to permanence.

THEOREM 3. System (2) is permanent provided

d,
asd, + asc < ao < %.
bod, + bse bo by

PROOF. Since we have uniform boundedness of solutions of system (2), we only need to show
system (2) is uniformly persistent. It follows from Definition 1 that uniform persistence means
strictly positive solutions are eventually uniformly bounded away from the boundary. To obtain
persistence, two techniques have been employed: verifying that invariant sets in the boundary
of the feasible region are not attractors and constructing Lyapunov-like functions. We shall
analyze the boundary flow following techniques established in [20]. The basic idea of proving
Theorem 3 is to show that all dynamics are trivial on the boundaries of Ri, that all equilibria
are hyperbolic and acyclic, and that no equilibrium is asymptotically stable. By acyclicity, we
mean that equilibria which are connected to other equilibria through a chain of saddle connectors
are not eventually connected to themselves (see [21] for a formal definition).

For the convenience of description, we first present the uniform persistence theory for infinite-
dimensional systems from [20]. Let X be a complete metric space. Suppose that X° is open,
dense in X and X° C X, Xo C X, XoU X% = X, Xon X% = 0. Assume that S(t) is a C°

semigroup on X satisfying
S ’ 0’ 6
t):
Let Sb(t) = S(t)| Xo and let Ab be the global attractor for Sb(t)

LEMMA 2. Suppose that S(t) satisfies equation (4) and we have the following:

(i) there is a tqg > 0 such that S(t) is compact for t > tg,
(ii) S(t) is point dissipative in X,
(iii) A, :UzeAb w(x) Is isolated and has an acyclic covering M, where M = {My, Ma,...,M,},
(iv) Ws(M)NX% =0 fori=1,2,...,n.
Then, X, is a uniform repellor with respect to X°, i.e., there is an € > 0 such that for any z € X9,
lim,_, oo inf d(S(t)z, Xo) > €, where d is the distance of S(t)x from Xg.

Now we sketch a proof that the boundary planes of R?jr repel the positive solutions of system (2)
uniformly. Let us define

Cl = {(¢17¢27 ¢3) S C ([_7—) 0]7R?{-) : d)l(e) = 07¢2(9) - 070 S {_Ta 0}}’
Co = {(¢1,¢2,¢3) eC ([—Ty OLRi) 1 1(6) = 0,02(0)¢3(8) # 0,8 € [T, 0}},
CS = {(¢17¢27¢3) cC ([_Ta OLRi) : ¢1(9) 7é 07¢2(0) = 079 € [*Ta 0}} .

fCy,=C,UCUC3 and C° = int C([-,0], Ri), it suffices to show that there exists an ¢g > 0
such that for any solution u; of system (2) initiating from C°, lim,_, « inf d(us,Co) > €. To
this end, we verify below that the conditions of Lemma 2 are satisfied. It is easy to see that C°
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and Cy are positively invariant. Moreover, Conditions (i) and (ii) of Lemma 2 are clearly satisfied.
Thus, we only need to verify Conditions (iii) and (iv). There are three constant solutions Eg, E1,
and Ej in Cyp, corresponding, respectively, to z(t) = y(t) = z(t) = 0; x = Z, y(t) = z(¢t) = 0; and
z(t) =0, y(t) = g, 2(t) = £(¢).

In the following, we shall show that if invariant sets E,, E;, and E5 are isolated, then
{Eo, E1, E3} is isolated and is an acyclic covering. To do this, we need to prove that any solution
of system (2) initiating from C; will remain in C;, i = 1,2, 3, which is easily shown. It is obvious
that FEjy is isolated invariant. The proof of isolated invariance of E; and E5 will follow.

We show that W*(E,)NC° =0, i = 0,1,2. Taking the case of i = 1 as an example to show the
method, we assume the contrary, i.e., W(E1) N C° # §. Then, there exists a positive solution
(z(t), y(t), z(t)) of system (2) such that

(2(t),y(t). 2()) — (—

,0,0), as t — 4o0.
a

Let tg > 0 be sufficiently large such that

a a
——9—60 < z(t) < —0+60,
ay ay

—€p < 2(t) < €, for t > tg,

where €3 > 0 is sufficiently small. Then,

dy(t
%>y[bob1 <@+60)-b2y—b360]-
a

Hence, we have

A boby [ay ag by + b3
1 fult) > — | =— — = _
tlmm y( ) by |: ) 5 b1 €| > 0,

which contradicts lim;— oo y(t) = 0. Hence, W*(E;) N C° = 0. Therefore, we are able to
conclude from Lemma 2 that Cj repels the positive solutions of system (2) uniformly, and hence,
the conclusion of Theorem 3 follows.

