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Abstract

A system of delay equations describing a simple model of the respiratory control
mechanism in humans is considered and conditions guaranteeing stability, instability
of steady-state equilibrium solutions of that system are presented.

1 Introduction

Understanding the mechanism producing unstable patterns of ventilation has potential sig-
nificance for the prevention and treatment of various forms of irregularities in human res-
piration (i.e., periodic breathing, sleep apnea, SIDS, ... etc). Recent modeling studies have
demonstrated that it may be beneficial to consider the above process as a manifestation of
feedback induced instabilities in the respiratory system (see e.g. [9], [3], [2], [10], and the
references therein). In [9] a general mathematical model to study the process leading to
periodic breathing is outlined. This model can be described as a set of nonlinear parameter
dependent delay differential equations with multiple circulatory transport delays. In view of
the previous discussion it seems to be necessary to perform a nonlinear stability analysis, or
at least a bifurcation analysis, on the proposed model equations in order to validate them
for the intended purposes. (Note that in [9] the analysis is restricted to studying linearized
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system response for harmonic excitations.) On the other hand, due to the complexity of
the delay systems, i.e., relatively large number of states and system parameters in it, and
the presence of multiple (presumably noncommensurate) delays, the only feasible way to
carry out such a study is by computational means. The development and justification of
computational methods to investigate stability and instability of trajectories corresponding
to complex systems, such as the one in [9], is greatly aided by the availability of analytical
results obtained on similar models with simpler structure.

The aim of this paper is to present a stability analysis for a simplified model of the
respiratory system. (Related computational issues will be discussed in a forthcoming publi-
cation.)

In Section 2 we study modeling issues and formulate our simplified model for the respi-
ratory system. The stability results are contained in Section 3.

2 Model Equations

In this section we provide a brief discussion on respiratory models to motivate the type of
equations we study in Section 3.
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Figure 1: Block diagram of respiratory control system.

An overview of the respiratory system is shown in Figure 1. The controller responds to
inputs from the central and peripheral chemoreceptors which respond to changes in CO,
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and O, concentrations. The input-output relationship of the controller is also influenced by
changes in the state (i.e., sleep, wakefulness.) The controller gain is ventilation (W), and
W together with the inspired CO, and O, concentrations (i.e., Pjco, and Pjp,) influence
the behavior of the controlled system (i.e., lung (plant)-controller closed loop, see Figure 1).
The plant equations are balance equations for O; and CO; concentrations. Tp, and Tp, rep-
resent the transport delays between the lung and the peripheral and central chemoreceptors,
respectively.

Khoo at al. [9] employed a model of the ventilatory system similar to the one outlined
in Figure 1. The conclusion in [9] is that the ventilatory oscillations are predominantly
mediated by the peripheral chemoreceptors. In this paper we concentrate on the effects
due to the peripheral chemoreceptors (i.e., Figure 1 with the units inside the dotted area
omitted) in the control system. Note that a similar study was carried out in [11] except that
there the dependence on the O, concentration was not included.

We consider the system of nonlinear delay equations

%‘Zﬁ = p—aW(a(t—7),5(t - 7)) (E() - 21) 2.1)
% = o+ AW (E(t — ), 5t — 7)) (v — §(2),

where Z(-) and §(-) denote arterial CO, and O, concentrations, respectively; W (-,-) is the
ventilation function; 7 > 0 is the transport delay (i.e., 7 = Tp, on Figure 1); z; and y; are
inspired CO, and O, concentrations; p is the C'O, production rate, o is the Oy consumption
rate, and «, # are positive constants.

We now transform system (2.1) to a form more convenient for the stability analysis in
the next section by introducing

z(t) = a(&(t) — 1), y(t) = blyr — (1)), (2.2)
where a and b are constants to be determined. Simple calculations yield
dx di(t) 1 1 z(t)
i a 7 = ap—aaI/V(xI—i-Em(t—T),yI—g (t—7)>-a—
dy _ i) _ Lt — 1) — St — )22
Choosing the constants a and b as
a= 1, b= l,
P o
we obtain the “scaled” equations
ij—’f = 1—aV(z(t—r),y(t—7))z(?) (2.3)

% = 1- BV (a(t— )yt —7))y()



where the function V(:,-) is defined as

V(z,y) = W(zr + pz,yr — oy). (2.4)

3 Stability Analysis

We now consider the system in scaled coordinates, (i.e. (2.3)) and investigate the questions
of existence, uniqueness, and stability of equilibria. It appears to be biologically realistic
(see e.g. [9]) to assume that W (u,v) is increasing as a function of u and decreasing as a
function of v, for u > z; and v < y;. We therefore make the following assumption (see also
the defining equation (2.4)):

V(z,y) is a differentiable function, V(0,0) = 0, and
(H) 9V (z,y) 9V (z,y)
—_— 0, —_—
Oz Jy
Remark 3.1 The region ¢ > 0, y > 0 corresponds to & > zj, § < yy in the original
variables.

>0, z>0,y>0

Theorem 3.2 Assume hypothesis (H). Then there is a unique positive equilibrium of system

Proof: If there is an equlibirium z, g, we see from (2.3) that Z # 0, § # 0, and = 7/ .

Therefore 85 )
BV (—y,y) = - (3.1)
o Y

Since V(0,0) = 0 and V (%,g) is increasing in ¢, there is a unique positive solution y of
(3.1). With this g, define Z = f7/c, and we have

By \_ o _
av(a"”)‘ﬁﬂ‘

Hence azV(z,7) = 1 = ByV(z,§) so (Z,7) is an equilibrium.

