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Abstract

This paper establishes limit theorems for a class of stochastic hybrid
systems (continuous deterministic dynamic coupled with jump Markov
processes) in the fluid limit (small jumps at high frequency), thus extend-
ing known results for jump Markov processes. We prove a functional law
of large numbers with exponential convergence speed, derive a diffusion
approximation and establish a functional central limit theorem. We apply
these results to neuron models with stochastic ion channels, as the number
of channels goes to infinity, estimating the convergence to the determinis-
tic model. In terms of neural coding, we apply our central limit theorems
to estimate numerically impact of channel noise both on frequency and
spike timing coding.
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1 Introduction

In this paper we consider stochastic hybrid systems where a continuous de-
terministic dynamic is coupled with a jump Markov process. Such systems
were introduced in [6] as piecewise deterministic Markov processes. They have
been subsequently generalized to cover a wide range of applications: commu-
nication networks, biochemistry and more recently DNA replication modeling
[2, 15, 20, 23]. We are interested in the fluid limit for these systems considering
the case of small jumps of size 1/N at high frequency N , with a view towards
application to neural modeling.
The general class of model we consider is described in section 2.1, and for
the sake of clarity, we describe here a simple example which retains the main
features. Consider a population of N independent individuals, each of them
being described by a jump Markov process uk(t) for k = 1, ..., N with states
0 and 1, and with identical transition rates α > 0, β > 0 as follows: As an

empirical measure, we define the proportion of individuals in state 1 at time t
by:

eN(t) =
1

N

N∑

k=1

uk(t)

The model becomes hybrid when we assume a global coupling through a variable
VN ∈ R, in the sense that the rates α(VN ) and β(VN ) are functions of VN . This
variable VN is itself solution of a differential equation, between the jumps of
eN(t):

dVN
dt

= f(VN , uN )

where f : R2 → R. In the general case, this model is extended with more
general non-autonomous jump Markov processes, the global variable can be
vector valued and the transition rates can be functions of the empirical measure
(section 2.1).
We prove convergence in probability on finite time intervals,with techniques
inspired by [1], of the solution XN of the stochastic hybrid system to a deter-
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ministic limit x = (v, g). For the example above, x is solution of:

dv

dt
= f(v, g)

dg

dt
= (1− g)α(v) − gβ(v)

We derive a diffusion approximation and prove a functional central limit theorem
that helps characterizing the fluctuations of both the discrete and continuous
variables around the deterministic solution. We obtain that these fluctuations
are a gaussian process which corresponds to the asymptotic law of the linearized
diffusion approximation. We further obtain an exponential speed of convergence
which relates the tail distribution of the error EN (T ) = sup

[0,T ]

|XN − x|2 to the

size parameter N and the time window T : for ∆ > 0 and N large,

P (EN (T ) > ∆) ≤ e−∆NH(T ) (1)

Thus the convergence result can be extended to large time intervals [0, T (N)],
provided that T = T (N) is such that NH(T (N)) → ∞. Inequality (1.1) is a
new result which provides an estimate to the required number N of individuals
to reach a given level of precision. This number increases with the time scale on
which one wants this precision to be achieved. For system subject to finite-size
stochasticity, sometimes called demographic stochasticity it provides a relation
between the reliability time-scale to the population size N . There are other
ways of obtaining a law of large numbers, for example using the convergence of
the master equation or of the generators [10]. We want to highlight here that
our proof is based on exponential inequalities for martingales. Other ways of
obtaining a law of large numbers would not be likely to provide an estimate
such as (1.1).
Our mathematical reference on the fluid limit is the seminal paper [22] which
contains a law of large numbers and a central limit theorem for sequences of
jump Markov processes. Recently, a spatially extended version of these models
has been considered in [1], for a standard neuron model. The author shows
convergence in probability up to finite time windows to a deterministic fluid
limit expressed in terms of a PDE coupled with ODEs. In the present paper, we
consider a class of non-spatial models which however includes multi compart-
mental models, by increasing the dimension. We extend the results of [22] to
stochastic hybrid models at the fluid limit.
Neurons are subject to various sources of fluctuations, intrinsic (membrane
noise) and extrinsic (synaptic noise). Clarifying the impact of noise and vari-
ability in the nervous system is an active field of research [29], [11]. The in-
trinsic fluctuations in single neurons are mainly caused by ion channels, also
called channel noise, whose impacts and putative functions are intensively in-
vestigated [37, 30, 28], mainly by numerical simulations. Our motivation is to
study the intrinsic fluctuations in neuron models and we think that stochastic
hybrid systems are a natural tool for this purpose. The channels open and close,
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through voltage induced electromagnetic conformational change, thus enabling
ion transfer and action potential generation. Because of thermal noise, one of
the main features of those channels is their stochastic behavior.
In terms of modeling, our starting point is the stochastic interpretation of the
Hodgkin-Huxley formalism [16]. In this setting, ion channels are usually mod-
eled with independent Markov jump processes, whose transition rates can be
estimated experimentally [35]. These stochastic discrete models are coupled
with a continuous dynamic for the membrane potential, leading to a piecewise-
deterministic Markov process. Thus, the individuals are the ion channels and
the global variable VN the voltage potential (cf. section 3.). Deterministic hy-
brid kinetic equations appear to be a common formalism suitable for each stage
of nervous system modeling as shown in [8]. This latter study provides us with
a framework to introduce stochastic hybrid processes to model action poten-
tial generation and synaptic transmission, as stochastic version of deterministic
kinetic models coupled with differential equations through the transition rates.
On the side of neuron modeling applications, the limit behavior of a similar but
less general model is considered in [12], using an asymptotic development of the
master equation as N → ∞, which formally leads to a deterministic limit and a
Fokker-Planck equation (Langevin approximation), providing the computation
of the diffusion coefficients. The Langevin approximation is also studied in [34],
but in a simplified case where the transition rates are constants (independent of
VN ), which is actually the case studied in [22]. Our mathematical results extend
these previous studies to a wider class of models (if we put aside the spatial as-
pects in [1]), providing a rigorous approach for the Langevin approximation, and
establishing a central limit theorem which describe the effect of channel noise
on the membrane potential [32]. The convergence speed provides a quantitative
insight into the following question : if a neuron needs to be reliable during a
given time-scale, what would be a sufficient number of ion channels? We thus
provide a mathematical foundation for the study of stochastic neuron models,
and we apply our results to standard models, quantifying the effect of noise on
neural coding. In particular, both frequency coding (sec. 3.5.1) and spike tim-
ing coding (sec. 3.5.2) are numerically studied with Morris-Lecar neuron model
with a large number of stochastic ion channels.
Generically, stochastic hybrid models in the fluid limit would arise in multiscale
systems with a large population of stochastic agents coupled, both top-down
and bottom-up, through a global variable, leading to an emergent cooperative
behavior. Starting from a microscopic description (ion channels), the central
limit theorem as stated in this paper leads to a description of the fluctuations of
the global variable (membrane potential). So, in the perspective of applications,
it would be interesting to investigate how our framework and results could be
developed in other fields than neural modeling: for instance in chemical kinetics,
in population dynamics, in tumor modeling, in economics or in opinion dynamics
theory. In a more mathematical perspective, it would be interesting to consider
a wider class of models, for instance by including spatial aspects as in [1] or by
weakening the independence assumption. Other questions could be investigated,
for instance concerning escape problems, first passage times and large deviations,
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whenever N is large or not.
Our paper is organized as follows. In section 2. we define our model and
formulate the main results. In section 3., we apply our results to neuron models.
In section 4. we give the proof of the law of large numbers and its convergence
speed (Theorem 2.1) and in section 5. we give the proof of the Langevin
approximation (Theorem 2.2) and central limit theorems (Theorem 2.3-
2.4-2.5).

2 Model and main results

This section contains the definition of our general model and states the main
theorems.

2.1 Model

Stochastic hybrid model (SN) Let p, q,N ∈ N∗, and rj ∈ N∗ for all 1 ≤
j ≤ q. Let d =

∑q
j=1 rj . We define the stochastic hybrid model (SN ), whose

solution
XN (t) = (VN (t), eN (t)) ∈ Rp ×Rd, t ≥ 0

satisfies:
dVN
dt

= f(XN)

and eN = (e
(1)
N , ..., e

(q)
N ) with e

(j)
N ∈ Rrj , where the processes e

(j)
N (t) are q in-

dependent jump Markov processes. Note that the differential equation for VN
is holding only between the jump times of the process eN , with updated initial

conditions. For 1 ≤ j ≤ q, processes e
(j)
N (t) are characterized by,

• their state space : E
(j)
N =

{
(x1, ..., xrj ) ∈ {0, 1

N , ..., 1}rj | ∑rj
k=1 xk = 1

}

• their intensity λ
(j)
N : for X = (V, e) ∈ Rp ×Rd, λ

(j)
N (X) = Nλ̃(j)(X) with

λ̃(j)(X) =

rj∑

k=1

e
(j)
k

rj∑

l=1, l 6=k

α
(j)
k,l (X)

• their jump law µ
(j)
N : we define u

(j)
a = (0, ..., 0, 1, 0, ..., 0) ∈ Rrj and u

(j)
a,b =

u
(j)
a − u

(j)
b for 1 ≤ a, b ≤ rj . The transition of an individual agent in the

population j from one state a to another state b corresponds to a jump of

z = 1
N u

(j)
b,a for the process e

(j)
N . Thus we define:

X +
1

N
∆Xj

a,b = (V, e(1), ..., ẽ(j), ..., e(q))

ẽ(j) = e(j) + u
(j)
a,b
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So that the jump law for a jump of z is given by:

µ
(j)
N (X, z) =

e
(j)
a αa,b(X)

λ̃(j)(X)
if z =

1

N
u
(j)
b,a,

for all 1 ≤ a, b ≤ rj such that e
(j)
a 6= 0 and e

(j)
b 6= 1, and

µ
(j)
N (X, z) = 0 otherwise.

For a more formal definition we refer to [6].

For 1 ≤ k ≤ rj , the k-th component {e(j)N }k of vector e
(j)
N can be interpreted as

the proportion of agents of type j which are in the state k in a population of
size N .
We show below in Theorem 2.1 that this stochastic hybrid model has a limit
as N → ∞ which is the following deterministic model.

