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Abstract. The dynamics of cancer evolution is studied by means of a simple quasispecies model involving
cells displaying high levels of genetic instability. Both continuous, mean-field and discrete, bit-string models
are analysed. The string model is simulated on a single-peak landscape. It is shown that a phase transition
exists at high levels of genetic instability, thus separating two phases of slow and rapid growth. The results
suggest that, under a conserved level of genetic instability the cancer cell population will be close to the

threshold level. Implications for therapy are outlined.

PACS. 87.10.+e Biological physics: General theory and mathematical aspects — 87.23.Kg Dynamics
of evolution — 87.23.-n Ecology and evolution — 89.75.Fb Structures and organization in complex systems

1 Introduction

Cancer is the result of a system’s breakdown that arises in
a cell society when a single cell (due to a mutation or set of
mutations) starts to display uncontrolled growth [1]. The
cooperation that maintains the integrity of a multicellular
organism is thus disrupted. Further changes in the pop-
ulation generated by such abnormal cell can lead to ma-
lignant tumor growth, eventually killing the host. From
an evolutionary point of view, tumor progression is a mi-
croevolution process in which tumors must overcome se-
lection barriers imposed by the organism. The emergence
and evolution of tumors involve a number of phenomena
that are well known in physics, from pattern formation
to phase transitions. In this context, suitable theoretical
methods from statistical physics can help to gain insight
into cancer biology. Related areas, such as immunology [2]
and virus dynamics [3—6] have already revealed the power
of physics in exploring complex phenomena within molec-
ular cell biology.

As discussed by Alberts et al. [7] a multicellular sys-
tem is a society or ecosystem whose individual members
are cells, reproduced in a collaborative way and organized
into tissues. In this sense, understanding it requires con-
cepts that are well-known in population dynamics, such as
birth, death, habitat and the maintenance of population
sizes. Under normal conditions, there is no need to worry
about selection and mutation: as opposed to the survival
of the fittest, the cell society involves cooperation and,
when needed, the death of its individual units. Mutations
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occur all the time but sophisticated mechanisms are em-
ployed in detecting them and either repairing the damage
or triggering the death of the cell displaying mutations [8].
Abnormal cells can be identified from within (i.e. through
molecular signaling mechanisms operating inside the dam-
aged cell) or by means of interactions with other cells. The
later mechanism involves immune responses.

Selection barriers (such as the attack from the immune
system or physical barriers of different types) can be over-
come by a tumor provided that the diversity of mutant
cells is high enough to generate a successful strain. High
mutation rates are thus a way to escape from the host re-
sponses and it is actually known that most human cancers
are genetically unstable [1,9-13]. Genetic instability re-
sults from mutations in genes that are implicated in DNA
repair or in maintaining the integrity of chromosomes. As
a result, mutations accumulate at very high rates. RNA
viruses are actually a good example of replicating systems
involving mutation and it was early shown that such sys-
tems involve an error threshold: beyond a critical mutation
rate, a phase transition occurs towards a random replica-
tion phase [15-19]. At the subcritical, low-mutation phase,
the population is able to maintain hereditary information
and a heterogeneous distribution of molecules is observed:
the so-called quasispecies. At the supercritical phase, pop-
ulations experience random drift through sequence space
and no genetic information can be maintained. The na-
ture of such transition has been well established in terms
of a mapping between replication dynamics and spin lat-
tice [20-23] and field models [24].
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An important implication of the previous observation
is that the threshold-like character of the phase transi-
tion allows to conjecture that non-viable virus populations
might be obtained by slightly increasing the mutation
rate beyond criticality. This has been done in vitro [25]
and in vivo therapies are in progress. A similar scenario
has been suggested within the context of cancer [10,12].
Since cancer also displays some common traits with RNA
viruses it has been suggested that unstable cancer pop-
ulations might also display threshold levels of mutation
parallel to those observed in viral populations [26]. If true,
strategies based on targeting unstable cancer cells and in-
creasing their mutation rate would successfully inhibit tu-
mor progression.

