
ELSEVIER 

Available online at www.sciencedirect.com MATHEMATICAL 
AND 

S C I E N C E  ~OIRECT" COMPUTER 
MODELLING 

Mathematical  and Computer Modelling 42 (2005) 621~334 
www.elsevier.com/loeate/mcm 

A P r e d i c t i v e  M a t h e m a t i c a l  
M o d e l  in t h e  R e c u r r e n c e  

of  B l a d d e r  C a n c e r  

B. GARCIA, C .  RUBIO AND C. SANTAMARfA 
Instituto de Matem£tica Multidisciplinar 

Valencia, Spain 
<magarmo5><grubio>~mat. upv. es 

J .  L. PONTONES, C. D. VERA AND J.  F .  JIMENEZ 
Hospital Universitario La Fe 

Valencia, Spain 
pontones_j os©gva, es cdvera©pulso, com 

(Received April 2004; accepted May 2004) 

A b s t r a c t - - T h e  aim of this paper  is to evaluate the risk of tumor recurrence after surgical operation 
(TUR: t rans-urethral  resection). The prognostic significance of some clinical features in 380 patients  
with primary superficial bladder carcinoma is studied. By means of survival analysis techniques 
a mathematical  model of risk of tumor recurrence is obtained. @ 2005 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - B l a d d e r  carcinoma, Recurrence, Cox Model, Kaplan-Meier method, Prognostic fac- 
tors. 

1. I N T R O D U C T I O N  

Transitional bladder cancer represents about 2% of all human tumors. It supposes an important 
public health problem because it is biologically very aggressive and causes more than 130,000 
deaths by year all around the world. Superficial bladder tumors are characterized by recurrence 
(reappearance of a new tumor) in 50-70% of cases. Although most recurrences are still superficial, 
progression to muscle-invasive disease occurs in 10-30% of patients, therefore, when superficial 
bladder tumor is diagnosed, it is important to identify patients who are at risk of disease recur- 
renee and progression. If it were possible to define exactly which subset of superficial bladder 
tumors have more risk to recur and to progress, preemptive therapy could be used. Identifying 
the prognostic factors that determine that risk in each patient remains a subject of extensive 
research [1,2]. 

Biotechnological advances have allowed us to use different therapeutic procedures (surgery, 
radiotherapy, chemotherapy, immunotherapy) successfully, but still, many patients suffer an un- 
favorable outcome without control of disease. 

0895-7177/05/$ - see front mat ter  @ 2005 Elsevier Ltd. All rights reserved. Typeset by Afi4S-TEX 
doi:10.1016/j.mcm.2004.05.013 
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Figure 1, Tumor staging in bladder cancer according to TNM system. 
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Multiple clinical and pathological variables are important in predicting outcome in patients 
with transitional bladder cancer, among which pathological stage and grade of differentiation are 
recognized as the most important [3,4]. Therefore, an ideal prediction model should combine stage 
and grade, along with any other features shown to be associated with outcome in a multivariate 
model (histological characteristics, size, number of tumors, etc/. 

The TNM system (classification of 1997) is generally used to establish the stage of the bladder 
tumors [5] (see Figure 1). 

tumor is limited to the mucosa and is fiat (a carcinoma in situ). 
tumor is papillary and it is limited to the mucosa. 
tumor penetrates the lamina propia but not the muscle layer. 
tumor invades muscle and is staged from T2 to T4 according to the depth of infiltration 
of muscle tissue or the extent to which the surrounding tissue is affected. 

Superficial bladder tumors (Stages Ta and T1) have trend to produce recurrences (generally 
with similar stage). Tumors that invade the bladder muscle are highly aggressive and have a 
strong potential metastasise preferentially to regional lymph nodes, lungs, liver, and bone. 

The histologic grade (or grade of cell differentiation) establishes according to the WHO (World 
Health Organization) 1999 classification [6], 

GI: Urothelial carcinoma grade I (differentiated), 
G2: Urothelial carcinoma grade II (intermediate differentiation), 
G3: Urothelial carcinoma grade III (poor differentiated). 
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Well differentiated tumors (G1 grade) have generally low aggressivity while poor differentiated 

tumors (G3 grade) are highly aggressive (cause many recurrences) [7]. 

