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Cardiac Arrhythmias Depend Sensitively on Inhomogeneities in Ventricular Tissue
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Every sixth death in industrialised countries occurs because of cardiac arrhythmias like ventricular
tachycardia (VT) and ventricular fibrillation (VF). There is growing consensus that VT is associated
with an unbroken spiral wave of electrical activation on cardiac tissue but VF with broken waves,
spiral turbulence, spatiotemporal chaos and rapid, irregular activation. Thus spiral-wave activity
in cardiac tissue has been studied extensively. Nevertheless many aspects of such spiral dynamics
remain elusive because of the intrinsically high-dimensional nature of the cardiac-dynamical system.
In particular, the role of tissue heterogeneities in the stability of cardiac spiral waves is still being
investigated. Experiments with conduction blocks in cardiac tissue yield a variety of results: some
suggest that blocks can eliminate VF partially or completely, leading to VT or quiescence, but
others show that VF is unaffected by obstacles. We propose theoretically that this variety of results
is a natural manifestation of a fractal boundary that must separate the basins of the attractors
associated, respectively, with VF and VT. We substantiate this with extensive numerical studies of
Panfilov and Luo-Rudy I models, where we show that the suppression of VF depends sensitively
on the position, size, shape, and nature of the inhomogeneity. We discuss possible implications for
optimal anti-tachycardia-pacing and defibrillation schemes and for the recent experiments of Hwang
et al.

PACS numbers:

I. INTRODUCTION

The challenge of understanding the dynamics of spi-
ral waves in excitable media is especially important in
cardiac tissue where such waves are implicated in life-
threatening arrhythmias such as ventricular tachycardia
(VT) and ventricular fibrillation (VF)[1, 2, 3, 4, 5, 6, 7]
. Anatomical obstacles, e.g., conduction inhomogeneities
in cardiac tissue, and functional obstacles, which result
from wave propagation, are crucial for the initiation of
VT (a single rotating spiral wave) and the initiation
and maintenance of VF (spiral turbulence with broken
waves). But the precise ways in which spiral waves are af-
fected by obstacles in ventricular tissue is still not clear[8]
. It was thought that spirals form when waves circu-
late around an anatomical obstacle. However, Allesie
et al [9] have shown that spiral-wave formation can oc-
cur with a functionally determined heterogeneity in the
tissue. The interaction of such a wave with an anatom-
ical obstacle can be quite complex especially in the spa-
tiotemporally chaotic state associated with spiral turbu-
lence and VF. Indeed, experiments with obstacles in car-
diac tissue have yielded a variety of results. For example,
some experiments[10, 11] report that small obstacles do
not affect spiral waves but, as the size of the obstacle
is increased, such a wave can get pinned to the obstacle.
Davidenko et al [12] found that, in one case, an artificially
induced spiral wave moved away from their cardiac-tissue
preparation because of an obstacle. By contrast, other
studies have shown [13, 14, 15, 16, 17, 18] that an ob-
stacle, in the path of a moving spiral wave, can break
it and lead to many competing spiral waves. Recent ex-
periments by Hwang et al [19] have suggested that mul-

tistability of spirals with different periods in the same
cardiac-tissue preparation can arise because of the inter-
action of spiral tips with small-scale inhomogeneities.

Conduction inhomogeneities include scar tissues, from
an infarction, or major blood vessels. Some theoreti-
cal studies of the effects of tissue inhomogeneities have
been carried out by using model equations for cardiac tis-
sue; however, they have not addressed the issues we con-
centrate on. The interaction of an excitation wave with
piecewise linear obstacles has been studied by Starobin
et al [20] to understand the role of obstacle curvature in
the pinning of such waves. Xie et al [21] have consid-
ered spiral waves around a circular obstacle and given a
plausible connection of the VT-VF transition to the size
of the obstacle. Tusscher et al [22] have shown that a
high concentration of randomly distributed non-excitable
cells can suppress spiral break up. Conduction inhomo-
geneities can also play a very important role in pacing
termination of cardiac arrhythmias [23]; in particular, it
is easy to remove a spiral wave once it is pinned to an
obstacle[24, 25].

