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Abstract

Epileptic seizures represent a sudden and transient change in the synchronised firing of neuronal brain ensembles. While
the transition of the collective neuronal activity towards the ictal event is not well understood, some progress has been made
using nonlinear time series analysis methods. We present here an analysis of the dynamical regimes of the epileptic activity
in three patients suffering from intractable (drug-resistant) seizures, and compare these with the dynamics in rodent epilepsy
models. We used the time interval between spikes found in the electroencephalographic recordings as our variable to construct
interpeak interval (IPI) time delay plots to study the neuronal interictal (activity between seizures), preictal, and seizure activity.
A one-dimensional mapping function was obtained by approximation of the IPI plots with a polynomial. Two main dynamical
regimes are obtained from the analysis of the mapping function, derived from the subharmonic bifurcation present in the
map: period doubling and intermittency, both of which are observed in human and rat seizures. Hence, our simple model
obtained from experimental data captures essential phenomena for the collective dynamics of brain networks, that are found
in recordings from human and animal epilepsies. The description of the neuronal dynamics based on one-dimensional maps,
widely used in other systems, may prove useful for the understanding of the collective population dynamics of brain activity.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Brain function results from the integration, at mul-
tiple levels, of the spatio-temporal patterns of cellular
activity [15,16]. The mechanisms of generation and
maintenance of the several brain rhythms, normal or
pathological, can be investigated at different levels of
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description, from the molecular to the network level.
Mathematical analysis of neuronal activity is reveal-
ing that the behaviour of the brain networks cannot be
fully described using linear methods, and is providing
powerful insights into the collective synchronisation
dynamics of the neuronal ensembles. The develop-
ment of nonlinear time series analysis, based on
concepts from nonlinear dynamical systems theory,
has fostered the application of these methods for the
understanding of the underlying dynamics of com-
plex biological systems[12,59,61]. The framework
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of deterministic chaos constitutes a novel approach
to the analysis of irregular-looking time series, such
as voltage recordings from human brains, and offers
new avenues to address the question of the global,
macroscopic dynamical regimes governing the ac-
tivity of brain circuits. In general, the framework of
nonlinear dynamical systems provides a language ad-
equate to shift between different levels of description
and to determine the global collective dynamics of
ensembles of connected elements.

Epilepsy is a condition characterised by recurrent
periods of variable duration of abnormal synchrony
of neuronal firing, termed seizures or ictal events.
Between seizures, aberrant behaviour of neuronal net-
works is manifested in the interictal activity. The inter-
ictal spike represents the paroxysmal activation of an
“epileptic” neuronal ensemble. Theoretical studies of
epilepsy have indicated that there may be a distinctive
dynamical regime determining the transition from in-
terictal to ictal events[3,13,24]. Specifically, changes
in the state of neuronal firing synchrony (as occurs
during transitions between normal brain rhythms or
the pathological synchronisation during seizures) can
be associated with bifurcations in the system’s dynam-
ics [35]. Bifurcation theory is being used to determine
fundamental properties of neuronal activity[25].

Our aim is not so much to provide an accurate the-
oretical model of neuronal synchrony during seizures,
as to elucidate some notable dynamical regimes that
take place during the epileptic neuronal activity. We
sought to gain insight into the dynamics of epilepti-
form activity using a geometric approach similar to
that used to describe the activity of complex chemical
[50], biochemical[10], physical[4] or physiological
[7] systems. The knowledge of the specific dynamics,
while interesting per se, may also be used for the
control of the system’s activity[55,57]. We seek a
macroscopic approach that can provide insight into
the global dynamical properties of the brain activity
leading to the seizure and of the seizure event, by
the characterisation of features that are essentially
universal. As done in other physical systems[50],
we propose a global description of the dynamics of
epileptiform activity based on one-dimensional maps.
For this purpose, we use the time intervals between

spikes found in the EEG recordings during epileptic
activity as our variable to construct interpeak interval
(IPI) first-return one-dimensional maps. The analysis
of the mapping function reveals that a flip, or subhar-
monic, bifurcation may occur during the transition to
seizure. This type of bifurcation leads to two types of
dynamical regimes, type III intermittency or period
doubling, that are in fact observed during the recorded
epileptiform activity in patients and rodents. While
our simple one-dimensional map cannot account for
the rich variety of brain dynamics, at least it cap-
tures essential phenomena seen during experimental
recordings. The results of this study, showing the
presence of bifurcation points and metastable states
that stabilise transiently, complement current concepts
about the spontaneous formation of spatio-temporal
patterns of brain activity within the framework of
metastability and transient phenomena[15,16,29,30].

2. Methods

2.1. Human electroencephalographic recordings
and clinical data

Intracranial EEG recordings were performed in
three patients with drug-resistant temporal or parietal
lobe epilepsy (the brain area where the epileptic dis-
charges originate), as part of their clinical investiga-
tion prior to surgery. Seizure onsets were localised to
the hippocampus in two patients with temporal lobe
epilepsy, and to the postcentral gyrus in a patient with
parietal lobe seizures. The recordings analysed were
taken from within the epileptogenic focus. The EEG
signals were digitised at 200 Hz (Stellate Systems,
Montreal, Canada, and XLTEK, Oakville, Canada).