3.1.5. Global stability

Here, we consider the problem of global stability of the interior equilibrium FEj defined in
the previous section. We use ideas similar to Shukla [22]. However, we note that his proof is
incomplete as he did not establish the boundedness of the solutions. For an arbitrary solution
of (2), we define a positive definite function V' by

Vialt)a(0).2(0) = o [of0) =~ (2] 0 [y =7 -7 (L2)]

1 0 1
+gasby [ [t +9) —yPds+ g 600 - 2

(7
where a1, ap are positive constants to be determined later.

The time derivative of V' along the solutions of (2) is given by

V= ar{z — 2" (ag — a1x — asy — aszz) + ax(y — y*)(bo — byx — boy — b32)

t3b02 [y =)~ (wlt = 7) = "))+ (= = #)ew(t — 7) — da).
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Trajectories of Populations in the Absence of Treatment with Any Delays.

x(t), y(t), z(t)

I X .
® — ¥
- — z(t)

time t (days)
Figure 2. A solution for model (2) with a = 3, p = 150, f = 0.67, n = 10, kp, = 10,
kt =3,b=6,ds =dy =1, m =20, d. = 0.2, ¢c = 0.08. Here, E1(8.825,0,0) and
E53(0,1.677,0.671) are unstable. System (2) is permanent and the interior equilibrium
E3(7.342,0.714,0.286) is globally stable, independent of the delay.

After some algebraic manipulations, we obtain
’ * * * 1 * * *\ T
V=——A(z—-2*y—y*,z—2 )§M(x——x Yy —y* 2z —2%)

2 (8)

C(z-2]

1 *
—§b26¥2 (yt—-7)—vy") - byois

where the vector (z—x*,y—y*, z2—2*) T denotes the transformation of vector (z—z*,y—y*, z—2*)

and
2&1&1 asoq + b1a2 a3y
M= | asay + biaog bocug byag
ason b3 2(d; — (2bs2)71c?)

To ensure that V is negative definite along the solutions, we shall choose ay,ag such that M is
positive definite. As a result, we have the following theorem.

THEOREM 4. The interior equilibrium Es3(z*,y*, 2*) for system (2) is globally stable provided
there exist oy > 0, aig > 0 such that M is positive definite.
3.1.6. Stability and Hopf bifurcation

As shown in the previous section, a stable boundary equilibrium implies E3(z*,y*, z*) cannot
be globally stable, at least for small 7 and that the system is nonpersistent for such a delay. Thus,
it is of interest to know if F3 can be locally stable. We now address ourselves to this question.

Computing the characteristic polynomial (4) about E3, we obtain

H\) = P(A) +Q(N)e ™ =2 + paA? + p1d + po + (1A + go)e ™ =0, (9)
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where
p1= (a0 — 212" — agy” — a12”)(bo — brz" — 2boy™ — b32*) — d.(d. — p2) — agbiz™y",
p2 =d; —aog —bo + (2a1 + b1)z" + (ag + 2b2)y™ + (a1 + b3)z",

po = dz(p1 + dz(d; — p2)), (10)

q1 = cb — 3y*,
go = —c(a1by + azbz)z*y*.
Note that when the delay 7 = 0, equation (9) becomes
X+ pad® + (p1+ q1)A + po + qo = 0. (11)

By the Routh-Hurwitz criteria, necessary and sufficient conditions for solutions A to have negative
real parts are

pPo+q >0, pi+q >0,  palp1+q1) > po+qo (12)

When 7 # 0, there are many ways in which we can determine if there is a root of the characteristic
equation (9) with a positive real part. Geometric arguments can be used to establish the stability
of an equilibrium, such as those used by Mahaffy in [23], where the argument principle is used to
count the number of zeroes of the characteristic equation (9) on the right-hand side of the complex
plane. However, in this case, we will resort to some results by Cooke and van den Driessche in
Theorem 1 of [24].