Deterministic model (D) We define the deterministic model (D), whose
solution X = (v,g) ∈ Rp ×Rd with g = (g(1), ..,g(q)) satisfies:







v̇ = f(v,g)

ġ
(j)
k =

∑

1≤i≤rj ,i6=k

α
(j)
i,k(X)g

(j)
i − α

(j)
k,i(X)g

(j)
k

(D)

for all 1 ≤ j ≤ q, ∀1 ≤ k ≤ rj . The first equation is the same as in the stochas-
tic model (deterministic part) and the second equation corresponds to the usual
rate equation, with a gain term and a loss term.

The following example illustrates the general model in a simpler relevant setting
motivated by applications. This setting will be used in the proofs in section 4
and 5 in order to make the arguments clearer.

Example We consider the case where p = q = 1 and r1 = 2. We can construct
a stochastic hybrid process as follows: first let us introduce a collection of N

independent jump Markov processes u(k) for 1 ≤ k ≤ N with u
(k)
t : 0 → 1 with

rate α(VN ) and 1 → 0 with rate β(VN ):

where VN is defined below. We then consider eN (t) = ({eN}0(t), {eN}1(t)) the
proportions of processes in the states 0 and 1. In this case, the stochastic hybrid
model (SN ) can be written as:
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





V̇N (t) = f(VN (t), eN (t))

eN (t) =
(

1
N

∑N
k=1 δ0(u

(k)
t ), 1

N

∑N
k=1 δ1(u

(k)
t )
)

VN (0) = v0; eN(0) = (u0, 1− u0)

Note that, if we define uN (t) = 1
N

∑N
k=1 δ1(u

(k)
t ), then we have eN (t) = (1− uN (t), uN (t)),

so that the solution is determined by the pair XN (t) = (VN (t), uN (t)).
Thus, each member of the sequence of jump Markov processes {uN}N≥1 is
characterized by

• its state space EN = {0, 1
N ,

2
N , ..., 1},

• its intensity λN (VN (t), u) = N [uβ(VN (t)) + (1− u)α(VN (t))]. This inten-
sity is time-dependent through VN (t).

• its jump law

µN (VN (t), u, y) = µ+(VN (t), u)δy,u+ 1
N
+ µ−(VN (t), u)δy,u− 1

N

where µ+(V, u) = (1−u)α(V )
uβ(V )+(1−u)α(V ) and µ−(V, u) = uβ(V )

uβ(V )+(1−u)α(V ) . This

jump law is also time-dependent through VN (t).

The deterministic system (D)takes the form:







v̇(t) = f(v(t), g(t))
ġ(t) = (1 − g(t))α(v(t)) − g(t)β(v(t))
v(0) = v0 ; g(0) = u0

In the sequel, we will be interested in the asymptotic behavior of the stochastic
hybrid models (SN ) under the limit fluid assumption. Let us now recall what
this assumption means. Let (xN ) be a sequence of homogeneous Markov jump
processes with state spaces EN ⊂ Rk, intensities λN (x) and jump law µN (x, dy).
Define the flow as FN (x) = λN (x)

∫

EN
(z − x)µN (x, dz). The fluid limit occurs

if the flow admits a limit and if the second order moment of the jump size
converges to zero when N → ∞. Our stochastic hybrid model is in the fluid
limit since the jumps are of size 1/N and the intensity is proportional to N .
This stems from the fact that we are modeling proportions in a population of
independent agents. However, this independence assumption is not necessary
to satisfy the fluid limit.

2.2 Law of large numbers for stochastic hybrid systems

We give here the first result concerning the convergence of the stochastic hybrid
model (SN ), which is a functional law of large numbers on finite time windows.

Theorem 2.1 () Let ǫ > 0, δ > 0, T > 0. Let us assume that the functions
αi,j and f are C1, and satisfy the following condition:
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(H1): the solution v of (D) is bounded on [0, T ] and for all N ≥ 1 the solution
VN (t) of (SN ) is uniformly bounded in N on [0, T ].

Let X init a given initial condition for (D) and X = (v,g) its solution. Then
there exists an initial condition X init

N for (SN ) and N0 ≥ 0 such that ∀N ≥ N0,

the solution XN = (VN , e
(1)
N , .., e

(q)
N ) satisfies, for all 1 ≤ j ≤ q and 1 ≤ k ≤ rj :

P

[

sup
0≤t≤T

||VN (t)− v(t)|| ≥ δ

]

≤ ǫ

P

[

sup
0≤t≤T

|{e(j)N }k(t)− g
(j)
k (t)| ≥ δ

]

≤ ǫ

Moreover, if we define

PN (T,∆) = P



 sup
0≤t≤T

||VN (t)− v(t)||2 +
q
∑

j=1

||e(j)N (t)− g(j)(t)||2 > ∆





there exist two constants B(T ) > 0 and C > 0 such that for ∆ sufficiently small:

lim sup
N→∞

1

N
logPN (T,∆) ≤ −∆e−B(T )T

CT
(2)

Moreover if

(H2): assumption (H1) holds true on [0,+∞[

then the constant B(T ) = BT is proportional to T .

Interpretation of the convergence speed We have obtained in (2.1) an
upper bound for the convergence speed which can help to answer the following
issue. Given a number of channels N , given an error ∆ and a confidence proba-
bility 1−p (e.g p = 0.01), the time window [0, T ] for which we can be sure (up to
probability 1−p) that the distance between the stochastic and the deterministic
solutions (starting at the same point) is less than ∆ is given by (2.1). In section
3.3, we show numerical simulation results illustrating the obtained bound for
the convergence speed for the stochastic Hodgkin-Huxley model.

Remark Assumption (H2) and thus (H1), are satisfied for most neuron mod-
els, for instance for the Hodgkin-Huxley (HH) model [4].

2.3 Langevin approximation

Our second result is a central limit theorem that provides a way to build a
diffusion or Langevin approximation of the solution of the stochastic hybrid
system (SN ). For X = (v, e) ∈ Rp ×Rd, for 1 ≤ j ≤ q, 1 ≤ i, k ≤ rj , let
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bj,k(X) =
∑

1≤i≤rj ,i6=k

α
(j)
i,k(X)e

(j)
i − α

(j)
k,i(X)e

(j)
k

H
(j)
i,k = α

(j)
i,k(X)e

(j)
i + α

(j)
k,i(X)e

(j)
k

λj,k(X) =
∑

1≤i≤rj ,i6=k

H
(j)
i,k .

As before, XN (t) = (VN (t), eN (t)) ∈ Rp ×Rd is the solution of the stochastic
hybrid model (SN ).

Let RN (t) = {(R(j)
N )k(t)}1≤j≤q, 1≤k≤rj with R

(j)
N ∈ Rrj be defined as

(R
(j)
N )k(t) =

√
N

(

{e(j)N }k(t)− {e(j)N }k(0)−
∫ t

0

bj,k(XN (s))ds

)

Theorem 2.2 Under the same hypotheses as in Theorem 2.1, the process RN

converges in law, as N → ∞, to the process R = {(R(j))k(t)}1≤j≤q, 1≤k≤rj with:

R(j)(t) =

∫ t

0

σ(j)(X(s))dW j
s

where

• X = (v,g) is the solution of the deterministic model (D) with initial
condition X init = X init

N = X0,

• W j are independent standard rj-dimensional Brownian motions,

• σ(j)(X) is the square root of matrix G(j)(X) s.t., for 1 ≤ k, l ≤ rj:

{

G
(j)
k,k(X) = λj,k(X)

G
(j)
k,l (X) = H

(j)
k,l (X) = G

(j)
l,k (X), l 6= k

This theorem leads to the following degenerate diffusion approximation X̃N =
(ṼN , g̃N ) ∈ Rp ×Rd, for N sufficiently large:

(2.2)

{

dṼN = f(X̃N(t))dt

dg̃
(j)
N = bj(X̃N (t))dt+ 1√

N
σ(j)(X̃N (t))dW j

t

where bj(X) is the vector (bj,k(X))1≤k≤rj ∈ Rrj , 1 ≤ j ≤ q.
Note that this approximation may not have the same properties as the original
process, even in the limitN → ∞ (when considering for instance large deviations
[26]).
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2.4 Functional central limit theorem and exit problem

Let XN = (VN , e
(1)
N , .., e

(q)
N ) be the solution of the stochastic model (SN ) and

X = (v,g(1), ..,g(q)) the solution of the deterministic system (D) with identical
initial condition X init = X init

N = X0 ∈ Rp+d.
Consider the (p+ d)-dimensional processes:

ZN =







YN

P
(1)
N

...

P
(q)
N







:=
√
N







VN − v

e
(1)
N − g(1)

...

e
(q)
N − g(q)







With this setting, we have the following result:

Theorem 2.3 Under the same hypotheses as in Theorem 2.1 the process ZN

converges in law, as N → ∞ to the process

Z =







Y

P(1)

...

P(q)







whose characteristic function Ψ(t, θ) = E
[
ei<θ,Z(t)>

]
satisfies the following

equation:

∂Ψ

∂t
=

q
∑

j=1







∑

l∈L

rj∑

k=1

θ
(j)
k

∂bj,k
∂xl

∂Ψ

∂θl
− 1

2

rj∑

k,l=1

θ
(j)
k θ

(j)
l G

(j)
k,lΨ






+

p
∑

m=1

∑

l∈L

θm
∂fm

∂xl

∂Ψ

∂θl

where G
(j)
k,l ,

∂fm

∂xl
and

∂bj,k
∂xl

are evaluated at X(t), for 1 ≤ m ≤ p, 1 ≤ j ≤
q, 1 ≤ k ≤ rj and l ∈ L, with θ = ((θm)1≤m≤p, (θ

(j)
k )1≤j≤q, 1≤k≤rj ) = (θl)l∈L,

and L = {(m)1≤m≤p, (j, k)1≤j≤q, 1≤k≤rj}.

