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Abstract. Calcification and mineralization are fundamental physiological
processes, yet the mechanisms of calcification, in trabecular bone and in calcified
lesions in atherosclerotic calcification, are unclear. Recently, it was shown inin
vitro experiments that vascular-derived mesenchymal stem cells can display self-
organized calcified patterns. These patterns were attributed to activator/inhibitor
dynamics in the style of Turing, with bone morphogenetic protein 2 acting
as an activator, and matrix GLA protein acting as an inhibitor. Motivated by
this qualitative activator–inhibitor dynamics, we employ a prototype Gierer–
Meinhardt model used in the context of activator–inhibitor-based biological
pattern formation. Through a detailed analysis in one and two spatial dimensions,
we explore the pattern formation mechanisms of steady state patterns, including
their dependence on initial conditions. These patterns range from localized holes
to labyrinths and localized peaks, or in other words, from dense to sparse
activator distributions (respectively). We believe that an understanding of the
wide spectrum of activator–inhibitor patterns discussed here is prerequisite
to their biochemical control. The mechanisms of pattern formation suggest
therapeutic strategies applicable to bone formation in atherosclerotic lesions in
arteries (where it is pathological) and to the regeneration of trabecular bone
(recapitulating normal physiological development).

4 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 055002
1367-2630/08/055002+16$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:yochelis@ucla.edu
http://www.njp.org/


2

Contents

1. Introduction 2
2. Activator–inhibitor framework 3

2.1. Dimensionless forms, scaling and parameters choice. . . . . . . . . . . . . . 4
3. Steady-state solutions in 1D 5

3.1. Uniform states and bistability. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Periodic solutions and localized states. . . . . . . . . . . . . . . . . . . . . . 5
3.3. Wavenumber selection in presence of multiple solutions. . . . . . . . . . . . . 11

4. Mechanisms of pattern formation in 2D 12
5. Conclusions 14
Acknowledgments 15
References 15

1. Introduction

Cardiovascular calcification, in atherosclerosis or valvular stenosis, is considered one of the
most notorious cardiac diseases [1]. The initial atherosclerotic lesion is formed as a soft cellular
and fibrous mass (atheroma) growing within the artery wall. A myocardial infarction (‘heart
attack’) occurs when the surface of the atheroma ruptures, exposing proteins that trigger clot
formation in the blood. The clots then occlude the artery, preventing blood flow to the heart
muscle. Little is known about the conditions under which rupture occurs. Indeed, there is
even debate about whether calcium deposits mechanically stabilize or destabilize lesions [1].
Recently, it was argued that ‘spotty’ or ‘speckled’ patterns of calcification carry the greatest
risk for plaque rupture, as opposed to uniform deposits [1]. To advance the understanding of
such pathology it is therefore essential to understand the mechanism determining the patterns
formed by arterial calcification.

Arterial calcification is thought to be a recapitulation of embryonic bone formation by
vascular mesenchymal stem cells (VMSCs) [2], under the control of bone morphogenetic
protein 2 (BMP-2) [3]–[5]. In in vitro experiments, it was shown that cultures of vascular-
derived mesenchymal stem cells differentiate and indeed spontaneously form calcified patterns
out of a cellular monolayer [6]. Importantly, the morphology of the patterns was experimentally
altered by applying external matrix GLA protein (MGP) (see figure1); MGP molecules bind
to active BMP-2, disabling their functionality. Thus they act as inhibitors. Assuming that the
primary calcification mechanism is indeed preceded and governed by the interaction of two
chemical morphogens, it is reasonable to test Turing’s paradigm of morphogenesis to establish
the chemical pre-patterning that shapes the pattern morphology.

Alan Turing, in his seminal work on morphogenesis [7], suggested that the formation of
biological patterns can be understood by means of biochemistry, that is, in the reaction–diffusion
framework. In this scenario, chemicals produced by cells interact as activators or inhibitors, and
diffuse through the medium at distinct rates. This can create a symmetry breaking of the uniform
concentrations, a mechanism that is often called a ‘diffusion-driven instability’ [8]. Since then,
a number of morphogens have been identified [9] and linked to pattern development [6],
[10]–[17]. These results suggest that an understanding of the dynamics of morphogenesis can
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(a)       (b)

Figure 1. (a) A labyrinthine calcified (dark regions) pattern developed in
vascular-derived mesenchymal stem cell culture; bar= 250µm. (b) Spotted
pattern after treatment with 40 nM exogenous MGP, which is an inhibitor of the
activator BMP-2. (After [6].)

give us a relatively simple way to understand and control biological development [16], [18]–
[31].