They define the function

F(y) = |P(i)]® - Qi)

and analyze the function F(y), giving conditions under which equation (9) is stable as a function
of 7. They also gives conditions under which stability changes may occur as the delay 7 is
increased and show that in these cases the equilibrium is unstable for large enough 7. In short,
they showed: (a) suppose that if F(y) = 0 has no positive roots, then if (9) is stable at 7 = 0, it
remains stable for all 7 > 0, whereas if it is unstable at 7 = 0, it remains unstable for all 7 > 0,
(b) if F(y) = 0 has at least one positive root and each positive root is simple, then as T increases,
stability switches may occur, and there exists a positive 7 such that (9) is unstable for all 7 > 7,
and as 7 varies from O to 7, at most a finite number of stability switches may occur.

Following the steps in this theorem, it is straightforward to check the stability of the equilibrium
and find conditions for cancer growth. In this case, F(y) is found to be

F(y) = y® + may® + miy® + mo,
where
ma=pa® —2p1,  mi=p® - 2p0p1 — 1% mo=po® — go’.

Let y? = . Then, F(y) becomes
Fi(z) = 2° + mox® + myz + my. (13)

Now, we will employ a lemma from [25] which we state here.
LEMMA 3. Define

'y:imz—imzm2+im3m——mmm + mg?
o7 T g7 Ma M T 5o Me Mg — oMM Mo 0 -
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Suppose that mg > 0. Then,

(I) necessary and sufficient conditions for cubic equation (13) to have at least one simple
positive root for x are:
(i) either
(a) my < 0, my >0, and ma? > 3m,, or
(b) m1 <0, and
(il) v <0;
(II) necessary and sufficient conditions for cubic equation (13) to have no positive real roots
for x are either of the following,
(i) 3m; > my?,
(i) 3m; = my?,
(ili) mae? > 3my, and v > 0 or
(iv) my2? > 3my and v <0, mg > 0, and m; > 0.

Based on Lemmas 1 and 2 and methods in [24], we obtain the following stability theorems.

THEOREM 5. Suppose that my? > 3my, v <0, my >0, and m; > 0. Then,
19y Y

1. if pp+qo >0, pt +q1 > 0, pa(p1 + q1) > po + qo, the stability of equilibrium Ej is
independent of delay T and it remains stable for all T > 0,

2. ifpo+qo <0, or p1 +q1 <0, or pa(p1 +q1) < po+ qo, the stability of equilibrium E3 does
not depend on 7 and it remains unstable for all T > 0.

THEOREM 6. Suppose that my? > 3mq, v > 0. Then,

1. if (12) holds, the stability of equilibrium E3 is independent of delay T and it remains stable
for all 7 > 0,
2. if (12) does not hold, E3 remains unstable for all 7 > 0.

THEOREM 7. Assume that either (a) ma < 0, my > 0, and mg? > 3my, or (b) my < 0 and
~v < 0. Then, there exists a positive T such that

1. ifpo+qo >0, p1 +q1 >0, p2{p1 +@1) > po + qo, the equilibrium E5 remains stable for
0 <1 <7, and becomes unstable for all T > T,

2. ifpo+qo <0,0rpr+q1 <0, or pa(p1+4q1) < po+qo, the equilibrium E3 remains unstable
for all T > 7. As t varies from 0 to T, at most a finite number of stability switches may
occur.

In cancer chemotherapy, stability switching is a very important issue in the design of a drug
protocol. We must keep in mind that in many cases the drugs can prevent vascular endothelial
precursor cells from continuing through their immigration, maturation into vascular endothelia
cells, thus, trapping them at some points, where the cells die from natural cause. This effect can
be interpreted as an increase in the delay 7. But as we have seen here, this trapping may have
adverse effects, since it may cause a fixed point to become unstable when it was stable initially
(Theorem 7). On the other hand, the same properties can be used to the clinicians advantage,
if we are certain that our parameters are in the stability switching region and the equilibrium is
unstable. In this case, it may be possible to use the same trapping mechanism to stabilize the
cancer-free equilibrium.

Now by applying Theorem 1 in [24], it is also straightforward to check for possible Hopf
bifurcations when we increase the delay 7. The importance of Hopf bifurcations in this context
is that at the bifurcation point a limit cycle is formed around the fixed point, thus, resulting in
stable periodic solutions. The existence of periodic solutions is of significance in cancer models
because it implies that the cancer levels may oscillate around a fixed point even in the absence
of any treatment. Such a phenomenon has been observed clinically and is known as “Jeff’s
Phenomenon” [25]. In this section, we will prove that such a Hopf bifurcation can occur. Here,
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we are interested in the bifurcation of the coexistence of three populations. Hence, we consider
the characteristic equation (9) and rewrite it as

