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1 Introduction and Motivation

In the past few years, in your pursuit of the biomedical engineering degree, you have learned
many different concepts from many different areas: math, physics, electrical engineering,
computer science, signals and systems, physiology and biophysics, and biomedical instru-
mentation, among many others. You may have wondered why you have had to learn these
things. One answer is that engineering projects often require knowledge from many of these
diverse areas of learning simultaneously. This is particularly true of biomedical engineering,
a field which is, by nature, interdisciplinary. Another answer is that, although your cur-
rent training is in some specialty area within biomedical engineering, this may not be the
engineering field you will end up in. You never know where your career journey will take
you, and what knowledge will turn out to be critical to your job. To prepare you for these
possibilities, we have provided you with a broad spectrum of knowledge, which we believe
will hold you in good stead no matter what form of engineering your career requires.

As an example of how knowledge from the many different fields you have learned about
can be brought together, for the final project for this course (EBME 309/359), we will be
constructing a model of action potential propagation in the heart, which includes the effects
of, and the effects on, the surrounding extracellular electrical field. Once constructed, this
model should be a lot of fun to play with, allowing you to examine the basics of (1) how
EKGs are produced, (2) how certain types of ventricular tachycardia and fibrillation are
thought to occur, and (3) how the process of cardiac defibrillation works.

While we will concentrate on cardiac bioelectric applications, much of what we discuss
here is applicable to the electrical field associated with any excitable tissue, including the
nervous system and the brain, and skeletal muscle. The techniques you will be learning
in constructing this simulation model enjoy even wider applicability—they appear in the
development of all sorts of computer simulation models, from weather prediction models, to
air flow over wings, to spacecraft orbital dynamics, to bridge and building structural analysis.
The common thread is that all of these topics involve the simulation of sets of nonlinear
ordinary or partial differential equations. While specific types of equations have specific

1



tools, they all share a number of common features, which have, in turn, led to common
considerations when designing simulation methods for these equations. These include: how
to choose the discretization method (that is, how large a timestep should be used in pushing
the simulation forwards in time; how fine a simulation spatial grid should be used? How
should the simulation code be structured–what sorts of functions should be defined; how
should outputting of the data be handled? And so on.) So, by constructing this cardiac
bioelectric model, you will be learning skills that have a multitude of applications, which
hopefully will be useful to you whether or not your main interests currently lie bioelectric
phenomena.

2 Development of the equations in one spatial dimen-
sion

The key to the creation of our model of the electrical heart is the formulation of the equations.
This may be scary thought—the develoment of the equations defining a system is thought
of by many as being the first step in a journey which ultimately leads to a monstrosity
whose behavior is a total mystery not understood by anyone. In fact, with a little care,
the equations governing the system under study can be thought of almost as a table of
contents for the system, specifying exactly which physical effects are present in the system,
and how they interact. Furthermore, not only are the equations important in developing an
understanding of the system of interest, but so is the derivation of the equations. It is the
derivation that often provides the connection between the individual terms appearing in the
equations and the physical effects they represent.

So, let’s look a simple representation of the system we would like to model, and see how
it can be converted in a set of equations. Along the way, let’s see if we can develop an
understanding for the behavior of the model that the derivation of the equations is supposed
to produce.

We begin by representing our excitable tissue as a series of biological cells. These cells are
connected to each other electrically by means of gap junctions (for the case of cardiac cells).
Each cell also can communicate with the outside world, which we will call the extracellular
space. This can happen in two ways: through the capacitance of the cell membrane, and
through ion channels, which are embedded in the cell membrane. A simple drawing of this
situation (Figure 1) shows that the description to this point looks like the beginnings of
an electrical circuit. In the Figure, we represent the gap junctions as resistors, because,
to a good approximation, that is how they behave. In contrast, the behavior of the ion
channels is quite complex and nonlinear, so we just represent them as little boxes, with the
understanding that something very complicated is going on inside.

Because the extracellular space is also a resistive medium, it too can be represented
as a series of resistors. The values of these extracellular resistors are often thought of as
being lower than their gap junction counterparts, because generally current has less trouble
flowing in the continuous extracellular space than it does through the narrow confines of gap
junctions.

Finally, we would like to be able to stimulate our model, both by inserting electrodes
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Figure 1: Partial circuit representation of a series of excitable cells.

inside the cells (intracellular stimulation) or by placing the electrodes in the extracellular
space (extracellular stimulation). The addition of these components is reflected in the circuit
shown in Figure 2.

With the circuit complete, our next task is to assign values to the main components.
The main complication here is that we generally do not think about values of individual gap
junctions; rather we think of what the resistance of a whole chain of gap junctions is. The
natural quantity, given this mode of thinking, is the resistance due to gap junctions per unit
length along the chain. The units for this quantity would then be, for example, ohms/cm.
We can then figure out what the resistance is for any length chain. In particular, we can
determine the value of an individual gap junction connection by multiplying this resistance
per unit length times the length of an individual cell. Calling this resistance per unit length
rg and the length of a cell in the x-direction ∆x, this means the value of each gap junction
resistor is rg∆x.

Similar arguments can be made for many of the other quantities. The membrane capaci-
tance for an individual cell, for example, is c∆x, where c is the capacitance of the membrane
per unit length. If the current flowing through the ion channels per unit length is im, then
the ion channel current flowing out of an individual cell is im∆x. Finally, if the extracellular
resistance per unit length for current flowing in the x direction is re, then the value of the
resistors representing this resistive extracellular medium is re∆x.

As long as we are thinking of the various cells as being ∆x in length, we may as well
establish an entire coordinate system in the x direction, so that we can refer to the center of
a given cell as being located at position x, the location of its neighbor as being at x+∆x, the
location of the neighbor on the other side as x −∆x, etc. We can then refer to the various
nodal voltages by where they are located: the potential inside the cell located at position
x will be referred to as Φi(x); the corresponding potential outside that cell will be Φe(x),
etc. Φi(x) and Φe(x) are then the intracellular and extracellular potentials, respectively as
functions of x.