Il

aV(z,9)

81—

Example 3.3 In the paper of Mackey and Glass [11], the function V(z) was taken, as
example, to be of the form V(z) = V2" /(O™ + "), where V,, and © are positive constants
and n is a positive integer. Analogously, we may consider the radially symmetric function

V,r"
VN =V(@y) =gogm lrn, r=\/a%+y? (3.2)

which satisfies 9V/dz > 0, V/9y > 0 when ¢ > 0, y > 0. In the case n = 1, we can
explicitly compute the equilibrium 7 = 1/Z% + 2. Since Z = 89/«

_\ 2
#:(@> + 7 = k3, po Bt

o o?
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Equation (3.1) becomes

BVnT k
O+r 7
and therefore
BV — kF — kO = 0. (3.3)

Solving (3.3) we obtain

_k
BV

where 6 =

We now investigate asymptotic stability of the equlibrium of system (2.3), under hy-
pothesis (H). By letting £(t) = z(t) — z, n(¢t) = y(t) — ¥ in (2.3), and then removing the
nonlinear terms, we obtain the linear variational system

d ~ _ _
d—i = —aV{(t) — azVx{(t — 7) — azVyn(t — 1) (3.4)
D= BV(e) - BVt —7) — ByVin(t —7)

where V = V(z,7), Vo = Vo(2,9), and V, = V,(z,

This may also be written in the form

a() (3o Zi?” 2
a= (%, v() (

see [1]) i

where

<| <|

<| <\
SN———

TbQ

The associated characteristic equation
det(A\] + A+ Be™™) = 0. (3.5)
Let us first consider the case 7 = 0, for which (3.5) reduces to
N4 (aV + azV, + BV + BgV)A + af(V2 + 2V V, + §VV,) = 0.

Because of the hypothesis (H), the coefficients in this equation are positive, and therefore
the roots have negative real parts. Consequently, we have proved the following result.

Theorem 3.4 If (H) holds and 7 = 0, the positive equilibrium (Z, ) is asymptotically stable.



Now suppose that 7 > 0. Equation (3.5) then has the form

PA)+Q(\)e ™ =0, (3.6)
where
PA) =X+ (a+ B)VA +apV? (3.7)
and
Q) = (agVs + gV, )X + aBV (2V; + V). (3.8)

It is well-known that a necessary and sufficient condition for asymptotic stability of the
equilibrium is that all roots of the charasteristic equation have negative real parts. Therefore,
much effort has been devoted to searching for conditions on the polynomials P and @ that
will imply that all roots have negative real parts. References to some of this literature may
be found for example in [1], [8], [12], [4], [5]. Since P + Qe~"" is an exponential polynomial,
these conditions are somewhat difficult to express in a way that is useful in applications, and
this is even more so for exponential polynomials coming from equations with more than one
delay.

At the end of this section, we comment further on equations (3.6)- (3.8), but first we
construct a special case wich is more easily handled. The special case is when a = .
Equation (3.6) then reduces to

A+ aV)[A+aV +o(aV, + §V,)e ™) = 0,
and consequently we only need to discuss the location of roots of the equation
A4a+be™™ =0, a=aV, b= a(zV, +3V,). (3.9)

The exact region of stability for (3.9) is the region in the (a,b)-plane bounded on the left
by the line a + b =0, at > —1, and with upper boundary given by the equation

(b — a®)'/? = arccos(—a/b), ar > —1.

([7], page 149). In the present case since we have a > 0, b > 0, the lower boundary is simply
the positive a-axis. Moreover, the region of stability for all delays 7 is simply b < a. The
following result is therefore true.

Theorem 3.5 If (H) holds and a = j3, the equilibrium (Z,y) is asymptotically stable if, and
only if, the parameter pair (a,b) lies in the region in the first quadrant with a > 0, b > 0,
and upper boundary T(b? — a?)'/? = arccos(—a/b), where a = oV, b = a(zV, + §V,). The
equilibrium is stable for all 7 > 0 if and only if b < a.

If the parameter pair moves across the upper boundary, there is generally a Hopf bifur-
cation with emergence of a nontrivial periodic solution.



Example 3.6 For the situation described in Example 3.3, we have

aV,, ™ anV,, 0"

Q@ = —

et T

The condition for stability for all delays is b < a, which is 7 > (n — 1)O". For n = 1,
this is clearly true. For n > 1, since k = /2 we have gi*t! = # + ™ where g = Vi [V2,
hence # — 0 as ¢ — oco. Therefore the condition 7 > (n — 1)4" fails if aV/, is large, which
corresponds to overly strong gain in the regulation.

We now return to a discussion of the general case, when o # f, and to the equation
(3.6). For equations with quadratic function P and linear function Q, a survey of what is
known about stability in various cases is given in [4]. The recent book [12] provides a method
for determining stability for more general problems, including problems with several delays,
and is based on determining roots of certain real functions. Papers [6] and [5] show that if 7
is regarded as a parameter, then as 7 increases there may be a sequence of switches between
stability and instability. For our purposes here, we construct the function

Flw) = |P(w)]’ - |Q(iw)|*
= W+ [(? + YV — (aiV, + B5V,)*|w? + 2BV [V — (aVi + §V,)Y.

Since we have stability for 7 = 0, by Theorem 3.4, the following result follows from [5],
Theorem 1.

Theorem 3.7 Assume hypothesis (H). Then:

(i) If F(w) = 0 has no positive roots, then the equilibrium (Z,y) is asymptotically stable for
all T > 0.

(ii) If F(w) = 0 has at least one positive root w, and each positive root is simple, then
as T increases, stability switches may occur and there is a positive 7 such that the
equilibrium is unstable for all T > 7.

We observe that if V < zV, + gV, then F(0) is negative and there is a positive root of
F(w) = 0, and destabilization will occur for large 7. More precise conditions for the existence
of a positive root of F(w) = 0 may be obtained similarly as in ([6], Section 5).
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