Let us define Z̃N :=
(

ỸN , P̃N

)

:=
√
N
(

X̃N −X
)

∈ Rp ×Rd, where we recall

that X̃N is the Langevin approximation defined in (2.2). Thus, for 1 ≤ j ≤ q,
and 1 ≤ k ≤ rj :

dỸN =
√
N(f(X̃N )− f(X))dt

dP̃ j,k
N =

√
N(bj,k(X̃N )− bj,k(X))dt+ σ(j)(X̃N )dW j

t

As an asymptotic linearization of Z̃N , we define the diffusion process Θ =
(γ, π) ∈ Rp ×Rd by:

dγm =
∑

l∈L

∂fm

∂xl
Θldt

dπj,k =
∑

l∈L

∂bj,k
∂xl

Θldt+

rj∑

k′=1

σ
(j)
k,k′ (X)dW j,k′

t
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Theorem 2.4 The processes Z and Θ have the same law.

A computation of the moments equations for the limit process Z for the example
of section 2.1 is provided in Appendix B.
Using the central limit theorem 2.3, we provide in the next theorem a characteri-
zation of the fluctuations of first-exit time and location for the stochastic hybrid
process XN . Let φ : Rp+d → Rp+d be continuously differentiable. Define

τN := inf{t ≥ 0;φ(XN (t)) ≤ 0}

τ := inf{t ≥ 0;φ(X(t)) ≤ 0}
the first passage times through φ = 0 respectively for the stochastic hybrid
process and for its deterministic limit.

Theorem 2.5 Assume the initial condition X(0) satisfies φ(X(0)) > 0. Sup-
pose τ <∞ and ∇φ(X(τ)).F (X(τ)) < 0. Denote the random variable

π(τ) := − ∇φ(X(τ)).Z(τ)

∇φ(X(τ)).F (X(τ))

Then the following convergences in law hold when N → ∞:

√
N(τN − τ) → π(τ)

√
N(XN (τN )−X(τ)) → Z(τ) + π(τ)F (X(τ))

3 Application to neuron models

In this section, we show how our previous theorems can be applied to standard
neuron models taking into account ion channel stochasticity.

3.1 Kinetic formalism in neuron modelling

Kinetic models can be used in many parts of nervous system modelling, such
as in ion channel kinetics, synapse and neurotransmitters release modelling.
Deterministic kinetic equations are obtained as a limit of discrete stochastic
models (hybrid or not) as the population size, often the number of channels, is
large.

As already mentioned in the introduction, compared to our general formal-
ism, the stochastic individuals are the ion channels and the global variable VN
the voltage potential. Constituted of several subunits called gates, voltage-gated
ion channels are metastable molecular devices that can open and close. There
exist different types of channels according to the kind of ions, and they are
distributed within the neuron membrane (soma, axon hillock, nodes of Ranvier,
dendritic spines) with heterogeneous densities.

In what follows, we consider the model of Hodgkin and Huxley, which has
been extended in different ways to include stochastic ion channels. In numerical
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studies, different versions have been used, from a two-state gating interpretation
e.g. [31] to a multistate Markov scheme [7, 28]. In [32], two of these models
are compared, one with a complete multistate Markov scheme, and the other
inspired from [24] with a multistate scheme for the sodium ion and a two-state
gating for the potassium ion. We are here considering only single-compartment
neuron, but in order to deal with spatial heterogeneities of axonal or ion channels
properties for instance, multi-compartmental models can be introduced as a
discretized description of the spatial neuron, with Ohm’s Law coupling between
compartments.

3.2 Application of the law of large numbers to Hodgkin

and Huxley model

Classically, the Hodgkin-Huxley model (HH) is the set of non-linear differential
equations (3.1-3.4) which was introduced in [16] to explain the ionic mechanisms
behind action potentials in the squid giant axon.

Cm
dV

dt
= I − gL(V − VL)− gNam

3h(V − VNa)− gKn
4(V − VK) (3)

dm

dt
= (1−m)αm(V )−mβm(V ) (4)

dh

dt
= (1− h)αh(V )− hβh(V ) (5)

dn

dt
= (1− n)αn(V )− nβn(V ) (6)

where I is the input current, Cm = 1µF/cm2 is the a capacitance corresponding
to the lipid bilayer of the membrane, gL = 0.3mS/cm2,gNa = 120mS/cm2,
gK = 36ms/cm2 are maximum conductances and VL = 10.6mV , VNa = 115mV ,
VK = −12mV are resting potentials, respectively for the leak, sodium and
potassium currents. The functions αx, βx for x = m,n, h are opening and
closing rates for the voltage-gated ion channels (see [16] for their expression).
The dynamics of this dynamical system can be very complex as shown in [14],
but for our purpose let us describe only schematically the behavior of this system
as the parameter I is varied (see [27] for more details). First for all I there exists
a unique equilibrium point. For 0 < I < I1 ≈ 9.8µA/cm2, this equilibrium point
is stable, and for I0 < I < I1 where I0 ≈ 6.3µA/cm2 this equilibrium coexists
with a stable limit cycle and possibly many unstable limit cycles. At I = I1
and I = I2 occur two Hopf bifurcations. For I1 < I < I2 ≈ 153µA/cm2,
the equilibrium point is unstable and coexists with a stable limit cycle. For
I > I2, there are no more limit cycles, and the equilibrium point is stable.
This bifurcation structure can be roughly interpreted as follows : for I small
the system converges to an equilibrium point, and for I sufficiently large, the
system admits a large amplitude periodic solution, corresponding to an infinite
sequence of action potentials or spikes and the spiking frequency is modulated
by the input current I.
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There are two stochastic interpretations of the Hodgkin-Huxley model involving
either a multistate Markov model or a two state gating model. We now present
them briefly and we apply our theorems to each of them. A comparison of
these deterministic limits obtained for these models is given in Appendix A and
establishes an equivalence between the deterministic versions as soon as initial
conditions satisfy a combinatorial coincidence relationship. This question is
further studied in [19], where the reduction of the law of jump Markov processes
to invariant manifolds is investigated.

Multistate Markov model This model has two types of ion channels : one
for sodium and the other for potassium. The kinetic scheme describing the
Markov jump process for one single potassium channel is the following:

And for sodium channel:

All the coefficients in these two schemes are actually functions of the membrane
potential, and can be found in [16]. The state spaces are:

E1 = {n0, n1, n2, n3, n4}

E2 = {m0h1,m1h1,m2h1,m3h1,m0h0,m1h0,m2h0,m3h0}
The open states are respectively n4 (r1 = 5) and m3h1 (r2 = 8). The proportion

of open potassium channels is denoted by u
(1)
N := {e(1)N }n4 and the proportion

of open sodium channels by u
(2)
N := {e(2)N }m3h1 . In this model, The membrane

potential dynamic is given by the equation:

V̇N (t) = −gNau
(2)
N (t)(VN (t)−VNa)−gKu(1)N (t)(VN (t)−VK)−gL(V (t)−VL)+ I

where I ∈ R is a constant applied current. With the notations of the previous
sections, f(v, u(1), u(2)) = −gNau

(2)(v−VNa)−gKu(1)(VN (t)−VK)−gL(v−VL)+
I and for example, α

(1)
k,j(v) = 3αn(v) if k = n1, j = n2 and α

(2)
k,j(v) = 2βm(v) if

k = m2h0, j = m1h0.
Applying Theorem 2.1, we obtain a deterministic version of the stochastic
Hodgkin-Huxley model when N → ∞, provided we choose the initial conditions
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appropriately:







v̇ = −gNae
(2)(t)(v(t) − VNa)− gKe

(1)(t)(v(t) − VK)− gL(V (t)− VL) + I

ġ
(j)
k =

∑

1≤i≤rj ,i6=k

α
(j)
i,k(v)g

(j)
i − α

(j)
k,i(v)g

(j)
k , ∀1 ≤ j ≤ 2, ∀1 ≤ k ≤ rj

V (0) = vinit

g(j)(0) = g
(j)
init

with e(j) = g
(j)
rj , and where the rate functions α

(j)
m,p are given in the above

schemes, for j ∈ {1, 2}.

Two-state gating model Another way of building a stochastic Hodgkin-
Huxley model is to consider that the channels can be decomposed into indepen-
dent gates. Each gate can be either open (state 1) or closed (state 0):

with z ∈ {m,n, h}. The channel is open when all gates are open.

So, here, q = 3 and E1 = E2 = E3 = {0, 1}. If we denote u
(z)
N (t) := {e(z)N }1 the

proportion of open gates z, for z ∈ {m,n, h}, the membrane potential dynamic
is then given by:

V̇N (t) = −gNa(u
(m)
N (t))3u

(h)
N (t)(VN (t)− VNa)

− gK(u
(n)
N (t))4(VN (t)− VNa)− gL(VN (t)− VL) + I

which corresponds to f(v, u(m), u(h), u(n)) = −gNa(u
(m))3u(h)(v−VNa)−gK(u(n))4(v−

VNa)−gL(v−VL)+I. In Figure 1, we give a sample trajectory of this two-state
gating stochastic Hodgkin-Huxley system.
Applying Theorem 2.1 gives the classical formulation of the 4-dimensional
Hodgkin-Huxley model:







v̇ = −gNa(u
(m)(t))3u(h)(t)(v(t) − VNa)− gK(u(n)(t))4(v(t) − VNa)

−gL(V (t)− VL) + I
u̇(z)(t) = (1− u(z)(t))αz(v(t)) − u(z)(t)βz(v(t)), z ∈ {m,n, h}

3.3 Exponential convergence speed

We illustrate by numerical simulations the upper bound obtained in (2.1) for
the stochastic Hodgkin-Huxley model with a two-state gating scheme. The
number of sodium channels NNa and potassium channels NK are proportional

14



Figure 1: Illustrative sample trajectory of a two-state gating stochastic Hodgkin-
Huxley model with N = 20 (cf. section 3.). Top: variables m,h for the sodium
channel (without unit). Middle: variable n for potassium channel (without
unit). Down: variable V for membrane potential (unit: mV). Abscissa: time
(arbitrary units). Since m,n and h correspond to proportions of open gates, if
one of them is equal to 1, it means that all the corresponding gates are open.
An increase in the membrane potential V causes an increase in the proportion
of open m (sodium) gates, which in turn implies an increase of V . This positive
feedback results in a spike initiation. Meanwhile, a further increase of V is
followed by a decrease of the deactivation variable h, which closes the sodium
channels. This inhibition effect acts at a slower time-scale, enabling a decrease
of V . This decrease is strengthened by the dynamic of variable n (proportion
of open potassium gates).

to the area S of the membrane patch. Thus, instead of N , S will denote the
size parameter. For the squid giant axon, the estimated densities for the ion
channels used in the simulations are ρNa = 60µm−2 and ρNK