2.2. Rat intracortical recordings

2.2.1. Electrode implantation and induction
of status epilepticus

Chronic bipolar electrodes (Plastics One, Roanoke,
VA) were implanted into specific brain areas of male
Wistar rats (35–40 days old) using a stereotaxic ap-
paratus. A bipolar stimulating electrode was placed
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in the fimbria, stereotaxic coordinates−1.3 mm from
Bregma, ML 1.2 mm, DV 4.1 mm, and a recording
electrode in the hippocampal CA3 area,−3.8 mm
from Bregma, ML 3.3 and DV 4. After a recovery pe-
riod of 5–7 days, animals are placed in an electrically
screened Plexyglas chamber. The stimulating elec-
trode is connected to a Grass square pulse stimulator
S88K (Grass Instruments, Astro-Med Inc., West War-
wick, USA), while the recording electrodes are con-
nected to an AI 402× 50 ultra-low noise differential
amplifier (Axon Instruments, Union City, CA), a Cy-
berAmp 380 signal conditioner (Axon Instruments),
and an analogue–digital converter MP100 (Biopac,
Santa Barbara, CA). To produce status epilepticus
(continuos presence of seizures), the protocol of
Vicedomini and Nadler[60] was used.

2.2.2. Induction of atypical absence seizures
After birth, Long–Evans rat pups were treated

with the cholesterol synthesis inhibitor AY9944
(7.5 mg/kg), as described in detail previously[9].
This treatment promotes absence seizures that mimic
the human atypical absence epileptic syndrome. In-
tracortical EEG recordings, starting at P45, are made
as detailed above[9]. Electrode placement is con-
firmed histologically at the end of the experiments by
standard histological procedures. All animal manip-
ulations were performed according to the protocols
approved by the Hospital for Sick Children Animal
Care Committee.

2.3. Analysis methods

Peaks are detected in the EEG traces using a
peak-detection algorithm, a graphical-based software
written in Visual Basic (Microsoft Corp.) which se-
lects peaks based on amplitude and width criteria
(criteria that depend on and are optimised for each
data set, Khosravani, Carlen and Perez Velazquez, un-
published observations). Our peak detection inspects
for a change in sign between the slopes of successive
data points, since normally the spikes in EEG record-
ings have a sharp rising phase followed by a decay
to baseline. Thus, only positive-to-negative are con-
sidered as peaks, if the search is implemented “above

baseline”. As many events in these recordings are “be-
low baseline”, we can also search for these and then
negative-to-positive slopes are considered as peaks.

First, baseline drift (dc shift) was subtracted using a
windowed moving-average filter. After this operation,
and given a Gaussian distribution of amplitudes in the
signal, the software calculates the mean absolute de-
viation for the whole trace to be analysed, which is
used as the base unit of variation. A multiple of this
mean deviation value is then used to select the am-
plitude threshold for detection. The optimal threshold
was estimated visually as well as automatically, per-
forming peak-detection runs with increasing threshold
values and construction of a plot of threshold versus
number of peaks, from which the optimal value is cal-
culated. Visual inspection of the detected peaks was
always performed in several random segments of each
trace to ascertain that the estimated threshold revealed
the events of interest. The width criteria refers to the
time interval between successive peaks, if it is less
than a specified value (expressed as frequency) then
two peaks are averaged into one, so that false-positive
peaks are avoided. Normally, we use a width criteria of
20 Hz, but again that depends on the specific signal and
analysis to be performed. For example, if the investi-
gator is interested in selecting bursts of spikes, then a
width of 2 Hz, for example, may be desirable, so that
the spikes riding on a burst are “fused” into one event.

The software thus calculates the interpeak intervals
that are then used to construct a time series of IPIs.
First-return scatter plots of the IPI values (measured
in seconds) were constructed by plotting one IPI ver-
sus the next. A first-return one-dimensional mapping
function was obtained by approximating the scatter
plot to a nonlinear equation[43]. For curve fitting we
use the standard nonlinear least-squares routine, the
Levenberg–Marquardt method[47], that minimises
a least-squares type of function through iterations.
Specifically, the value of the merit functionχ2, which
represents the sum of the squares of the deviations
of the theoretical curve from the experimental data
points, is minimised. The approximating iterations
stop when theχ2 value reaches a minimum and does
not change in successive iterations. The scatter IPI
plots were then approximated using this method by
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the best fit to an algebraic equation (which we call
one-dimensional map). Once obtained, the analysis of
the mapping function was performed according to the
classical methods in nonlinear dynamics[4,21,23].
The software package INSITE[40] was used to con-
struct the bifurcation diagrams. Maple V software
(Waterloo Maple Inc., Waterloo, Canada) was used
to solve algebraic and differential equations. Data
conversion and specific analysis was performed with
the Origin (MICROCAL Software Inc., Northampton,
MA) and Acknowledge software package (Biopac,
Santa Barbara, CA).