We can even label the resistors and other components this way, if they vary as functions
of x. The gap junction resistor between the cells located at x and x +∆x would then have
resistance rg(x +∆x/2)∆x, etc.

With our circuit defined and the components labeled, the next step is simply to apply
circuit analysis techniques, using methods that you are already familiar with from ENGR
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Figure 2: Complete circuit representation of a series of excitable cells, including the extra-
cellular space and intracellular and extracellular stimulation.

210. Let’s look at the node labeled “1” in Fig. 2. Kirchhoff’s current law (KCL) says that
the total current leaving this node, through all branches, must sum to zero. Looking at these
currents one by one. . .

(1) The current leaving through the gap junction resistor on the left of node “1” is, from
Ohm’s law,

Φi(x) − Φi(x −∆x)

rg(x −∆x/2)∆x

(2) Similarly, the current leaving through the gap junction on the right is,

Φi(x)− Φi(x +∆x)

rg(x +∆x/2)∆x

(3) The current flowing away through the capacitor is given by C(dV/dt), where C is
the capacitance, and V is the voltage drop across the capacitor. Filling in our values, the
current through the capacitor is,

c∆x
∂

∂t
(Φi(x)− Φe(x))

(4) With the polarity for im shown in Fig. 2, the current flowing away from node “1” is
im(x)∆x.

(5) Similarly, for the polarity of the intracellular stimulation current shown in Fig. 2, the
stimulus current is, −iintracell(x)∆x.
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In these expressions, Φi, Φe, im, iintracell and iextracell all depend on the time t as well as
on x; I’ve left out the dependence on t for the sake of brevity.

We can simplify the derivation by assuming the gap junction resistances are all the same,
so that rg(x − ∆x/2) = rg(x + ∆x/2) = rg, a constant. (Allowing rg to be dependent on x
was a homework problem.) Putting it all together, we have,

c
∂

∂t
(Φi(x) − Φe(x)) + im(x)

+
Φi(x) −Φi(x−∆x)

rg∆x2
+
Φi(x) −Φi(x +∆x)

rg∆x2
− iintracell(x) = 0

where we have divided through by one factor of ∆x.
Let’s look at the two gap junction terms for a moment. If the cell size ∆x is small, we

can use a Taylor expansion to simplify the expression:

Φi(x) − Φi(x −∆x)

rg∆x2
+
Φi(x) − Φi(x +∆x)

rg∆x2
=

Φi(x)− Φi(x) +
∂Φi

∂x
(x)∆x− ∂2Φi

∂x2
(x)
∆x2

2
+

∂3Φi

∂x3
(x)
∆x3

6
+ O(∆x4)

rg∆x2

+
Φi(x) − Φi(x) − ∂Φi

∂x
(x)∆x− ∂2Φi

∂x2
(x)
∆x2

2
− ∂3Φi

∂x3
(x)
∆x3

6
+ O(∆x4)

rg∆x2

= − 1

rg

∂2Φi

∂x2
(x) + O(∆x4)

Thus, for small cell size ∆x, the two gap junction terms reduce down to a second derivative
of Φi with respect to x.

We also notice that the quantity Φi(x)−Φe(x) is just the membrane potential Vm(x)—the
difference in potential between the inside and outside of the cell, the potential drop across
the cell membrane. Making these two substitutions,

c
∂Vm

∂t
(x, t) + im(x, t)− 1

rg

∂2Φi

∂x2
(x, t)− iintracell(x, t) = 0 (1)

A derivation of the equation for node “2” is almost identical to the calculation just performed.
In fact, if you just flip Figure 2 upside down, then you get that node “2” is where node “1”
used to be, re → rg, iextracell → iintracell, Φe → Φi, and the sense of flow of im is up instead
of down. It follows that, if we make these same substitutions into the equation for node “1”,
it will give the equation for node “2”. So, making these substitutions into Eq. (1), we have,

c
∂(−Vm)

∂t
(x, t)− im(x, t)− 1

re

∂2Φe

∂x2
(x, t)− iextracell(x, t) = 0 (2)

Or, if you don’t believe this little sleight of hand, you can simply apply Kirchhoff’s current
law to node “2”, just as we just did for node “1.”.
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A useful form of Eq. (1) can be produced by substituting Φi = Vm + Φe:

∂Vm

∂t
= − im

c
+ Dg

∂2Vm

∂x2
+ Dg

∂2Φe

∂x2
+

iintracell

c
(3)

Here, we define Dg = 1/(rgc). Similarly, a useful form for Eq. (2) can be constructed by
substituting for c(∂Vm/∂t) + im from Eq. (1) to obtain,

(De + Dg)
∂2Φe

∂x2
= −Dg

∂2Vm

∂x2
− iintracell

c
− iextracell

c
(4)

where De = 1/(rec). Another useful form of Eq. (2) comes from simply defining jm =
c(∂Vm/∂t) + im and substituting it. . .

De
∂2Φe

∂x2
= −jm

c
− iextracell

c
(5)

Notice that jm, defined as it is, is just the current per unit length flowing through the ion
channels and the membrane capacitance from the inside of cells to the extracellular space.

Equations (3) and (4) are often referred to as the cable equations. They are essentially a
one-dimensional description of action potential propagation and the surrounding extracellu-
lar fields.