The Turing approach assumes a decoupling between the biochemical processes and the
biomass. However, the feasibility of the Turing paradigm in physiology faces the obstacle that
the primary Turing instability is linear [32, 33]: the resulting pattern arises spontaneously and
directly from a previously stable homogeneous condition. But the patterns that are typically
observed are atlargedeviations from the critical conditions, and also on timescalesfar from the
initial instability. Consequently, even if an initially homogenous biological system went through
a Turing instability, it is impossible (using conventional methods) to experimentally demonstrate
that fact.

In this paper, we discuss the role of reaction–diffusion mechanisms in promoting the
mineralization patterns seen in VMSCs, as originally suggested in [6]. Using an activator–
inhibitor model equation and analysis of pattern selection in the nonlinear regime, far from any
initial bifurcation, Turing or otherwise, we explain previousin vitro VMSC culture experiments.
Beyond that, we believe that a better description of the pattern formation phenomenon
is prerequisite for biological experiments and future applications to stem cell calcification
phenomena. The paper is organized as follows: in section2, we discuss a model equation. Next,
in section3, we perform a one-dimensional (1D) analysis to obtain the properties of periodic and
localized steady states and discuss the pattern selection in the presence of multiple coexisting
solutions. In section4, we use the latter results and secondary instabilities that operate in 2D to
underline the mechanisms that lead to the formation of 2D patterns. We conclude and discuss
the biomedical applications in section5.

2. Activator–inhibitor framework

The spatiotemporal biochemical activator–inhibitor dynamics in a VMSC culture were
qualitatively modeled as follows: the monolayer of the VMSCs spontaneously expresses BMP-
2 [34, 35] and its inhibitor MGP [36, 37], which diffuses more rapidly than the former [6].
With respect to local kinetics, it is assumed that BMP-2 obeys a saturated autocatalytic
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reaction [38] and directly promotes MGP production in a greater than linear fashion [39]. It
is also assumed that both substances follow a first-order degradation. In addition, BMP-2 has
a chemoattractant property [35] which is responsible for cell migration following the gradients
of BMP-2. However, since: (i) the cell migration occurs at much slower timescales than the
chemical diffusion, (ii) cell proliferation is relatively low [40], and (iii) neither BMP-2 nor
MGP is consumed by the cells, we can neglect, to leading order, other contributions such as
cell density, which indicate contributions of further, albeit minor, spatiotemporal changes of
chemotactic distributions. In this approach, the qualitative spatiotemporal distribution of the
activator, BMP-2, emerges from interaction with the inhibitor, MGP, and thus the motion of the
cells is driven by the active (MGP unbounded) BMP-2 gradients.

Following this description, we represent the active BMP-2 and MGP concentrations by
a(x, y) andh(x, y), respectively. The calcified patterns in VMSCs cultures, developed from a
monolayer in a dish size of the order of centimeters, i.e., implying a large aspect ratio system
(large length vs small height), that is, quasi-2D. An activator–inhibitor model equation of such
dynamics was proposed by Gierer and Meinhardt and has often been used to study biological
pattern formation [29, 41]

∂a

∂t
= Da

(
∂2

∂x2
+

∂2

∂y2

)
a +ρa

a2h−1

1 +q2a2
− µaa + A,

(1)
∂h

∂t
= Dh

(
∂2

∂x2
+

∂2

∂y2

)
h +ρha2

− µhh + H,

where Da, Dh are diffusion constants,ρa, ρh are cross-reaction coefficients,µa, µh are
degradation rates,q is the saturation constant, andA, H are source terms, respectively. We note
that different variants and limits of this system have been discussed, for example, in [20, 26,
28, 30, 31, 42, 43].

