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A delay-differential equation model of the feedback-controlled
hypothalamus–pituitary–adrenal axis in humans
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The present work develops and analyses a model system of delay-differential equations which describes
the core dynamics of the stress-responsive hypothalamus–pituitary–adrenal axis. This neuroendocrine
ensemble exhibits prominent pulsatile secretory patterns governed by nonlinear and time-delayed
feedforward and feedback signal interchanges. Formulation and subsequent bifurcation analysis of the
model provide a qualitative and mathematical frame work for a better understanding of the delayed
responsive mechanisms as well as the dynamic variations in different pathological situations.
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1. Introduction

The hypothalamus–pituitary–adrenal axis is a critical stress-responsive component which initiates life-
sustaining adaptive reactions to internal stresses, such as disease, and external stresses, such as hard work
or lack of sleep. Signals may originate from either outside or inside the body and are mediated by the
central nervous system. Thus, many changes in the environment can ultimately stimulate the secretion
of releasing hormones, which produce effects in the body in order to adapt to the change.

Neurons synthesize and package releasing hormone precursors in their cell bodies and these products
are transported down the length of their axons to the nerve endings, where a signal for secretion is
awaited (Norman & Litwack, 1997). Since most of the cell bodies of these neurons are found in different
areas of the hypothalamus, signals for secretion come from higher levels, usually from aminergic or
cholinergic neurons in various parts of the brain. The hippocampus of the limbic system may signal
the neurons to release the hormone by changing the firing rate of electric signals or by chemical
interneuronal contacts (Norman & Litwack, 1997). The response of the hypothalamus to signals from
the limbic system is the secretion of the corticotropin-releasing hormone, CRH. CRH is released from
specific cells in the hypothalamus into a closed portal circulation intimately connected with the anterior
pituitary. Releasing hormones act at cognate plasma membrane receptor levels either to cause an increase
in cyclic AMP or to stimulate the phosphatidylinositol cycle, leading to the stimulation of protein
kinase C and an increase in cytoplasmic calcium ion concentration. The increased level of cyclic AMP
stimulates protein kinase A leading to ACTH release from the corticotroph of the anterior pituitary.
Vasopressin also increases the secretion of ACTH, although the main role of vasopressin appears to
be one of helping the CRH in this activity. Also, according to Engleret al. (1999), the nanopeptide
vasopressin is a weak ACTH secretagog in rat and in man, although it appears to be potent in the bovine
species. Therefore, we shall not consider its direct stimulatory effect in this work.
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FIG. 1. A schematic representation of feedforward–feedback model of plasma CRH, ACTH, and cortisol.

Following the secretion of ACTH into the blood circulation after stimulation by CRH from the
hypothalamus, ACTH molecules bind to a specific receptor on the outer cell membranes of all three
layers of cells of the adrenal cortex, the zona glomerulosa, the zona fasciculata, and the zona reticularis.
Cortisol is the main product of ACTH stimulation of the zona fasciculate and reticularis cells of the
human adrenal cortex. A glucocorticoid essential to life, cortisol acts on different cells in different
ways. Without the secretion of cortisol during stress, a human could not survive. When cortisol is
overproduced, often by a pituitary tumour causing high level of circulating ACTH, the resulting disease
is known as Cushing’s disease. When cortisol is underproduced, the resulting disease is known as
Addison’s disease, which is most frequently the result of adrenal destruction.
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When cortisol is produced in response to ACTH, it has negative feedback effects on various elements
of the hormonal cascade system, schematically described in Fig. 1. Malfunctions in this negative
feedback mechanisms can lead to several complications. Lowered cortisol levels or enlarged output
of ACTH by the anterior pituitary, due to reduced negative feedback, results in adrenal hyperplasia and
hypersecretion, which, together with adrenal testosterone, can lead to masculinization of female babies.
Precocious puberty in males can also result from this condition (Norman & Litwack, 1997).

It is, therefore, crucial that a better biomathematical description of such a process be attempted
to provide a more solid framework for the study and assessment of dynamic interfaces in health
and disease. Such studies are necessary especially since a recent report by Iliaset al. (2002) on the
complexity of cortisol seems to confirm that cortisol secretion operates under non-regular dynamics. Its
fractral dimension after sleep deprivation (a weakened state) is lower than that measured before sleep
deprivation (healthier state). In the past, basal cortisol secretion has been proposed to arise via linear
mechanisms. Then, in 1991, Lenbury and Pacheenburawana presented a mathematical model in which
cortisol secretion was described by nonlinear differential equations with exponential feedback terms.
However, Iliaset al. (2002) were the first, to our knowledge, to utilize nonlinear/fractal analysis in the
experimental study of the complex mechanisms underlying the circadian secretion of cortisol.