A+ paX® +pid +po + (@A + go)e™> =0. (14)
Let A = u + iv(u,v € R) and rewrite (14) in terms of its real and imaginary parts as

u® — 3uv? + py (u2 - vz) + pru+po = e T [qrusin(vr) + (q1u + o) cos(vT)],

(15)
3u?v — v® + 2pyuv + prv = e [(qru + qo) sin(vT) — qyv cos(vT)].
Let 7 be such that «(7) = 0. Then, the above equations reduce to
p2?? — po = 1T sin(T7) + go cos(TT),
(16)
— 0% 4+ p1T = go sin(37) ~ g1 cos(7).
It follows by taking the sum of squares that
7° + (p2® — 2p1) ¥* + (p1” — 2pop2 — 71%) 22 + po® — go* = 0. (17)

Suppose that 7, is the last positive simple root of equation (17). We now show that with this
. Gi

value of o1, there is a 71 such that u(7) = 0 and v(7) = 5, ven v, equation (16) can be

written as
Acos(T171) + Bsin(f191) = C,
(18)
Asin(719,) — Bcos(T191) = D,
where C? 4+ D? = A% + B? = G?, say, where G > 0. The equations
A =Gcosa,
(19)
B =Gsina
determine a unique a € [0, 27]. With this value of a, we have
G cos(T171) cosa + Gsin(F17; ) sina = C,
(20)
Gsin(717;) cosoe — G cos(Ty 01 ) sina = D.
Hence,
Gcos(TyU) —a) = C, Gsin(f19; —a) = D. (21)

These equations determine 7,7, —a uniquely in [/, (a+27)/7;]. To apply the Hopf bifurcation
theorem as stated in [26], we state and prove the following theorem.

THEOREM 8. Suppose that equation (17) has at least one simple positive root and ¥, is the last
such root. Then, iv(71) = i0; is a simple root of equation (14) and «(7) + iv(r) is differentiable
with respect to 7 in a neighborhood of 7 = 7.

ProoF. To show that 1w(71) = i7; is a simple root, we investigate equation (14)
HA) =X +pa)? £ pid +po + () + qo)e™ = 0.

Any double root A satisfies

where ‘
H(A) =32 +2poA + p1 + (1 — 71\ — 7qo)e ™. (22)
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Substituting A = i0; and 7 = 7 into (14),(22) and equating real and imaginary parts, if i5; is a
double root, we obtain

p2¥; — po = @11 sin(0171) + go cos(0171),

(23)
P10 — 1_):111 = —(q10 COS(T—)l’I_'l) + qo sin(fzﬁ’l),
and )
3v1 —p1 = (@1 — T1g0) cos(U171) + U171q1 sin(V171),
(24)
2p201 = (ql — 7"1q()) sin(z‘)ﬁ) + U01T1q1 COS(@l’T'l).
Now, equation (16) can be written as h(7;) = 0, where
2 2
h(v) = (pav® — po)” + (p1v—v*)" — giv? — go?, (25)
h(v) = 2 (p1v® — po) 2p2v + 2 (p1v — v°) (p1 — 302) — 20, 2. (26)

By substituting (23) and (24) into (25),(26), we obtain

k(1) = h(z1) = 0.
It follows that ©; is a double root of equation (25) and that h(7;) = h(ﬁl) = 0, which is a
contradiction since we have assumed that @ is a simple root of (17). Hence, 49 is a simple root
of equation (14), which is an analytic equation. By using the analytic version of the implicit

function theorem [27], we can see that u(7) + tw(7) is defined and analytic in a neighborhood of
7 = 7T1. The proof is complete! 1

Next, to establish Hopf bifurcation at 7 = 71, we need to verify the transversality condition

du
- 0.
dT T=T1 76
By differentiating equations (15) with respect to 7 and setting v = 0 and v = ¥, we obtain
d d
1 d_:l; . - Bl d—: . = po’(_}l sin(ﬁlﬂ) — pl'E% COS(’(717_'1>7
(27)
di d
B, ﬁ _ + A d_: o = 177 sin(171) + povy cos(t171),
where \ .
A =py — 307 + T1gqq cos(U171) — 101 sin(0171) — go cos(0171)], 2
28
B = 2p9U1 + 7 {QO sin(z”)ﬁ'l) -1 COS(@lfl) —q1 sin(1717"1)]‘
Solving for €%, 4 from (27) with the help of (16), we have
du _ 92 [301 4+ 2 (p2? — 2p1) 9% + p1? — 2papo — 1 ?] (29)
dr T=T1 Al2 + B12 .