2.1. Dimensionless forms, scaling and parameters choice

For our application, we setA = 0 due to the absence of activator source in experiments [6],
and rewrite (1) in a dimensionless form, by introducing dimensionless variablesu = qa,
v = µaqh/ρa, and scalingt , x by µ−1

a ,
√

Dh/µa, respectively:

∂u

∂t
=

u2v−1

1 +u2
− u + D

(
∂2

∂x2
+

∂2

∂y2

)
u,

(2)
∂v

∂t
= Gu2

− Ev + S+

(
∂2

∂x2
+

∂2

∂y2

)
v,

where D ≡ Da/Dh, G ≡ ρh/ρaq, E ≡ µh/µa and S≡ q H/ρa. Biophysical parameter
estimation from VMSC cultures [6] yields D > 0 ∼ O(10−2

− 10−3), E > 1 ∼ O(1), and
G > 0 ∼ O(1). In what follows, we consider equation (2) for the parameter values

D = 0.005, G = 1, E = 2, (3)

with Sas ageneralizedor net inhibition source, allowed to vary.
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3. Steady-state solutions in 1D

3.1. Uniform states and bistability

Equations (2) and (3), admit three uniform solutions, one with trivial activator:

[u0, v0] = [0, S/2], (4)

and two nontrivial

[
u±, v±

]
=

√
θ ±

√
η

2
,

√
θ

(√
θ ±

√
η
)

2− (S− 1)
√

θ ± θ
√

η

 , (5)

where

η ≡ 4/
√

θ +φ, θ ≡ β/3ρ +ρ/3− 2(S+ 1)/3, φ ≡ −θ − 2(S+ 1),

ρ ≡
3

√
α/2 +

√
α2/4− β3, β ≡ 1 + 14S+ S2 and α ≡ 108− 72S(S+ 1) + 2(S+ 1)3.

These three uniform solutions, however, exist only for a certain range of values, 0< S< SSN; in
this range, both(0, v0) and(u+, v+) are stable, defining abistability region, as shown in figure3.
To leading order inS,(

u+

v+

)
−

(
u0

v0

)
∼

(
1−

S
2

0

)
+ O

(
S2

)
. (6)

It is important to note that it is this bistability region, and in particular the large amplitude
variations in theu field that makes possible the interspersed regions of high versus vanishing
cell densities observed in VMSC cultures [6].

3.2. Periodic solutions and localized states

In bistable systems, three primary types of stationary nonuniform solutions often arise
[32, 33, 44]: (i) fronts connecting two uniform states (heteroclinic orbits in 1D physical space);
(ii) periodic spatial patterns, also known as Turing patterns (that are limit cycles in 1D physical
space); and (iii) localized states (homoclinic orbits in 1D physical space),holes or peaks
superimposed on a background of a stable uniform state. The third type of state arises in
systems with spatial reversibility [u(−x), v(−x)] → [u(x), v(x)] [44, 45]. In the following,
we discuss the implications of periodic (ii) and localized (iii) solutions while a more general
relation between solutions of type (i) and type (iii) is discussed in a companion paper [46].

First we address the temporal stability of the uniform states which is associated with
non-uniform perturbations [32](

u
v

)
=

(
u∗

v∗

)
+ ε

(
uk

vk

)
eσ t+ikx + c.c. + O

(
ε2

)
(7)

where(u∗v∗) is either(0, v0) or (u+, v+), σ is the perturbation growth rate,k is the wavenumber,
and c.c. stands for complex conjugate. The linear instability (ε � 1) of each one of the uniform
states, is deduced from the dispersion relations: For(u∗v∗) = (0, v0) the dispersion relations are
given by

σ = −2− k2 (8)
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Figure 2. The growth rates,σ = σ+(k), of periodic perturbations, according to
equation (10). The critical Turing modek = kT ' 4.55, is obtained atS= ST '

0.335 (middle), while other curves correspond to (bottom)S= 0.2 and (top)
S= 0.4.

and

σ = −1− Dk2, (9)

while for (u∗v∗) = (u+, v+), we obtain

σ± =
2u+ − γ+ζ

2v+

2ζ 2v+
±

√
γ 2

−ζv2
+ + 4γ−ζ 2u+v+ − 4u2

+v
2
+

(
2u+ζ 3 − 1

)
2ζ 2v+

, (10)

whereγ± ≡ 2± 1 +(1± D)k2, ζ ≡ 1 +u2
+. Following (8), (9), and (3), the trivial state,(0, v0),

is linearly stable to non-uniform perturbations (σ < 0). On the other hand, the nontrivial
state(u+, v+) exhibits a stationary finite wavenumber instability also known as the Turing
instability [7, 32, 33], i.e., at S= ST ' 0.335 there existsσ(k = kT) = 0, dσ/dkT = 0 and
d2σ/dk2

T < 0, wherekT ' 4.55 is the critical Turing wavenumber, as shown in figure2. For
S> ST, the uniform state(u+, v+) becomes unstable to a continuous band of wavenumbers.