Nowadays, a field of this urological cancer that  is being studied deeply, is the capacity that  

several parameters (clinical, biochemical, cellular, genetic, and molecular) have for establishing 

the biological behavior of the tumor, and therefore, the outcome of the disease. This group of 
parameters tha t  characterizes to the tumor could be managed by mathematical  analysis in order 
to obtain models with predictive capacity of the disease outcome about patient survival and 

probabilities of recurrence of disease. With this model, it is possible to choose the best t reatment 

for each patient. 
Prediction models can be used to counsel patients, determine the need for adjuvant therapy, 

stratify patients in risk groups, and develop appropriate postoperative surveillance programs 
tailored to risk for cancer progression. The models have to be easy to use. 

Many models for clinical prediction (prognosis or diagnosis) are published in the medical litera- 
ture every year but few such models find their way into clinical practice. The aim is to construct 
and evaluate a prognostic mathematical  model for predicting the outcome of superficial blad- 

der cancer of transitional cells (Stage T- l )  that  increases the results obtained until now and to 

establish its efficacy and its capacity to be reproduced by other groups. 

The main objective of this paper is to establish new prognostic factors for bladder cancer and 

their influence in the behavior of tumor for developing recurrences. Evaluation of survival data  
is performed by the analysis of data in the form of times from a well-defined time origin until 
the occurrence of some particular event or end-point. This end-point may be the death of the 
patient or an other event such as tumor recurrence. The period of time from the time origin to 
the end-point is the survival time. In our study, the time origin concern to the so-called TUR 
(trans-urethral resection): a surgical endoscopic technique used to remove the macroscopic tumor 

from the inner of the bladder. The end-point is the first tumor recurrence. 
The main reason why survival data  are not amenable to standard statistical procedures, is 

that  survival data  are generally not symmetrically distributed, and so it will not be reasonable 

to assume that  the variable time has a normal distribution, and although this difficulty could be 

resolved by transforming the data  to achieve this status, for example by taking logarithms, there 

is a second difficulty: survival times are frequently censored. The survival time of an individual 

is said to be censored when the end-point of interest has not been observed for tha t  individual 
(recurrences times are unknown). This is because the patient has no tumor recurrence at the 

end of the period of time of study, or the patient is lost for follow-up, for example. Nevertheless, 
censored survival time from these last patients must not be removed from the analysis since 
it would represent to lose that  information. Some references that  provide methods of survival 

analysis, illustrated with practical examples are [8-11]. 
The paper is organized as follows. In Section 2, the data  on the survival times of 380 pa- 

tients and their characteristics (explanatory variables) are described. In Section 3, survival data  
are conveniently summarized through estimates of the survivor function and hazard function. 
Methods for estimating these functions from a single sample of survival data  are said to be non- 
parametric or distribution-free. The survival times are the only used data and the statistical 
analysis is performed using the Kaplan-Meier method. It 's estimated the survivor probability 
until instant t. Further, numerical and graphical summaries of the survival times for individuals 
in a particular characteristic are presented. In this way, it is obtained a first selection of prognos- 

tic factors in the tumor recurrence. In Section 4, a multivariate analysis is performed by using 
the Coz proportional hazards model with stepwise selection of prognostic factors. Tha t  model 

explores the relationship between the survival time of a patient and explanatory variables, and 

unifies and extends the nonparametric procedures of Section 3. After Cox model has been fitted 
to the set of survival data, in Section 5, the adequacy of the fitted model is assessed. The using 
of diagnostic procedures for model checking is essential in the modelling process. In Section 6, 
the evaluation of results is presented. 
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N u m e r i c  p r o c e s s  a n d  g r a p h i c s  have  b e e n  c a r r i e d  o u t  w i t h  s t a t i s t i c a l  p a c k a g e  S - P L U S  [12], a n d  

SPSS. 

2. D A T A  A N D  S E L E C T I O N  OF V A R I A B L E S  

Study Patients 

From 1973 to 2003, 380 patients with primary superficial transitional cell carcinoma of the 
bladder were initially treated with transurethral resection at La Fe University Hospital from 
Valencia (Spain). 