3 Interpretation of the cable equations

Now let’s discuss why Eqs. (3–5) are useful expressions. They are useful because of what
they tell us about how the system operates. These equations are a perfect example of a
fundamental principle of physics and engineering—that “mathematics is a language.” These
equations are trying to tell us something. This, in fact, is one of the main uses of system
equations. It is a myth that the only reason system equations are derived is so that they
can be solved. Quite to the contrary, you can extract a lot of useful information from the
system equations without solving them. Once we have discovered as much as we can from
the equations through this approach, only then do we conduct simulations of the equations.
Even here, the purpose of simulations is often misstated. We run simulations mainly to
provide us with additional clues helpful for the further interpretation of the equations; in
other words, we run computer simulations to aid us in trying to understand how the system
works. So again, the main purpose for running simulations is generally not simply to find
the solution to the equations. Running a simulation without interpreting the results gives
you a solution for only the one set of parameters for which the simulation was run—not
generally very useful. Interpretation of the results in the context of what the equations are
trying to tell us allows us to understand how the observed behavior of the system depends
on the parameters, which in turn allows us to predict how the system behavior changes as
the parameters are changed, a much more useful outcome.

Let’s see if we can see this technique in action. It is often the case that each of the terms
in the system equations corresponds one-to-one to the various effects possible in the system.
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Figure 3: Circuit corresponding to the equation, c(∂Vm/∂t) = −im

Because of this, it is often useful to look at only a few of the terms present in a equation at
a time. In Eq. (3), for example, let’s first just consider this subset of the full equation:

∂Vm

∂t
= − im

c
(6)

This portion of the equation is simply telling us that the membrane, thought of as a capacitor,
can be charged through the action of current im flowing through the ion channels. If you
look back to where these two terms come from, they originated from the two components of
the circuit shown in Fig. 3.

We have already seen a simple example of Eq. (6). If we choose for the definition of the
ion channel current the following:

− im
c

=
1

ε

(

Vm − V 3
m

3
− W

)

(7)

where W is governed by the equation,

∂W

∂t
= ε(Vm − γW + β) (8)

we have that Eq. (6), together with Eqs. (7) and (8), is none other than the Fitzhugh-Nagumo
equations, which we have already studied previously.

More generally, the two terms in Eq. (6) are expressing the excitability of each cell.
Once one of the other terms in Eq. (3) raises the membrane potential above a threshold
value, we know that the term im (that is, the excitability of the ion channels), will kick into
action, firing the cell. The mechanism by which this happens is described Eq. (6). Once
the membrane potential is raised above the threshold defined by the internal workings of im
(that is, the ion channels, Eqs. (7) and (8)), a large negative current im is generated which,
as we see from Eq. (3) or (6) will contribute positively to ∂Vm/∂t, thus rapidly raising the
membrane potential Vm, firing the cell.
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Figure 4: Circuit corresponding to the equation, ∂Vm/∂t = Dg(∂2Vm/∂x2)

Let’s next try looking at these two terms from Eq. (3):

∂Vm

∂t
= Dg

∂2Vm

∂x2
(9)

Looking back at where these two terms came from, we find that the two resistors and the
membrane capacitance are responsible. We therefore obtain the equivalent circuit shown
in Fig. 4. One complication is that, strictly speaking, the potentials on the intracellular
nodes should be Φi(x − ∆x), Φi(x) and Φi(x + ∆x) (see Fig. 2), not Vm(x − ∆x), Vm(x)
and Vm(x +∆x) as shown in Fig. 4. This complication is produced by our desire to express
this equation in terms of the variables we are interested in, Φe and Vm (rather than Φe and
Φi). A convenient way to look at this situation is to think of Φe as being small, which is
often the case. The reason is that the extracellular resistance is often small, so, by Ohm’s
law, the potential differences are bound to be small also. So here’s what we can do. We
can first assume that the extracellular potential Φe is so small we can think of it as being
zero. If this is the case, then Vm, which is defined to be the difference in potentials Φi − Φe

is now simply Φi, so the potentials shown on the intracellular nodes in Fig. 4 are now
correct. Similarly, if the extracellular potential is zero, then the entire extracellular space
is at electrical ground, as shown in the Figure. Of course, Φe is not actually zero, so this
explanation is not strictly correct. We need to add correction terms to fix things. That
correction term is the Dg(∂2Φe/∂x2) in Eq. (3).

Now back to Eq. (9). What Eq. (9) is telling us is that the membrane potential Vm

will increase as function of time when the Vm is a concave up function (second derivative is
positive) as a function of space. Let’s see if this makes sense. Suppose that some particular
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time, the membrane potentials on three adjacent cells are arranged as in the graph in Fig. 4.
What will happen? Well, current will want to flow from the node located at x −∆x to the
node located at x, because the potential is higher at the former than it is at the latter. In
contrast, very little current will want to flow out of the node located at x to the node on its
right, because the potentials at these two nodes are nearly equal. So current is flowing into
node “1” from the left, but little is leaving to the right. So where must that excess current
flow? Down into the capacitor, of course, which will result in charging of the capacitor, which
raises the potential Vm(x) across it. Notice now that the profile of the membrane potential
in the graph in Fig. (4) is concave up. And further, notice that this upward concavity
immediately implies that more current must be flowing in from the left than is leaving from
the right. In fact, you can see pretty easily that the capacitor connected to node “1” will
continue to charge until the potential Vm(x) forms a straight line with Vm(x − ∆x) and
Vm(x + ∆x). Only then will the current flowing from the left equal the current flowing to
the right.

Equation (9) is actually pretty common. Suppose, for example that the cells in Fig. 4
are townhouses instead, and the graph represents the temperatures in the houses. If you’re
living in the middle house, the temperature in the house to your left is higher than your
temperature, but temperature in the neighbor’s house on the right is about the same. What
is going to happen to your temperature? Of course, your temperature will go up, since heat
will be flowing down the temperature gradient from your neighbor on your left, there will
be no heat exchange with your right-hand neighbor, since your temperatures are the same.
As another example assume that we are talking about the concentration of some chemical
instead of temperatures or potentials. If the concentration on one side is higher, while the
concentration on the other side is about the same, then what is going to happen to your
concentration?. . . So not surprisingly, Eq. (9) is used for both of these situations. It is called
the “heat equation” when describing temperature and Dg is called the thermal conductivity.
It is called the “diffusion equation” when describing concentrations, and then Dg is called
the diffusion coefficient. In fact, the “D” in Dg stands for diffusion. In our system, it is the
membrane potential that “diffuses.”