Let 2 = 2. Then, equation (17) reduces to

®(z) = 2% + (p2® — 2p1) 2% + (p1° — 2papo — @1%) 2 + po® — qo°.

Hence,
o, 5 2 2 _ 2
E~3Z +2(p2® —2p1) 2+ p1® — 2papo — @1%.
As 72 is the last positive single root of equation (17), then
dd
—— 0.
dZ zzﬁf g
Therefore,
du o3 dod
o = 17.82 L > 0.
T T=71 Al +Bl z 2=0%

We summarize the preceding details in the following theorem.



A Mathematical Model 1103

THEOREM 9. Suppose that (17) has at least one simple positive root and 7, is the last such
root. Then, a Hopf bifurcation occurs as T passes through 71. On the other hand, if (17) has no

positive real roots, then the interior equilibrium E* is locally asymptotically sable for all values
of 7.

4. THE CONTINUOUS TREATMENT CASE

Here, we consider the full model (1). Again equilibria are derived and listed. We study the
local stability of some relevant equilibria by analytical and numerical methods.

4.1. Equilibria

In this case, we denote the equilibria by variations on F' and again some of them are physio-
logically nonfeasible. As in the no treatment case, the trivial equilibrium Fp(0,0,0,£1A) always
exists. The following cquilibria may or may not exist:

Fl(i,0,0,'lTL), FZ(Oﬂgvésﬁ’)’ F3(x*7y*,Z*7u'*)'

Here, the symbols that are the same as in the no treatment case may have different values.
Equilibrium F exists provided that the algebraic system

aP, T pLU
—dy —(a—dy) — =0,
nfky (a )kh a, +x (30)
A— &+ 9T lu=0
a; +x B

has a positive solution. System (30) has a positive solution provided that the quadratic equation

a1(€ + c1)$2 + (a12§ —ap€ — aocl) x4+ p1A —apaE =0 (31)

Trajectories of Populations in the Absence of Treatment with 1=11.

8 T T T T T T
75
=T 1
6.5 9
6 1 1 I | 1 1
0 200 400 600 800 1000 1200 1400
0.5 T T T T T T
0.451 .
\; WWWWVWW
0.4 :
035 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
0-64 T T T T T T
0.62 1
Z o6 1
N
0.58+ b
0.56 L 1 L 1 11 1
0 200 400 600 800 1000 1200 1400
time t (days)

Figure 3. A solution for model (2) with a = 3, p = 150, f = 0.67, n = 10, kj, = 10,
kt=3,b=6,d; =dy, =1, m =20, d, = 0.2, ¢ = 0.3. Here, the interior equilibrium
E3(7.679,0.397, 0.5955) is locally stable when the delay 7 < 12.14.
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Trajectories of Populations in the Absence of treatment with 1=12.14.
8 T T T T T T T

5 I ] ! | 1 I 1 L
0 100 200 300 400 500 600 700 800 900

0.5 T T T T T T T T

0.45 4

0.4

0.35 1 L | I 1 1 1 I
o] 100 200 300 400 500 600 700 800 900

0.7 T T T T T T T T

0.65 b

0-55 1 L | 1 1 ] 1 1
0 100 200 300 400 500 600 700 800 900

time t (days)

Figure 4. A solution for model (2) with a = 3, p = 40, f = 0.67, n = 10, k, = 10,
kt=5,b=4,ds =dy, =1, m = 15, d, = 0.2, c = 0.3. Here, the interior equilibrium
F3(1.027,0.068, 0.102) bifurcates at 7 = 12.14 and periodic solutions occur.

Trajectories of Populations in the Absence of Treatment with 1=13.2.

8 T T T T T T T

0 200 400 600 800 1000 1200 1400 1600

0.4

0 200 400 600 800 1000 1200 1400 1600

0.6

0_2 1 1 1 1 L 1 1
0 200 400 600 800 1000 1200 1400 1600

time t (days)

Figure 5. A solution for model (2) with a = 3, p = 150, f = 0.67, n = 10, k;, = 10,
ki =3,b=06,dy =dy =1, m =20,d; = 0.2, ¢ = 0.3. Here, the interior equilibrium
E3(7.679,0.397,0.5955) becomes unstable when 7 > 12.14.
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has a positive solution. Here, ag,a; are defined in the previous section. If
PA < apaié, (32)

then equation (31) has a unique positive solution. Necessary and sufficient conditions for (31) to
have two positive solutions are

a1’¢ < ap (E+ 1),

(0125 —ap — GOC1)2

A
apa1€ < p1A < 1o, € £ o)

From the above, we have proved the following lemma.