= 18µm−2.
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We now display the results of numerical simulations of

PS(T,∆) = P



 sup
0≤t≤T

||VS(t)− v(t)||2 +
q
∑

j=1

||e(j)S (t)− g(j)(t)||2 > ∆





using Monte-Carlo simulations. We recall that from (2.1):

lim sup
S→∞

1

S
logPS(T,∆) ≤ −∆e−BT 2

CT
= C(T )

In Fig. 2, the simulation estimations of CS(T ) =
1
S logPS(T,∆) are shown for

different values of T and S and can be compared to the theoretical bound C(T ).
Simulations are made without input current, meaning that the stochastic solu-
tion is supposed to fluctuate around the equilibrium point of the deterministic
system in a neighborhood of size proportional to S−1/2. When S increases, the
simulation curve CS(T ) is expected to pass below the theoretical bound C(T ).
For higher input currents, still subthreshold (I < Ic), but close to the bifurca-
tion, channel noise will induce spontaneous action potentials. For appropriate
∆, the probability PS(T,∆) can be interpreted as the probability that the first
spontaneous action potential (SAP) occurs before time T . Thus the convergence
speed bound gives an upper bound of the repartition function of this first SAP
time.
For higher input currents I > Ic, the deterministic solution will be attracted
by a stable limit cycle, which corresponds to repetitive action potentials. In
this case, channel noise can introduce a jitter in the spiking times. Thus, if one
considers the supremum of the errors between the stochastic and the determin-
istic solutions, this supremum will be quite large (approximately the size of an
action potential) as soon as the difference between the stochastic spiking times
and the deterministic ones is of order the time course of an action potential (2
ms). Thus, the supremum of the difference is not appropriate here and we will
see in the following section how to quantify the impact of channel noise on the
spiking frequency.

3.4 Application of the central limit theorems

In this section, we show how to investigate the fluctuations around a stable fixed
point (sub-threshold fluctuations) and the fluctuations around a stable limit
cycle (firing rate fluctuations) using Theorem 2.3. Let us consider a class of two-
dimensional models, corresponding to the Example of section 2.1. This class
contains reductions of the previous two-state gating Hodgkin-Huxley model, or
other models such as the Morris-Lecar model [25]. Consider the process, with
the notations of the Example:

(
YN
PN

)

=

( √
N (VN − V )√
N (eN − g)

)
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Figure 2: Simulation results of the Hodgkin-Huxley model with a “two-state
gating” scheme with input current I = 0: this figure shows the quantity
1
S lnPS(T,∆) as a function of T , where S is the area of the patch, and is thus
proportional to N . Stars : S = 250µm2 (corresponding to NNa = 15000 and
NK = 5000) ; Empty boxes : S = 500µm2; Crosses: S = 750µm2. Lines are
guide for the eye.

with initial conditions (PN (0), YN (0)) = (0, 0). Then the 2-dimensional process
ZN = (PN , YN ) converges in law, as N → ∞, towards the process Z = (P, Y ),
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whose characteristic function is given by:

E
[

ei(θ1P (t)+θ2Y (t))
]

= eθ
2
1At+θ2

2Bt+θ1θ2Ct

Thus, defining Σs the square root matrix of Γs :=

(
A′

s C′
s/2

C′
s/2 B′

s

)

, for 0 ≤ s ≤ t,

Z can be written as a gaussian diffusion process:

Zt =

∫ t

0

ΣsdWs

where W is a standard two-dimensional brownian motion 4.
From the equation for the characteristic function obtained in Theorem 2.3,
one derives that the triple y = (A,B,C) is solution of the system ẏt =Mtyt+Et

defined as:




Ȧt

Ḃt

Ċt



 =





2b′u 0 b′v
0 2f ′

v f ′
u

2f ′
u 2b′v b′u + f ′

v









At

Bt

Ct



+





− 1
2λ(V, u)

0
0



 (M)

with initial conditions (0, 0, 0), and λ(v, u) =
√

(1− u)α(v) + uβ(v). The par-
tial derivatives f ′

v, f
′
u, b

′
v, b

′
u and λ are evaluated at the deterministic solution

(Vt, gt) .
We remark that, if J is the Jacobian matrix at the point (Vt, gt), and if its
spectrum is sp(J) = {λ1, λ2} then the spectrum ofM is sp(M) = {2λ1, 2λ2, λ1+
λ2}. Two different situations can be considered:

• Starting from a fixed point (V0, u0) of the deterministic system, the matrix
Mt = M(Vt, ut) and the vector Et = E(Vt, ut) are constant. One can
derive an explicit analytical solution diagonalizing the matrix M . The
time evolution for the variance and covariance of the difference between
the deterministic solution and the stochastic one then depends on the
stability (λ1, λ2) of the considered fixed point.

• Around a stable limit cycle (periodic firing): Mt and Et are T -periodic
functions. Using suitable coordinates and following Floquet’s theory (see
[3]), stability would be given by the spectrum of the solverR(T ) : (A0, B0, C0) →
(AT , BT , CT ). As explained in [17], even if the real parts of the eigenval-
ues of the jacobian matrix are strictly negative for all time, unstable solu-
tions may exist. In section 3.5 we investigate numerically the fluctuations
around a stable limit cycle for the Morris-Lecar system.

4The condition that the matrix Γs admits a real square root matrix can be reduced to
A′

s
+ B′

s
≤ 0 because one can show that det(Γs) = A′

s
B′

s
− C′

s

2/4 = 0 for all s ≥ 0. This
condition is thus always satisfied because : A′

0
+B′

0
≤ 0, A′

s
and B′

s
have the same sign, and

(A′

s
, B′

s
, C′

s
) cannot cross (0, 0, 0) by uniqueness of the solution of z′ = Mz (satisfied by y′).

The computation of the matrix Σs gives:

Σs =

√

−2(A′

s
+ B′

s
)

A′

s
+B′

s

Γs
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If we consider
(
ỸN
P̃N

)

=

( √
N
(

ṼN − V
)

√
N (ũN − u)

)

where (ṼN , ũN) is the Langevin approximation, then the moments equations,
written for the linearized version around the deterministic solution, give the
same matrix Γs at the limit N → ∞. But for finite N the linearized process is
not gaussian (see Appendix B). Thus, our mathematical result can be directly
related to the simulations results obtained in [32]: in this paper simulations of
two neuron models with a large number of stochastic ion channels are made,
and the fluctuations of the membrane potential below threshold exhibit approx-
imately gaussian distributions, but only for a certain range of resting potentials.
For smaller resting potentials, the shape of the distribution remained unclear
as it was more difficult to compute. Our approach shows that, at finite N , for
any range of the resting potentials the distribution is non-gaussian, but when
N → ∞, the distribution tends to a gaussian, which corresponds to the approx-
imate gaussian distribution observed in the simulations of [32].

3.5 Quantifying the effect of channel noise on neural cod-

ing

Neurons encode incoming signals into trains of stereotyped pulses referred to as
action potentials (APs). It is the mean firing frequency, that is the number of
APs within a given time window, and the timing of the APs that are the main
conveyors of information in nervous systems. Channel noise due to the seemingly
random fluctuations in the opening and closing times of transmembranar ion
channels induces jitter in the AP timing and consequently in the mean firing
frequency as well. We show in the next subsections how our results can be
applied to quantify these phenomena. The impact of channel noise on frequency
coding is investigated in sec 3.5.1 and on spike timing coding in section 3.5.2. We
close this section by some remarks concerning non-markovian processes arising
when considering synaptic transmission in sec.3.5.3.

3.5.1 Numerical study of the variance of spiking rate for Morris-
Lecar model

In this subsection, applying Theorem 2.3 to the Morris-Lecar system, we in-
vestigate the impact of channel noise on the variance of the firing frequency.
The Morris-Lecar system was introduced in [25] to account for various oscillat-
ing states in the barnacle giant muscle fiber. We denote by X = (V,m, n) the
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solution of:

Cm
dV

dt
= I − gL(V − VL)− gCam(V − VCa)− gKn(V − VK) := Fv(X)(7)

dm

dt
= λm(V )(M∞(V )−m) := Fm(X) (8)

dn

dt
= λn(V )(N∞(V )− n) := Fn(X) (9)

whrer λm(V ) = cosh((V −V1)/2V2), λn(V ) = φn∗cosh((V −V3)/2V4),M∞(V ) =
(1 + tanh[(V − V1)/V2)])/2 and N∞(V ) = (1 + tanh[(V − V3)/V4)])/2. We
introduce as in the previous sections a stochastic version XN of this model
with stochastic ion channels, replacing the differential equation for m and n by
birth-and-death processes with voltage-dependent opening rates αm = λmM∞,
αn = λnN∞ and closing rates βn = λn(1−N∞). According to the parameters of
the model, the deterministic system (3.5−3.7) may have a stable limit cycle xLC

for some values of I ∈ [Imin, Imax] (see [25]). This corresponds to a phenomenon
of regular spiking, characterized by its rate. Assuming that the time length of
a spike is almost constant, we suggest a proxy for this spiking rate:

r(T ) :=
1

T

∫ T

0

φth(x(s))ds

where φth is a sigmoid threshold function. In a similar way, we define the
stochastic spiking rate by:

rN (T ) :=
1

T

∫ T

0

φth(XN (s))ds

As a candidate for φth, we choose φth(V ) := ec(V −Vth)

1+ec(V −Vth) where c and Vth are
two parameters.
A consequence of the central limit theorem for XN is the following weak con-
vergence:

√
N [rN (T )− r(T )] ⇒ R(T ) =

1

T

∫ T

0

Z(s).∇φth(x(s))ds

where Z is the weak limit of
√
N [XN − x]:

Z(s) =

∫ s

0

Σ(u)dWu

R(T ) is a gaussian random variable with zero mean. For simplicity we consider
the case where φth is only a function of the membrane potential V . Then the
variance of R(T ) is:

σ2
R(T ) = E

[
R(T )2

]
=

2

T 2

∫ T

0

∫ s

0

Sv(s
′)φ′th(V (s′))ds′φ′th(V (s))ds (10)
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where Sv(s) = Σ1,1(s) is the variance of
√
N(VN (s)− V (s)).