Now let’s look at all three of these terms together:

∂Vm

∂t
= − im

c
+ Dg

∂2Vm

∂x2
(10)

These three terms are enough to describe action potential propagation. In fact, when we
are only concerned with the membrane potential Vm and are willing to ignore the effects of
the extracelluar potential Φe, we often just model Eq. (10) and dump the other equations.
Equation (10) is sometimes called the monodomain equation, since it involves principally the
intracellular domain only.

So let’s see how these equations produce action potential propagation. Suppose that, in
the graph in Fig. 4, the membrane potential Vm(x−∆x) is the top of the leading edge of an
action potential, approaching from the left. What happens at node “1”? At first, diffusion
is the dominant mechanism. Current flowing from the action potential on the left flows into
the node “1” cell, charging its membrane. However, when the threshold potential is reached
through this charging process, the cell fires through the action of its ion channels (the im
component). The peak potential is reached very quickly through this process. Node “1” is
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Figure 5: Membrane potential Vm at three different times on several consecutive nodes.

now the new location of the leading edge of the action potential. Current would then begin
flowing from node “1” to the node on its right, eventually firing it, etc.

We can see this action more clearly by looking at several adjacent nodes, as in Figure 5.
Initially, the action potential leading edge is located just to the left of node 1, as depicted
by the trace “a” in the Figure. The membrane potential profile is thus concave up at node
1, causing the current to flow into node 1 from the left, raising its potential, as depicted by
arrow “b”. Node 1 eventually fires, resulting in trace “c”. The leading edge of the action
potential is now located between nodes 1 and 2. The concave up portion of the membrane
potential profile is now located at node 2, causing its membrane potential to rise as suggested
by arrow “d”. Node 2 eventually reaches threshold, whereupon its ion channel component
im fires the cell, resulting in the membrane potential profile shown as trace “e”. The leading
edge of the action potential is now located between nodes 2 and 3. This process continues
(node 3 is now the site of upward concavity of Vm, etc.). This is how action potentials
propagate! Notice that this is all deduced by careful examination of (but not the outright
solving of) the system equation. It is often more productive to do this kind of analysis on
systems equations, than it is to solve them!

Equation (3) also shows two other ways the membrane potential can be increased, cor-
responding to the two remaining terms. The Dg(∂2Φe/∂x2) term shows that the presence of
a substantial extracellular potential Φe can change the membrane potential. We can think
of this term as the “defibrillation” term; that is, defibrillation of the heart acts through the
effect of this term. When a large electrical jolt is applied to the heart in an effort to termi-
nate life-threatening arrhythmias like ventricular fibrillation, the current from this jolt flows
primarily in the extracellular medium. A large potential field Φe is established as a result.
This field then can modify the action potentials involved in fibrillation through the action of
the Dg(∂2Φe/∂x2) term. If the electrical jolt is formed properly, the resulting extracellular
field can annihilate all the action potentials present, essentially resetting the heart. With
some luck, normal functioning of the heart’s rhythm system, as orchestrated by the SA node,
can then take hold.

Finally, the presence of the iintracell term in Eq. (3) shows that injection of current directly
into the cell interior can raise its membrane potential. This term is useful both experimentally
and in the computer simulation as a means of initiating an action potential at the point in
space and time we desire.

Now let’s briefly examine the two forms of the extracellular equation, Eqs. (4) and (5).
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Figure 6: Portion of the circuit corresponding to the equation, De(∂2Φe/∂x2) = −jm/c −
iextracell/c. Also shown: a possible profile for Φe when current from either a stimulus or the
interior of a cell is injected into an extracellular node.

Both of these equations will be studied in more detail later, when we extend the equations
to three spatial dimensions. Equation (4) shows us that the membrane potential Vm, or
more specifically, the second spatial derivative of the membrane potential ∂2Vm/∂x2, which
we now think of as a source, generates an extracellular field. This field, in fact, is the field
measured in an electrocardiogram (ECG). Measurable extracellular fields are generated by
other excitable tissue as well, for example, by the brain and nerves. The extracellular field
can also be manipulated through the injection of current from the outside, both into the
intracellular space (iintracell) and the extracellular space (iextracell).

The other form of the extracellular equation, Eq. (5),

De
∂2Φe

∂x2
= −jm

c
− iextracell

c
(5)

shows explicitly the effect of the current flowing through the membrane (either through the
membrane capacitance or through the ion channels) on the extracellular potential. In some
sense, this effect is the reverse of the effect described earlier for Fig. 4 and Eq. (9). As shown
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in Fig. 6, the current flowing out of the cell (together with the extracellular stimulus current
iextracell) flow into node “2” and then must flow out through the two resistors. Using the
same reasoning as before, we see this means that the profile of Φe must be concave down.
This is the only way for there to be net current flow away from node “2” out through the
resistors. Notice that positive jm and iextracell leads to downward concavity and therefore a
negative second spatial derivative −∂2Φe/∂x2. This explains the minus signs in Eq. (5).