Complexity and nonlinear methods have become one of the most versatile and promising new
research tools for the study and characterization of circadian rhythmicity in humans. Episodic secretion
of cortisol has been clinically observed and reported in several research works. In 1971, Weitzman
et al. reported on 24 hr patterns of episodic cortisol secretion in normal subjects. Their data seriously
challenged the concept that a ‘steady state’ or ‘basal level’ of cortisol is present during any extended time
compartment of the 24-hr cycle. Many of the more recent reports provide further evidence of circadian
rhythms in adrenocortical secretion. For example, in 1993, Lefcourtet al. reported on circadian and
ultradian rhythms of peripheral cortisol concentrations in lactating dairy cows, while Ixartet al. (1993)
found circadian variations in the amplitude of CHR41 measured in vivo in male rats. Jasper and Engeland
in 1994, studied, the modulation of such rhythms by splanchnic neural activity in awake rats, while
Irvine & Alexander (1994) also studied many factors which affect such rhythms in the horse. Several
reports appeared in the following year, for example, those of Atkinson & Waddell (1995), Sarnyaiet
al. (1995), and Suemaruet al. (1995). Later, Dijkstraet al. (1996) studied how the diurnal variation in
resting levels of corticosterone is involved with splanchnic nerve activity, while Kalsbeek & Buijs (1996)
reported on the rhythms of inhibitory and excitatory output from the circadian rhythms as revealed by
in vivo microdialysis. Even more recently, dynamic interaction with the response to acute stress of basal
corticosterone release was investigated by Windleet al. (1998) and Furutaet al. (2002) used stable
isotope dilution mass spectrometer in simultaneous measurements of endogeneous and13C-labelled
cortisols and cortisones in human plasma.

Ever since the attempt by Kriegeret al. (1971) to delineate more precisely the time course of
adrenal secretory activity in the normal human and patients with Cushing’s syndrome, several similar
investigations have been carried out. Specifically, Moore-Edeet al. (1983) pointed out in their report
some advances in the characterization of the properties of hypothalamic circadian pacemakers and the
implications of such rhythmicity for medical diagnosis. Age-related changes in the diurnal rhythm of
these hormones were studied by Cai & Wise (1996), Czeisleret al. (1999), Touitou & Haus (2000),
and Zhaoet al. (2003), to name only a few. The effects of sleep loss on secretion patterns were
investigated by Pincuset al. (1996), Leproutet al. (1997), and Spiegelet al. (1999). It was not until very
recently, however, that an attempt was made by Iliaset al. (2002) to use mathematical methods based
on nonlinear/fractal analysis in the experimental study of the underlying complex mechanisms. Their
conclusion, that post-sleep deprivation changes the fractal dimensions of cortisol, supports Lenbury &
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Pacheenburawana’s (1991) suggestion that nonlinear dynamics analysis may be a viable tool in our
attempts to delineate pulsatile secretory patterns in health and disease.

Earlier, Hartmanet al. (1994) proposed in their paper that enhanced basal and disorderly growth
hormone secretion distinguish acromegalic from normal pulsatile release. Pincus (1994) also suggested
that greater signal regularity may be indicative of increased system isolation, with more evidence
reported by Pincuset al. (1996). However, Pincus & Keefe (1992) in their investigations into
what regularity may quantify in the physiological time series analysis, defined a quantity called the
approximate entropy (ApEn) as a means to measure hormone pulsatility or irregularity. They then
reported on hormone pulsatility discrimination via coarse and short-time sampling (Pincuset al., 1999),
giving some clinical evidence that normal secretory dynamics are more regular or orderly, with lower
ApEn values, than those for subjects with Cushing’s disease are. Their findings, thus, seem to disagree
with those reported by Iliaset al. (2002) and other researchers mentioned earlier. It is, therefore, clear that
more work is needed to resolve these perplexing findings. The construction and analysis of appropriate
models offer a means by which ideas can be expressed in a precise and unambiguous way, to formulize
existing ideas or to guide the test of ideas, yielding insightful interpretations and possible resolution of
contradictory findings. Apart from Lenbury & Pacheenburawana (1991), many other researchers have
worked on mathematical models of cortisol circadian rhythm, for example, Rohatagiet al. (1996), Brown
et al. (1997), and Liuet al. (1999). Some models proposed recently are stochastic models, such as
those of Keenan (2001) and Brownet al. (2001), while some others are computer-based, such as those
considered by Straumeet al. (1995) and Gonzalez-Heydrichet al. (1999).

The previously mentioned models do not, however, account for the delays associated with the time
interval needed before an action in response to the stimulating signal can be taken by the release of
the appropriate hormones. Several studies have presented clinical evidence of such delayed responses
in the hypothalamus–pituitary–adrenal cortex (Wonet al., 1986; Norman & Litwack, 1997; Posener
et al., 1997). Specifically, Poseneret al. reported, in 1997, that cortisol exerted a feedback effect by
significantly decreasing plasma ACTH levels with a time delay of approximately 60 min. An earlier
study by Hermuset al. (1984) reported a 30 min. delay in the positive feedforward effects of CRH on
plasma ACTH levels, the increase in which was followed by a rise in the cortisol level with a time delay
of an extra 30 mins.