Patients Characteristics 

Variables considered for this study were sex and age (categorized in four groups for non- 
parametric analysis). Out of the patients, 84.5% were men with a mean age of 63.54 years; 
tumor stage (pTa and pT1) and tumor grade (G1, G2, and G3), number of tumors (one or 
more than one) and tumor size (< 1 cm, 1-3 cm, or > 3 cm), treatment (Thiotepa, Adriamicine, 
Cisplatine, no treatment, and other treatments), see Table 1. 

For all patients times from TUR to first recurrence is considered. 152 cases are censored (40% 
of patients). There are 228 recurrences in the data (see Figure 2). 

Figure 1. Patients characteristics and statistics leg-rank and Breslow. 

Variable No. Patients 

Stage 

pTa 86 

pT1 294 

Grade 

G1 222 

G2 131 

G3 27 
Sex 

Men 321 

Women 59 

Number 

One 313 

Two or more 67 

Size 

< l c m  81 

1-3 cm 209 

> 3 cm 87 

Age 

< 60 years 139 

between 61 and 70 years 129 

between 71 and 80 years 91 

:> 80 years 21 

Treatment 

Thiotepa 

Adriamicine 

Cisplatine 

No treatment 

Others treatments 

219 

49 

39 

38 

35 

(%) 

22.6 

77.4 

58.4 

34.5 

7.1 

84.5 

15.5 

82,4 

17.6 

22.1 

55.0 

22.9 

36.6 

33.9 

23,9 

5.6 

57.6 

12.9 

10.3 

10.0 

9.2 

Median Days Log-Rank Breslow 

0.3884 0.9593 

1102 

1193 

0.1711 0.0415 

1285 

848 

767 

0.3844 0.8338 

1144 

1427 

0.0176 0.0398 

2121 

808 

0.0167 0.0078 

1211 

1289 

606 

0.7412 0.4887 

1173 

1285 

98 

767 

0.0336 0.0469 

1.427 

746 

1.211 

1.629 

813 
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Figure 2. Rate of failure/censure and the Kaplan-Meier estimate survival function. 
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3. N O N P A R A M E T R I C  A N A L Y S I S  

Nonparametric analysis is used when no distribution probability is considered for survival times 
until death or failure (recurrence tumor in our case). Kaplan-Meier method is used to estimate 
the survival function [8, p. 19]. 

First, the analysis is carried out for all 380 patients and subsequently, the same analysis is 
executed for individuals in a particular group (according to explanatory variables). The way 
of comparing the survival times in a particular group is to plot the corresponding estimates 
of the survival functions from different categories for each explanatory variable. Further, it is 
contrasted the null hypothesis of equality of the corresponding survivor functions. In this case, 
nonparametric log-rank [8, p. 42] and Wilcozon (Breslow) [8, p. 45] tests are used. 

Kaplan-Meier estimate is plotted for all 380 patients in Figure 2. The survival function shows 
a marked slope during the first 2,000 days (five years and a half), while in the remainder period 
of study the decrease of the slope is less strong. 

In fact, the survivor probability (that is, probability of no recurrence tumor) is 75% a year 
and a half (approx. 556 days); 52.49% at three years (approx. 1088 days), while from five years 
(approx. 1828 days) to nine years (approx. 3242 days) the survivor probability decreased from 
39.29% to 30.55%. 

On the other hand, from median estimation, more than half of patients do not have recurrence 
tumor until 1,173 days (3.3 years) after TUR of tumor. 

Table I and Figure 3 show the log-rank and Breslow tests and the survivor functions for 
individuals in a particular group (for each explanatory variable). Log-rank and Breslow statistics 
are significant (at the 5% level) in the equality of survivor functions for the patients characteristics 
number, size, and treatment; and only Breslow statistic is significant for grade. This could be 
due to that Breslow statistic gives more weight to the first observations, while log-rank statistic 
gives the same weight to all observations. Therefore, the Breslow statistic is less sensitive than 
the Log-Rank in the last observations. 