To estimate numerically the variance σ2
R(T ), the first step is to determine nu-

merically the limit cycle, then solve the moment equations (Appendix C) and
immediately deduce Σ(s). Thus the variance σ2

R can be computed using formula
(3.8) without any stochastic simulation. In Fig. 3 we show our numerical re-
sults, where we plot in C-F., as a function of the input current I, the normalized
variance ξ(T ) defined as:

ξ(T ) :=
σ2
R(T )

r(T )2

Figure 3: Impact of channel noise on the spiking rate.First row (ABC) : Class
I regime. Second row (DEF) Class II regime. [A-D]. Deterministic rate r(T )
versus input current I (µA/cm2). [B-E]. Variance σ2

R(T ) versus input current I
(µA/cm2). [C-F]. Normalized variance ξ(T ) versus input current I (µA/cm2).
Parameters : for all figures T = 2000ms, c = 10, Vth = 0mV , Cm = 20µF/cm2,
V1 = 0mV , V2 = 15mV , V3 = 10mV , gCa = 4mS/cm2, gK = 8mS/cm2,
gL = 2mS/cm2, VK = −70mV , VL = −50mV , VCa = 100mV , φn = 0.1 and
V4 = 20mV for Class II (DEF) and V4 = 10mV for Class I (ABC).

Comments The value of ξ(T ) depends on a combination of the linear stability
along the cycle and on the variance of the noise (which is multiplicative) along

the cycle. If one wants to have the quantity E[(rN(T )−r(T ))2]
r(T )2 of order 1, then

the number N of channels should be of order ξ(T ). Interestingly, this gives
much smaller values for Class II than for Class I regime. In both cases, it
corresponds to a reasonably small number of channels when I is not too close
from bifurcation points.
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3.5.2 Impact of channel noise on latency coding in the Morris-Lecar
model

Whereas frequency coding requires an integration of the input signal over a
relatively long time, individual spike time coding does not require such an in-
tegration. The time to first spike, called latency, depends on the value of the
suprathreshold input. Thus it may have an interpretation in term of neural cod-
ing, and it has been shown in several sensory systems [36] that the first spike
latency carries information. For example, a recent study [13] concerning the
visual system suggests that it allows the retina to transfer rapidly new spatial
information. Impact of external noise on latency coding have been investigated
in numerical studies [9] with stochastic simulations. We apply Theorem 2.5 to
the Morris-Lecar model to investigate the impact of internal channel noise on
first spike time. We chose the parameters (see 3) to obtain a Class I neuron
model in the excitable regime. In this setting, there exists a unique steady
state X∗ = (V ∗,m∗, n∗). Starting from this equilibrium point, the impact of
an input at t = t0 is equivalent to an instantaneous shift of the membrane po-
tential V ∗ → V ∗ + A, where A > 0 is the amplitude of this shift. Eventually
the system goes back to its steady state, but if A is higher than a threshold
Ath then a spike is emitted before going back to the steady state, whereas if
A is lower than Ath no spike is emitted. For A > Ath, we define the latency
time T (A) as the elapsed time between t0 and the spike. More precisely, let
(VA(t),mA(t), nA(t)) for t ≥ t0 be the solution of Morris-Lecar equations with
initial conditions X(t0) = (V (t0) = V ∗ + A,m(t0) = m∗, n(t0) = n∗). We de-
fine a spike as a passage of the membrane potential VA(t) through a threshold
Vth. Then, with t0 = 0 for simplicity, the latency time T (A) can be written
as T (A) := inf{t ≥ 0; VA(t) > Vth}. As shown in Fig.4.A, the more A > Ath

is close to Ath, the longer is the latency time T (A). The same setting can be
extended in the stochastic case, defining a random variable TN (A). Applying
Theorem 2.5, with φ(V,m, n) = Vth − V , we express the variance P (A) of the
limit of

√
N(TN(A) − T (A)) as N → ∞:

P (A) =
Sv(T (A))

Fv(X(T (A)))2
(11)

In (3.9), Sv(T (A)) is the variance of the V -component Zv of Z, where we recall
that Z is the limit of

√
N(XN−X) (see Theorem 2.3). The value of Sv(T (A)) is

obtained from the numerical integration of the moments equations (..). The re-
sults are displayed in Fig.4, where the variance P (A) and a normalized variance
P (A)/T (A)2 are plotted against the amplitude A (4.B). In 4.D the variance
P (A) is plotted against the latency time T (A) (4.D). From (3.9), it appears
that P (A) is determined by two distinct contributions : the variance Sv(T (A))
(4.E) and the crossing speed F (X(T (A))) (4.F) which actually does not influ-
ence much the variance P (A). One way to interpret the results is the following:
if N is large, of order P (A), then E[(TN(A) − T (A))2] is of order 1. Thus, as
an illustration, in order to keep E[(TN(A) − T (A))2] of order 1, the required
number of channels would be of order 102 for a latency time of 10ms and of
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Figure 4: Impact of channel noise on latency coding. [A]. Latency time T (A)
versus amplitude A. [B]. Variance P (A) versus amplitude A. [C]. Normal-
ized variance P (A)/T (A)2 versus amplitude A. [D]. Variance P (A) versus la-
tency time T (A). [E]. Variance Sv(A) versus amplitude A. [F]. Crossing speed
Fv(X(T (A))) versus amplitude A. Same parameters as in 3 Class I, with input
current I = 32µA/cm2.

order 105 for latency time of 60ms.

3.5.3 Synaptic transmission and non-markovian processes

In section 3.5.1, the quantity of interest was the firing frequency. However,
the synaptic transmission between a neuron A and a neuron B has its own
time scales. Therefore, neuron B’s input, called post-synaptic potential ΨA→B,
may be modeled as a functional of neuron A’s membrane potential {VA(t)}t≥0.
Although synaptic transmission is presumably a non-linear process, one can
consider as a first approximation (cf. [21]) that the process of interest is obtained
directly by the convolution of the process VA with some kernel KA→B:

ΨA→B(t) =

∫ t

0

KA→B(t− s)V (s)ds

The mathematical analysis of the impact of channel noise on this variable
can be done in the light of theorems 2.1 and 2.3. Using the general nota-
tions for the stochastic process and its deterministic limit, we define ΨN (t) =
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∫ t

0
K(t, s)XN (s)ds and Ψ(t) =

∫ t

0
K(t, s)x(s)ds.

Law of large numbers Define

SN (T ) = sup
s∈[0,T ]

|ΨN(t)−Ψ(t)|2

Clearly, using Cauchy-Schwartz inequality:

P(SN (T ) > ∆) ≤ PN (T, η(T )−1∆)

with

η(T ) = T sup
t∈[0,T ]

∫ t

0

|K(t, s)|2ds

The convergence of ΨN to Ψ with the same kind of exponential convergence
speed is thus a direct consequence of Theorem 2.1.

Gaussian fluctuations We know (Theorem 2.3) that
√
N(XN−x) converges

weakly to the diffusionH(t) =
∫ t

0 R(u)dWu. As a consequence, ΩN =
√
N(ΨN−

Ψ) converges also weakly, to the following process:

Ω(t) =

∫ t

0

K(t, s)

(∫ s

0

R(u)dWu

)

ds

With an integration by part, one can rewrite:

Ω(t) =

∫ t

0

Z(t, s)dWs

with

Z(t, s) =

∫ t

s

K(t, u)duR(s)

The process Ω is gaussian and one can easily compute its variance as
∫ t

0
Z(t, s)2ds.

However, it is non markovian, and some issues concerning the first hitting times
of such processes are solved in [33].

4 Proof of the law of large numbers

In this section we give the proof for Theorem 2.1. This proof is inspired
from [1], except for the exponential martingale bound. In order to simplify the
notation and to make the arguments clearer and more intuitive, we write the
proof for the case of a single channel type with state space {0, 1} and transition
rates given by the scheme:

In this case, the stochastic model (S0
N ) is:

V̇N (t) = f(VN (t), uN (t));VN (0) = V0

uN (t) =
1

N

N∑

k=1

δ1(u
(k)
t );uN(0) = u

(N)
0
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where u
(k)
t : 0 → 1 with rate α(VN (t)) and 1 → 0 with rate β(VN (t)), for all

1 ≤ k ≤ N

The deterministic solution (v, u) satisfies:






v̇(t) = f(v(t), u(t))
u̇(t) = (1− u(t))α(v(t)) − u(t)β(v(t))
v(0) = v0 ; u(0) = u0

In order to complete the proof, few slight changes in the notation can be done:

• in order to work with more general jump Markov processes with finite state
space, essentially all the expressions of the form δ0(u)α(v) − δ1(u)α(v)
should be replaced by

∑

i6=j

αi,j(v, u)δei(u)− αj,i(v, u)δej (u)

• in order to include q different channel types (different ions), one should

just write the same arguments for all the q processes {e(j)N (t)} for 1 ≤ j ≤ q

and include all the ||e(j)N (t)− e(j)(t)|| for 1 ≤ j ≤ q in the function f(t) of
Gronwall lemma application in section 3.4.

4.1 Decomposition in a martingale part and a finite vari-

ation part

Decomposition We decompose the difference between the stochastic and the
deterministic processes as a sum of a martingale part MN and a finite variation
part QN as follows:

[uN(t)− uN (0)]− [u(t)− u(0)] =MN (t) +

∫ t

0

QN (s)ds

where we define:

QN (t) =
1

N

N∑

i=1

[

δ0(u
(i)
t )α(VN (t))− δ1(u

(i)
t )β(VN (t))

]

− u̇(t)

MN(t) = [uN (t)− u(t)]− [uN(0)− u(0)]−
∫ t

0

QN (s)ds
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Lemma As defined above, (MN (t)) is a {Ft}-martingale.