3. Results

3.1. Rationale for using patient and animal data:
clinical considerations

We chose three patients suffering from intractable
temporal and parietal lobe epilepsy that had interictal
spike activity in their intracranial EEG recordings.
This is important for us because we use the intervals
between peaks (interpeak intervals, IPIs) as the vari-
able that may aid in determining specific dynamical
regimes during interictal and ictal (seizure) activity.
As mentioned in the introduction, interictal EEG ac-
tivity represents an abnormal brief synchronisation of
the epileptic network, and is present in all epileptic
patients to some degree. Our three patients showed
abundant interictal activity that allowed us to con-
struct IPI recurrent plots at very different time points
during the progression to seizures. In addition, these
three patients all presented prominent preictal spike
activity, this is the interictal activity preceding the
seizure. Preictal activity can be defined as the activ-
ity immediately before seizure onset, on the order
of seconds or minutes at most, which is not visu-
ally identifiable on the EEG as heralding a seizure.
In other words, it is not possible for an electroen-
cephalographer to predict an impending seizure by
visual on-line analysis of this interictal–preictal EEG
(however, nonlinear time series analysis has provided
some insight into the usefulness of the preictal period
in seizure prediction, see Refs.[13,32,38]). This is

a retrospective labelling of the preictal period, obvi-
ously, but definitely a true one, as we know for sure
that the ictus occurred. Thus, since our patients had
enough preictal EEG spike activity, we were able
to assess the differences between the IPI first-return
plots during interictal, preictal, and ictal events.

The rat animal model we use in this study is char-
acterised by presenting seizures that mimic human
limbic (seizures that spread mostly through hip-
pocampal and cortical brain areas) epilepsy[20,60],
and therefore represents an in vivo model suitable for
experimental manipulations that may shed light on
the human condition. The second rat epilepsy model
we chose to study mimics atypical absence seizures
[9]. While this epileptiform activity is very different
from limbic epilepsy (involving the thalamo-cortical
circuitry), we sought to explore the possibility that the
dynamics of this absence epileptiform activity may
be similar, to some extent, to the limbic epilepsies, as
suggested in previous studies[54].

3.2. One-dimensional first-return maps of preictal
activity: possible route to the seizure

We focused on the recordings obtained from three
patients with temporal/parietal lobe epilepsy as well
as on recordings from a rat model of temporal lobe
seizures as described above. While the neuronal ac-
tivity could be described by a system of differential
equations, a common practice in the study of complex
systems is to reduce the multidimensional continuous
system to a Poincaré map[4,55]. Following the clas-
sical embedding theorems[58,62], Ruelle [51] and
Packard et al.[39] proposed that time-delayed phase
portraits constructed from a time series of a single vari-
able (voltage for example) have similar properties to
the original phase portrait constructed from several in-
dependent variables. However, because it is difficult to
analyse multidimensional phase portraits, a common
practice is to obtain Poincaré sections and, from these,
one-dimensional maps[4,50,56]. Specifically, low em-
bedding dimensions have been shown to be able to
capture some features of the epileptic EEG data[33],
and provided insights into the underlying dynamics of
the neuronal activity in other preparations[5].
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We used the time interval between peaks in the EEG
recordings as the variable to construct an interpeak in-
terval time series, as it was shown that there is no loss
of information if amplitude time series data are con-
verted to interval time series, specifically interspike
intervals[52,53]. Since we use a peak-detection algo-
rithm that recognises peaks based on amplitudes, this
corresponds to a threshold-crossing detector, and the
time-delay IPI plot can be considered as a Poincaré
section of the original dynamical system[33,52,53].
This geometric approach has been used to study the
dynamics of the cardiac system[7,17].

Fig. 1 shows representative intracranial EEG
recordings from two patients and the first-return IPI
plots obtained during 20–30 s of preictal activity,
immediately before the seizure. Notice that, while
the IPI first-return plots corresponding to interic-
tal activity long before the seizures did not present
any structure regardless of the time window used
in their construction (Fig. 6B and C), it is apparent
that, during preictal activity just before seizure on-
set, the points are distributed along an underlying
curve. The magnification of two preictal events in
Fig. 1A (see alsoFig. 6A) reveals the presence of
two to three peaks in each burst, hence the short-long
IPI sequences that originate the L-shaped plot. This
sort of continuous curve produces a one-dimensional
map, obtained by a Levenberg–Marquardt fitting of
the plot (seeSection 2) with an inverted polynomial
of the form IPIn+1 = [a + bIPIn + cIPI2n]−1. This
equation provided the best fit to the plots and de-
fines the one-dimensional mapping function, relating
successive IPIs[43]. Criteria for assessing the statis-
tical significance of the fit was done as described in
Section 2. As observed for other systems, the struc-
ture of the preictal first-return plots indicates that it
could be governed by a family of underlying deter-
ministic maps. These simple one-dimensional maps
may therefore characterise the state of the system by
capturing essential phenomena (for example, Kaplan
et al. [28] provide another interesting application of
these maps to the study of axonal firing dynamics).
Interestingly, the IPI plots taken at very short intervals
during the ictal events showed concentration of points
along the skeleton of the preictal plot (Fig. 6). Thus,

Fig. 1. One-dimensional first-return mapping function for the
IPI recursive plot during preictal activity. (A) The scatter IPI
first-return plot corresponds to 20 s of preictal activity in a patient
with parietal lobe epilepsy, just before the start of the seizure, a
segment is shown in the EEG trace on the right (preictal). The
“ictal” EEG recording represents the initial∼3 s of the seizure. (B)
Another graph obtained from the preictal EEG recording (∼30 s)
in a patient with left temporal lobe epilepsy. The parameter val-
ues in this approximation are shown in the inset. The beginning
of the seizure (marked by arrow) is shown in the trace.

apparently, the map is implicitly present in the seizure
IPI plots, which will be discussed in detail below in
the last section. Now, we would like to concentrate on
the mapping function that approximates the preictal
scatter plot, and the information we gather from it, as
we consider that this is significant to determine the
transition to the seizure.