4 Generalization to three spatial dimensions: the bido-
main model

You may have noticed that we made a number of simplifications in constructing the cable
equation model described in the previous section. For one thing, real structures like the
cardiac tissue and its accompanying extracellular space are not one-dimensional in space—
they’re three dimensional. Other simplifications we made were to assume that the resistance
per unit length is the same in any direction (a property known as isotropy), and that the
tissue, and in particular the gap junction and extracellular resistances, were the same at every
point in space (homogeneity). Generalizing the model to three dimensions is potentially a
daunting task—specifically, are we really going to have to include all the anatomical details
of membrane folds and invaginations (for example, the T-tubules, etc.) so that we know
where the extracellular and intracellular regions are everywhere? Fortunately, there is a
simple way out of this, called the bidomain model. In this model, there are two co-existing,
interpenetrating “universes.” One universe represents all the spaces inside the cells. The
other universe consists of all the space outside the cells. Of course, our bodies aren’t really
made up of parallel universes. Actually, at any point in the body, you are either in one of
these “universes” or the other. The network of fibers in the heart is so intricate and fine,
though, that it really is almost the case that the two regions do exist everywhere. In other
words, it is very nearly true that the two universes both occupy the same space at the same
time, just like on Star Trek. Parallel universes in the real world, right in your own body!
Furthermore, it turns out that this model is a good approximation; that is, the electric fields
in our body behave as if these two overlapping universes really did co-exist. These two
universes are electrically connected to one another through the presence of ion channels in
the membranes of the excitable fibers, just as they do in our bodies. Current can flow from
the universe outside the fibers, the “extracellular” universe into the “intracellular” universe
through these ion channels. When current exits one these universes at point (x, y, z), it
enters the other universe at the same point (x, y, z). Science fiction often makes a big deal
about these “doors” which connect the parallel universes—in our case the door are just the
ion channels (and also the membrane capacitances). Developing models such as this, which
some way idealizes and simplifies reality in an effort to study it, is what modeling is all
about.

Let’s first look at the three-dimensional extracellular universe by itself. Let’s assume
that the extracellular universe is a homogeneous, resistive medium. (You’ve done the het-
erogenous case for homework.) Suppose, however, that the medium is anisotropic. We can
therefore model the extracellular universe as a three-dimensional grid of resistors, as shown
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Figure 7: (a) A portion of the extracellular network of resistors. The pattern continues
indefinitely in all three dimensions as a rectangular lattice of resistors. (b) Resistors and
nodal voltages used to compute Kirchhoff’s current law at the point (x, y, z).

in Fig. 7(a).
The spacings between the nodes in the x, y and z directions are ∆x, ∆y and ∆z, respec-

tively. We let ∆x, ∆y and ∆z each go to zero to obtain a continuous, resistive medium. In a
uniform medium, the value of each resistor must be proportional to its length and inversely
proportional to its cross-sectional area. If the medium is anisotropic, the proportionality
constant is different in the different directions. These proportionality constants, called the
intrinsic resistivities, of the medium, will be designated as ηex, ηey and ηez. Thus, each of the
resistors oriented in the x direction must be proportional to ∆x (the length of the resistor)
and inversely proportional to ∆y∆z (its cross-sectional area). The value of each of these
resistors is therefore ηex∆x/∆y∆z, as illustrated in Fig. 7. Similar reasoning leads to the
values of the resistors oriented in the other two directions.

We can now derive the equations governing the voltages in the extracellular medium by
applying the Kirchhoff current law. Referring to Fig. 7(b), which shows a typical node in
the extracellular universe, we find that the sum of the six currents leaving the node located
at point (x, y, z) is given by (using Ohm’s law):

Φe(x, y, z)− Φe(x +∆x, y, z)

ηex∆x/∆y∆z
+
Φe(x, y, z)− Φe(x−∆x, y, z)

ηex∆x/∆y∆z

+
Φe(x, y, z)− Φe(x, y +∆y, z)

ηey∆y/∆x∆z
+
Φe(x, y, z)− Φe(x, y −∆y, z)

ηey∆y/∆x∆z

+
Φe(x, y, z)−Φe(x, y, z +∆z)

ηez∆z/∆x∆y
+
Φe(x, y, z)− Φe(x, y, z −∆z)

ηez∆z/∆x∆y
= 0 (11)
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Dividing the entire equation by −∆x∆y∆z, we obtain,

1

ηex

Φe(x +∆x, y, z)− 2Φe(x, y, z) + Φe(x −∆x, y, z)

∆x2

1

ηey

Φe(x, y +∆y, z)− 2Φe(x, y, z) + Φe(x, y −∆y, z)

∆y2

1

ηez

Φe(x, y, z +∆z)− 2Φe(x, y, z) + Φe(x, y, z −∆z)

∆z2
= 0 (12)

As before, we can expand each term as a Taylor series. For example, the expression in the
first term expands as,

Φe(x +∆x, y, z)− 2Φe(x, y, z) + Φe(x −∆x, y, z)

∆x2

≈
Φe(x) +

∂Φe

∂x
(x)∆x +

1

2

∂2Φe

∂x2
(x)∆x2 − 2Φe(x) + Φe(x) − ∂Φe

∂x
(x)∆x +

1

2

∂2Φe

∂x2
(x)∆x2

∆x2

=
∂2Φe

∂x2
(x, y, z) (13)

where x is shorthand for (x, y, z). Similar expressions hold for the other two terms on the
left-hand side of Eq. (12). Thus, we have that

1

ηex

∂2Φe

∂x2
+

1

ηey

∂2Φe

∂y2
+

1

ηez

∂2Φe

∂z2
= 0 (14)

As you showed in the homework, if the resistivities (and therefore the resistances) depend
on (x, y, z) (the heterogeneous case), then these second derivatives change into the following
expressions,

∂

∂x

(
1

ηex

∂Φe

∂x

)

+
∂

∂y

(
1

ηey

∂Φe

∂y

)

+
∂

∂z

(
1

ηez

∂Φe

∂z

)

= 0 (15)

Now let’s try connecting this extracellular universe to the intracellular universe at a single
node. As Fig. 8 shows, the connection appears as a current source, apparently coming from
nowhere, but actually coming from the intracellular space, through the cell membrane, via
the membrane capacitance and the ion channels. If the amount of current coming from the
other universe is jm per unit volume, then the current flowing into any one node will be jm

times the volume associated with that node, which is ∆x∆y∆z. Thus, the current coming
from the intracellular universe is jm∆x∆y∆z.