In a recent study, it has been shown that a bifurcation
from slow-growth to rapid growth exists in a continuous
(mean-field) model of cancer evolution [26] involving three
basic cell populations. In this paper we further explore this
result by extending it to a population model involving N
cell types by means of both mean field and bit-string ap-
proaches. A phase transition (and thus a sharp qualitative
change in population dynamics) is shown to exist and sev-
eral statistical features are analysed.

2 Mean field quasispecies model

The starting point for a model of molecular replicators
involving errors is the general Eigen-Schuster quasispecies
model, defined by the following set of equations:

dr;, &
CZ =Y @ fiQsi — (f)as (1)
j=1

where x = 1, ..., x,, and x; indicates the fraction of the
population associated to the ith mutant genome (here
i =1,...,n, where n is very large) so that populations are
restricted to a simplex: Z? x; = 1. Here f; is the growth
rate of the jth mutant, @;; is the probability of having a
mutation ¢ — j and (f) = 2?21 fjz; the average fitness.

In its simplest form, we can consider a reduced sys-
tem of equations defining a population as formed by two
basic groups: the master sequence x; and the other se-
quences, which we assume to be grouped into an “aver-
age” sequence with population xo [14]. Let us also assume
that mutations occur from the master to the second com-
partment but not in the reverse sense. The enormous size
of the sequence space makes this assumption a good first
approximation. Now we have [14,26]:

da:l

W = flle — xlé(xl,mg) (2)

dxr

d—; = fiz1(1 = Q) + farg — 22P(21, 22) (3)
where it is assumed that f; > fs. This oversimplified
model allows us to see the error threshold condition under
a mean field argument. The fixed points here are located
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Fig. 1. Basic scheme of the population model used in this
paper. Here a slow-growth cell population is indicated as x1,
mutating at a slow rate y = 1 — ). Some mutations can lead
to the emergence of a genetically unstable population (box)
involving a very heterogeneous group of cell types, replicating
at different rates (here indicated by means of variable radius)
and many of them unable to survive (white arrows).

on the line 7 =1 — 25, with

vy = 1020 0

Ji—f2

It can be shown, by means of standard stability analysis
that the state where the master sequence gets extinct (i.e.
(z7,235) = (0,1)) will be stable if f1Q < fa. otherwise, the
master sequence is able to survive and Darwinian selection
keeps operating. Once the mutation rate exceeds this error
threshold, no stable master sequence can persist.

Within the context of unstable cancer cell populations,
a two-compartment model can also be defined, as dis-
played in Figure 1. Here two basic components are con-
sidered: a slow-growing, weakly unstable population (z1,
with a small mutation rate g = 1 — @) and a highly het-
erogeneous set of (unstable) clones ({z4}), indicated in
the right box in Figure 1. These unstable clones would
exhibit a high mutation rate p, (typically p, > p). As-
suming that z; + ), xh = 1, and lumping together the
unstable compartment so that zo = ), xh, we have a
one-dimensional model for the evolution of x1:

da?l

i fiz1 (& — o) (5)

where & = Q — f2/f1 and & = 1— fo/ f1. The equilibrium
points for this system are z7 = 0 and z7 = & /&. Actually
the time-dependent solution is shown to be a sigmoidal
function:

thus showing that the approach to the steady state is a
function of the replication and mutation rates.