Here we initiate a study that has been designed specif-
ically to systematize the effects of conduction inhomo-
geneities in mathematical models for cardiac arrhyth-
mias. Our work shows clearly that VF can be suppressed
or not suppressed by obstacles of different shapes and
sizes depending on where they are placed. As we argue
below, this sensitive dependence on the sizes, shapes, and
positions of obstacles must be a manifestation of a fractal
basin boundary [26, 27] between the domains of attrac-
tion of VF and VT. We also show that inhomogeneities
in parameters, which govern ratios of time scales, lead to
similar results and provide a way of understanding the
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experimental results of Hwang, et al. We describe the
models we use and our our numerical methods in Section
II. Section III contains our results; and we end with a
discussion in Section IV.

II. MODELS AND NUMERICAL METHODS

We use the Panfilov [28, 29] and Luo-Rudy I [30, 31]
models for cardiac tissue in our studies; the former is
well suited for extensive numerical studies because of its
relative simplicity; the latter, being realistic, allows us to
check that the results we obtain are qualitatively correct
and not artifacts of the Panfilov model.

The Panfilov model [28, 29] consists of two coupled
partial differential equations (PDEs) that specify the spa-
tiotemporal evolution of the transmembrane potential V
(denoted by e in Refs. [28, 29]) and the membrane con-
ductance g, into which this model lumps all the effects of
separate ion channels:

∂V /∂t = ∇2V − f(V ) − g;

∂g/∂t = ǫ(V, g)(ke − g). (1)

The initiation of action potential is encoded in f(V ),
which is piecewise linear: f(V ) = C1V , for V < e1,
f(V ) = −C2V + a, for e1 ≤ V ≤ e2, and f(V ) =
C3(V −1), for V > e2. The physically appropriate param-
eters given in Refs. [28, 29] are e1 = 0.0026, e2 = 0.837,
C1 = 20, C2 = 3, C3 = 15, a = 0.06 and k = 3. The
function ǫ(V, g) determines the dynamics of the recovery
variable: ǫ(V, g) = ǫ1 for V < e2, ǫ(V, g) = ǫ2 for V > e2,
and ǫ(V, g) = ǫ3 for V < e1 and g < g1 with g1 = 1.8,
ǫ1 = 0.01, ǫ2 = 1.0, and ǫ3 = 0.3. As in Refs. [28, 29], we
define dimensioned time T to be 5 ms times dimension-
less time and 1 spatial unit to be 1 mm. The dimensioned
value of the conductivity constant is 2 cm2/s.

In spite of its simplicity, relative to the Luo-Rudy
I (LRI) model described below, the Panfilov model
has been shown to capture several essential features
of the spatiotemporal evolution of V in cardiac tissue
[28, 29, 32, 33]. To make sure that the qualitative fea-
tures we find are not artifacts of the Panfilov model we
show, explicitly in illustrative cases, that they also occur
in the realistic Luo-Rudy I model, which is based on the
Hodgkin-Huxley formalism and takes into account the
details of 6 ionic currents (e.g., Na+, K+, and Ca2+) and
9 gate variables for the voltage-gated ion channels that
regulate the flow of ions across the membrane [22]. The
concentration difference of the ions, inside and outside
the cell, induces a potential difference of approximately
-84 mV across the cell membrane in the quiescent state.
Stimuli, which raise the potential across the cell mem-
brane above -60 mV, change the conductivity of the ion
channels and yield an action potential that lasts for about
200 ms. Once an action potential is initiated there is a
refractory period during which the same stimulus cannot
lead to further excitation. Single cells in the Luo-Rudy

model are coupled diffusively; thus one must solve a PDE
for the transmembrane potential V ; the time evolution
and V dependence of the currents in this PDE are given
by 7 coupled ordinary differential equations [30, 31] which
we give in the Appendix.