When jm∆x∆y∆z is added as a new current flowing into the node located at (x, y, z)
and Kirchhoff’s current law is applied, and we again divide by −∆x∆y∆z and perform the
Taylor expansions, we now obtain,

∂

∂x

(
1

ηex

∂Φe

∂x

)

+
∂

∂y

(
1

ηey

∂Φe

∂y

)

+
∂

∂z

(
1

ηez

∂Φe

∂z

)

= −jm (16)

While we’re at it, we may as well also include the possibility of a stimulus being applied in
the extracellular space at this point, of magnitude iextracell per unit volume. Not surprisingly,
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Figure 8: Relevant portion of the circuit needed to apply Kirchhoff’s current law to the point
(x, y, z) when connected to the intracellular universe.

this results in the expression,

∂

∂x

(
1

ηex

∂Φe

∂x

)

+
∂

∂y

(
1

ηey

∂Φe

∂y

)

+
∂

∂z

(
1

ηez

∂Φe

∂z

)

= −jm − iextracell (17)

Now let’s try to relate jm explicitly to currents flowing the membrane capacitance and ion
channels. Suppose that the membrane capacitance per unit volume is c, and the ion channel
current per unit volume is im. The total current flowing out from the intracellular universe
in volume ∆x∆y∆z center at location (x, y, z) would then be,

jm∆x∆y∆z = (c∆x∆y∆z)
∂Vm

∂t
+ im∆x∆y∆z (18)

yielding the same expression as in the one-dimensional case,

jm = c
∂Vm

∂t
+ im (19)

Actually, this equation is different from the 1-d case, because the definitions are different.
Now jm, c and im are the total current through the membrane, the capacitance of the
membrane, and the ion channel current per unit volume of tissue, not per unit length.
Substituting this into Eq. (17) and dividing by c,

∂

∂x

(

Dex
∂Φe

∂x

)

+
∂

∂y

(

Dey
∂Φe

∂y

)

+
∂

∂z

(

Dez
∂Φe

∂z

)

= −∂Vm

∂t
− im

c
− iextracell

c
(20)

where Dex = 1/(ηexc), Dey = 1/(ηeyc), and Dez = 1/(ηezc).
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The differential expression appearing on the right-hand side of Eq. (20) is quite common—
so much so that there is a standard symbol for it:

∇ · De · ∇Φe =
∂

∂x

(

Dex
∂Φe

∂x

)

+
∂

∂y

(

Dey
∂Φe

∂y

)

+
∂

∂z

(

Dez
∂Φe

∂z

)

(21)

Notice that the quantity De is defined to contain the scalar quantities Dex, Dey and Dez as
part of its definition. (In fact, De turns out to be the 3x3 matrix,




Dex 0 0
0 Dey 0
0 0 Dez





for reasons that need not concern us here.) Using this definition, Eq. (20) may be written
more succinctly as,

∇ · De · ∇Φe = −∂Vm

∂t
− im

c
− iextracell

c
(22)

This is the three-dimensional, anisotropic, heterogeneous version of Eq. (2). In a similar
manner, the following equations, the 3-d, anisotropic, heterogeneous versions of Eqs. (3–5),
are easily derived:

∂Vm

∂t
= − im

c
+ ∇ · Dg · ∇Vm + ∇ · Dg · ∇Φe +

iintracell

c
(23)

∇ · (De + Dg) · ∇Φe = −∇ · Dg · ∇Vm − iintracell

c
− iextracell

c
(24)

∇ · De · ∇Φe = −jm

c
− iextracell

c
(25)

Much of what we said about Eqs. (3–5) and the various simplification we discussed remain
true for these three-dimensional versions. For example, the first three terms in Eq. (23),

∂Vm

∂t
= − im

c
+ ∇ · Dg · ∇Vm (26)

still describe the ability for action potentials to propagate, as did Eq. (10). The main
difference is that, now that there are second derivatives in all three directions in the definition
of ∇ · Dg · ∇Vm, this means that propagation of action potentials is now possible in any
direction within the three dimensional space.

Now let’s go back and take a careful look at Eq. (25). We can get an idea about the
mechanism that Eq. (25) is trying to tell us about by first consideriing the homogeneous,
isotropic case. For this situation, De is the same everywhere (homogenous) and therefore
does not depend on x. Furthermore, the three quantities used to define De, Dex, Dey and
Dez , are equal (Dex = Dey = Dez ≡ De, isotropic). The definition of ∇ · De · ∇Φe given by
Eq. (21) then simplifies to:

∇ ·De · ∇Φe =
∂

∂x

(

Dex
∂Φe

∂x

)

+
∂

∂y

(

Dey
∂Φe

∂y

)

+
∂

∂z

(

Dez
∂Φe

∂z

)
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= De

(
∂2Φe

∂x2
+

∂2Φe

∂y2
+

∂2Φe

∂z2

)

= De∇2Φe (27)

Here we use another commonly defined symbol:

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
(28)

for any function Φ(x, y, z). Also, ∇2Φ is often called the Laplacian of Φ.
What we find, then, is when the extracellular medium is homogeneous and isotropic, the

extracellular potential is given by,

De∇2Φe = −jm

c
− iextracell

c
(29)

This also implies that the resistivities ηex, ηey , and ηez are all equal to each other and are
the same everywhere in space, since Dex = 1/(ηexc) and c is a constant. If we also choose
∆x = ∆y = ∆z so that the network of resistors in Fig. 7 is a cubic lattice, then it should be
clear that all the resistors shown in that Figure are equal, with value η∆x/∆x2 = ηe/∆x,
where ηe ≡ ηex = ηey = ηez.