To our knowledge, mathematical modelling and analysis of hormonal secretion systems with delays
have, up to date, been the subject of few published reports on humans, apart from the delay models of
testosterone secretion proposed by Smith & Murray, reviewed by Murray (2002). Keenanet al. (2001)
presented a sophisticated biostatistical model which incorporated expected within-axis physiological
linkages via time-delayed, nonlinear, dose-responsive, rate-sensitive, and integral feedforward and
feedback controls. The model took into account several influencing factors and was capable of generating
realistic pulsatile secretory patterns. A further contribution can still be made, however, towards the
illumination of the underlying mechanism of the secretion network especially in connection with the
crucial role which the delayed responses might play in this important feedback-controlled system. In
our opinion, a model should not only be based on how well a particular biological mechanism has
been mathematically translated, i.e. on how thoroughly each assumption and each influencing factors
has been incorporated. Apart from giving predictions which are in agreement with the observations, it
must be capable of suggesting explanations or answers to perplexing, contradictory observations leading
to deepening biological understanding. However, a model which is too mathematically intractable may
lose its ability to resolve some paradoxical problems that may be clarified through the mathematical
analysis of the model, such as the question of the degrees of irregularities of the cortisol secretion in
discriminating health from disease.
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Because of the nonlinear structure of the system, the introduction of a time delay in feedback
loops can alter the stability and dynamic properties of the hormonal cascade yielding insightful
clinical implications for diagnosis and treatment purposes. We propose, therefore, to construct a
mathematical model which incorporates such time delays, improving on the earlier model by Lenbury
& Pacheenburawana (1991) and, subsequently, analyse the model by Hopf bifurcation in order to find
the critical time delay, beyond which the model system may exhibit periodic dynamics. With the set of
parameters appropriately chosen through such analysis, we shall construct a bifurcation diagram in order
to identify the ranges of the system’s parametric values for which chaotic secretory patterns are permitted
by our time-delay differential equation model. The simulated solution in such a case appears to compare
well with clinical data which consistently showed multifactorical frequency structure (Carneset al.,
1991). Clinical interpretations are then presented in the context of the previous discussion concerning
the discrimination of hormone pulsatility and pattern irregularity.

2. A feedforward–feedback delay model

In formulating our mathematical model of the negative feedback regulation of cortisol secretion, the
following events are considered. CRH is secreted from the hypothalamus and stimulates the secretion of
ACTH from the anterior pituitary with a delay ofτ1 in time. ACTH then stimulates the cortisol secretion
from the adrenal gland with the same time delayτ1 as that in the short-loop feedforward effect of CRH
on ACTH secretion. Thus, we assume equal delays in both short feedforward loops in the cascade,
following the clinical evidence reported by Hermuset al. (1984) mentioned earlier. We also take into
account the negative feedback effects of cortisol on ACTH, incorporating a time delay ofτ2, supported
by the clinical evidence already mentioned (Moore-Edeet al., 1983). The investigation by Poseneret al.
(1998) also utilized a covariance analysis which suggested that the inhibition effects of ACTH on CRH
were not due to the rise in cortisol caused by the rise in ACTH itself. Thus, we shall ignore the long-
loop negative feedback effect of cortisol on CRH and only consider the short-loop feedback effect of
ACTH on CRH not mediated by cortisol, which is then assumed to occur with a delay time ofτ2 as well.
These assumptions on delays are made here in order to carry out a theoretical analysis to investigate the
possibility of oscillatory behaviour comparable to that which has been clinically observed. In the later
section, the time lags in the feedforward or feedback loops will then be allowed to be different in our
numerical experiment to investigate the possibility of chaotic dynamics.

Let us start from the balance equation for hormoneHi , i = 1, 2, 3, whereH1, H2, andH3 stand for
the levels of CRH, ACTH, and cortisol, respectively, above their respective residual levelsHresi . Here,
by ‘residual level’ we mean that at which the hormone removal rate vanishes. That is, once a hormone
level drops to its residual level, no more is removed from the blood stream. Thus, we may write the
following equation for each hormone.

[Amount of hormonei at timet + �t ] = [amount of hormonei at timet ]−[amount
removed]+[amount secreted].

In other words,
for hormoneHi ,

[Hi (t + �t) + Hresi ] = [Hi (t) + H resi ] − δi Hi (t)�t + Si (t)�t (2.1)

whereSi (t) is the secretion rate of that hormone andδi is the removal rate per unit of the hormone level
Hi above the residual level. It is, thus, assumed that each of these hormones is cleared from the blood
stream with first-order kinetics.
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FIG. 2. Linear relationship of ACTH release induced by CRF treatments, with correlation coefficientr = 0·9945 (adapted from
the work of Liuet al., 1990).