We integrate the Panfilov model PDEs in d spatial
dimensions by using the forward-Euler method in time
t, with a time step δt = 0.022, and a finite-difference
method in space, with step size δx = 0.5 and five-point
and seven-point stencils, respectively, for the Laplacian
in d=2 and d=3. Our spatial grids consist of square
or simple-cubic lattices with side L mm, i.e., (2L)d grid
points; we have used L=200 and L= 400. Similarly for
the LRI model PDEs we use a forward-Euler method for
time integration, with δt = 0.01 ms, a finite-difference
method in space, with δx = 0.0225 cm, and a square
simulation domain with 400 × 400 grid points. We
have checked in representative simulations on somewhat
smaller domains that a Crank-Nicholson scheme yields
results in agreement with the numerical scheme described
above.

For both models we use no-flux (Neumann) boundary
conditions on the edges of our simulation domain. We
introduce conduction inhomogeneities in the medium by
setting the diffusion constant D equal to zero in regions
with obstacles; in all other parts of the simulation domain
D is a nonzero constant. The dimensioned value of D is 2
cm2/s for the Panfilov model and between 0.5 cm2/s and
1 cm2/s for the LRI model; we use D=0.5 cm2/s in the
LRI simulations we report here . In most of our studies
the inhomogeneity is taken to be a square region of side
l , with 10 mm ≤ l ≤ 40 mm; however, we have also
carried out illustrative simulations with circular or irreg-
ularly shaped inhomogeneities. In our three-dimensional
simulations we use a cylindrical obstacle with radius 20
mm, and thickness 2 mm, i.e., 40 and 4 grid points, re-
spectively. We also study inhomogeneities in which ǫ1
in model (1) varies over the simulation domain but D is
constant.

The initial conditions we use are such that, in the ab-
sence of inhomogeneities, they lead to a state that dis-
plays spatiotemporal chaos and spiral turbulence. For
the Panfilov model we start with a broken-wavefront ini-
tial condition. From this a spiral wave develops with a
core in the centre of the simulation domain and, in the
absence of inhomogeneities, evolves to a state with bro-
ken spiral waves and turbulence (Fig. 1A). For the LRI
model we start from the initial condition shown in Fig.
2A which develops, without an obstacle, into the spiral-
turbulent state shown in Fig. 2B.

III. RESULTS

Cardiac tissue can have conduction blocks at vari-
ous length scales. Even minute changes in cell or gap-
junctional densities might act as conduction blocks [19];
these are of the order of microns. Scar tissues or blood
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FIG. 1: Panfilov-model spiral turbulence (ST): Transmembrane potentials for two dimension (pseudo-greyscale plots
A-F) and three dimension (isosurface plots G and H). Two-dimensions:400 ×400 domain and an 80 × 80 square obstacle with
left-bottom corner at (x, y). (A) no obstacle -ST; (B) (x = 280, y = 300) ST persists; (c) (x = 300, y = 280) ST replaced
by RS (one rotating anchored spiral); (D) (x = 280, y = 280) spiral moves away (medium quiescent). A circular obstacle of
radius 40 grid points centered at (x, y); a cross indicates the centre of the circle and the length of its arms equal the radius of
the obstacle: (E)(x = 240, y = 240) RS and (F) (x = 260, y = 240) spiral at 800 ms; after another 400 ms the spiral it moves
away from the medium. Three-dimensional analogs of (B) and (C): (400× 400× 8) domain; cylindrical obstacle of height 4 and
radius 40 grid points at (G) (x = 220, y = 260, z = 0) and (H) (x = 280, y = 280, z = 0).