Based on experimental evidence, it is known that in-
creasing levels of mutation lead to increased rates of cell
death. A general relationship can be established between

x1(t) > eXp(—&fﬁ)] B (6)
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Fig. 2. Phase transition in the mean field model of cancer
quasispecies. The population size of the slow-growing clone is
shown for different values of the genetic instability rate p.,.
Here we have fi1 = 0.25, u;; = 0.05 and g1 = 0.01. Four differ-
ent values of the selective advantage parameter « have been
used. From left to right, o = 1.5,2.0,2.5 and 3.0, respectively.

replication rates as follows:

J2(pu, @) = af1d(pru) (7)

where a@ > 1 is a measure of the selective advantage of
x9 over z1 and ¢(u,,) a decreasing function of the genetic
instability level. Here we choose ¢(p,) = exp(—py/1k)
with p} = 0.05. Using these functional forms, we obtain

* . Q- a¢(ﬂu)
oy () = m'

The slow-growing clone will only survive provided that
g < pe = Q — ag(u,). For our particular choice, this
leads to a critical mutation rate

Mi:_uuln( o )

In Figure 2 the phase transition behavior predicted by
the mean field model is illustrated by showing the equilib-
rium population of the slow-growing clone x7 against the
rate of genetic instability, for different o values. As pre-
dicted by the previous equation (9) a sharp transition oc-
curs from the unstable population phase (where the unsta-
ble clones outgrow the x; population) and a slow-growth
phase, where genetic instability is too high to maintain a
finite x5 population. It is worth mentioning that the crit-
ical rate depends on the selective advantage parameter
« and thus a trade-off between replication and mutation
rates is at work at the phase transition. In this sense, the
critical boundary can be reached in two different ways (ei-
ther tuning genetic instability levels or replication rates).

The stability of the two fixed points can be determined
by looking at the associated Lyapunov function @ (g, z1),
defined from

dry  0P(x1, pu) (10)
dt 8991

(8)

(9)
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Fig. 3. Lyapunov function @(u.,,) for the one-dimensional equi-
librium state. Here genetic instability acts as the control pa-
rameter. A shift occurs from the extinction of the z1 clone to
the dominance of it. The two equilibrium states are indicated
as white circles.

i.e. from
D(21, pu) = —fl/ 1 y1(§1 — S2y1)dy (11)
0
1 2 1 3
— i [5(@ - ad(u)at - 31 - astuat| - (12)

The surface @(x1, ) is shown in Figure 3 for p =
0.01, f1 = 0.25 and o = 2. We can appreciate two well-
defined minima involving the two (exchanging) equilib-
rium fixed points.

The previous mean-field approach allows to conjecture
that a well-defined transition will be observed close to the
error threshold. In order to better understand this phe-
nomenon, we consider in the following section a discrete
string model where each cell is described in terms of a
small “genome” of a given length v. Mutations are thus ex-
plicitly introduced and the statistical behavior of the cell
population can be followed in more detail. It also allows
to perform comparisons with previous spin-based models
of quasispecies dynamics.

3 Bit string model: single-peak landscape

A much more informative approach to the cancer quasis-
pecies model is provided by a system composed by N bit
strings. Although this models are again an oversimplified
picture of reality, they retain the key features of the un-
derlying evolutionary dynamics [27-29].

Here each string Si(k = 1,..., N) is a small genome of
size v i.e.

S; = (S},82,..8Y) ; i=1,2,..,N (13)
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with S; € {0,1}. A genome under this description is
thus a vertex Si € H" of a v-dimensional hypercube. Al-
though a real (RNA or DNA) genome is composed by a
four-letter alphabet, here we use the approach taken by
Leuthausser, where each bit would represent purines or
pirimidines [20,21].

The sequence & = (1,1,...,1) will represent a cell
belonging to the xj-cell type population. Other strings
Sk # & will define the unstable compartment, involving
2¥ — 1 different genomes. The possible transitions allowed
here are summarized as follows:

¢ O 9¢ (14)
¢t s, (15)
SRR T (16)
S; WK S, + Sy (17)

where I' = (1—p)” and I, = (1—py,)”, respectively, where
w and p,, will be now mutation rates per bit and round of
replication. Accordingly with the mean-field model, the
replication rates will be f(§) = f1 and f(Sx # &) =
af(&)d(p), respectively. Here we will use a constant repli-
cation rate for all strings Si # & and thus for p, > ug
we have f(&) > f(Sk # £) and a single-peaked landscape
will be at work, as in the Swetina-Schuster model [14]. For
e, < pf, the unstable population will dominate on a flat
landscape with a “hole” at Sy = €.
The terms W;; correspond to the probabilities of erro-
neous replication and are given by:
Wee = (€)1 — )~ anlesilydnlesil (1g)