LEmMMA 4. If (32) holds, then Fy exists uniquely. If (33) holds, then there exist two distinct
equilibria of type F}.

Although the other equilibria F3 and F3 may exist, sufficient conditions for their existence are
not easily obtained. In Section 4.3.2, we will present some numerical examples to illustrate cases
when these equilibria exist.

4.2. Local Stability

Here, the Jacobian matrix around a general cquilibrium F(z,y, z,u) is

i ay —a9T —aszT _ BT T
a+zx
P2y
—b a —b -7
1Y 22 3Y oz +y
M = ,
0 e IV
£ as + z
aiciu agsCoy azcay a
L (a1 +2)?  (az+y)?  (as+2)? 3]
where
a11 = ap — 2a1 — ay —a L
11 0 1 2 3 (@122
paagu
azy = by — b1z — 2boy — b3z — ———,
(a2 +y)?

ax (&)X C3Zz
a3z =— |+ + + .
33 <£ a1 +x az +y a3+z)

4.2.1. Analysis of Fj

It is quite easy to get the eigenvalues associated with the trivial equilibrium Fy which are

/\50) =ag > 0,
A = by >0,
A0 =4, <o,
A = _¢ <.

Hence, Fy is a hyperbolic saddle point.
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4.2.2, Analysis of F}

In this case, the Jacobian matrix is given by

—ao —2a1% — M —a2T —a3x -t ]
(ay + )2 a1+
0 bg — b17T 0 0
My = 0 e~ —d, 0
_ ajc1 P S S az
I —(a1 ey ay coll  —az cal (f + o 5;) ]

Hence, two eigenvalues are
AV = by — bz, AP = —d,.

Other eigenvalues satisfy

o(A) = {AP | A2 = Tr (A)A + det (A) = 0, i = 1,4},

where _ _
ap — 20,7 — piaiu _ b
A (a1 + .7_})2 ay +z
N aiciu £+ c1T
(a1 + )2 a1+

By the Routh-Hurwitz criteria [28], if Tr (A) < 0 and det (A) > 0, then the eigenvalues of A have
negative real parts. If > ag/2a;, then

- p1a1t a1z
Tr(A) = ap — 201% — | ——— + &+ ———| <0,
(4) = a0 — 201 (a1 + z)? S
P1a1€T - a1z
det (A) = ———— 4 (2 — 0.
et (4) (al+f)2+(a1x ao)(f+a1+f)>

As a result, we have the following lemma.

LEMMA 5. IfZ > ag/2a1, then the real parts of eigenvalues )\51) and )\il) are negative.

Based on Lemma 5, we obtain the following theorem.

THEOREM 10. Suppose that T > ag/2ay, and by # b1Z. If bg > b1%, then Fy is a hyperbolic
saddle point. On the other hand, if by < b1 T, then F} is asymptotically stable.

4.2.3. Analysis of Fj

In this case, the Jacobian matrix is given by

M2 0 0 0
U
2 = )
0 AT —d, ‘Méi)
—ailet —ME) -ME M
where
. . 1. R . azll
M? =ag —agj—azt — a7 pra,  ME = bo — 2bgi) — bys — 22t
11 ap — a2y —aszz 1 P 29 0 oY 3 (o2 1 0)2
M@ Z Y M@ _ psZM M(Z):—< i CSZA>,
24 az +y 3 az+ 2 a4 ¢ as+9 az+z
2 azcoli (2) azczi
MP = 22 _ _scsu

(a2 +9)%’ B 7 (ag +£)2
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Hence, one of the eigenvalues is
/\§2) =09 — a9y —azz — a;lplﬁ.
Other eigenvalues satisfy

)\3 +p2>\2 +p1)\ +po + (ql)\ + (10) 6—/\7— = 0, (34)

where
pr=d. — M — MY,
2 2 (2 2 2 2 2 2
b= Mz(z)MzL;) —d; (le(z) + Mc§4)) - M?E4)Miz) - M2(4)Mz£2)’

po = d. M ME) — a, ME M) + MD M

A~

q1 = bay,
o = ~bs M3 g — M3y M.