The graph is then approximated by the inverted
polynomial with the parameter values shown in the
inset inFig. 1. The inspection of the map reveals the
presence of a steady state, the crossing of the map with
the diagonal where IPIn+1 = IPIn. Steady states here



210 J.L. Perez Velazquez et al. / Physica D 186 (2003) 205–220

denote phases of periodic frequencies. The analysis of
the specific mapping function mentioned above, with
parameter values shown inFig. 1A, indicates that there
is an steady state (solving for IPIn+1 = IPIn) at 0.14 s
(7.1 Hz) whose slope (dF/dX, with X = IPIn and F
is the mapping function described above) is−1.7. We
are interested in the geometrical characteristics of the
fixed points as it has been postulated that this geome-
try holds the key to understanding the self-organisation
of brain dynamics[29,30]. In particular, the slope de-
termines the stability of the equilibrium point, as de-
scribed in the Hartman–Grobman theorem for maps
[22], which states that the stability of the fixed point is
determined by the linearisation (dF/dX) of the map at
that point. However, when the linearisation, or slope
in this case, results in a value of 1 (or−1), the fixed
point is termed non-hyperbolic, and, specifically for
slopes of−1, the fixed point is metastable and the map
is near a flip (subharmonic) bifurcation[23].

The slope value of−1.7 we obtained, larger than
1 in absolute value, indicates that the fixed point is
unstable in this case. The seizure starts (initial 8 s)
with a regular activity at 14 Hz, as shown in the ic-
tal EEG recording ofFig. 1A. While the general form
of the map function will approximate the preictal ac-
tivity for the three patients chosen in our study, the
specific parameter valuesa, b andc can change. An
exploration of the different steady states for a contin-
uous change in the parameter values is shown in the
bifurcation diagram ofFig. 2 and will be detailed in
the next section. As another example,Fig. 1B depicts
the preictal plot (∼30 s) leading to a seizure in a sec-
ond patient with left temporal lobe epilepsy. Two fits
are shown, to illustrate the point that several param-
eter values will yield different approximations to the
experimental points. The dotted-line fit is, in this case,
a better approximation based on the merit function
mentioned inSection 2. The steady state in this case
is obtained, as before, by solving for IPIn+1 = IPIn
and it results in IPI= 0.55 s (1.8 Hz). It is unstable
as the slope is−1.2, close to the metastable value of
−1. The seizure, in this case, starts with a bursting
frequency of∼1.9 Hz during the initial 7 s after the
first burst that was taken as the start of the ictus (EEG
trace in Fig. 1B), value close to the frequency ob-

Fig. 2. Bifurcation diagrams for the mapping function. The bifur-
cation parameter chosen isb (with a = 4.47, c = 2930, and initial
condition IPI0 = 0.05). The IPI values that correspond to equilib-
rium points are plotted vs. the bifurcation parameter, as explained
in the text. To illustrate the points of period doubling (insets), the
first four points are labelled with correspondingb values (from
right to left) of 468 (1),−280 (2),−410 (3) and−438 (4). Further
bifurcation values are not distinguishable. The estimation of the
δ value [14], using the third and fourth bifurcation points, yields
4.643, already close to the limiting value of 4.6692. . .

tained from the map at 1.8 Hz, which could represent
the transient stabilisation of the unstable steady state,
that marks the beginning of the seizure. Visual exam-
ination of the general shape of the map (Fig. 1) indi-
cates that there could be a steady state with slope of
−1. Indeed, this will occur for some parameter values.
Equilibrium points with slopes of−1 are metastable
states, and are termed flip, or subharmonic, bifurcation
points as mentioned above[21,23]. Bifurcation points
represent a change in the system’s dynamics. The de-
termination of possible bifurcations are of great inter-
est as they provide information of specific dynamical
regimes that arise from those bifurcation points, and
can determine what some investigators have termed
phase transitions in brain activity[15,29]. Flip bifurca-
tions give rise to two dynamical regimes, period dou-
bling and type III intermittency[4], depending upon
the flip being supercritical or subcritical, respectively
(see Ref.[23, pp. 61–63], for a formal mathematical
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account). This, in turn, depends on the parameter val-
ues. Thus, we should expect that, in some cases, the
bifurcation will lead to an intermittent regime with
the special characteristics of type III intermittency[4].
In other cases, period doubling (also termed subhar-
monic cascade) may be found. We show in the next
two sections that period doubling arises in our map,
and that these two dynamical regimes are found in
EEG epileptic recordings.

Thus, the mapping function described above may
capture some fundamental collective phenomena
present during epileptiform activity. We do not claim
that our mapping function is an accurate model of
epileptic activity and obviously cannot reveal the rich
variety of brain dynamics. However, to further verify
that the map provides a relatively good approxima-
tion to the dynamics observed, we follow Kantz and
Schreiber[27], in that the most severe test to verify the
model equation is to iterate and embed the iterates as
the original data set. The simulated data should present
an “attractor” that resembles the skeleton of the main
body obtained from the original data set. Choosing
an arbitrary initial condition, and iterating the map-
ping function, we find that the iterated IPI first-return
plots present the shape of those from the experimen-
tal EEG recordings, and, depending upon the starting
point for the iterations, we can approximate all of the
experimental plots (data not shown). Thus, at some
level, our first-return map approximates the activity
seen in the recordings. We can then use this sim-
ple map to provide an interpretation of epileptiform
activity based on its geometrical characteristics that
determine the transient stabilisation of steady states.