Now, in 1986, Wonet al. investigated the mechanisms responsible for glucocorticoid feedback on
non-stress-induced ACTH secretion in normal subjects and reported a linear relationship between the
degree of inhibition of ACTH levels after cortisol administration. The degree of inhibition (�ACTH)
was measured as the reduction in the ACTH as percentages of the mean baseline level. They found
that ‘a linear correlation between the degree of inhibition of ACTH level and the corresponding cortisol
concentrations does exist at 60 min. (correlation coefficientr = 0·95, significant levelp < 0·05)’.
Their work also provided clinical evidence that the degree of ACTH inhibition was linearly related to
the corresponding dosage of cortisol after a silent period of approximately 30–45 min. Thus, to the
first-order kinetics, the inhibition appears to vary directly as both cortisol increment (or dosage) dH3
and its concentrationH3 with a time delay ofτ2. From such clinical evidence, we see that, if the CRH
level remains constant, the reduction, dS2, in the ACTH secretion rate,S2, at time t , due to the negative
feedback effect of high cortisol concentration at timet − τ2, H3(t − τ2), may be described by the
following equation

dS2

S2
= −k H3(t − τ2) dH3(t − τ2) (2.2)

where k is some positive constant of variation. Integrating (2.2) yields the inhibition factor

k2eγ (Ĥ2
3 −H2

3 (t−τ2)) in the rateS2, whereγ = 1
2k and k2 is the value of the factor whenH3 = Ĥ3.

Similar arguments can be applied to the secretion rateS1 of CRH; namely,

S1 = k1eα(Ĥ2
2 −H2

2 (t−τ2))

whereα is a constant which measures the strength, or potency, of the negative feedback effect andk1 is
the value ofS1 whenH2 = Ĥ2. That is, if H2 falls below the critical valuêH2, the secretion rate of CRH
should increase abovek1, while if H2 rises aboveĤ2, S1 should then be reduced in magnitude belowk1.

However, the rate of secretion of ACTH should also vary in direct proportion to the plasma CRH
concentration at timet − τ1, H1(t − τ1). This concentration-dependent effect of CRH on ACTH was
investigated by Liuet al. (1990), who reported clinical data showing ACTH release (not its level)
increasing exponentially as the log of CRH. This means, in fact, that the ACTH secretion rate may
be assumed to depend in a linear fashion on the CRH level, at least when the treated CRH level or
ACTH release is not too high and the negative feedback factor has not come into play. This is evident in
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Fig. 2, where the data are taken from the work of Liuet al. (1990) but now ACTH secretion is plotted
against the amount of CRH treated instead of its log. A linear relationship is now observed for the treated
CRH level below 10 nM. Therefore, combining this feedforward action with the previously described
feedback effect, we should, in fact, have

S2 = k2H1(t − τ1)e
γ (Ĥ2

3 −H2
3 (t−τ2))·

It is also reasonable to assume the same linear dependence between the secretion rate of cortisol and
ACTH level and, thus,

S3 = k3H2(t − τ1)·
Substituting the expressions obtained earlier for the secretion ratesSi in (2.1), dividing both sides by
�t , and letting�t → 0, one obtains the following system of nonlinear differential equation for a three-
component hormonal cascade:

dH1(t)

dt
= −δ1H1(t) + k1eα(Ĥ2

2 −H2
2 (t−τ2)) (2.3)

dH2(t)

dt
= −δ2H2(t) + k2H1(t − τ1)e

γ (Ĥ2
3 −H2

3 (t−τ2)) (2.4)

dH3(t)

dt
= −δ3H3(t) + k3H2(t − τ1) (2.5)

where the symbols are as defined previously. In order to arrive at the previously described mathematically
tractable model, we have assumed that the stimulating/inhibitory effects of other known factors are
relatively weak and, thus, negligible. More details of the derivation of the model can been seen in the
paper by Lenbury & Pacheenburawana (1991).

Weassume the initial values of the form:

H1(t) = φ1(t) for − τ1 � t � 0,

H3(t) = φ2(t) for − τ2 � t � 0,

H2(t) = φ3(t) for − τ3 � t � 0, (2.6)

whereτ3 = max(τ1, τ2), φi ∈ C
([−τi , 0], Re+)

andφi (0) > 0, i = 1, 2, 3.

We now introduce dimensionless variables by lettingx = H1

Ĥ1
, y = H2

Ĥ2
, z = H3

Ĥ3
, K1 =

k1

Ĥ1
, K2 = k2Ĥ1

Ĥ2
, β1 = α Ĥ2

2 , β2 = γ Ĥ2
3 , and K3 = k3Ĥ2

Ĥ3
, where Ĥ1, Ĥ2, and Ĥ3 are the

critical values ofH1, H2, andH3, respectively. We are then led to

ẋ(t) = −δ1x(t) + K1eβ1(1−y2(t−τ2)) (2.7)

ẏ(t) = −δ2y(t) + K2x(t − τ1)e
β2(1−z2(t−τ2)) (2.8)

ż(t) = −δ3z(t) + K3y(t − τ1). (2.9)