vessels can lead to much bigger blocks; these are in the
mm to cm range so they can be studied effectively by
using the PDEs mentioned above. Here we focus on such
large obstacles. As in the experiments of Ikeda et al
[10], we fix the position of the obstacle and study spiral-
wave dynamics as a function of the obstacle size. For
this we introduce a square obstacle of side l in the two-
dimensional (d = 2) Panfilov model in a square simula-
tion domain with side L=200 mm. We find that, with
the bottom-left corner of the obstacle at the point (50
mm, 100 mm), spiral turbulence (ST) persists if l < 40
mm, a quiescent state (Q) with no spirals is obtained if
l= 40mm, and a state with a single rotating spiral (RS)
anchored at the obstacle is obtained if l > 40 mm. Hence
there is a clear transition from spiral turbulence to stable
spirals, with these two states separated by a state with
no spirals.

The final state of the system depends not just on the
size of the obstacle but also on how it is placed with
respect to the tip of the spiral. In our simulations we
find, e.g., that even a small obstacle, placed close to the
spiral tip [l=10 mm obstacle placed at (100 mm, 100
mm)], can prevent the spiral from breaking up, whereas
a bigger obstacle, placed far away from the tip [l= 75 mm,
placed at (125 mm, 50 mm)],does not affect the spiral.

To understand in detail how the position of the obsta-
cle changes the final state, we now present the results of
our extensive simulations for the d = 2 Panfilov model in

a square domain with side 200 mm, i.e., 400 × 400 grid
points, and with a square obstacle of side l=40 mm. Fig-
ure 3A shows our simulation domain divided into small
squares of side lp grid points (lp=30 in Fig. 3A). The
color of each small square indicates the final state of the
system when the position of the lower-left corner of the
obstacle coincides with that of the small square: white,
black, and gray indicate, respectively, ST, RS, and Q.
In Figs. 3B and 3C we show the rich, fractal-like struc-
ture of the interfaces between the ST, RS, and Q regions
by zooming in successively on small subdomains encom-
passing sections of these interfaces (white boundaries in
Figs. 3A and 3B) and reducing the sizes of the small
squares into which we divide the subdomain. Clearly
very small changes in the position of the obstacle can
change the state of the system from ST to Q or RS, i.e.,
the spatiotemporal evolution of the transmembrane po-
tential depends very sensitively on the position of the
obstacle.

The time series of the transmembrane potential
V (x, y, t) taken from a representative point (x, y) in
the simulation domain illustrates the changes that occur
when one moves from the ST to the RS regime in Fig.
3. Such time series are shown in Fig. 4. For example,
when the obstacle is placed with its bottom-left corner at
(115 mm, 120 mm), the system is in the spiral-turbulent
state ST. The time series of V from the point (51 mm,
50 mm) clearly shows nonperiodic, chaotic behavior. The
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FIG. 2: Luo-Rudy-Model spiral turbulence: Pseudo-greyscale plots in a 400 × 400 domain illustrating how the initial
condition (A) evolves, in the absence of obstacles, to (B) via the generation of spiral waves and their subsequent breakup. In
the presence of a square obstacle of side l placed with its bottom-left corner at (x, y) we obtain the following: (C)l=80 and
(x = 200, y = 200) ST persists; (D)l=100 and (x = 280, y = 280) RS (one spiral anchored at the obstacle); for l=80 and
(x = 140, y = 220) spirals disappear leaving the medium quiescent (E) at 500 ms and (F) at 900 ms.