Near the bifurcation onset, here Turing, wavenumber selection can be addressed using a
weakly nonlinear analysis [32, 47]. However, numerical integration of (2) on a large domain
(L � 2π/kT ≡ LT ' 1.38) with either periodic or reflecting boundary conditions, slightly
above ST yields large amplitude periodic patterns, whose amplitudes approach(0, v0) and
(u+, v+). This behavior indicates the presence of a subcritical bifurcation, i.e., the branch of
periodic states should bifurcate first, in directionS< ST. Thus, in our case the weakly nonlinear
analysis will not provide substantial insights into the nonlinear problem of pattern selection.

To understand the pattern selection mechanism, we exploit first the method ofspatial
dynamics[45], which was found to be an effective method exploring the multiplicity of steady
state solutions [44], [48]–[53]. To do so, we set∂tu = ∂tv = 0 and rewrite (2) as a set of four
first-order ordinary equations

∂xu = −h, ∂xh =
1

D

(
u2v−1

1 +u2
− u

)
, ∂xv = −w, ∂xw = Gu2

− Ev + S, (11)
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Figure 3. A bifurcation diagram showing coexisting branches of uniform
solutions,(0, v0), (u±, v±), periodic solutions with distinct periods,L = LT,
L = Lc, and localized solutions in the form of holesH0,π and peaksP. The
solutions are plotted in terms ofN, see equation (12), as a function ofS. All
the solutions were obtained by integration of (11) via AUTO [54] on periodic
domains, and their stability was determined by a numerical eigenvalue method
using (2). Solid lines mark stable portions of the branch; the shaded region
represents the pinning regime of the spatially bounded hole states. TheH0 and
Hπ are branches of bounded states with a respective odd and even number
of holes, each stable branch associated with a distinct number of holes which
increases withN. The location of the saddle node of uniform states(u±, v±) is
indicated byS= SSN. The profiles along the stable portions of each branch agree
with the results of direct numerical integration of (2) with periodic boundary
conditions. (a)–(h) Mark the distinct solutions along the stable and unstable
branches and are presented in figure4.

where space is now treated as a time-like variable. Next, we compute the branches of
steady states that bifurcate from the Turing onset which corresponds, in this specialized
case (equation (11)), to a reversible Hopf bifurcation [45], via a numerical continuation
method [54]. Indeed, the instability of the(u, h, v, w) = (u+, 0, v+, 0) state gives rise to a
subcritical bifurcation of periodic states, accompanied by a subcritical bifurcation of spatial
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Figure 4. (a)–(h) Steady state profiles ofu (solid lines) andv (dashed lines)
computed in periodic domains at locations indicated in figure3. Period length:
LT ≡ 2π/kT ' 1.38, Lc ' 2.34, H0,π = P = 10, wherekT is the Turing mode
obtained atS= ST. We verified that both holes,H0,π , and peaks,P, are indeed
localized solutions by increasing the period toL = 100. Note that (a) marks the
profile on the unstable branch ofLT in vicinity of the Turing bifurcation point.

groups consisting of a finite number of localized hole solutions [46]. Since the bifurcation
is from a nontrivial state, terms ‘beyond all order’ in the asymptotic analysis select only
two families of even parity groups, distinguished by a phase shift ofπ and corresponding,
respectively, to an odd and even number of hole groups [49, 55]. Notably, the simultaneous
bifurcations of both periodic Turing,L = LT, and groups of localized solutions,L → ∞, are
known to arise in variational systems [48]–[52]. The bifurcation diagram of these solutions is
represented in figure3, where we use the norm