3.3. Bifurcation diagrams of the one-dimensional
map

To explore the behaviour of the mapping function
for distinct parameter values, we constructed bifurca-
tion diagrams. These graphs indicate the steady state
behaviour of a system over a range of parameter val-
ues. For these studies, the IPIs are found by successive
iterations of the one-dimensional mapping function
presented above. Only the IPI values that correspond
to equilibrium points are plotted versus the bifurca-

tion parameter value.Fig. 2 shows the bifurcation
diagram corresponding to parameterb. A qualita-
tively similar diagram was obtained for parameters
a and c. The important characteristic to note is the
period doubling cascade that is evident in the graph:
the period doubles at certain parameter values. This
diagram has the typical universal scaling property of
one-dimensional maps (with an extremum, to be for-
mally precise), in that theδ value[14] approaches the
limiting value of 4.6692. . . These diagrams also re-
veal the presence of regions where the dynamics could
be chaotic, as well as the typical windows of period-
icity within that complex region. Regions of periods
2 and 4 are distinguished and labelled in the figure
asb1 andb2, respectively, whileb3 is in the complex
region.

Thus, the analysis of our simple map uncovers that
two specific dynamical regimes may occur during
epileptiform activity, period doubling and type III
intermittency, arising from a flip, or subharmonic,
bifurcation. We will show next that we indeed ob-
serve dynamical signatures corresponding to these
two regimes in patient and animal EEG recordings
during seizures.

3.4. Period doubling and intermittency in EEG
recordings during epileptiform activity

Intermittency is probably the clearest dynamical
regime seen in all the recordings we obtained.Fig. 3
depicts a few examples in human and animal record-
ings. Visual inspection already shows the typical signs
of the intermittent regime: periods of “laminar”, or
almost regular phases[46] interrupted by turbulent
(possibly chaotic[4]) periods. Note the similar burst-
ing characteristics between the seizure recording in
a patient with right temporal lobe epilepsy (Fig. 3A)
and the rat recordings during temporal lobe seizures
(Fig. 3B). Shown inFig. 3C is a recording of a rat
during atypical absence seizure activity (described
in Section 2 [9]). While being a different type of
epileptic syndrome that involves a distinct neuronal
circuitry, the periodic bursting activity appearing at
irregular intervals is also apparent and common to the
previously mentioned limbic seizures.
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There are quantitative consequences for the statis-
tics of the laminar phases during intermittency, that
differentiates type III versus the other two types. A
signature of type III intermittency is revealed by the
distribution of the length of the laminar, almost regu-
lar, phases[4] as shown inFig. 3 for all the cases: the
concentration of short duration regular periods with a
−3/2 power-law scaling as seen in the log–log plots
(insets inFig. 3A and B). The regular phases are con-
sidered here either the bursts (rhythmic generation of
spikes), that have a specific intraburst high-frequency
spike activity, or other intervals when the frequency
is relatively constant, for example the “ictal” inset in
Fig. 1A (also Fig. 3C). Hence, the distribution of the
duration of the laminar phases with the concentration
at small lengths, as well as the power-law scaling
(−1.55 and−1.63) suggest that this intermittency
regime is present during seizures in rats and humans.
However, while the histogram of the duration of the
regular phases is similar in the case of the atypical
absence seizures, the power law scaling is differ-
ent (−2.69, Fig. 3C). Note that rat atypical absence
seizures are distinct from the limbic seizures shown
above, and are characterised by the recurrent appear-
ance of 6–7 Hz spike-and-wave activity[9], two of
these bursts are shown in the depth thalamic recording
in the figure. We would like to note here, however,
something that is infrequently mentioned in these kind
of studies, regarding the power law distribution of the
duration of the laminar phases during intermittency.
The typical−1.5 power-law distribution for type III
intermittency, in the asymptotic limit, is valid for
values of the duration of the regular phases that are
neither too short (compared with the fundamental fre-

�
Fig. 3. Signatures of type III intermittency in human and rodent recordings during seizures. (A) EEG recording during the middle of a
seizure in a patient with right temporal lobe epilepsy. Notice the transient recurrent appearance of “laminar” phases (bursts) with a very
regular, periodic activity. The right-hand side histogram depicts the distribution of the duration of the regular phases and the characteristic
power-law distribution seen in the log–log plot in the inset (r = −0.97), with a scaling of−1.55. The graph below is the next-amplitude
(or first-return) plot, taken from the measured amplitudes of the EEG peaks during a rhythmic, “laminar” phase in the middle of a seizure
in the same patient, shown in the right-hand side recording. See text for details. (B) Seizures in rats with status epilepticus also display
characteristics of intermittency. Shown are two depth hippocampal recordings in two different rats. The left recording shows the whole
seizure, and the right-hand side trace depicts the activity towards the end of another seizure in another rat. The log–log plot (r = −0.92)
determines the scaling of the distribution of the duration of the regular phases. (C) Thalamic recordings showing atypical absence seizures
in a rat treated with AY-9944, as described inSection 2. The histogram of the distribution of the duration of these “almost regular” bursts
shows the concentration in the short duration and the scaling of−2.69 (r = −0.97).