Proof For h > 0, define ∆MN (t, h) = 1
hE [MN (t+ h)−MN(t)|Ft], then:

∆MN (t, h) =
1

h

1

N

N∑

i=1

E
[

δ1(u
(i)
t+h)|Ft

]

− E
[

δ1(u
(i)
t )|Ft

]

− 1

h
E

[
∫ t+h

t

[

1

N

N∑

i=1

δ0(u
(i)
s )α(Vs)− δ1(u

(i)
s )β(Vs)

]

ds|Ft

]

− 1

h
[u(t+ h)− u(t)] +

1

h

∫ t+h

t

u̇(s)ds

The last line converges clearly to 0 as h→ 0, and the two first terms compensate
as h→ 0. So we have:

lim
h→0

1

h
E [MN(t+ h)−MN (t)|Ft] = 0

Therefore
d

ds
E[MN(t+ s)|Ft]|s=0 = 0

By dominated convergence we have:

d

ds
E[MN(t+ s)|Ft]|s=s0 = E

[
d

du
E[Mt+s0+u|Ft+s0 ]|u=0|Ft

]

= 0

Finally:
E[MN(t+ h)|Ft] = Cst =MN (t) ⊗

4.2 Martingale bound

In this part we want to obtain a bound in probability for the martingale part.
We introduce the jump measure and the associated compensator:
We define two random measures on ]0, T ]× {0, 1}:

• jump measure : κi =
∑

t∈]0,T ],u
(i)
t 6=u

(i)

t−

δ
(t,u

(i)
t )

• compensator :

νi(dt, dy) =
[

β(VN (t))δ1(u
(i)
t−)δ0(y) + α(VN (t))δ0(u

(i)
t− )δ1(y)

]

dt

We can rewrite QN (s) and MN (t):

∫ t

0

QN (s)ds =
1

N

N∑

i=1

∫

]0,T ]×{0,1}
(δ1(y)− δ1(u

(i)
t−))νi(ds, dy)−

∫ t

0

u̇(s)ds

MN (t) =
1

N

N∑

i=1

∫

]0,T ]×{0,1}
(δ1(y)− δ1(u

(i)
t−))(κi − νi)(ds, dy)

Then we have the following proposition:
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Proposition Let T > 0, ǫ > 0, δ > 0. Then there exists N0 such that
∀N ≥ N0,

P

[

sup
0≤t≤T

MN(t)2 ≥ δ

]

≤ ǫ

Proof Let us first recall that from standard results about residual processes
([18]) we have:

E
[
MN (t)2

]
=

1

N2

N∑

i=1

E

[
∫

]0,T ]x{0,1}
(δ1(y)− δ1(u

(i)
t−))

2(κi − νi)(ds, dy)

]

=
1

N2

N∑

i=1

E

[
∫

]0,T ]

β(VN (s))δ1(u
(i)
s−) + α(VN (s))δ0(u

(i)
s−)ds

]

Therefore, we can get a bound for E
[
MN (t)2

]
:

E
[
MN (t)2

]
≤ C1

t

N
max (||α||∞, ||β||∞)

where ||α||∞ and ||β||∞ are finite because α and β are continuous and assump-
tion (H1). We then use Chebychev inequality and Doob inequality for L2 mar-
tingales:

P

[

sup
0≤t≤T

MN(t)2 ≥ δ

]

≤ 1

δ
E

[

sup
0≤t≤T

MN(t)2
]

≤ 4

δ
E
[
MN (t)2

]

and E
[
MN (t)2

]
≤ ǫδ

4 for all N ≥ N0.⊗

In order to obtain a better estimate for the convergence rate, we derive
here an exponential bound for the martingale part. Our proof is inspired from
techniques developed in [5].

Proposition Let T > 0,η > 0. There exists a constant Cη such that for all
δ ∈]0, ηCηT [:

P

[

sup
0≤t≤T

|MN (t)| ≥ δ

]

≤ 2 exp

(

− δ2N

2CηT

)

Proof We define, for x = (u, v), θ ∈ R:

mN (x, θ) =

∫

R

eθyλN (x)µN (x, dy) = Nλ(x)[eθ/Nµ+(x) + e−θ/Nµ−(x)]

φN (x, θ) =

∫

R

[eθy − 1− θy]λN (x)µN (x, dy)

=

∫ 1

0

∂2mN

∂θ2
(x, rθ)θ2(1− r)dr
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The second equality stems from integration by part. And, if |θ| < Nη,

|∂
2mN

∂θ2
(x, rθ)| =

∣
∣
∣
∣
Nλ(x)

1

N2
[erθ/Nµ+(x) + e−rθ/Nµ−(x)]

∣
∣
∣
∣
≤ Cη

N

So, |φN (x, θ)| ≤ 1
2
Cη

N θ2. Let us define

Zǫ
N (t) = exp[ǫMN(t)−

∫ t

0

φN ((uN (s), VN (s)), ǫ)ds]

(Zǫ
N (t)) is a martingale thanks to Doléans Formula:

Zǫ
N (t) = 1 +

∫ t

0

∫

R

Zǫ
N (s−)[eǫy − 1](µ− ν)(ds, dy)

Then we note τ = inf{t;MN(t) > δ}. On {τ ≤ t},Zǫ
N(τ) ≥ exp{δǫ − tǫ2Cη

2N }.
And by optional stopping theorem:

E[Zǫ
N(min(t, τ))] = E[Zǫ

N(0)] ≥ E[Zǫ
N(τ)1τ≤t] ≥ P(τ ≤ t) exp{δǫ− tǫ2Cη

2N
}

So, P

[

sup
0≤t≤T

|MN (t)| > δ

]

= P(τ ≤ T ) ≤ exp{−δǫ+ Tǫ2Cη

2N }.

Finally when δ ∈]0, ηCηT [, with ǫ = δN
Cηt

, and applying the same argument to

−MN(t) we get the result.⊗

4.3 Finite Variation Part

In this section we use the Lispchitz property of α and β to provide a bound for
the finite variation part, in order to apply later Gronwall Lemma.

Lemma There exists C1 > 0 independent of N such that:

|QN (t))| ≤ C (|uN(t)− u(t)|+ |VN (t)− v(t)|)

Proof

QN (t) =
1

N

N∑

i=1

δ0(u
(i)
t )α(VN (t))− (1 − u(t))α(v(t))

− 1

N

N∑

i=1

δ1(u
(i)
t )β(VN (t))− u(t)β(v(t))
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Let us start with the second term of the difference, called Q1→0:

Q1→0 =
1

N

N∑

i=1

δ1(u
(i)
t )β(VN (t))− u(t)β(vt)

=
1

N

N∑

i=1

δ1(u
(i)
t )β(VN (t))− u(t)β(VN (t)) + u(t) (β(VN (t))− β(v(t)))

= β(VN (t)) (uN(t)− u(t)) + u(t)
︸︷︷︸

∈[0,1]

(β(VN (t)) − β(v(t)))

Then,

|Q1→0| ≤ ||β||∞|uN (t)− u(t)|+Kβ|V − v(t)|

where Kβ is the Lipschitz coefficient of β. We do the same for the other term
of the difference:

|Q0→1| ≤ ||α||∞|uN(t)− u(t)|+Kα|VN (t)− v(t)|

So the proof is complete, with C1 = max(||α||∞, ||β||∞,Kα,Kβ) ⊗
If more general transition rates α(v, u) and β(v, u) depend on v and u,

one would need to replace ||α||∞ and ||β||∞, respectively by ||α||∞ +K
(u)
α and

||β||∞ + K
(u)
β , where K

(u)
α ,K

(u)
β are the Lipschitz coefficients associated with

the second variable u.

4.4 Proof of theorem 2.1

Law of large numbers We want to apply Gronwall Lemma to the function:

f(t) = |VN (t)− v(t)|2 + |uN (t)− u(t)|2

From the previous section we have a good control on the martingale term and
the following estimate:

Corollary There exists C2 > 0 independent of N such that:

|uN(t)− u(t)|2 ≤ 4[|uN(0)− u(0)|2 + C2T

∫ t

0

|uN (s)− u(s)|2ds

+ C2T

∫ t

0

|VN (s)− v(s)|2 +MN(t)2]

Proof As uN(t) − u(t) = uN (0) − u(0) +MN (t) +
∫ t

0
QN(s)ds and (x + y +

z)2 ≤ 4(x2 + y2 + z2), the result is a direct application of the previous lemma
and of Cauchy-Schwarz inequality.⊗ We need now to work on |VN (t) − v(t)|2,
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using hypothesis (H1) , with K1 = sup
N

sup
s∈[0,T ]

∣
∣
∣
∣

∂f

∂v
(VN (s), uN (s))

∣
∣
∣
∣
and K2 =

sup
N

sup
s∈[0,T ]

∣
∣
∣
∣

∂f

∂u
(VN (s), uN(s))

∣
∣
∣
∣
.

Between the jumps, we have:

d

dt

(
|VN (t)− v(t)|2

)
= 2 (f(VN (t), uN (t))− f(v(t), u(t))) (VN (t)− v(t))

Thus,

|VN (t)− v(t)|2 = 2

∫ t

0

[f(VN (s), uN (s))− f(v(s), u(s))] (VN (s)− v(s)) ds

+ |VN (0)− v0|2

≤ |VN (0)− v0|2 + 2K1

∫ t

0

|VN (s)− v(s)|2ds

+ 2K2

∫ t

0

|uN (s)− u(s)||VN (s)− v(s)|ds

≤ |VN (0)− v0|2 + 2K1

∫ t

0

|VN (s)− v(s)|2ds

+ K2

∫ t

0

|uN(s)− u(s)|2ds+K2

∫ t

0

|VN (s)− v(s)|2ds

where we used successively Cauchy-Schwartz inequality and ab ≤ 1
2 (a

2 + b2).
Putting together this inequality with the Corollary we obtain:

f(t) ≤ A+B

∫ t

0

f(s)ds

where B = B(T ) = max(2K1(T ) +K2(T ), C2T ) does not depend on N and is
linear w.r.t T if (H2) holds, and

A = |uN (0)− u0|2 + |VN (0)− v0|2 +KA sup
0≤s≤T

M2
s

If we control the initial conditions, then, with the control we have on the mar-
tingale part, A can be chosen arbitrarily small (with high probability) and we
can conclude with Gronwall Lemma.