Wik = F(Sk)(1 — py)" ™ Hrl55: 541 5,54 (19)

where dg[S;, Sk] is the Hamming distance between the
two sequences:

1 v
dH[Sj,Sk] = 5 [N ZS§SZ‘| .
=1

It is not difficult to see that the probabilities of erroneous
replication become

(20)

Wik = f(Sk)[tu(1 = pa)]"/? exp (‘KZ 5§512> (21)
=1

where K = log(tn/(1 — f1y))/2. This expression is iden-
tical to the transfer matrix for the two-dimensional Ising
model [20,21,23]. Strictly, there are here two sources of
noise associated to the model description. The previous
spin-like description would be essentially valid at each
phase separately. In this sense (and given the possibil-
ity that tumors might be close to the transition bound-
ary) this system opens interesting problems for statistical
physics: here two types of “particles” experience transi-
tions with two different intrinsic temperatures.

Each generation in the algorithm we repeat N times
the following set of rules:
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Fig. 4. Phase transition in the bit string quasispecies model
involving genomes with small size v = 4. The dynamics takes
place of a 4-dimensional hypercube (a-b) and the relative pop-
ulation size is indicated by means of the radius of the circles.
In (c) the frequencies of strings N; (differing ¢ bits from the
&-sequence) are shown against the instability level u,. Here
w=001N =10%a=2,fi =025 and pu = 0.05. The mean
field critical instability level, as predicted from equation (9) is
e = 0.035.

1. we take a string at random from the population, say
S; and replicate it with probability f(S;).

2. Replication takes place by replacing one of the strings
in the population (also chosen at random) say S; # .S;
by a copy of S;. The copy mechanisms presents error,
at rates p (z1 clone) and p,, (unstable population), per
bit and replication cycle, respectively.

In Figure 4 we illustrate the transition occurring in
the model for a small genome length v = 4. The four
dimensional hypercube is shown in Figure 4a and 4b for
ty < pf, and g, > ps, respectively. Specifically, the num-
ber of strings N; differing ¢ bits from the {-sequence, i.e.

N
N’L = Zad}{[f,sk]vi (22)
k

are represented. Here string populations at each node in
the hypercube are indicated by means of circles of differ-
ent sizes. For p, < pg, given the higher replication rate
of the unstable cells in relation with the £ sequence, we
have a population of genomes that occupy different zones
of sequence space. Given the homogeneous character of
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Fig. 5. Phase transition in the bit string quasispecies model
(here linear (a) and linear-log (b) plots have been used). The
population size is N = 500 and the strings have length v = 16
(averaged over 10® replicas). Frequencies are calculated over
T = 500 generations after 7 = 5000 generations are discarded.
A transition occurs at i, ~ 0.036, where the master sequence
experiences a sharp population increase once the critical insta-
bility level has been reached.

replication rates of the unstable clone, the sum of all se-
quences differing & bits from the master £ will be (;:L)
with a maximum at k = v/2. The probability distribution
is thus a binomial, i.e. Py = ()(1 — pu)™ps~™. In Fig-
ure 4c the population abundances of the {-sequence and
those sequences with a Hamming distance di = i from it

(here indicated as N;) are shown.