quency) nor too long. To accurately determine these
limits, knowledge of specific control parameters is
needed[4], which we do not have when dealing with
experimental EEG recordings. Hence, the fact that the
distribution corresponding to the regular phases during
absence seizures does not satisfy the−1.5 scaling does
not necessarily mean it is not type III intermittency,
but reflects the limitations of our analysis without a de-
tailed model system (system of differential equations
with known control parameters). Further indications
of intermittency are found in the first-return amplitude
plot shown inFig. 3A, where the typical walk on the
diagonal, characteristic of this dynamical regime, can
be appreciated. The value of the amplitude of the large
peak,A(n), is plotted versus the next value,A(n + 1).
The points in the plot have been numbered to illus-
trate the slow passage along the diagonal. It is worth
noting the similarities of this next-amplitude plot with
others obtained in completely distinct systems, such
as intermittency in chemical reactions (Fig. 2 in[50]).

Period doubling, derived from the bifurcation anal-
ysis of the map (Fig. 2), was found in the EEG record-
ings during seizures in a patient with right temporal
lobe epilepsy, as presented inFig. 4. All seizures in
this patient displayed evident period doubling: the
length of one period (which technically is defined as a
basic pattern that is repeated) “almost” reproduces it-
self every period and the period length doubles[4,14].
The period is marked by rectangles in the figure. This
definition of period doubling is used in some studies,
however, there is also another denotation of this phe-
nomenon: the split up of one period into two, such as
those inFigs. 2 and 5. The intervals between spikes
and associated IPI graphs are not the most adequate
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Fig. 4. Period doubling during seizures in a patient with right temporal lobe epilepsy. The intracranial EEG traces show successive
recordings. (A) The length of one period is marked by a rectangle. Trace ‘c’ is during the last seconds of the seizure, note the complex
multi-frequency activity. (B) Another seizure in same patient, ‘a’ and ‘b’ are successive recordings. Recording in ‘b’ shows the complex
activity at the end of the seizure. The first-return amplitude plots are shown below the corresponding traces.

method to visualise period doubling because the
waveforms are not taken into consideration (whatever
spike crosses the threshold is considered a peak), and,
according to the first definition, it is the waveform
that determines the observation of the length of one
period. Note, for example, the different peak ampli-
tudes in the recordings ofFig. 4. Visual inspection of
the trace ‘b’ inFig. 4A reveals that now the activity
reproduces itself with a period almost twice (1.97)
that of the trace shown in part ‘a’. The EEG trace in
‘c’ shows the continuation of the activity from that
of trace ‘b’, towards the end of the seizure. Note
the complex multi-frequency activity.Fig. 4B shows
another seizure in same patient, ‘a’ and ‘b’ are suc-
cessive recordings. The length of the second period,
marked by the larger rectangle, is 1.98 times the first
one (small rectangle). Recording in part ‘b’ shows the
complex activity at the end of the seizure, following
the recording shown in ‘a’. To consider the waveform
shape, the recursive amplitude plot is the standard
graph used in other physical systems to study period

doubling [4]. The next-return amplitude plots are
shown inFig. 4B. The resulting scatter plots reveal
the presence of two clusters of points for the first part
of the trace in ‘a’, and four clusters for the second
half when the period doubles. We could not find pe-
riod doubling in the EEG samples from the other two
patients or in the rat recordings. However, because
of the variabilities associated with the recording sites
in these kind of experiments, it is significant that an
example of this dynamical regime was found and re-
veals that it is present in, at least, some cases of limbic
epilepsy.

Fig. 5 depicts the time evolution of the IPIs during
seizures, where we can also appreciate bifurcations.
Time is used here as the “bifurcation” parameter.
Some evident doubling of the periods (here consider-
ing the second interpretation mentioned above, when
one period splits up into two) are presented in the in-
sets inFig. 5A, while small intervals within seizures
are shown inFig. 5B and C, this last is a recording
from a rat during status epilepticus activity.
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Fig. 5. Bifurcations during seizures. (A) The IPI evolution during most of a 60 s seizure in a patient with right temporal lobe epilepsy. Two
of the bifurcations are magnified in the insets. (B) A similar bifurcation that occurred during one seizure in a patient with left temporal
lobe epilepsy. Thex-axis here is the IPI number (n). (C) Depicts a similar bifurcation structure during a seizure in a rat during a temporal
lobe seizure; recording site was the hippocampus.

3.5. A geometric interpretation of epileptiform
activity

From our simple mapping function we can obtain
a possible interpretation based on its geometrical
properties. A qualitative interpretation is presented
in Fig. 6. During interictal activity long before the
seizure, the IPI plot is space-filling and looks ran-
dom, as can be seen in the detailed evolution of the
recursive IPI plots using short time periods (70 and
24 h before seizures, inFig. 6B and C) for two differ-
ent patients. However, the recursive IPI plots for the
preictal brain activity preceding the seizure observed
in the three patients studied here, presents points dis-
tributed along an L-shaped curve that describes the
mapping function mentioned above. This is probably