Exponential convergence speed If the initial conditions are the same for
the stochastic and deterministic model, we actually have a exponentially fast
convergence, thanks to the exponential bound for the martingale part: there
exists a constant Cm > 0 such that:

lim sup
N→∞

1

N
log P

[

sup
0≤t≤T

|VN (t)− v(t)|2 + |uN (t)− u(t)|2 > ∆

]

≤ −∆e−B(T )T

2KACmT
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5 Proof of the central limit theorems

As before, we write the proofs for the case of a single channel type with state
space {0, 1} and transition rates given by the scheme:

5.1 Langevin approximation

In this case, Theorem 2.2 can be written as follows:
Let b(u, v) = (1 − u)α(v) − uβ(v), and (VN , uN) solution of the stochastic

model (SN ). Then, the processRN (t) =
√
N
(

uN(t)− uN (0)−
∫ t

0 b(uN(s), VN (s))ds
)

converges in law, as N → ∞, towards the process R(t) defined as a stochastic
integral:

R(t) =

∫ t

0

√

(1− u(s))α(V (s)) + u(s)β(V (s))dBs

where B is a standard brownian motion and u(t), V (t) is the unique solution of:

V̇ = f(V, u)

u̇ = (1− u)α(V )− uβ(V )

∀N, u(0) = u0 = uN (0)

∀N, V (0) = V0 = VN (0)

This result provides the following degenerate diffusion approximation (ṼN , ũN),
for N sufficiently large:

dṼN (t) = f(ṼN (t), ũN (t))dt

dũN (t) =
[

(1 − ũN(t))α(ṼN (t))− ũN (t)β(ṼN (t))
]

dt+ σN (ũN(t), ṼN (t))dBt

σN (u)2 =
1

N
[(1− u)α(v) + uβ(v)] =

1

N
λ(v, u)

Let g(u, v) = λN (u, v)[ 1
N2µ

+(u, v) + 1
N2µ

−(u, v)] = (1− u)α(v) + uβ(v).
Note that in the multidimensional case, the real valuedfunction g above becomes
a d×d-matrix. Since the different channel types j are supposed to independent,
this matrix would be bloc diagonal, with blocs of size rj , thus assuring the
independence of the q (rj -dimensional Brownian motions) W (j) in Theorem 2.
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The blocs of size rj are given by the matrix G(j) of theorem 2, and arise from
the calculation of the covariances:

G
(j)
i,j (x) = NλN (x)

∫

E

zizjµN (x, z)

Proof of Theorem 2.2 We adapt the proof given by Kurtz [22]: we prove the
convergence of characteristic functions plus tightness. The tightness property
follows from the inequality:

P[sup
s≤T

|RN (s)| > δ] ≤ tN

δ2
||g||∞

Let φN (t, θ) = E[eiθRN (t)] the characteristic function of RN . Let h(MN(t)) =

eiθRN (t),
√
NMN (t) = RN (t), ψ(u) = eiu−1−iu+u2/2

u2 , ξ(u) = eiu − 1 − iu =
u2ψ(u)− u2/2. We then have:

φN (t, θ)− 1 = E[h(MN(t))] − h(0)

=

∫ t

0

E[λN (s)

∫

EN

h(w − uN(s) +MN (s))− h(MN (s))

− (w − uN (s))h′(MN(s))µN (s, dw)]ds

=

∫ t

0

E[eiθRN (s)λN (s)

∫

EN

ξ(θ
√
N(w − uN (s))µN (s, dw)]ds

= −
∫ t

0

E

[
1

2
eiθRN (s)λN (s)

∫

EN

Nθ2(w − uN (s))2µN (s, dw)

]

ds

+

∫ t

0

E[eiθRN (s)λN (s)

∫

EN

Nθ2(w − uN(s))2

× ψ
(√

Nθ(w − uN(s))
)

µN (s, dw)]ds

where λN (s) stands for λN (uN (s), VN (s)) and µN (s, dw) for µN (uN(s), VN (s), dw).
The second term in the last equality, call it KN(θ), converges to 0 as N → ∞ by

dominated convergence, and because ψ
(√

Nθ(w − uN(s))
)

= ψ
(
+
−θ/

√
N
)

→ 0

as lim
u→0

ψ(u) = 0. So we have:

φN (t, θ)− 1 = −
∫ t

0

E

[
1

2
eiθRN (s)θ2g(uN(s), VN (s))

]

ds+KN(θ)

= −1

2

∫ t

0

θ2g(u(s), V (s))φN (s, θ)ds

+
1

2

∫ t

0

θ2E
[

(g(u(s), V (s))− g(uN (s), VN (s)))eiθRN (s)
]

ds

+ KN (θ)

Again, the second term in the last equality, call it JN (θ), converge to 0 as
N → ∞, because of the convergence of uN and VN to u and V .(cf. Theorem
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2.1)
By Gronwall lemma, we conclude that φN (t, θ) → φ(t, θ) with:

φ(t, θ) = exp{−1

2
θ2
∫ t

0

g(u(s), V (s))ds} ⊗

5.2 Functional central limit theorem

Let (VN , uN) be the solution of the simplified stochastic model (SN ) and (V, u)
of the deterministic model (D) introduced in the Example of section 2. Consider
the process:

(
PN

YN

)

=

( √
N (uN − u)√
N (VN − V )

)

If the initial conditions satisfy (PN (0), YN (0)) = (0, 0), the 2-dimensional pro-
cess (PN , YN ) converges in law, as N → ∞, towards the process (P, Y ), with
characteristic function:

E
[

ei(θ1P (t)+θ2Y (t))
]

= eθ
2
1A(t)+θ2

2B(t)+θ1θ2C(t)

The functions A,B and C are solutions of the system:




A′

B′

C′



 =





2b′u 0 b′v
0 2f ′

v f ′
u

2f ′
u 2b′v b′u + f ′

v









A
B
C



+





− 1
2λ(V, u)

0
0



 (M)

with initial conditions (0, 0, 0), and with λ(v, u) =
√

(1 − u)α(v) + uβ(v).

Proof of Theorem 2.3 Just as in the proof of Theorem 2.2, let us define:

φN (t, θ) = E
[

ei(θ1PN (t)+θ2YN (t))
]

Let us also define ZN = (uN − u, VN − V ), XN = (uN , VN ), X = (u, V ), and

h(x, y) = ei
√
N(θ1x+θ2y). Then:

φ(t, θ) − 1 = E [h(ZN (t))− h(ZN (0))]

=

∫ t

0

E[Nλ(XN (s))

∫

EN

{h (w − u(s), VN (s)− V (s))

− h (ZN(s))}µ(XN (s), dw)

− b(X(s))h′x (ZN(s)) + (f (XN (s))− f (X(s)))h′y (ZN (s))]ds

So φN (t, θ) − 1 = GN (θ, t) +HN (θ, t) with

GN (θ, t) =

∫ t

0

E
[

ΩN (s)
{

(eiθ1
√
N/N − 1)µ+ + (e−iθ1

√
N/N − 1)µ−

}]

ds

ΩN (s) = Nλ(XN (s))h(ZN (s)), µ+/− = µ+/−(XN (s))

HN (θ, t) =

∫ t

0

iE
[

−θ1
√
Nb(X(s))h(ZN (s)) + θ2

√
N {f (XN (s))− f (X(s))}

]

ds
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Then in order to use the asymptotic development of ex when x→ 0 we introduce
the function K(u) = eiu − 1− iu+ u2/2. Then, knowing that µ+ + µ− = 1:

GN (θ, t) =

∫ t

0

E

[

ΩN (s)

{

i
θ1√
N

(µ+ − µ−)(XN (s))− θ21
2N

+K(θ1/
√
N)

}]

ds

Since b(x) = λ(x)(µ+(x)− µ−(x)), we have :

GN (θ, t) =

∫ t

0

E
[

iθ1
√
Nb(XN (s))h(ZN (s))

]

ds

+

∫ t

0

E

[

−θ
2
1

2
λ(XN (s))h(ZN (s))

]

ds

+

∫ t

0

E
[

NK(θ1/
√
N)h(ZN (s)

]

ds

Therefore:

φN (t, θ)− 1 =

∫ t

0

E

[

−1

2
θ22λ(XN (s))h(ZN (s))

]

ds (A)

+

∫ t

0

E
[

h(ZN (s))iθ1
√
N {b(XN (s))− b(X(s))}

]

ds (B)

+

∫ t

0

E
[

h(ZN (s))iθ2
√
N {f(XN (s))− f(X(s))}

]

ds (C)

+

∫ t

0

E
[

h(ZN (s))NK(θ1/
√
N)λ(XN (s))

]

ds (D)

Using the derivatives of b and f , and the convergence of XN to X we can make
a development of the sum B + C:

B + C =

∫ t

0

E[h(ZN)i
√
N{(uN − u)(θ1b

′
u + θ2f

′
u)

+ (VN − V )(θ1b
′
v + θ2f

′
v)}]ds}+ ǫN (t, θ)

where we dropped the s and where b′u, b
′
v, f

′
u, f

′
v are taken at XN (s).

Noting that h(ZN )i
√
N(uN −u) = h′x(ZN) and h(ZN)i

√
N(VN −V ) = h′y(ZN ),

we have:

B + C =

∫ t

0

E
[
h′x(ZN )(θ1b

′
u + θ2f

′
u) + h′y(ZN )(θ1b

′
v + θ2f

′
v)
]

And the term D converges to zero as N → ∞ by dominated convergence since
K(u)/u2 is bounded and converges to 0.
As we have the convergence in Theorem 2.1 of XN to X ,we get the convergence
of φN (t, θ) to Ψ(t, θ), satisfying:

∂Ψ

∂t
(t, θ) = −1

2
θ21λ(X(t))Ψ(t, θ) + (θ1b

′
u(X(t)) + θ2f

′
u(X(t)))

∂Ψ

∂θ1

+ (θ1b
′
v(X(t)) + θ2f

′
v(X(t)))

∂Ψ

∂θ2
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Tightness stems from the Markov property and the following estimate ob-
tained in the proof Theorem 2.1:

P



 sup
0≤t≤T

||
√
N [VN (t)− v(t)] ||2 +

q
∑

j=1

||
√
N
[

e
(j)
N (t)− g(j)(t)

]

||2 > ∆





≤ exp

{

− (∆/N)Ne−B(T )T

CT

}

The announced convergence in law follows.
To solve the PDE, we set Ψ(t, θ) = eθ

2
1A(t)+θ1θ2C(t)+θ2

2B(t). Then, substitut-
ing in the initial equation, and identifying the coefficients, we get the system
(M). ⊗

Proof of Theorem 2.4 We want to prove that the process Z has the same
law as the limit as N → ∞ of the difference between the Langevin approxima-
tion linearized around the deterministic solutions and the deterministic solution
itself, scaled by