N =

√
L−1

∫ L

0
dx

{
u2 + v2 + (∂xu)2 + (∂xv)2

}
, (12)

to distinguish among solutions, whereL is the spatial period.
Consequently, the periodic Turing stateL = LT (see profile (a) in figure4), and the hole

statesH0,π , appear as unstable small amplitude solutions around the uniform(u+, 0, v+, 0) state
and become large amplitude with respect to the activator (profiles (b), (e) and (f) in figure4), at
the first saddle nodes (see figure3). The odd and even hole branches form a pinning region (see
the shaded region in figure3), where higher branches indicate increasing number of holes [46].
In variational systems, these oscillations cause an effective broadening of the Maxwell point
[48]–[52] at which a heteroclinic orbit in space (Pomeau front) between the uniform and
periodic solutions is time independent [56] so that the finite group of bounded holes is a
connection between two heteroclinic orbits in space, i.e. aheteroclinic cycle.

The primary periodic Turing solutionsL = LT, gain stability (also in large periodic
domainsL = nLT, wheren > 1) at the left saddle node, remain stable till the right saddle
node and reconnect to theu = v = 0 state atS= 0, as shown in figure3. However, numerical
integration above the rightmost saddle node, surprisingly, shows that periodic patterns may
still persist. The origin of this behavior can be understood by examination of the secondary
bifurcating wavenumbers. AsS increases beyondST, the (u+, 0, v+, 0) state loses stability
to additional wavenumbers (see figure2). To demonstrate the impact of small wavenumbers
(due to our interest in large domainsL > LT), we have followed only the solution with the
period, L = Lc ' 2.34< 2LT, that bifurcates aroundS= 0.4. We note that there exist an
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infinite number of unstable wavenumbers, which for simplicity are not shown in figure3.
These solutions also bifurcate subcritically and reconnect also to the origin, but unlike the
L = LT solutions, these solutions gain temporal stability after the left saddle node (see figure3).
Notably, all the periodic solutions near the left saddle nodes are an inverse image (with respect to
the activator field) of the solutions (with same period) near the right saddle nodes, that is, hole-
like versus peak-like. The solutions arise first as hole-like states due to the Turing instability
of the uniform nontrivial state(u+, 0, v+, 0). This is demonstrated for the primaryL = LT state,
see profiles (b) and (c) in figure4, respectively. The stable branches form a finite region at which
periodic solutions can form either spontaneously, around(u+, 0, v+, 0) for ST < S< SSN, or by
large amplitude perturbations above(0, v0) for S> SSN (see figure3 for details). We propose
that it is this property that makes possible the chemotactic gradients that control cell migrations
observed in VMSC cultures [6].

As already noted, all the periodic solution branches terminate at the onset of the
transcritical bifurcation,S= 0. The successive structure of the saddle nodes of periodic
solutions aboveS= SSN, suggests that localized peak states, with periodL → ∞, can also
be present. Indeed such homoclinic orbits in space,P, do appear but they do not bifurcate
from the nontrivial branch like the periodic states. Nevertheless, by prolongation of the periodic
solutions’ period in the vicinity ofS= 0, we computed two distinct states, unstable (figure4(g))
and stable (figure4(h)), which biasymptote to(0, 0, v0, 0). However, unlike the possible
multiplicity of the stable groups of hole solutions, only a single peak can stabilize (profile (h) in
figure4) since the double peak solution is unstable (profile (g) in figure4), implying arepulsive
interaction between two neighboring peaks. While the single type of peak has been observed
in numerical integrations of (2) before [41], their origin is unclear due to the linear temporal
stability of the(u, v) = (0, v0) state (see equations (8) and (9)). To address this issue, we explore
the asymptotic approach of peak states to(0, 0, v0, 0), asx → ±∞, which is given by

u
h
v

w

 −


0
0
v0

0

 ∝ eλx, (13)

where the four spatial eigenvalues are real,λ = ±
√

E = ±
√

2 andλ = ±
√

1/D = ±
√

200. In
spatially reversible systems, the formal bifurcation of localized states with monotonic tails can
be either as a small amplitude (spatial) bifurcation from a uniform state [53] or by a nucleation
from a global heteroclinic bifurcation, connecting in space two uniform states [46]; the latter
is absent in this parameter set. In the small amplitude bifurcation case, the four real spatial
eigenvalues at the bifurcation point should correspond to(λ1, λ2, λ3, λ4) = (0, 0, +µ, −µ)

and for S> 0 the situation should read(λ1, λ2, λ3, λ4) = (+ν, −ν, +µ, −µ) [45, 53], where
µ, ν > 0 and real. This scenario allows a transverse intersection of two manifolds: a 2D stable
manifold and 2D unstable manifold, and thus the possible formation of homoclinic orbits (in
space) with monotonic tails. Since the spatial eigenvalues are independent ofS, the localized
P states whose eigenvalues are always of the form(−