due to the presence of multiple (2–3) peaks in each
preictal “burst”, giving rise to the long–short–long
intervals, and their more frequent appearance. The
critical point to note is the presence of a fixed point
that, depending upon the slope, could be stable, un-
stable, or metastable (if slope is−1, indicating a flip
bifurcation). Thus, iterations of the map, as depicted
by arrows inFig. 6A, will be more or less complex
along the underlying curve, sometimes converging
on specific areas and determining a periodic oscil-
lation, as seen for example in the preictal recording
20 s (−20 s) preceding the ictus inFig. 6C (period
2), or during the seizures (SZ2). The transition to the
seizure is determined by the (transient) stabilisation
of the fixed point, which is achieved geometrically
by altering the shape of the map so that the slope at
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Fig. 6. Geometrical interpretation of epileptiform activity. (A) Hypothetical description based on iterations of the L-shaped map observed
during the preictal activity (Fig. 1). The steady state (Xs.s.) in this case is unstable, therefore the iterates, starting atX0 and numbered
consecutively, converge on a period-2 cycle characterised by long–short intervals, depicted by the circles. IfX0 starts nearXs.s., the iterates
move away from the fixed point and converge on a similar period-2 cycle (not shown). The inset on top shows a preictal recording from a
patient, where the long–short IPIs are apparent. The right-hand side graph shows the now stable steady state, the iterates converging on it,
that marks the beginning of the high-frequency seizure firing. (B) IPI recursive plots corresponding to the interictal activity in a patient 70 h
before the seizure (−70 h), and short time intervals (∼6 s each) 30 s (−30 s) before the seizure, during the progression of the seizure (SZ1,
SZ2, SZ3), and immediately (1 s) after the seizure. (C) Plots for the transition to the seizure, and during it (SZ1, SZ2), in a different patient
taken at short time intervals of∼8 s (except for the first one 24 h preseizure, because at this time interictal spikes were not as frequent).

the fixed point becomes<1, shown in the right-hand
graph of the figure, labelled “seizure”. The iterations
now converge on the stable steady state. This moment
corresponds to the appearance of the high-frequency
synchronous state that marks the start of the seizure
(inset in figure), and can be seen in the IPI plots la-
belled as SZ1. Changing the shape of the map again
may result in the increasing of the slope of the steady
state, thus becoming unstable, and the iterations will
follow, during this transition, patterns similar to those
seen in seizure recordings (Fig. 6B and C). Depend-
ing on the shape of the map, clusters of points will
materialise in different areas, representing the several
frequencies that appear successively during the pro-

gression of the seizures, in what could be considered
as the route “out of the seizure”. Examples of this
are shown in the IPI plots obtained during seizures
from two patients inFig. 6B and C (SZ1, SZ2, . . . ).
Similar IPI plots are obtained during the ictal events
in the case of the rats with status epilepticus (not
shown). Note that the postictal IPI plots (+1 and
+600 s after the seizure) still show the L-shaped form.
Thus, we conclude that the continuous progression
of the interictal–preictal–ictal activity, manifested by
successive frequencies registered in the EEG, could
be captured by the iterations of a one-dimensional
map that reveals possible bifurcation points and some
dynamical regimes observed in the recordings.
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4. Discussion

We have tried to determine possible dynamical
regimes and bifurcations that occur during the patho-
logical brain activity in epilepsy. A fundamental
property of complex non-equilibrium systems that op-
erate in a metastable dynamic regime is the transient
stabilisation of steady states due to instabilities that
lead to bifurcations in the dynamics. This concept has
been recognised in physiological systems by some
investigators[8,15,16,29]. Specifically, brain function
has been theorised to manifest as transient dynamical
patterns in brain activity[16]. For example, insta-
bilities arising at spectral peaks for alpha and theta
brain rhythms evolve towards low-dimensional limit
cycles that correspond to seizures, and the crossing
of specific stability boundaries mark the distinction
between normal state and seizures[49].

Thus, if we consider that “rhythms correspond to
a temporal organisation that appears beyond a crit-
ical point of instability of a non-equilibrium steady
state” [19], we are justified in the study of possible
instabilities and bifurcations of neuronal dynamics.
Our approach relied on the use of one-dimensional
first-return maps, a geometric strategy that has been
used to study complex physical and chemical sys-
tems[4,50] and has been applied to biology[7,10,18].
The use of low-dimensional maps is justified in the
case of highly dissipative systems, like the brain. Ge-
ometric approaches are being used in neuroscience
[6,25,28–30]. We chose the IPI as the variable to con-
struct the mapping function as it has been useful to
unravel dynamical regimes in other neuronal systems
[5] and has been applied to epileptic phenomena to
describe local regions of interest[33,34]. Theoretical
justification in the use of IPIs derives from studies that
revealed that amplitude time series can be converted
to interspike interval time series with no loss of infor-
mation[52,53].

The analysis of traces during the epileptifom activ-
ity revealed possible bifurcations in the neuronal dy-
namics during epilepsy. Bifurcations, a central concept
in nonlinear dynamical systems theory, are changes in
the properties of the dynamics as parameters change.
When the system is operating close to a bifurcation,

a very weak stimulus can switch the dynamics. It has
been proposed that bifurcations occur during epilep-
tiform activity, specifically that the “epileptic brain”
is closer to a bifurcation point than the normal brain
[35]. A possible bifurcation parameter in this regard
could be the balance between excitatory and inhibitory
transmission[36]. Obviously, the dynamics of neu-
rons is dictated by many state variables. However, this
approach may serve to identify key parameters that
can be used to understand and possibly control that
activity. At this global level, the cellular–molecular
events that put the system close to a bifurcation may
be distinct and varied, but the collective phenomenon
is manifested similarly as a hypersynchronous activity
in the ensemble, resulting in the ictus.