√
N . We write it in the general case, not only in dimension two

as above. First we identify the equations satisfy by the moments of Z starting
from the equation satisfied by the characteristic function. We make the ersatz:

ψ(t, θ) = e−
1
2 θΓ(t)θ

T

The matrix Γt corresponds to the variance/covariance matrix. We plug this
expression into the equation satisfied by ψ as given in theorem 2.3:

∂Ψ

∂t
=

q
∑

j=1







∑

l∈L

rj∑

k=1

θ
(j)
k

∂bj,k
∂xl

∂Ψ

∂θl
− 1

2

rj∑

k,l=1

θ
(j)
k θ

(j)
l G

(j)
k,lΨ







+

p
∑

m=1

∑

l∈L

θm
∂fm

∂xl

∂Ψ

∂θl

The ensemble of indices L can be writen L = Lv ∪Lu where Lv = {1 ≤ m ≤ p}
and Lu = {(j, k), 1 ≤ j ≤ q, 1 ≤ k ≤ rj}. To identify the equations satisfied
by Γab we distinguish the following cases:

• a ∈ Lv and b ∈ Lv:
1
2Γ

′
ab =

∑

l∈L

[
∂fa

∂xl
Γbl +

∂f b

∂xl
Γal

]

• a ∈ Lv and b ∈ Lu, b = (j, k): 1
2Γ

′
ab =

∑

l∈L

[
∂bj,k
∂xl

Γal +
∂fa

∂xl
Γbl

]

• a ∈ Lu, a = (j, k) and b ∈ Lv:
1
2Γ

′
ab =

∑

l∈L

[
∂bj,k
∂xl

Γbl +
∂f b

∂xl
Γal

]
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• a ∈ Lu, a = (j, k) and b ∈ Lv, b = (j′, k′):

1

2
Γ′
ab =

∑

l∈L

[
∂bj,k
∂xl

Γbl +
∂bj′,k′

∂xl
Γal

]

+
1

2
G

(j)
k,k′1j=j′

We then write the equations satisfied by K(N)(t) =
√
N(X̃N (t) − X(t)) =

(Y m
N , P j,k

N ), where X̃N is the Langevin approximation defined in section 2.4,
and where X is the deterministic limit:

dY m
N =

√
N(fm(X̃N )− fm(X))dt

dP j,k
N =

√
N(bj,k(X̃N )− bj,k(X))dt+ σ(j)(X̃N )dW j

t

When we linearize around the deterministic solution, we obtain the following
equations:

dỸ m
N =

∑

l∈L

∂fm

∂xl
K

(N)
l dt

dP̃ j,k
N =

∑

l∈L

∂bj,k
∂xl

K
(N)
l dt+

( rj∑

k′=1

σ
(j)
k,k′ (X) +

1√
N

Ω
(j)
k,k′

)

dW j,k′

t

where the terms 1√
N
Ω

(j)
k,k′ comes from the linearization of σ

(j)
k,k′ (X̃N ), we do

not need to specify them here because they go to zero as N → ∞.
It is now clear that the moments equations for this linear diffusion system

tends the system satisfied by Γab as N → ∞.

Proof of Theorem 2.5 The convergence of XN to X a.s. uniformly on finite
time intervals, obtained in Theorem 2.1, implies that τN → τ a.s. In order apply
Theorem 2.3, let us introduce ZN through the following decomposition:

√
N(φ(X(τ)) − φ(X(τN ))) =

√
N

[

φ

(

X(τN ) +
1√
N
ZN(τN )

)

− φ (X(τN ))

]

−
√
Nφ(XN (τN ))

AsN → ∞, we claim that the right hand side converges in law to∇φ(X(τ)).Z(τ)
since

√
Nφ(XN (τN )) converges in law to zero. Indeed, as φ(XN (τN )) ≤ 0 and

φ(XN (τ−N )) ≥ 0,

|
√
Nφ(XN (τN ))| ≤ |

√
N(φ(XN (τN ))− φ(XN (τ−N ))|

There exists θN on the line between XN (τN ) and XN (τ−N ) such that

|
√
N(φ(XN (τN ))− φ(XN (τ−N ))| = |∇φ(θN ).(ZN (τN )− ZN (τ−N ))|

which converges in law to zero since ZN → Z and Z is continuous. The claim
follows. By continuity, φ(X(τ)) = 0, so that

√
N(φ(X(τ)) − φ(X(τN ))) is

asymptotic to
−∇φ(X(τ)).F (X(τ))

√
N(τN − τ)
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Thus
√
N(τN − τ) converges in law to π(τ). To finish the proof we remark that√

N(XN (τN )−X(τ)) = ZN(τN ) +
√
N(X(τN )−X(τ)) which converges in law

to Z(τ) + π(τ)F (X(τ)).

A Comparison between two deterministic limits

of different stochastic Hodgkin-Huxley mod-

els

We want to compare the two following systems deterministic (A.1) and (A.2),
with f, α, β continuously differentiable functions, α and β non-negative, k an
integer ≥ 1:

{
dV
dt = f(V, uk)
du
dt = (1 − u)α(V )− uβ(V )

(12)







dV̂
dt = f(V̂ , xk)
dxj

dt = (k − j + 1)xj−1α(V̂ ) + (j + 1)xj+1β(V̂ )

−xj
(

jβ(V̂ ) + (k − j)α(V̂ )
)

∀0 ≤ j ≤ k

(13)

System (A.1) corresponds to the classical “Hodgkin-Huxley” model, with
only two variables for simplicity, and the system (A.2) is a (k + 2)-dimensional
system, where xj , 0 ≤ j ≤ k is the proportion of channels in the state j, and
j = k is the open state.

Proposition Let V0 ∈ R and u0 ∈ [0, 1]. If the following conditions on the
initial values are satisfied:
V (0) = V̂ (0) = V0 and ∀0 ≤ j ≤ k, Cj

ku(0)
k−j(1 − u(0))j = xk−j(0) =

Cj
ku

k−j
0 (1 − u0)

j Then, for all t ≥ 0, V (t) = V̂ (t) (same potential) and u(t)k =
xk(t) (the proportion of open channels is u(t)k).
Moreover, for all 1 ≤ j ≤ k, for all t ≥ 0, xk−j(t) = Cj

ku(t)
k−j(1− u(t))j

Proof Consider (V, u) the unique solution of (1) for V (0) = V0 and u(0) = u0.
Let yj(t) = Cj

ku(t)
k−j(1 − u(t))j , 0 ≤ j ≤ k. Then (V, yk, ...y0) is a solution of

(2) (just need to compute y′j and write it in function of yj−1 and yj+1). As the

initial values are equal (by hypothesis) : xk−j(0) = Cj
ku

k−j
0 (1− u0)

j = yk−j(0),

by uniqueness (V, yk, ..., y0) = (V̂ , xk, ...x0) for all t ≥ 0.

Remark The result is essentially the same for more complicated Markov
schemes, as the sodium multistate Markov model.
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B Moments equations for linearized Langevin

approximation

From Theorem 2.2, one can build a diffusion approximation (ṼN , ẽN ) of the
stochastic hybrid process (VN , eN) given in the Example of section 2.1:







dṼN (t) = f(ṼN (t), ẽN (t))dt

dẽN (t) = b(ẽN(t), ṼN (t))dt+

√
λ(ẽN (t),ṼN (t))

N dBt

b(v, e) = [(1− e)α(v) − eβ(v)]
λ(v, e) = [(1− e)α(v) + eβ(v)]

We want to write the moments equations for the linearized version of

(
P̃N

ỸN

)

=

( √
N (ẽN − e)√
N
(

ṼN − V
)

)

with (V, e) the deterministic solution. The linearized equations are given by:

{
dY L

N = (f ′
V Y

L
N + f ′

eP
L
N )dt

dPL
N = (b′V Y

L
N + b′eP

L
N )dt+

[√
λt +

1
2
√
Nλt

(λ′V Y
L
N + λ′eP

L
N )
]

dBt

with λt = λ(V (t), e(t)). We define mN
1 = E[Y L

N ], mN
2 = E[PL

N ], SN
1 = E[(Y L

N −
m1)

2], SN
2 = E[(PL

N −m2)
2] and CN

12 = E[(Y L
N −m1)(P

L
N −m2)]. Then we have

the following system of 5 equations:

{
dmN

1

dt = f ′
Vm1 + f ′

em2
dmN

2

dt = b′Vm1 + b′em2

{

dSN
1

dt = 2f ′
V S1 + 2f ′

eC12

dSN
2

dt = 2b′eS2 + 2b′VC12 +
[√
λt +

1

2
√
Nλ

(λ′Nm1 + λ′em2)
]2

+
(

λ′

V

2
√
Nλt

)2

S1 +
(

λ′

e

2
√
Nλt

)2

S2 + 2
λ′

V λ′

e

4Nλt
C12

dCN
12

dt = b′V S1 + f ′
eS2 + (f ′

V + b′e)C12

At the limit N → ∞ and with A = −2S2, B = −2S1 and C = −C12 this system
is the same as the one found in application of Theorem 2.3 in section 3.
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C Moments equations for the Morris-Lecar sys-

tem

The moments equations used in section 3.5.1 and 3.5.2 are the following linear
non-homogeneous system of differential equations:











Sm

Sn

Sv

Cmv

Cnv

Cmn











=M(t)











Sm

Sn

Sn

Cmv

Cnv

Cmn











+











B1

B2

0
0
0
0











with

M(t) =











2∂Fm

∂m 0 0 2∂Fm

∂V 0 0

0 2∂Fn

∂n 0 0 2∂Fn

∂V 0

0 0 2∂Fv

∂V 2∂Fv

∂m 02∂Fv

∂n 0
∂Fv

∂m 0 ∂Fm

∂V
∂Fv

∂V + ∂Fm

∂m 0 ∂Fv

∂n

0 ∂Fv

∂n
∂Fn

∂V 0 ∂Fv

∂V + ∂Fn

∂n
∂Fv

∂m

0 0 0 ∂Fn

∂V
∂Fm

∂V
∂Fm

∂m + ∂Fn

∂n











all the functions being evaluated at X(t) = (V (t),m(t), n(t)) solution of (3.5-
3.7) and with B1(t) = (1 − m(t))αm(V (t)) + m(t)βm(V (t)), B2(t) = (1 −
n(t))αn(V (t)) + n(t)βn(V (t)).
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