So that the steady-state values ofH1, H2, and H3 are Ĥ1, Ĥ2, and Ĥ3, respectively, at which point the
three-state variables should be stationary, we see that we need to putK1 = δ1, K2 = δ2, andK3 = δ3
in (2.7)–(2.9). We also note the further assumption thatα andγ represent the strength of the negative
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feedback effect of ACTH on CRH and that of cortisol on ACTH, respectively. Since ACTH and cortisol
are secreted at noticeably different orders of magnitude,α andγ may be different. However, after re-
scaling of the corresponding critical levelŝH2 andĤ3, the resulting feedback potency constantβ1 should
be comparable toβ2. Therefore, to carry out our bifurcation analysis, we first putβ = β1 = β2 but we
will allow them to differ in our later investigations. We now arrive at the following core model equations:

ẋ(t) = −δ1x(t) + δ1eβ(1−y2(t−τ2)) (2.10)

ẏ(t) = −δ2y(t) + δ2x(t − τ1)e
β(1−z2(t−τ2)) (2.11)

ż(t) = −δ3z(t) + δ3y(t − τ1). (2.12)

3. Bifurcation analysis

The model system (2.10)–(2.11) has one positive steady state(x0, y0, z0), that is,(x0, y0, z0) = (1, 1, 1).
Letting X = x − x0, Y = y − y0, andZ = z − z0, we are led to the following linearized system of

(2.10)–(2.12) at(x0, y0, z0).
Ẋ

Ẏ
Ż


 =


 −δ1 −2βδ1e−λτ2 0

δ2e−λτ1 −δ2 −2βδ2e−λτ2

0 δ3e−λτ1 −δ3





X

Y
Z


. (3.13)

The associated characteristic equation of the model system (2.10)–(2.12) is then

F(λ) ≡ λ3 + aλ2 + bλ + c + (d1λ + d2)e
−λ(τ1+τ2) = 0 (3.14)

where

a = δ1 + δ2 + δ3 (3.15)

b = δ1δ2 + δ1δ3 + δ2δ3 (3.16)

c = δ1δ2δ3 (3.17)

d1 = 2βδ2
[
δ1 + δ3

]
(3.18)

d2 = 4βδ1δ2δ3 (3.19)

using the steady-state relations thatẋ = ẏ = ż = 0 at the point(x, y, z) = (1, 1, 1).
We let τ = τ1 + τ2 be the composite lag-time and first consider (3.14) whenτ = 0. That is,

λ3 + aλ2 + (b + d1)λ + (c + d2) = 0. (3.20)

Using (3.15)–(3.19), it is easily shown thata > 0, c + d2 > 0, anda(b + d1) − c − d2 > 0, for all
positive parametric values. Thus, by the Routh–Hurwitz condition, all roots of (3.20) have negative real
parts. Therefore, the steady state(1, 1, 1) is stable whenτ = 0.

If we let λ(τ) = α(τ)+ iω(τ), whereα andω are real, then we haveα(0) < 0, by the earlier reason.
By continuity, we know thatα(τ) < 0 for a positive value ofτ which is sufficiently small. Thus, the

steady state will remain stable for values ofτ such that 0� τ < τ0 for someτ0 > 0.
Supposeα(τ0) = 0 for someτ0 > 0 andα(τ) < 0 for 0 � τ < τ0, then the stability of(1, 1, 1) is

lost atτ = τ0, at which pointλ = iω(τ0).
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Now, iω is a root of (3.14) if and only if

−iω3 − aω2 + ibω + c + (id1ω + d2)(cosωτ − i sinωτ) = 0. (3.21)

Equating the real and imaginary parts of both sides of (3.21), we obtain

d1ω cosωτ − d2 sinωτ = ω3 − bω, (3.22)

d1ω sinωτ + d2 cosωτ = aω2 − c. (3.23)

Adding up the squares of (3.22) and (3.23), we obtain

f (ω) ≡ ω6 + (a2 − 2b)ω4 + (b2 − 2ac − d2
1)ω2 + c2 − d2

2 = 0. (3.24)

If we let s = ω2, p = a2 − 2b, q = b2 − 2ac − d2
1, andr = c2 − d2

2, then (3.24) becomes

h(s) ≡ s3 + ps2 + qs + r = 0. (3.25)

Wecan consequently write down the following result.

LEMMA 1 Supposes1 = 1
3(−p + √

p2 − 3q).

(i) Equation (3.25) has a positive root if either

(a) r < 0 (3.26)

or

(b) r �0, (3.27)

p2 − 3q >0, (3.28)

s1 >0, (3.29)

and h(s1) < 0. (3.30)

(ii) Equation (3.25) has no positive real roots if

r � 0 and p2 − 3q < 0.

Proof. (i) Supposer < 0, thenh(0) < 0. Since lims→∞ h(s) = ∞, (3.25) must have a positive root
whereh = 0, by the Intermediate Value Theorem. Supposer � 0, however, andp2 − 3q > 0, then
s1 = 1

3(−p + √
p2 − 3q) is the stationary point ofh(s) located on the positivex-axis if s1 > 0. Thus, if

h(s1) < 0 while h(0) = r � 0, by the Intermediate Value Theorem,h must vanish somewhere between
0 ands1.