200 400

200

400 A

220 260

260

300 B

220 240

260

280
C

FIG. 3: Panfilov-model stability diagram: The effect of an 80 × 80 obstacle in a 400 × 400 domain shown by small
squares (side lp) the colors of which indicate the final state of the system when the position of the bottom-left corner of the
obstacle coincides with that of the small square (white, black, and gray denote ST, RS, and Q, respectively). (A) for lp=20.
We get the fractal-like structure of the interfaces between ST, RS, and Q by zooming in on small subdomains encompassing
parts of these interfaces (white boundaries in A and B with (B) lp=10 and (C) lp=5.

times between 9 successive spikes in such time series, or
interbeat intervals (IBI), are plotted versus the integers
n, which label the spikes, in Fig. 4B; this also shows the
chaotic nature of the state ST. Figure 4C shows the power
spectrum E(ω) of the time series in Fig. 4A; the broad-
band nature of this power spectrum provides additional
evidence for the chaotic character of ST. By combining

Figs. 4A-4C with the pseudo-greyscale plots of Figs. 1A
and 1B we conclude that ST is not merely chaotic but
exhibits spatiotemporal chaos.

If we change the position of the obstacle slightly and
move it such that its left-bottom corner is at the position
(117.5 mm, 120 mm), the spiral eventually gets attached
to the obstacle. For this case the analogs of Figs. 4A-4C
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FIG. 4: The local time series, interbeat interval IBI, and power spectrum of the transmembrane potential V (x, y, t) at a
representative point (x, y) in the tissue. When the obstacle is at (115 mm,120 mm) a spiral turbulent state ST is obtained with
the time series (A), and interbeat interval (B)showing non-periodic chaotic behavior and a broad-band power spectrum (C).
However, with the bottom-left corner of the obstacle at (117.5 mm,120 mm), the spiral wave gets attached to the obstacle after
9 rotations (≃ 2000 ms); this is reflected in the time series (D) and the plot of the interbeat interval(E); after transients the
latter settles on to a constant value of 356 ms; the power spectrum (F) shows discrete peaks with a fundamental frequency ωf

= 10.019 Hz and its harmonics.

are shown, respectively, in Figs. 4D-4F. From the time
series of Fig. 4D we see that the transmembrane poten-
tial displays some chaotic transients up to about 2000
ms but then it settles into periodic behavior. This is also
mirrored in the plot of IBI versus n in Fig. 4E in which
the transients asymptote to a constant value for the IBI
(356 ms) which is characteristic of periodic spikes. Not
surprisingly, the corresponding power spectrum in Fig.
4F consists of discrete spikes at frequencies ωm = mωf ,
where m is a positive integer and ωf is the fundamental
frequency (ωf = 10.019 Hz). A simple rotating spiral
anchored at the obstacle (Fig. 1C) will clearly result in
such a periodic time series in the state RS.

We do not show the analogs of Figs. 4A-4C for the qui-
escent state Q since the transmembrane potential V just
goes to zero after an initial period of chaotic transients.
The durations for which the chaotic transients last, say
in Fig. 4D, vary greatly depending on the position of the
obstacle relative to the spiral tip. We have seen transient
times ranging from 300 ms to 2000 ms in our simulations.

We obtain similar results for the three-dimensional
Panfilov and the two-dimensional Luo-Rudy I models:
Illustrative pictures from our simulations of spiral turbu-
lence (ST) and a single rotating spiral (RS) anchored at
the obstacle are shown in Figs. 1 and 2, respectively.
From these and similar figures we note that the final

state, ST, RS, or Q, depends not only on the size of the
obstacle but also on its position. Obstacles of different
shapes, e.g., circles, irregular shapes, and two squares
separated from each other, lead to similar results (see
www.physics.iisc.ernet.in/~rahul/movies.html for
representative movies of our simulations).

We have also tried to see whether our simulations of
the Panfilov model with conduction inhomogeneities can
lead to the sort of multistability seen in the experiments
of Hwang et al [19]. They have obtained time series and
interbeat intervals of the types shown in Fig. 4. In some
cases a periodic time series (as in Fig. 4D) undergoes fur-
ther period doubling or tripling. Hwang et al attribute
this to the interaction of the spiral wave with two closely
spaced obstacles. We have used various closely spaced ob-
stacles in our simulation but have never seen such spon-
taneous period doubling or tripling. We have therefore
explored the effects inhomogeneities in parameters such
as ǫ1 in Eq. (1), which is the ratio of time scales of fast
and slow variables during the upstroke of the action po-
tential.