The bifurcation derived from our map is termed
flip, or subharmonic, and leads to two dynamical
regimes, period doubling or type III intermittency,
both of which are observed in the experimental EEG
recordings. Period doubling is a route from periodic
activity to complex, aperiodic, possibly chaotic, activ-
ity [14]. This dynamical regime was found in all the
seizures studied for a patient with right temporal lobe
epilepsy. After a few identified period doublings, the
activity became very complex, this occurring towards
the end of the ictal event. Hence, period doubling
cascades during some seizures can lead the neuronal
ensemble to a complex activity favouring desynchro-
nisation and therefore leading to the termination of the
seizure. Period doubling occurs as parameters change,
and we should keep in mind that we are dealing with
a system that is continuously evolving where sev-
eral parameters may be changing rapidly and hence
the period doubles fast. We can hypothesise about a
few parameters that could be involved in this phe-
nomenon, as these are known to change rapidly during
seizures: synaptic inhibitory potentials[41] and direct
electrical interactions[11,42]. It would be interesting
to assess the role of these cellular mechanisms, in a
quantitative manner, as potential control parameters.

The second dynamical regime, type III intermit-
tency, is characterised by the presence of “laminar”,
or quasi-regular phases, interrupted by turbulent peri-
ods[4,46]. We found signatures of this regime in the
human and rat recordings, and was also shown in four
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patients in a previous study[43]. The classification of
intermittency into types I, II and III is based on the lin-
ear instabilities of the periodic trajectories according
to Floquet theory[4]. For our purposes, in this study,
suffice to say that a characteristic of type III intermit-
tency is that the nonlinearities present in the system
tend to destabilise the system’s dynamics, favouring
the transition from periodic to turbulent activity. Tran-
sitions between chaotic and periodic behaviours often
occur via intermittency in physical systems[31]. Thus,
this dynamical regime can account for the bursting and
the presence of periodic, “laminar” phases character-
istic of the seizures. Then, the system’s nonlinearities
support the progressive destabilisation of the bursting
and the transition to turbulence, or desynchronised ac-
tivity that marks the end of the seizure, in an analo-
gous fashion to the above mentioned period doubling
cascade. In general, if intermittency is present in brain
activity, then type III is probably more adequate for
brain function, considering its main characteristic of
many short-duration rhythmic episodes. On the other
hand, type I is characterised by the opposite: abun-
dance of long-duration regular phases, which would
cause the brain activity to fall into long regular peri-
ods of activity, something we see physiologically in a
few cases, like during slow wave sleep.

A debated issue is whether the experimental record-
ings represent stationary processes, and, if not, what
can we infer from them. It is well known that station-
arity of time series is fundamental for some nonlinear
time series analysis, such as estimations of correlation
dimension. Again, we cannot emphasise enough the
fact that the interictal–preictal-seizure activity is con-
tinuous, and the transition from one to another state is,
many times, extremely subtle and hard to distinguish.
The definition of stationarity involves mathematical
idealisations almost impossible to establish in finite
amounts of experimental data. Some seizures had time
intervals of a few seconds that were stationary accord-
ing to several statistical criteria[63], even though the
whole ictal event behaves as non-stationary phenom-
ena [45]. Indications of nonlinear determinism, de-
pending on the recording site, have also been inferred
[1,2]. This is again an important consideration, as the
recording electrodes are thought to be placed in areas

near or within the epileptic focus, at least those used in
these kind of studies. However, that is never genuinely
known, and differences in recording sites may be one
of the reasons of the variability found in many studies,
such as the “chaos in brain” controversy[44,48].

The approach we present in this study could serve to
control the activity leading to the seizure. Considering
the work of Christini et al.[8], who used a quadratic
fit to atriventricular interval first-return plots (equiva-
lent to our IPIs in EEG recordings) to control cardiac
arrhythmias, it is not inconceivable to venture the
possible success of a similar method for seizure con-
trol. Indeed, some studies have already suggested the
usefulness of first-return plots to pace interictal-like
activity in vitro using chaos control methods. Our
study does not address specifically the problem of the
possible chaotic dynamics of epileptiform activity,
because, while a clear mathematical concept, chaos is
difficult to show in experimental time series[12,48].
However, we note that the preictal IPI plots have a
structure that is not space-filling, which is suggestive
of chaos as shown qualitatively in the cardiac system
using similar first-return maps[17].

Absence and limbic seizures are very different
clinical syndromes, however, nonlinear autoregressive
analysis has suggested that they may share common
dynamics[54]. Our study suggests that intermittency
may be a common dynamic characteristic. While the
initiating insults that result in seizures are diverse,
the collective mechanisms underlying the expression
of these events may be similar. It is well known
in physics that disparate systems can have similar
macroscopic features. Large numbers of constituents
gives rise to coherent behaviour, a characteristic of
dissipative systems.

In summary, the analysis presented here provides
support for the notion of dynamical changes as the
neuronal activity progresses, via preictal states, to-
wards the ictal event[26,36–38,43], and supports the
idea that dynamical changes occur during the seizure
and result in its termination. Beyond the serial com-
puter paradigm, brain research has entered a stage
where stable laws are substituted by stochastic pro-
cesses sensitive to fluctuations. The concept that brain
activity possesses metastable dynamics that allows for
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rapid changes, without being locked into stable states,
endows cognitive functions with great adaptability.
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