√
E, +

√
E, −

√
1/D, +

√
1/D), cannot

formally bifurcate from the trivial(0, 0, v0, 0) state as small amplitude solutions, although their
amplitude atS= 0 is zero, as shown in figure3. This should not come as a surprise since the
bifurcation conditionE → 0, simultaneously requiresS→ 0, due to the blow up of the trivial
state(0, 0, v0, 0), wherev0 = S/E.
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Figure 5. Upper panel: projections of the periodic Turing solution in a phase
portrait u versus∂xv, along (a) stable and (b) unstable branches as depicted
in the bottom panel. The inset in (b) shows the plane as a function of logu,
to emphasize the limit cycle approach towards the fixed point(u, h, v, w) =

(0, 0, v0, 0) asS→ 0.

To qualitatively understand the peculiar connection between the periodic states and the
origin of localized peaks atS= 0, we use a projection of the 4D phase space on to the 2D
subspaceu versus∂xv [45, 51]. As already mentioned, in this phase space the periodic states are
limit cycles; in the following we discuss onlyL = LT. This limit cycle persists aboveS= SSN,
and in the absence of uniform states bistability approaches the(0, 0, v0, 0) state asS is increased
(see figure5(a)). At the rightmost saddle node, the limit cycle within numerical precision crosses
the trivial state(0, 0, v0, 0), however, the formation of a heteroclinic bifurcation between the
periodic and the trivial state is impossible due to the real forms of the spatial eigenvalues
[45, 46, 49]. This behavior, on the other hand, implies a transition to a homoclinic orbitP to the
fixed point(0, 0, v0, 0). However, without the existence of a heteroclinic bifurcation between the
two uniform states [46] a different mechanism should be considered for this special situation
in which no distinction between two orbits can be made. This happens exactly atS= 0, where
uniform, periodic and peak states are simply zero; figure5(b) shows the vanishing amplitude
of the periodic state. Therefore, the transcritical bifurcation of uniform states also serves as an
effective bifurcation point for the localized peak solutions and a reason for termination of the
periodic states, as demonstrated in figure3.
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3.3. Wavenumber selection in presence of multiple solutions

As has been described, the nonlinear regime exhibits the coexistence of multiple stable
solutions, making it hard to foresee the wavenumber selection and the sensitivity to initial
conditions; both determine the basin of attraction of the final states. To understand the
mechanism, we focus here on three regions distinguished by coexisting solutions (see figure3):
(A) bounded holes and periodic states; (B) periodic states; and (C) periodic and isolated peak
states.

Since in the pinning region (A), fronts between localized and periodic solutions are
stationary, we refer the reader to [49], and discuss in the following only regions (B) and (C).
In the linearly unstable regimeST < S< SSN, infinitesimal random perturbations around the
(u+, v+) state grow and form periodic patterns with periodicityL = LT, due to the fastest growth
of the critical Turing mode. However, other initial conditions give different results. In both
regions (B) and (C), a finite-amplitude spatially nonuniform initial condition that, for example,
features two different length scales in two parts of the domain results in relaxation by phase
diffusion [57, 58]: the asymptotic periodicity is acompromisevalue between two initial periodic
states, implying dispersion of the front separating two domains with different periodicities rather
than invasion or phase slips, see figure6. When we initiated a domain with two different stable
solutions coexisting in regions (B) and (C), it then evolved into a single final pattern, whose
length scales were intermediate, which are also stable solutions of (2) (figures6(a) and (b),
respectively).
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Figure 7. A diagram showing the instabilities and the corresponding patterns
forms as a function ofS, where ‘zigzag’ corresponds to instability of
stripes while ‘curvature’ is used in the context of spots; both instabilities
lead to formation of labyrinthine-type patterns. The distinct instabilities are
respectively demonstrated in figure8. The 2D patterns were obtained via
numerical integration of (2) with periodic boundary conditions on ax = y =