In a homogeneous simulation domain (of size say 200
× 200 mm2) values of ǫ1 > 0.03 produce a single period-
ically rotating spiral. As ǫ1 is lowered, e.g., if ǫ1 < 0.02,
quasiperiodic behavior is seen; this is associated with the
meandering of the tip of a simple rotating spiral. Even
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FIG. 5: Inhomogeneities in ǫ1 : Inhomogeneities in the parameter ǫ1 result in the coexistence of different types of spa-
tiotemporal behavior in the same system. With ǫout

1 =0.01 and ǫin
1 =0.02 (see text), we obtain spatiotemporal chaos outside

the inhomogeneity but quasiperiodic behavior inside it (A); the latter is illustrated by the power spectrum of V (x, y, t) with
discrete peaks (B) and the former by a broad-band power spectrum (C). With ǫout

1 =0.03 and ǫin
1 =0.01 and the left-bottom

corner of the inhomogeneity placed at (x=140 mm, y=140 mm), single and broken spiral waves coexist in same medium (D),
whereas, with the inhomogeneity at (x=60 mm, y=50 mm), a single rotating spiral gets anchored to the inhomogeneity (E, F)
with quasiperiodic behavior illustrated by the interbeat interval (G) and the power spectrum (H). The power spectrum (H)
shows five frequencies (4.06, 5.56, 6.57, 7.05, 8.58, and 9.07 Hz) not rationally related to each other.

lower values of ǫ1, say ǫ1 = 0.01 that we have used above,
lead to spatiotemporal chaos. We now consider an inho-
mogeneous simulation domain in which all parameters
in the model except ǫ1 remain constant over the whole
simulation domain. We then introduce a square inhomo-
geneity inside which ǫ1 assumes the value ǫin

1 and outside
which it has the value ǫout

1 . Different choices of ǫin
1 and

ǫout
1 lead to the interesting behaviors we summarise be-

low.

With a square patch of size 40 × 40 mm2, ǫin
1 = 0.02,

and ǫout
1 = 0.01, a spatiotemporally chaotic state is ob-

tained for most positions of this inhomogeneity. But
there are certain critical positions of this inhomogene-
ity for which all spirals are completely eliminated (e.g.,
when the left-bottom corner of the inhomogeneity is at
x=70 mm, y=120 mm the spiral moves out of the sim-
ulation domain). For yet other positions of the inhomo-
geneity, spatiotemporal chaos is obtained outside the in-
homogeneity but inside it quasiperiodic behavior is seen
(Figs. 5A-5C). However, with ǫin

1 = 0.01 and ǫout
1 = 0.03,

spiral breakup occurs inside the inhomogeneity and coex-
ists with unbroken periodic spiral waves outside it (Fig.
5D), as previously noted by Xie et al [34]. Even in this
case, for certain positions of the inhomogeneity, a single
spiral wave gets anchored to it (Figs. 5E, 5F) as in the

case of a conduction inhomogeneity (Fig. 1C). However,
the temporal evolution of V at a representative point in
Fig. 5E is richer than it is in Fig. 1C: V (x, y, t), with
x=51 and y=50, displays the interbeat interval of Fig.
5G; the associated power spectrum shows five fundamen-
tal frequencies, not rationally related to each other, and
their combinations; this indicates strong quasiperiodicity
of V (x, y, t). Thus inhomogeneities in parameters such as
ǫ1 might well be the cause of the rich time series seen in
the experiments of Hwang et al [19]. They see inter-beat
intervals similar to those in Fig. 5G ; however, they have
not looked at the associated power spectrum.