Pair comparisons from three categories show the following results: grade, there are significant 
differences between grades G1 and G2, and between grades G2 and G3. For the variable size, 
there are significant differences for two first levels (< 1 cm and 1-3cm) versus the third level 
(> 3 cm). Finally, the variable treatment provides evidence of significant differences between 
Thiotepa and the rest of the treatments. 
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4 .  M U L T I V A R I A T E  A N A L Y S I S  

The survival experience of the 380 patients depends on several variables, whose values have 
been recorded for each patient at the time origin. The aim of this section is to determine which of 
explanatory variables have an impact on the free of disease time of the patients (survival time). 
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The focus is modelling the recurrence hazard (risk of recurrence) at time t. The recurrence 
hazard is obtained from the hazard function h(t) (see [8, p. 11]) and its related with the survival 

function as follows, 

S (t) = exp ( - H  (t)) ,  (1) 

where 

jr0 
t 

H (t) = h (u) (2) 

The function H(t)  is called the cumulative hazard. 
The hazard function is obtained from the basic model for survival data: proportional hazard 

model [8, Ch. 3; 10, Ch. 3]. 
Let us suppose that  the recurrence hazard at time t depends on the values of p explanatory 

variables X1, X 2 , . . . ,  X;.  Let us denote that  xl~ ,x2i , . . . ,  xvi be the values of these variables at 

time t for the i TM individual. Then, the Cox regression model is given by 

hi (t) = exp( lxli + + . . .  +  pxp )ho (t) , (3) 

where ho(t) is called baseline hazard function,/3~ are coefficients to be determined and/31xli + 
~2x2i + • • • +/~pxpi is called the risk score or linear predictor. Note that  hazard function for the 
i th  individual is proportional to the function ho(t) (hazard function of the reference individual). 
Further, the hazard ratio between different individuals is constant and independent of the time, 

hi (t)  _ exp (fi'xi) (4) 
hj (t) exp (/3'xj) ' 

where/3 = (/31,/32,..., ~;) is the coefficient vector of explanatory variables and ~3 t is the transpose 

of/3. 

The maximum likelihood estimates of the fl-paxameters in the proportional hazards model can 

be found by maximizing this log-likelihood function by using the Newton-Rapshon procedure, 

where L(¢~) is the likelihood function in the Cox regression model [8, p. 68] and _R(t~) called risk 
set, is the set of individuals who are at the risk of tumor recurrence at t ime ti. 

On the other hand, the objective of this modelling procedure is to determine which combination 

of explanatory variables affects the form of the hazard function. In this process, we use the 
statistic -21ogL. The process consists of introducing and removing variables while it's verified if 
the value of variation of -21ogL results significant. This strategy of selection is suggested in [8, 

p. 83], since automatic routines may provide a wrong model. 
Indicator or dummies variables are generated for the analysis. From treatment (five categories) 

four dummies are defined: Adriamicine, Cisplatine, no t reatment  and others treatments.  From 
grade (three categories) two dummies: G2 and G3. From size (three categories) two dummies: 
1-3 cm and > 3 cm. Sez, number, and stage are dichotomic variables. The age is continuous. In 
this way the individual of reference is a man with a median age 63.54 years, with only one tumor, 
of pTa stage, G1 grade, with a size minor than 1 cm and with Thiotepa t reatment  after TUR. 

Parameters estimates in the Cox regression model are presented in Table 2. 

5.  V A L I D A T I O N  A N D  D I A G N O S T I C  

The aim of this section is to determinate if the model has been fitted rightly to set of survival 
data. In a first step, the model-checking procedure of the survival analysis is based on residuals: 
Cox-Snell, Martingale, and deviance. In a second step, it is determined whether any particular 
observation has an undue impact on the model. In a third step, it is tested the assumption of 
proportional hazards. 
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Parameter 

pT1 

1-3 cm 

> 3cm 

G2 

G3 

Adriamicine 

Cisplatine 

No treatment 

Others treatments 

Table 2. Cox regression model. Parameters 

Exp (¢)) se(j~) z 

-0.343 0.709 0.17i -2.01 

0.243 1.276 0.185 1.31 

0.687 1.988 0.216 3.18 

0.301 1.352 0.152 1.98 

0.420 1.523 0.305 1.38 

0.570 1.769 0.205 2.79 

0.235 1.265 0.221 1.06 

0.463 1.588 0.250 1.85 

0.277 1.319 0.253 1.10 

estimates. 

p-value lower.95 upper.95 

0.0450 

0.1900 

0.0015 

0.0470 

0.1700 

0.0054 

0.2900 

0.0640 

0.2700 

0.508 

0.887 

1.301 

1.004 

0.838 

1.184 

0.820 

0.973 

0.804 

0.992 

1.834 

3.038 

1.821 

2.767 

2.643 

1.951 

2.592 
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Figure 4. Cumulative hazard plot of the Cox-Snel l  residuals. 