[0, 15] physical domain; dark regions correspond to higher values of the
u field. Labyrinthine patterns (a) were generated from infinitesimal random
perturbations around(u+, v+), and used as initial conditions for (b)–(g). The
spotted patterns (e)–(g) are not asymptotic; they are shown fort = 3000. The
repulsive interactions between the peak spots in (e) and (f) are very weak;
however, the final state eventually approaches hexagonal symmetry, while in (g)
there is deformation towards hole clusters rather than to hexagonal symmetry.
Localized patterns (h) and (i) are examples of the pinning phenomenon that
persist in 2D. Parameters: (a)S= 0.35, (b)S= 0.53, (c)S= 0.2, (d) S= 0.58,
(e) S= 0.62, (f) S= 0.69, (g)–(i)S= 0.1.

4. Mechanisms of pattern formation in 2D

It is well known that reaction–diffusion systems can exhibit transverse and curvature-induced
instabilities in 2D [32, 33, 59], so that labyrinthine or spotted patterns can form, respectively,
through secondary zigzag or varicose instabilities of stripes [60] or through a transverse
instability of axisymmetric spots [61]. Thus, we have performed an extended numerical
investigation to obtain the secondary pattern formation mechanisms of the diverse patterns.
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(a)

(d) (e) (f)(c)

(b)

Figure 8. Numerical integration of (2) on a 2D domain,x = y = [0, 10], with
periodic boundaries; dark regions correspond to higher values of theu field.
(a) Zigzag instabilities of an initial stripe state withL = Lc ' 2.34, times from
left to right: t = 0, 828. (b) Varicose (breakup) instability of a localized stripe,
times from left to right:t = 0, 400. (d) and (e) Instability and (f) stability of an
initial (slightly perturbed) axisymmetric localized spot (c); frames (d) and (e) are
transients. Parameters: (a)S= 0.35, (b)S= 0.67, (c) initial condition of isolated
spot, (d)S= 0.5 att = 120, (e)S= 0.55 att = 2000, (f)S= 0.6 att = 3000.

First, we have numerically calculated the regions of zigzag, varicose and curvature
instabilities of periodic stripes, isolated stripes and isolated spots, respectively. The distinct
instability types and their ranges indicated in figure7 and respectively shown in figure8. We
have exploited the 1D periodic and localized solutions obtained above to construct the respective
periodic (figure8(a)) and isolated stripe (figure8(a)) solutions in 2D while the spot (figure8(c))
solutions were obtained by a relaxation from an axisymmetric construction based on the initial
localized peak or hole state size. We do not show the transient evolutions from spots toward
labyrinthine patterns in the regimeST < S< SSN, and refer the reader to discussions of similar
phenomena in the context of isolated stripes [28] and isolated spots [61].

One of the primary interests in the experimental context is the control of the chemical pre-
pattern under various concentrations of the inhibitor source. Thus, to demonstrate the effect of
these instabilities on the asymptotic pattern formation, we have at first integrated equation (2) in
2D above the Turing onset, starting from infinitesimal random perturbations around the uniform
(u+, v+) state; as expected due to the zigzag instability (see figure8(a)), a labyrinthine pattern
was formed (see inset (a) in figure7). Next, we used this pattern as an initial state for other
values ofS, the results are shown in insets (b)–(g) in figure7. The domain of labyrinthine-type
patterns ranges from the bistability onset atS= SSN (inset (b) in figure7) to the 2D pinning
region (inset (c) in figure7); however only forST < S< SSN do they form spontaneously, due to
the Turing instability of the uniform(u+, v+) state. In a small region aboveSSN, single spots of
peak type are still unstable (see figure8(e)), so that straight stripe fragments may form. In the
case of initial labyrinthine pattern (inset (a) in figure7), this lead to the formation of periodic
states consisting of both spots and stripe fragments (inset (d) in figure7).

As a single spot stabilizes (see figure8(f)), the pattern becomes ultimately spotted.
However, according to figure3, the pattern may admit distinct periodicities under other initial
conditions; direct numerical 2D computations support this prediction, as insets (e) and (f)
in figure 7 show. We note that both states (e) and (f) are not asymptotic and approach
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asymptotically to a hexagonal symmetry, however, since the interaction between localized
states is weakly repulsive, this process is very slow. For smallS values (i.e. in the 2D pinning
region [62, 63]), we obtain an image inverse to peak spots, that is, distributedhole spots(inset
(g) in figure7). In the absence of repulsive interactions between neighboring holes, see insets
(h) and (i) in figure7, the hole spots support coexistingclusters, as shown in inset (g) in figure7.