IV. DISCUSSION

We have carried out the most extensive and detailed
study of the effects of the positions, sizes, shapes, and
natures of inhomogeneities on spiral turbulence and spa-
tiotemporal chaos in mathematical models of cardiac tis-
sue. Two important questions arise from our work: (1)
What causes the sensitive dependence of such spiral tur-
bulence on the positions, sizes, and shapes of conduction
inhomogeneities? (2) What are the implications of our
theoretical study for cardiac arrhythmias and their con-
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trol? We discuss both these questions below.

Spiral turbulence (ST) and a single rotating spiral (RS)
in our models are like VF and VT, respectively, so the im-
plications of our study for cardiac arrhythmias are strik-
ing. In particular, such cardiac arrhythmias, like their
ST and RS analogs in the Panfilov and Luo-Rudy I mod-
els, must depend sensitively on the positions, sizes, and
shapes of conduction inhomogeneities. Furthermore, our
work indicates that this is a natural consequence of the
spatiotemporal chaos associated with spiral turbulence
[32, 35] in these models: Even for much simpler, low-
dimensional dynamical systems it is often the case that
a fractal basin boundary [26, 27] separates the basin of
attraction of a strange attractor from the basin of attrac-
tion of a fixed point or limit cycle; thus a small change in
the initial condition can lead either to chaos, associated
with the strange attractor, or to the simple dynamical
behaviors associated with fixed points or limit cycles.

The PDEs we consider here are infinite-dimensional
dynamical systems; the complete basin boundaries for
these are not easy to determine; however, it is reasonable
to assume that fractal boundaries separate the basins of
attraction of spatiotemporally chaotic states (e.g., ST)
and those with simpler behaviors (e.g., RS or Q). Here we
do not change the initial condition; instead we change the
dynamical system slightly by moving the position, size,
or shape of a conduction inhomogeneity. This too affects
the long-time evolution of the system as sensitively as
does a change in the initial conditions.

In particular, our work elucidates how, by changing
the position of a conduction inhomogeneity, we may con-
vert VF to VT or vice versa as depicted graphically in
Figs. 3 and 4. Even more exciting is the possibility
that, at the boundary between these two types of be-
havior (Fig. 3), we can find the quiescent state Q. Thus
our study obtains all the possible qualitative behaviors
found in experiments, namely, (1) VF might persist even
in the presence of an obstacle, (2) it might be suppressed
partially and become VT, or (3) it might be eliminated
completely.

Our work on inhomogeneities in the parameter ǫ1 in
the Panfilov model illustrates the complex way in which
the spatiotemporal evolution of the transmembrane po-
tential depends on the properties of this model for car-
diac tissue. In particular, the way in which a single spiral
wave gets anchored to such an inhomogeneity and results
in quasiperiodic behavior gives a plausible way of under-
standing the recent experiments of Hwang et al.

The implications of our results for anti-tachycardia-
pacing and defibrillation algorithms, used for the sup-
pression of cardiac arrhythmias, are very important. Op-
timal pacing algorithms might well have to be tailor made
for different inhomogeneities. Indeed, clinicians often
adapt their hospital procedures for the treatment of ar-
rhythmias, on a case-by-case basis, to account for cardiac
structural variations between patients [36]. We hope,
therefore, that our work will stimulate further system-
atic experiments on the effects of obstacles on cardiac

arrhythmias.
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APPENDIX: THE LUO-RUDY MODEL

In the Luo-Rudy I (LR I) model there are six compo-
nents of the ionic current, which are formulated mathe-
matically in terms of Hodgkin-Huxley-type equations[37].
The partial differential equation for the transmembrane
potential V is

∂V

∂t
+

ILR

C
= D∇2V. (A.1)

Here ILR is the instantaneous, total ionic-current den-
sity. The subscript LR denotes that we use the formu-
lation of the total ionic current described by the Luo-
Rudy Phase I (LR1) model [30], where ILR = INa +
Isi + IK + IK1 + IKp + Ib, with the current densities INa