Now let’s look at this homogeneous, isotropic, extracellular resistive medium from a
slightly different perspective. Suppose we want to know how the current flows in this medium
when current is injected at a point. More importantly, we would like to know what the
extracellular potential Φe(x, y, z) is in this medium when current is injected at a point. To
determine this, we look at a different model of the medium. This one consists of an infinite
set concentric, thin, spherical shells, one inside another, like layers of an onion, centered
around the point at which the current is being injected. A diagram of this model appears in
Fig. 9.

From the symmetry of the situation, it is easy to see that the current must flow radially
outward in all directions from the point of injection. From Kirchhoff’s current law (that is,
current in equals current out), we also know that the current passing through each successive
shell must be exactly the same, and equal to the injected current, which we will call Im.

There is therefore a simple equivalent circuit for this situation, shown in Fig. 10. Each
of the resistors shown represents the resistance of one of the shells in Fig. 9, while each of
the nodes in Fig. 10 corresponds to one of the spherical boundaries between shells. The
resistances are determined using the same method we used for the rectangular network of
resistors. We take the resistivity of the medium ηe and multiply by the length of the resistor
in the direction of current flow and divide by the cross-sectional area. The rationale for
this is that the longer the resistor the current must flow through, the higher the resistance,
while the larger the cross-sectional area, the lower the resistance. The present case involves
some weird-looking resistors (spherical shells), but the same principle still applies. For the
highlighted spherical shell shown in Fig. 9, the length of the resistor in the direction of current
flow is simply the width of the spherical shell ∆r, since current flows radially outward through
the shell. The cross-sectional area presented by the shell to current flow is the surface area
of the shell. The highlighted shell has radius r + ∆r/2, so using the standard formula for
the surface area of a sphere, we have that the cross-sectional area is 4π(r +∆r)2. Thus, the
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Figure 9: Representation of a homogeneous, isotraopic resistive medium appropriate for the
diagnosis of the case of an injected current into the medium at a single point.
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Figure 10: Electrical circuit equivalent to the situation shown in Fig. 9. The injected current
may be represented as the current source on the left. The entire current from this source, Im,
then flows through each of the spherical shells in succession, each represented by a resistor.

resistance for the resistor labeled R(r + ∆r/2) in Fig. 10, corresponding to the highlighted
shell Fig. 9, is

R(r +∆r/2) =
ηe∆r

4π
(
r +

∆r

2

)2

From Ohm’s law, we find that the potential drop across the shell is,

Φe(r) −Φe(r +∆r) =
Imηe∆r

4π
(
r +

∆r

2

)2 (30)

Dividing by ∆r, and letting ∆r → 0 we have,

−∂Φe

∂r
=

ηeIm

4πr2
(31)

Notice that this is just the extracellular radial electric field (since it is the negative derivative
of the potential). The extracellular electric field due to a point current injection therefore
falls of with distance as 1/r2. Integrating from infinitely far away to radius r, we have,

∫ r

∞

∂Φe

∂r
dr = −ηeIm

4π

∫ r

∞

dr

r2
=

ηeIm

4πr

∣∣∣∣
r

∞
(32)

which yields,

Φe(r) − Φe(∞) =
ηeIm

4πr
(33)
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or, defining the potential infinitely far away to be 0,

Φe(r) =
ηeIm

4πr
(34)

The potential due to current injection at a point in a homogeneous, isotropic medium, thus
falls off like 1/r, where r is the distance away from the point of injection. Now that we have
been through the derivation using the spherical shell model, we see that the reason for the
1/r dependence of the potential on distance is actually pretty simple: the shell resistances
go like 1/r2 since they are inversely proportional to their surface areas, which go like 4πr2;
the potential difference across each of these shells must therefore also go like 1/r2 in order to
keep the current constant (remember the current goes like the potential drop divided by the
resistance—Ohm’s law), and then if the potential drop across a small distance, a.k.a. the
electric field, goes like 1/r2, then the potential itself, being the integral of the electric field,
must go like 1/r.

This whole situation might remind you of something: the potential due to a point charge
also falls off like 1/r. Not only that, but the electric field from a point charge points radially
outward, just as the current does for our case, and scales like 1/r2 just as our electric
field does. These similarities are not an accident. Depending on how much electricity and
magnetism you have had, you may already know that one way of writing Poisson’s equation,
the equation governing electrostatics, is

∇2Φ = −4πρ (CGS units)

or
∇2Φ = −ρ/ε0 (MKS units)

where ρ is the charge density. It’s the same as our equation! Except that, charges are replaced
by injected currents. Because of this, the electric field and potential in the extracellular
medium behaves as if there were a point charge located at every point at which the current
is being injected. Injected current into the extracellular medium results in the field of a
positive point charge.

We will see later that the pattern of injected current into the extracellular space produced
by a propagating action potential often consists of injected currents of opposite signs in
physical juxtaposition to one another. It is therefore of relevance to find the extracellular
potential due to two injected currents of equal and opposite signs separated from one another
by a small distance ε. Suppose, for example, that the two injected currents are located on
the z-axis, at coordinates (0, 0, ε/2) and (0, 0,−ε/2). We can then ask, what is the potential
at some observation point (x, y, z)? The situation is shown in Fig. 11.

To gain some insight into the problem, let’s briefly consider what potentials we would
expect to see from various observation sites situated on the z axis. Figure 12 shows the
fields we would obtain from each of the two current sources individually. Each of these fields
has a 1/r shape. The total potential on the z-axis would then just be the sum of these two
potentials. Note that this sum yields almost complete cancellation of the two potential fields.
In fact, you can see that the two fields would completely cancel if the separation between
the two currents injected were zero.
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location (x, y, z) due to two injected currents close to the origin.

z

"e(0,0,z)

field due to the positive 
injected current

field due to the negative 
injected current

pos. injected 
current

neg. injected 
current

&
2

&
2

Figure 12: Individual fields of two injected currents as they would be measured on the z
axis.