(ii) If r � 0 while h′(s) > 0, h is then an increasing function and does not vanish anywhere along
the positivex-axis. �

If conditions in Lemma 1(ii) hold, then all roots of the characteristic equation (3.14) have negative
real parts for allτ � 0. Thus, the steady state(1, 1, 1) is always stable in this case.

If, in contrast, the conditions in Lemma 1(i) hold, then (3.25) has a positive root. Without loss of
generality, we may denote the three positive roots of (3.25) bys1, s2, ands3. Then, (3.24) has three
positive roots

ωk = √
sk, k = 1, 2, 3.
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Now, let τ0 > 0 be the smallest of suchτ for which α(τ0) = 0. Substitutingωk into (3.22)–(3.23) and
solving forτ , one obtains

τ
( j)
k = 1

ωk
arcsin

[
(ad1 − d2)ω

3
k + (bd2 − cd1)ωk

d2
2 + d2

1ω2
k

]
+ 2π( j − 1)

ωk
(3.31)

wherek = 1, 2, 3, and j = 1, 2, . . . .
Thus,

τ0 = τ
( j0)
k0

= min
1�k�3, j�1

{
τ

( j)
k

}
(3.32)

and

ω0 = ωk0. (3.33)

Now, for our model system (2.10)–(2.12), the following result can be shown.

LEMMA 2 s1 < 0 if

β < β0 ≡
√

δ2
1δ2

2 + δ2
1δ2

3 + δ2
2δ2

3

4δ2
2(δ1 + δ3)2

. (3.34)

Proof. From (3.15)–(3.18), we find that

q = δ2
1δ2

2 + δ2
1δ2

3 + δ2
2δ2

3 − 4β2δ2
2(δ1 + δ3)

2

which is positive if (3.34) holds. We will then have

p2 − 3q < p2

and
p = δ2

1 + δ2
2 + δ2

3 > 0.

Hence,

s1 = 1
3(−p +

√
p2 − 3q) < 0.

�

Wenow make the claim that iω0 is a simple root of equation (3.14), provided (3.34) holds.

LEMMA 3 If (3.34) holds, then
dF

dλ
(iω0) 	= 0

Proof. Suppose, by contradiction, that
dF

dλ
(iω0) = 0, while F(iω0) = 0, then after some lengthy

manipulations, it can be shown that
d

dω
f (ω0) = 0.
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However,
d f

dω
(ω0) = 2ω0

dh

ds
(s0)

wheres0 = ω2
0. Sinceω0 > 0, we would have

dh

ds
(s0) = 0 also. However, the solution ofh′(s0) = 0

would be

s0 = 1

3

[
−p ±

√
p2 − 3q

]
= s1.

But, s1 < 0 when (3.34) is satisfied, by Lemma 2. This would mean thats0 < 0 which contradicts its

definition. Therefore,h′(s0) 	= 0 and so
dF

dλ
(iω0) 	= 0 as claimed. �

This then leads us to conclude that iω0 is a simple root of (3.14) which implies that

d

dτ
Re λ(τ)

∣∣∣∣
τ=τ0

	= 0. (3.35)

Thus, the steady state(1, 1, 1, ) will lose its stability and Hopf bifurcation will occur asτ increases past
the critical valueτ0, provided the conditions in Lemma 1(ia) and (3.34) are satisfied.

Summarizing this analysis, we have the following theorem.

THEOREM 1 For the composite lag-timeτ = τ1 + τ2, let the critical composite lag-timeτ0 be defined
as in (3.32), then the system of delay-differential equations (2.10)–(2.12) exhibits a Hopf bifurcation at
(x0, y0, z0) = (1, 1, 1) if 1

4 < β < β0, whenβ0 is as defined in (3.34). That is, there exists anε > 0
such that the system (2.10)–(2.12) will have periodic solutions forτ ∈ (τ0, τ0 + ε).

Proof. It remains only to note that ifβ > 1
4 then, considering (3.17) and (3.19), we would haver < 0

which is condition (ia) in Lemma 1. Thus, the conditionβ > 1
4 ensures that there is aτ0 > 0 such that

the steady state(1, 1, 1) loses its stability at the pointτ = τ0. The conditionβ < β0, by Lemma 2,
ensures that (3.35), which is a necessary condition for Hopf bifurcation, is satisfied. �

4. Numerical results

Figure 3 shows a computer simulation of (2.10)–(2.12) with parametric values chosen to satisfy the
requirements for Hopf bifurcation set out in the previous section (Theorem 1). The solution trajectory,
projected onto the (y, z)-plane, tends to a limit cycle as theoretically predicted. The corresponding time
courses of ACTH and cortisol are shown respectively in Fig. 3(b) and 3(c) where they become periodic
as time passes.