(fast inward Na+), Isi (slow inward), IK (slow outward
time-dependent K+), IK1

(time-independent K+), IKp

(plateau K+), Ib (total background), given by:

INa = GNam3hj(V − ENa);

Isi = Gsidf(V − Esi);

IK = GKxxi(V − EK);

IK1
= GK1

K1∞(V − EK1
);

IKp = GKpKp(V − EKp);

Ib = 0.03921(V + 59.87);

and K1∞ is the steady-state value of the gating variable
K1. All current densities are in units of µA/cm2, volt-
ages are in mV, and Gξ and Eξ are, respectively, the
ion-channel conductance and reversal potential for the
channel ξ. The ionic currents are determined by the time-
dependent ion-channel gating variables h, j, m, d, f , x,
xi, Kp and K1 generically denoted by ξ, which follow
ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ

,

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of
ξ and τξ = 1

αξ+βξ
is its time constant. The voltage-

dependent rate constants, αξ and βξ, are given by the
following empirical equations:
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αh = 0, if V ≥ −40 mV,

= 0.135 exp [−0.147 (V + 80)], otherwise;

βh =
1

0.13 (1 + exp [−0.09(V + 10.66)])
, if V ≥ −40 mV,

= 3.56 exp [0.079 V ] + 3.1 × 105 exp [0.35 V ], otherwise;

αj = 0, if V ≥ −40 mV,

= [
(exp [0.2444 V ] + 2.732 × 10−10 exp [−0.04391 V ])

−7.865× 10−6{1 + exp [0.311 (V + 79.23)]}
]

×(V + 37.78), otherwise;

βj =
0.3 exp [−2.535× 10−7 V ]

1 + exp [−0.1 (V + 32)]
, if V ≥ −40 mV,

=
0.1212 exp [−0.01052 V ]

1 + exp [−0.1378 (V + 40.14)]
, otherwise;

αm =
0.32 (V + 47.13)

1 − exp [−0.1 (V + 47.13)]
;

βm = 0.08 exp [−0.0909 V ];

αd =
0.095 exp [−0.01 (V − 5)]

1 + exp [−0.072 (V − 5)]
;

βd =
0.07 exp [−0.017 (V + 44)]

1 + exp [0.05 (V + 44)]
;

αf =
0.012 exp [−0.008 (V + 28)]

1 + exp [0.15 (V + 28)]
;

βf =
0.0065 exp [−0.02 (V + 30)]

1 + exp [−0.2 (V + 30)]
;

αx =
0.0005 exp [0.083 (V + 50)]

1 + exp [0.057 (V + 50)]
;

βx =
0.0013 exp [−0.06 (V + 20)]

1 + exp [−0.04 (V + 20)]
;

αK1 =
1.02

1 + exp [0.2385 (V − EK1 − 59.215)]
;

βK1 =
[0.49124 exp [0.08032 (V − EK1 + 5.476)]

1 + exp [−0.5143 (V − EK1 + 4.753)]

+ exp [0.06175 (V − EK1 − 594.31]].

The gating variables xi and Kp are given by

xi =
2.837 exp 0.04(V + 77) − 1

(V + 77) exp 0.04 (V + 35)
, if V > −100mV,

= 1, otherwise; (A.2)

Kp =
1

1 + exp [0.1672 (7.488 − V )]
. (A.3)

The values of the channel conductances GNa, Gsi, GK ,
GK1

, and GKp are 23, 0.07, 0.705, 0.6047 and 0.0183
mS/cm2, respectively[38]. The reversal potentials are
ENa = 54.4 mV, EK = −77 mV, EK1 = EKp = −87.26
mV, Eb = −59.87 mV, and Esi = 7.7 − 13.0287 lnCa,
where Ca is the calcium ionic concentration satisfying

dCa

dt
= −10−4Isi + 0.07(10−4 − Ca).

The times t and τξ are in ms; the rate constants αξ and
βξ are in ms−1.
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