5. Conclusions

In this paper, we theoretically studied the mechanisms of pattern formation that give rise to
many steady state patterns in a biologically oriented activator–inhibitor model [29, 41]. We
chose a version with an inhibition source term, and a saturated autocatalytic local kinetics. These
resulted in a bistability regime of uniform solutions, distinguished by finite and zero activator
concentrations (see equation (6)). While different forms of the Gierer–Meinhardt model have
been studied, and a number of interesting qualitative phenomena have been found [20, 26, 28,
30, 42], we present here a generalized and detailed view of the multiple periodic and localized
states that occur in this model, as well as their basins of attraction. In particular, we show
that the majority of patterns for high inhibitor source values form subcritically, that is, by
finite amplitude perturbations above the trivial state(0, v0), as shown in figures3 and7. First,
we exploited the powerful tool of spatial dynamics coupled with numerical continuation, and
incorporated with temporal stability, to identify the primary instabilities and the possible stable
and unstable 1D solution branches as a function of the inhibition source,S (see figure3). We
used this analysis to calculate the secondary instabilities and the parameter regions in which 2D
patterns, such as labyrinths, mixtures of spots and stripe fragments, and bounded versus isolated
spots, can form (see figure7). The knowledge of the nonlinear pattern selection mechanismsfar
from the Turing onset is therefore an important missing link in the context of robustness and
pattern control, which up to now was considered as one of the weak points of the activator–
inhibitor approach in biological pattern formation [64].

The qualitative form of the model, and in particular the parameter values, were made
to keep fidelity with our main application, which is the formation of calcified patterns by
vascular mesenchymal stem cells (VMSCs) [6]. These are the cells that are thought to form
bone in atherosclerotic tissue, the primary process that has been linked to atherosclerotic
calcification [2]. The approach we employ is associated with the primary symmetry breaking
mechanism of a cellular monolayer. This assumption is justified by the fact that cells do
not consume the morphogens, allowing a qualitative decoupling between the biochemistry
and the biomass. Thus, we have excluded from this model any higher order contributions,
such as the contributions of changing cell densities, which may support chemotaxis-based
mechanisms [30]. Within these lines, cell density is expected to have a minor role in the initial
qualitative pattern selection, and only quantitatively modify the pattern architecture at later time
stages. The extension of the Gierer–Meinhardt model to include the contributions of cell density
is beyond the scope of this paper, and will be discussed elsewhere.

Importantly, a spontaneous formation of labyrinthine and spotted patterns (with roughly
hexagonal symmetry) has indeed been observed inin vitro experiments in VMSC preparations,
as shown in figure1, and discussed in more detail in [6]. In these experiments, the inhibition
source was altered by external addition of MGP, the inhibitor of the activator BMP-2. As in
our analysis, labyrinthine patterns have been found at lower concentrations of added MGP
(corresponding to lowerSvalues) while at higher MGP concentrations (corresponding to higher
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S values) periodic spotted patterns were developed. The good qualitative agreement between
the theoretical analysis and the experimental observations suggests a novel strategy for the
biochemical control of calcified patterns, via the framework of activator–inhibitor dynamics.

There are several potential applications of this strategy. First, as noted above, the spotted
patterns of calcification seen in culture dishes are considered a good model for the formation of
spotty atherosclerotic calcification in humans [1]. If these calcified deposits become confluent,
it has been conjectured that the resulting solid mass is expected to mechanically stabilize the
adjacent lesion, while if the calcification remains ‘spotty’, there is an increased risk of rupture
and myocardial infarction [1]. We believe that the theoretical prediction of patterns will shed
light on design of future experiments and allow also identification of the proper biochemical
conditions for spot nucleation phenomenon (peak states), which according to the theory cannot
be observed spontaneously and require specific initial conditions.

A second application is to the formation of bone tissue (by the same types of cells).
Trabecular bone has a dense labyrinthine and hole architecture, presumably formed by the same
morphogenetic processes, so our analysis may also be relevant to biochemical-based methods
of bone regeneration.
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