21



More generally, for arbitrary distant observation points (x, y, z), the potential will just
be the sum of two terms each obtained by applying Eq. (34) to each of the current sources:

Φe(x, y, z) =
ηeIm

4πr1
+

ηe(−Im)

4πr2
(35)

where r1 and r2 are the distances of the observation point (x, y, z) from the current injection
sites (0, 0, ε/2) and (0, 0,−ε/2), respectively, as shown in Fig. 11. Using the Pythagorean
theorem, we have that,

r1 =
√

x2 + y2 + (z − ε/2)2

r2 =
√

x2 + y2 + (z + ε/2)2

Substituing these, we find that,

Φe(x, y, z) =
ηeIm

4π



 1
√

x2 + y2 + (z − ε/2)2
− 1

√
x2 + y2 + (z + ε/2)2



 (36)

If ε is small (that is, if the two points of injection are close to each other), then we can
obtain a simple approximation for the field by Taylor expanding in the small parameter ε,
the separation between the injected current sources.

The first step in constructing this Taylor expansion is to make each term look like,

(const)(1 + something small)some power (37)

We can do this by first expanding the argument of each square root:

Φe(x, y, z) =
ηeIm

4π



 1
√

x2 + y2 + z2 − εz + ε2/4
− 1

√
x2 + y2 + z2 + εz + ε2/4



 (38)

Ignoring the ε2/4 as being too small, and then factoring out
√

x2 + y2 + zz out of each
denominator, we have:

Φe(x, y, z) =
ηeIm

4π





1
√

x2 + y2 + z2

√
1 − εz

x2 + y2 + z2

− 1
√

x2 + y2 + z2

√
1 +

εz

x2 + y2 + z2





(39)
Defining r ≡

√
x2 + y2 + z2 (which also happens to be the distance of the observation point

from the origin), we have,

Φe(x, y, z) =
ηeIm

4πr




1

√
1 − εz

r2

− 1
√

1 +
εz

r2



 (40)

Now each of the terms has the form shown in Eq. (37). Using the Taylor series for Eq. (37):

(1 + something small)power = 1 + (power)(something small) + O(something small)2 (41)
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we have,
1

√
1 − εz

r2

=
(
1 − εz

r2

)−1/2

= 1 +
1

2

εz

r2
+ O(ε2) (42)

1
√

1 +
εz

r2

=
(
1 +

εz

r2

)−1/2

= 1 − 1

2

εz

r2
+ O(ε2) (43)

Thus,

Φe(x, y, z) =
ηeIm

4πr

[(
1 +

1

2

εz

r2

)
−

(
1 − 1

2

εz

r2

)]
+ O(ε2)

=
ηeImε

4πr2

z

r
+ O(ε2) (44)

Notice that the 1’s cancel in this expression. This corresponds to the fact that the fields
due to two equal and opposite currents, injected at nearly the same location, nearly cancel.
We have already noticed this in Fig. 12, along with the observation that if the currents had
been laid exactly on top of each other (i.e., if ε = 0) then their fields would have cancelled
everywhere. Analogously, if ε is set to zero in Eq. (44), we also get Φe = 0 everywhere.

Also notice that it was ok to throw away the ε2/4 terms in Eq. (38)—if we had kept
them, after much painful math, they would have ended up in the O(ε2) term in Eq. (44).
(You can take my word for this, or try keeping them in the calculation yourself—a useful,
but difficult and messy exercise.) Finally notice that Φe is proportional to the separation ε
between the injected currents. The larger the separation, the larger the fields.
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A common way to write Eq. (44) is in terms of the angle θ the observation point vector
r makes with the z axis, as illustrated in Fig. 11. With this definition, z/r = cos θ. We can
now write the extracellular potential as,

Φe(x, y, z) =
ηeImε

4πr2
cos θ (45)

When the observation point is situated along the same line that separates the currents; that
is, when θ = 0◦ or 180◦, as shown in Fig. 13, this is when cos θ takes on its largest possible
values in absolute terms: cos 0◦ = 1; cos 180◦ = −1. Thus the fields produced by a pair of
equal and opposite injected currents tend to be largest along the extension of the line that
connects the two currents.

Physically, the reason for this is that one of the injected currents is closer to the obser-
vation point than the other. This is made more clear by using the analogy to point charges
described earlier. We know we can substitute a positive point charge for the injected current
located at (0, 0, ε/2), and a negative point charge for the current located at (0, 0,−ε/2).
Once we think in terms of point charges, it is clear that the potential will be positive on the
entire positive z-axis, since the positive charge is closer than the negative charge for every
point on the positive z axis. Similarly, the potential will take on its most negative values for
observation points along the negative z axis.

In contrast, when the obsevation point is located broadside relative to the line connect-
ing the two current injections, there is no potential field. Mathematically, this is because
cos 90◦ = 0; physically, it’s because the two injected currents are equidistant from the obser-
vation point for this case, as should be clear from Fig. 13.

Another feature of the potential field of these two injected currents is that it falls off
like 1/r2, a more rapid fall-off than is produced by either injected current alone. Again, the
rapid fall-off is due to the near cancellation of the two fields.

The whole potential profile is shown in Fig. 14. This field is called a dipole field, and the
configuration of currents producing it—equal and opposite in amplitude, and separated by
a small distance—is called a dipole source.

It is fairly easy to construct slightly more complicated injected current configurations
in which not only the currents are equal and opposite, but so are the dipole sources. In
this case, the potential falls off even more rapidly, like 1/r3. The field itself is called a
quadrapole field. We will see in later discussions that both dipole and quadrapole fields often
accompany action potentials under diffeerent circumstances, and therefore can be valuable
in characterizing and diagnosing the properties of these action potentials.
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Figure 14: Colormap of a dipole field. Field shown is due to two injected currents at (0,0,1)
and (0,0,-1).
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