Since there has been evidence (Carneset al., 1991, 1989; Iliaset al., 2002; Kriegeret al.,
1971) of low-dimensional chaos in pulsatile secretion of plasma adrenocorticotropin mentioned in the
introduction, we carried out a numerical investigation to discover whether chaotic behaviour may occur
in our delay feedback-controlled model of the hormonal secretion cascade. To this end, a bifurcation
diagram was constructed by using parametric values that would lead to cycling in the three state
variables, guided by our work in the previous section. Then the system (2.7)–(2.9) was allowed to run for
105 time steps. We retained only the last 2×104 time steps to eliminate transient behaviour, using values
of β2 between 3·75245 and 3·7538 and changingβ2 in steps of 10−5. The relative maximum values of
x (CRH) were collected during the last 2× 104 time steps and plotted as a function ofβ2 as shown in
Fig. 4.



26 Y. LENBURY AND P. PORNSAWAD

FIG. 3. Computer simulation of (2.10)–(2.12) withδ1 = 0·5, δ2 = 0·38, δ3 = 0·6, β = 1·091, τ0 = 1·22, τ1 = 0·5 and
τ2 = 0·77.

We discover in this bifurcation diagram a period-doubling route to chaotic dynamics which can be
expected for values ofβ2 beyond 3·7532. We observe that periodic orbits can be found for values of
β2 in the range 0·25 < β2 < 3·7528 suggesting that the chaotic mode of secretion is adopted when
the negative feedback effects are relatively strong. When the feedback signals are weak, more regular
episodic secretory patterns are exhibited.

Figure 5 shows a computer simulation of the model system (2.7)–(2.9) using the parametric values
in the chaotic range, withβ2 = 3·75346. The strange attractor is seen in Fig. 5(a) projected onto the
(y, z)-plane, while the corresponding time series of CRH(x), ACTH (y), and cortisol(z) are shown in
Fig. 5(b)–5(d), respectively.

A characteristic of such chaotic dynamics is the sensitivity to initial conditions. We illustrate this
sensitivity by simulating our model system, using the parametric values in the chaotic range employed
in Fig. 5, starting from two initial conditions which differ by only 10−9 in x(0), while y(0) andz(0) are
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FIG. 4. Bifurcation diagram of (2.7)–(2.9) withδ1 = 0·47, δ2 = 0·401, δ3 = 0·422, K1 = 0·477, K2 = 0·422, K3 = 0·411, β1 =
0·001, τ0 = 0·522, andτ = 10.

the same in the two simulations. The two time courses follow the same path only for a short time initially
but diverge to drastically different paths as time progresses as seen in Fig. 6. This clearly demonstrates
the systems sensitivity to initial conditions under nonlinear dynamics which, for this reason, makes any
attempts at system control an extremely difficult task.

5. Discussion and conclusion

We present in Fig. 7(a) some clinical data partly adapted from the report by Engleret al. (1999) on the
review of the evidence for the existence of inhibitory as well as stimulatory hypophysiotropic regulation
of adrenocorticotropin secretion and biosynthesis. The figure shows pituitary venous concentrations of
CRH in two mares given naloxone at a low dose rate at the arrow. In Fig. 7(b), the actual data from
plasma ACTH concentration in a rat sampled every 2 min. are shown, taken from earlier work by Carnes
et al. (1989). The time series exhibits irregular characteristics in agreement with those simulated from
our model, an example of which is shown in Fig. 5, where we need to recall that the state variablesx, y,

andz plotted in Fig. 5 are ratios of the three hormones over their respective critical levels.
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FIG. 5. Computer simulation of (2.7)–(2.9) withδ1 = 0·47, δ2 = 0·401, δ3 = 0·422, K1 = 0·477, K2 = 0·422, K3 =
0·411, β1 = 0·001, β2 = 3·75346, τ0 = 0·522, andτ = 10.

However, there are at least three factors that complicate the interpretation, if not the measurement,
of CRH concentration, as cautioned by Orth (1992) in his work on CRH in humans. First, like other
hypothalamic-releasing factors, the concentration of CRH, presumed to be present in the hypothalamic
hypophysial portal venous blood, is hugely diluted by the time it reaches the peripheral veins. Second,
CRH is produced and presumably secreted by many extrahypothalamic tissues, even though we have
assumed this to be a relatively small and, thus, negligible amount in our model. Finally, there are specific
high-affinity, high-capacity CRH-binding proteins present in human plasma. Thus, even though it is
possible to measure immunoreactive CRH in peripheral plasma, the absolute peripheral plasma CRH
concentration at any moment may not accurately reflect hypothalamic CRH secretion and, thus, it should
be considered with caution.

ACTH measurement also poses problems associated with its bioassays at low plasma concentration.
Detection of primary abnormal functioning at the pituitary level is made easier only by the availability of
the releasing hormones that make evocater tests possible. In cases of inadequate availability of a pituitary
hormone, such as ACTH supply, the target gland hormone (cortisol) is supplied instead (Norman &
Litwack, 1997).