Equation (34) is the characteristic polynomial (9) in the previous section with new coefficient
values. Computing v, mg, m;, my and employing the same arguments as before, we have the
following theorems.

THEOREM 11. Suppose that mo? > 3my, v <0, mg > 0, and m; > 0. Then,

L ifpg+qo > 0, pr+q >0, pa(py + q1) > po + qo, the stability of equilibrium Fy is
independent of delay 7 and it remains stable for all 7 > 0, provided that ag < asf) + a3 +
ay'pid,

2. ifpo+go <0,0rp1+q1 <0, or pa(p1 +¢1) < po +qo, the stability of equilibrium F3 does
not depend on 7 and it remains unstable for all 7 > 0.

THEOREM 12. Assume that either (a) ma < 0, m; > 0, and my? > 3my, or (b) m; < 0 and
~ < 0. Then, there exists a positive T such that

1.ifpo+q >0, pr +aq1 > 0, pa(p1 + 1) > po + qo, equilibrium Fy remains stable for
0 <7 <7 whenag < agf + a3z + al_lplﬁ, and becomes unstable for all 7 > T,

2. ifpo+4qg0<0,0rps+ ¢ <0, or pa(p1 + q1) < po + qo, equilibrium F5 remains unstable
for all T > 7. As T varies from 0 to T, at most a finite number of stability switches may
occur.

4.3. Global Stability

Note that if F; is achieved, then healthy cells eventually win the competition with the cancer
cells, which is the most desirable result. F3 represents the coexistence of all four populations.
In this section, we derive criteria for the global stabilities of I} and F3 with respect to solutions
initiating in int R%.

4.3.1. Global stability of F}

In int Ri, we choose the Liapunov function,

Vi(z(®),y(t), 2(¢),u(t)) = oy [m(t) —Z—Zn (?)] + agy(t) + %zz(t)
0 (35)
+%a2b2/ (e + ) ds + %ag(u(t) — e,

-7
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where @y, oz, az are positive constants to be determined later. The derivative of (35) along

solutions of (1) is given by

p1uz }

V:a T —T)|ayp —a1x — asy — azz —
1( )[0 1 2Y 3 a1tz

pauy ]

+agy {bo — b1z — by — b3z —
az +y

(36)

1 pauz
Zobs [y — — 2 —7)— -
+2a2 W, Yyt —71))°+ = <cy(t T)—d,z P z)

_ 1z C2y C3z
+ — A — + + + .
ag(u u) [ (')E a + as +y a3+z>u}

After some computing, we obtain

. 1
V = —al(al — au)(x — f)z — (X9 <§b2 — a22) y2 — (dz + (133)22

—%bgaz [(y(t —-7)— c(bgozg)_lz]2 — a3(€ + agq)(u — a)*

— {(a2a1 + b1a2)(l‘ - f)y + (a12a1 + aglag)(u — 'I_L)(.’L' — f}) + bgagyz

o
+agor(z — T)z + argazz(u — @) + ( ng + a13a3> ylu— ﬁ)} ,
2

where

pu Qo = P1 CoU Gy = pau
—(a1+i)(a1+x)’ 12 2= —/— ~

- a3
a1+ T’ as +vy’

an =

aiciu g = c3U “ P3u c? a c1z
T AN 14 = ) 33 = 44 = —-
(a1 + Z){ay + x) az+ 2

a == - 3
2l (a3 + Z) 205 b9 ar+Zz

Therefore, we have

. 1 — 1
V= 7(1‘ o i"y"z?u - ﬂ)’éMl(x - f,y,z,u - E)T - Ebzag y(t — T) — b2cag

z| (37)

where

2(a1 — a1)on agoy + bran aszo a190q + az103
1 -1
azcy +bion 2 552 — ags | (2 byag P20, "o + a1303

aso bsca 2(d, + ag3) a4

| 212001 + Qo103 p2a51a2 + a1303 Q14 2(& + aqq)
To ensure that V is negative definite along the solutions, we shall choose a1, g, as such that
the terms M, is positive definite. As a result, we have the following theorem.