5.1. Res iduals  

5.1.1 .  C o x - S n e l l  residuals 

The Cox-Snell residuals for the ith individual is given by 

(4, O ) (6) 

If T is the random variable associated with the survival time of an individual and S(t) is the 
corresponding survival function, then 

Y = - tog ( s  ( t d )  ~ E:~ (,~ = 1 ) .  (7) 

As rc ,  has an exponent ia l  d is t r ibut ion ,  a graphic of pairs of points  ( rc , , /2 / ( rc , ) )  fi t ted to a 

line wi th  origin in (0, 0) and  with slope one, will show tha t  the  survivor  model  is satisfactory, [8, 

p. 122]. 

Indeed,  F igure  4 shows tha t  the cumula t ive  hazard of residuals is fi t ted to a line with origin in 

(0, 0) and wi th  slope one. So, the model  is r ight ly fitted. 



A Predictive Mathematical Model 629 

-a 

,7 

~ ~ o o o o ~  o ~o o, 
o @ tP co ~ o ©  

£oo oo o 
~ ° o  o91%° o ~ oo o 

or~O 0 O O~ 

° ~ % 0 °  o4~o~oOaO o %oOo o o °'°°o°o°° o 
-- o o o~ o %o~Oo~oO~ o ° %0 oO oo 

oo o 
OoO o oo o o o 

o oO o °o ~ b  o 
O0 00~0 ~ 

0 0 
o o Gb<~ u 

0 © 

~ 8  

~9 

~76 

100 200 300 

Index 
F i g u r e  5.  I n d e x  p l o t  Martingale r e s i d u a l s .  

° 
~0 

~7 

o} e- ~, 

.m 

1.0 1.5 2.0 

Size 

(a) 

O O 

278 

o 
0 

o~:, 289 
e3{ 9 .~ °376 

'6 

2.5 3.0 1,0 

.c: ~, 
~78 

1.5 2.0 

Grade 

2.5 3.0 

(b) 

¢369 

e376 

2 3 4 5 

Treatment 

(c/ 

{D 

"7, 

0.0 0.2 0.4 0.6 

Stage 

(d) 
Figure 6. Martingale residuals against the variables. 
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1.0 

5 . 1 . 2 .  M a r t i n g a l e  r e s i d u a l s  

The Martingale residual for the i th is given by the expression, 

rM.,; = ~ i  - -  7"C{, ( 8 )  

where 6i takes the value 0 if the observation is censored and the value 1 if it is a failure. Martingale 
residuals may be interpreted as the difference between the observed and the expected number of 

failures in the t ime interval (O, ti). 
To this effect, a plot of these residuals will highlight those individuals with a bigger difference, 

and, consequently, their survive times wouldn' t  been well fitted by the model (outliers). 
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In Figure 5, very negative values belong to individuals with a long survival time (longer than 
expected), and residuals near the unity indicates that individuals have an unexpected short 
survival time. Consequently, patients 369, 376, and 378 have a time free of disease longer than 
predicted. 

It would be useful to plot these residuals against survival time or explanatory variables since 
that may indicate whether any particular time or any explanatory variable value are not well 
fitted by the model. 

In fact, Figure 6 shows that outstanding values are those corresponding to patients 369, 376, 
and 378. In particular, patients 369 and 376 have the greatest value of residual and moreover 
belong to groups with the same features in size (> 3 em), grade (G1), treatment (Adriamicine), 
and stage (pT1). 

5.1.3. Deviance Residuals  

The deviance residual for the i TM individual is defined by 

, D ,  = sgn ( r M , )  [ - 2  + log - , (9)  

where sgn(.) is the sign function, which takes the value +1 if its argument is positive and the 
value -1  if it is negative. 