In spite of such cautionary notes, our model still provides a viable means by which the complexity
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FIG. 6. Divergence of time courses, whenβ2 = 3·75346 in the chaotic range, initiating from two sets of initial conditions differing
only by 10−9 in the initial value ofx .

and nonlinear dynamics of diurnal hormone secretory patterns can be analysed and a qualitative
description made of these complex delay-feedback-controlled systems. Our analysis yielded, for each
set of physical parameters, a critical composite time delayτ0 beyond which value the system exhibits
episodic secretory pattern ifβ > 1

4. As the feedback response factorβ increases further, more
irregular secretory patterns may be expected. Low dimensional chaotic dynamics would appear ifβ2
increased beyond a certain critical value,βc, identified in the bifurcation diagram. This seems to suggest,
considering the result of Iliaset al. (2002) from their nonlinear analysis of cortisol secretory patterns
before and after sleep deprivation, that if the negative feedback effects are too weak, a diseased state
is the reasonable diagnosis which then corresponds to the more regular secretory patterns. A relatively
strong negative feedback mechanism for largerβ leads to a more irregular pattern characteristic of a
higher dimensional chaotic dynamics associated then with health. Whenβ2 increases further, becoming
greater than approximately 3·87549, the feedback mechanism is now faulty and the system returns to
more regular periodic behaviour which appears to be the mode of secretion in a diseased state.

Also, there is a critical composite time delayτ0 below which all state variables tend asymptotically to
the respective steady-state levels ast → ∞. We observe that it is the value of the composite time delay
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FIG. 7. (a) Pituitary venous concentrations of CRH in two mares (�, mare1;•, mare2) given naloxone (adapted from the work by
Engleret al., 1999). (b) Plasma ACTH concentration in a rat (taken from the work by Carneset al., 1989).

τ which delineates the different dynamic behaviour in the Hopf bifurcation analysis, not each of the
feedforward delayτ1 or the feedback delayτ2 in our model. We may deduce from this that, in the human
body, the feedforward and feedback response processes may be operating in a complementary fashion.
In health, an over zealous response in the feedforward loop can be compensated for by a late response
in the feedback loop, and vice versa, resulting in an optimal turn-around time for all components in the
whole cascade. When this complementary mechanism is not functioning properly, a diseased state may
be expected.

In Fig. 5, where an apparently irregular secretion pattern is shown, comparable to the data presented
in Fig. 7, the critical composite time delay isτ0 = 0·522 in the unit in whicht is measured. We also
observe that, in Fig. 7(b), the ACTH peaks approximately three times during a 4 hrperiod in a rat.
Comparing this with the corresponding simulated ACTH level in Fig. 5 where three peaks are observed
in 100 units of timet , we may then scale accordingly by takingt to be measured in the unit of 24 min.,
so thatt = 100 is equivalent to 4 hr. Then, the critical composite time delay may be estimated as

τ0 ≈ 0·522× 240

100
≈ 1·25 min.

in a rat and the composite time delay may be estimated as

τ ≈ 10× 240

100
= 24 min.

based on the parametric values used in the simulation shown in Fig. 5. Unfortunately, similar estimates
cannot be arrived at for humans, since hormone measurements cannot be made freqently enough and
fewer peaks may then appear in the time series than there actually are. However, from the reports by
Poseneret al. (1997) and Hermuset al. (1984) mentioned earlier, in humans the delay in the short
feedforward loop was observed to be around 30 min., while that in the short feedback loop was around
60 min.

From this observation, we are also led to conclude that the role of the individual time-lag(τ1 or τ2) in
each of the responsive mechanisms is apparently not as significant to the well-being of the cascade as the
potency,β, of each feedback responsive signal. As seen in the bifurcation diagram shown in Fig. 4,β2
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was found to be the bifurcation parameter which delineates different dynamical behaviour and identifies
the interfaces between sickness and health.

We note here, however, that this discussion does not necessarily negate the results of Pincuset al.
(1996) mentioned earlier. They were comparing cortisol pulsatility via the quantity ApEn measured
from two different individuals; a control subject and a Cushing’s disease patient. The two subjects may
possess different physiological characteristics in their feedback control response mechanisms. Their
feedback/feedforward potencies and other physiological parameters are thus different. It is conceivable
that the cortisol secretion pattern of the patient before developing Cushing’s disease may already be more
irregular than that of the control subject. The conclusion of the study would have been more convincing
if the comparison had been made of secretory patterns drawn from the same individual, before and after
disease development. The bifurcation analysis of our model was carried out by varying one parameter,
while keeping the other parametric values fixed. It, therefore, cannot be taken to reflect the comparison
of secretory patterns of two different individuals. It does, however, provide certain theoretical support
for the discovery made by Iliaset al. (2002) concerning the fractal dimensions of cortisol secretion in
one person before and after sleep deprivation.

Although more intensive experimental/theoretical studies are necessary before definite conclusions
can be made, such nonlinear approaches promise to offer significant contributions in our attempts to
give a more qualitative description of the diurnal variations of hormone secretion in order to understand
better the dynamic interfaces among different pathological situations.
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