THEOREM 13. Suppose that the interior equilibrium F) exists. Then, F) is globally stable
provided there exist o, ag, ag such that M, is positive definite.
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Trajectories of Populations in the Case of Treatment with Any Delays.
14 T T T 1 T T T

12+ A

u(t)

10

x(1), y(t), z(t), u(t)

ar y() .
x(t)

z(t)

: /S

0 50 100 150 200 250 300 350 400

time t (days)
Figure 6. A solution for model (1) with a = 3, P =60, f = 0.67, n = 10, k; = 10,
kt =3, b=6,d; =dy =1, m =20, d;, =02, ¢ = 0.3, p1 = 0.0008, po = 0.08,
p3 =0.09, a1 = 2, ap = a3z = 3, c; = 0.0024, co = 0.04, c3 = 0.03, A = 200, £ = 20.
Here, F1(2.6015,0,0,9.9887) is globally stable, independent of delay. The number of

blood vessels drops to zero very fast from the beginning of the treatment. The initial
conditions are z(0) = 1, ¢2(0) = 3, —7 < 0 < 0, 2(0) = 4, u(0) = 14.

4.3.2. Global stability of F;

In int Ri, we choose the Liapunov function,

V(z(t),y(t), z(t), u(t)) = o [x(t) —z* —z*In (%)] + ay [y(t) ~y* —y"ln <%>]
(38)
+—;—a2b2 /_OT y(t +s) —y*)% ds + % (2(t) — 2%)? + % (u(t) — u*)?,

where a1, ag are positive constants to be determined later. The derivative of (35) along solutions
of (1) is given by

ur

]+a2 (y—y*)[bo"blf—bw—bsz— quy]

y D1
— *
V~a1(a:—m)[ao—alx—agy—agz—a Py

+x

+%a2b2 [(y —y ) —(y(t—7)— y*)ﬂ +(z—2") (cy(t —7)—d;z— azsfz) (39)

+(u—u*)[A—(§+ ar . _cy . _cs2 >Uj|

a; +x as + Yy az + z
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After some computing, we obtain

V = o (o = bur) @ - ) ~ 0z (ba - bzz) (0= ") — (ds + bas) (= — 2°)?

—%bQQQ (y(t —7) — y*) — c(bpan) " (2 — z*)}2 — (€ + b3y + bay + bs1) (u — u”)”

—{azoq (x — z%) (z — 2*) + (b1oon + b32) (u — u”) (x — =*) + (b3a + bs2) (2 — 2") (u — u*)

+(azay +biag) (x — %) (y —y™) +bzaa (y — y") (2 — 27) + (baroa + baz) (y — ¥*) (u —u")},

where
bll = Py b12 == ! b = .__p_2_
(a1 + z*) (ay + z)’ a +z*’ A o +y*’
boy = p2u bay = caz* by = aciu
(a2 +y*)(az +y)’ a4z’ (a1 +z*)(a1 + z)’
bas — a3p3u B c? bay = p3z* bat — coy*
3 (ag +2*)(az +z) 2byap’ M st 2 4l ap +y*’
bay — a9Colt by = cgz* by — asCzu
(a2 +y*)(az +y)’ as + z*’ (ag + z*}(as + 2)°

Trajectories of Populations in the Case of Treatment with Any Delays.
10 T T T T T

x(t), y(®), (1), u(t)
|
|

time t (days)

Figure 7. A solution for model (1) with ¢ = 3, P = 150, f = 0.67, n = 10, kj, = 10,
ke =3, b=6,d; =dy, =1, m = 20, ds = 0.2, ¢ = 0.09, p = 0.0005, pp = 18,
p3 =2, a; = 20, az = ag = 800, ¢; = 0.01,c0 = 36, c3 = 8, A = 200, £ = 80. Here,
the interior equilibrium F3(7.238,0.9224, 0.5,2.4986) is globally stable, independent
of delay. The initial conditions are z(0) = 7.5, ¢2(8) = 0.5, —7 < 6 < 0, z(0) = 0.3,
u(0) = 10.
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Therefore, we have

. 1 -
V=—(z—z"y—y,z—2"u— u*)gMz(x -ty -y i,z — 2" u— u”‘)—r
9 (40)
e [t =7y~ ") = (2= =)
9 2003 | \Y Yy bQOég )
where
2(ay — bi1)o azay + brag azoy b3z + braag
1
i, — azon +brag 2 (51)2 - bzz) 2% bzay baz + bara
aszog by 2(d; + bs3) basa + bsa

baa + biaay baa + by1az baa 4+ bsa  2(£ 4 bay + ba1 + bs1)

To ensure that V is negative definite along the solutions, we shall choose a1,as such that the
terms M» is positive definite. As a result, we have the following theorem.

THEOREM 14. Suppose that the interior equilibrium Fj exists. Then, F3 is globally stable
provided there exist oy ,o such that M, is positive definite.
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