The sharpened character of the transition is clearly
illustrated in Figure 5a-b. Here a v = 16 genome has
been used, with © = 1073. A transition is shown to oc-
cur at p$, ~ 0.037. We can compare this picture with the
standard plots of quasispecies abundance against single-
digit accuracy [14,16]. In spite that the chain is not very
long, a transition from the genetically unstable phase to
the &-phase is clearly visible. Increasing genome lengths
further increase the sharpening, with a wider domain of
the & sequence. The time evolution of the &é-sequence pop-
ulation is shown in Figure 6a—c for three different lev-
els of instability close to criticality. Very close to the
critical boundary (a-b) wild fluctuations are observed.
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Fig. 6. Examples of the time evolution of the number of &
strings close to the transition point. Here three situations are
shown: (a) critical p., & ug, = 0.036 (b) g, = 0.04 > pus,, where
the master sequence starts to be dominant, but still highly
fluctuations and (c) pu = 0.042 > puf,, where most strings are
&type. Here we have N = 10%, 4 = 1073,v = 16, f1 = 0.25
and a = 2.0.

Once we slightly increase the instability the £ sequences
dominate (c).

An additional statistical characterization of the
genome population can be obtained by looking at the fre-
quency distribution of £ genomes at different mutation lev-
els. Given the neutrality of S; € H” — ¢ and the large size
of sequence space (typically |H”| > N) we take a mean
field approximation in which mutations occur among cells
in the unstable compartment at a rate p, in such a way
that any genome S; € H” — £ can be introduced in the
population as a consequence of mutation. In this way we
completely ignore the correlations imposed by the muta-
tion matrix. This situation is actually very close to the
one considered in neutral models of biodiversity dynam-
ics [30-32] where a finite, but large number of species S
(here S & 2") can be present in a finite urn of size N. The
individuals behave as balls in a Polya process and replace
each other at each generation with identical probabilities.
Additionally, “mutations” are used in such a way that a
different species from the S-pool is introduced through
immigration at a rate p. In our system, immigration is
replaced by true mutation (here at a rate pi,).

By considering the previous partition into two basic
sets, i.e. £ and HY — ¢ and indicating as P(n,t) the proba-
bility of finding a £-sequence represented by n strings, the
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master sequence for the time evolution of this distribution
will be [33]:

dP(n,t
ﬂ = Tn+lp(n+ ]-at) +gn71P(n - ]-at)

dt
- (rn + gn)P(nv t) (23)

where r, = w(n — 1|n) and g, = w(n + 1|n) are the
transition probabilities associated to the one-step process
described by the previous rules.

It is not difficult to compute the transition probabili-
ties to be considered. First, we have

w(n —1fn) = P(n)f(é)u*% <1 _ ;_11>

n

+Paf(©0m) [1- 5| & (1-2F) @9

where two basic terms have been introduced. The first
term in the right-hand side is the contribution to the
n — n — 1 transition due to incorrect replication of the
& sequence. The probability of wrong replication is indi-
cated as u* =1 — (1 — p)¥. The second term corresponds
to replication of a S # £ sequence that is replicated at
the expense of a £ copy. The term 1 —1/(2¥ — 1) indicates
that the replication event must generate another sequence
S; # &. Given the assumed large size of sequence space,
this term will be very close to one.

Similarly, it can be shown that

wln = 1ln) = P SO0 - 05 (1- =7 )+ (9

Assuming that 1 < 1, we have the approximate transition
probabilities

= PO (17§27 ) A+ astu)) (@0

n n—1
n =P —(1- . 2
m=PfOF (1- 377 (27)
A further constraint can be introduced if we consider that
the population is in the p,, ~ pf, boundary and thus = =
n/N is small. The continuous limit of the master equation
gives [34]:

0 0
WD) €)oo, )
L 02
3 HO@+ ad(us) 55aPla, 1) (29)
with a stationary solution
P*(2) ~ 2~ exp(—B(i5)a) (20)

with @(%) = G(1S)/(2+ (115)). For pry — i, the cut-off
will be large and a scaling law P*(n) ~ n~! will be ob-
served. This prediction is illustrated in Figure 7, where the
distribution of ¢-genomes for a N = 10? population with
v = 16 is shown at the p, =~ ¢ transition (open circles).
Once we move far from the phase transition point (open
circles) the scaling law is quickly replaced by a single-
maximum distribution (filled triangles).
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Fig. 7. Probability distributions associated to the master se-
quence & for (a) the critical region p, ~ pi = 0.036 (open
circles) and for (b) p. = 0.042 > 5, (filled triangles). Here we
have N = 102, = 1072,v = 16, fi = 0.25 and o = 2.0. At
criticality we have a scaling behavior P(n) ~ n™", as predicted
by the master equation approach. Once the level of genetic in-
stability is slightly increased, the master sequence starts to
dominate and thus a single peak is obtained.

4 Discussion

One particular difference in relation with the standard
problems considered by quasispecies models concerns the
way genetic instability emerges in cancer cells. In RNA
viruses, mutation rates are tuned through evolution in or-
der to reach the error threshold. In this way, the greatest
adaptability emerges close to the order-disorder boundary
defined by the error catastrophe [17].

For unstable tumors, the situation is somewhat dif-
ferent: here we have genes that are involved in preserv-
ing genome integrity that are mutated or simply removed
from the genome (through gene or chromosome loss). As a
consequence, the molecular machinery implicated in main-
taining a correct cellular functioning is absent and mu-
tations accumulate at high levels. Genetic instability is
thus an intrinsic feature of the unstable cell that is car-
ried out through tumor progression [10]. Different levels of
genetic instability are likely to be present within the pop-
ulation and those cells with too high levels will probably
die out. Since the critical mutation rates defined by the
quasispecies model scale with genome length as ji. ~ v~ 1,
we should expect to observe supercritical mutation levels
at least at early tumor progression. Afterwards, it should
stabilize close to the critical instability. However, it is im-
portant to mention one possible scenario emerging from
this model approach: if instability levels keep increasing,
the tumor might actually become too unstable and tumor
regression would eventually occur. This situation should
be explored within the context of cancer regression.

Strictly speaking, tumor progression is a coevolution
process in which cancer population responses are mod-
ulated by the host response. In this sense, further work
should consider this host-tumor interaction, which even-
tually might tune mutation and replication rates, as
it seems to be the case with RNA viruses [3,4,6,35].
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The present model is an oversimplified picture of cancer
cells populations. Even for RNA viruses the assumption of
a single-peak fitness function is a very strong one, and ex-
perimental evidence shows that the structure of the land-
scape is case-dependent [36,37]. Genome sizes are very
small and a more appropriate representation would be to
consider the S;’s as genes themselves. In that case, the
tumor population would evolve through adaptive walks
performed by cells through gene space [38]. Additionally,
the previous analysis is performed under the assumption
of stationarity, i.e. a maximum cell population size is al-
lowed and competition takes place under this population
constraint. Real tumors are nonequilibrium systems and
as such are growing structures. Besides, spatial degrees of
freedom seem to be relevant in maintaining and propagat-
ing genetic heterogeneity in such a way that competition
among different clones is effectively reduced under the lo-
cal character of cell-cell interactions [39]. Finally, the evo-
lution of the cell population towards the instability bound-
ary should be introduced in an explicit way, by allowing
replication and mutation rates to be self-tuned. In spite of
these drawbacks, current research seems to indicate that
the previous results are robust (R.V. Solé, unpublished).

If there is such an error threshold in unstable cancer
populations, perhaps we could take advantage of treat-
ments in which the tumor cells are destabilized by means
appropriate drugs. This possibility has been suggested by
some authors [10,12,26] provided that the tumors operate
close to instability thresholds. The current model strongly
supports the idea that such thresholds exist and indicates
that cell population responses close to such threshold are
expected to be sharp.

The author thanks Isabel Gonzélez, Thomas Deisboeck and
Josep Costa for useful discussions. This work was supported
by a grant BFM2001-2154 and by the Santa Fe Institute.
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