This kind of residuals are a transformation of Martingale residuals and generate values that 
are symmetric around zero when the fitted model is appropriate. They are also useful to detect 
outliers. 

In both plots of Figure 7, the cluster of points is rather compact, distributed around zero, and 
we do not find any points with an absolute value of residual unusually large, or too far from 
the others. Although in a less remarkable way that in Martingale residuals plots, patients 369, 
376, and 378 have the most negative residual value. Deviance residuals also detect those patients 
whose survival time is shorter than expected from the model. This is the case of patients 2, 3, 4, 
and 5. 

Plotting deviance residuals against risk score, we may detect those individuals with risk of 
failure below the mean value (risk score very negative), and those above it (high risk score). 
Patient with highest risk score (number 109) is very near of 0, suggesting that this observation is 
well fitted by model, And, again, patients with greatest deviance residuals handily separate from 
the remaining observations. 
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Figure  7. Index  plot deviance residuals  and  deviance res iduals  aga ins t  t he  values  of 
t he  risk score. 
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Figure 8. Delta-Beta for the variables against rank order of survival time. 

5.2. I d e n t i f i c a t i o n  of  I n f l u e n t i a l  O b s e r v a t i o n s  

This section is addressed to determine whether any particular observation has an undue impact 
on model based inferences. We consider two kinds of influence. 

5.2.1. In f luence  of  obse rva t i ons  on  an  p a r a m e t e r  e s t i m a t e  

If the ith observation has an untoward effect on the j th parameter estimate, /Jj, it would be 

reflected in the difference/~j - /JJ(0,  where/JJ(0 denotes the jth parameter estimate when the i TM 
observation is removed from the data  base. The following approximation is available [13], 

Ai/~j ~ ~j -/3j(i),  (10) 

where Ai~j (called a Delta-Beta) is the jth component of vector r ~ v a r  (/~), where var (/~) is the 
variance-covariance matrix of the vector of parameter estimate in the fitted model, and rs~ is the 
vector of the score residuals, [8, p. 133]. 

Therefore, observations that  have an influence on ~j will be such that  the values of Ai~j  
are larger in absolute value than in other observations. This can be perceived graphically, as 
it is shown in Figure 8. In all the plots, we notice compact clouds around zero. It must be 
emphasize that  in plots corresponding to treatment Adriamicine and grade G3, the Ad~j reach 
the highest value. These observations more influential belong to patients with longer survival 
time. For the sake of testing these approximations, the exact value of ~j-~j(~) has been calculated. 

The Ai/~j underestimates the exact value and it is Mways lower than standard error. In particular, 
Adriamicine's plot highlights patients 369 and 376. 

5 . 2 . 2 .  I n f l u e n c e  o f  o b s e r v a t i o n s  o n  t h e  s e t  o f  p a r a m e t e r  e s t i m a t e s  

The exclusion of a given observation may not have a great influence on the estimation of 
any particular parameter. However, it may affect the whole set of parameter estimates and, 
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Figure 9. Index plot of LDi and 1 . . . .  

consequently, estimations based on the fitted model could change. There are several statistics 
for assessing this influence, we will use two. The first one consists in examining the amount by 
which the statistic - 2  log L changes when each observation in twin is left out. This is given by 

the expression, 

where L(/~) is the value of L when the model is fitted to all observations, and L(~(~)) when the 
model is fitted after omitting the i th .  In [14], it is shown that  an approximation can be computed 

from LD~ = r ~ v a r  (~)rs~ (LD means likelihood displacement). An index plot of this quantities 

provides an informative visual summary of the values of the diagnostic. 
Another diagnostic is based on the matrix B = @1vat (/~)O, where @' is the matr ix formed 

from the vectors rs~. Let /max be the eigenvector associated with the longest eigenvalue of the 
matr ix B, standardized to have unit length. The absolute value of the i th element of/max is a 

measure of the influence of the i th observation [8, p. 137]. 
From Figure 9, we see that  both diagnosis highlight the same patients. They  are, again, 369 

and 376. Note that  the addition of the squares of elements of /max must be one. Since the 
additions squares of elements corresponding to patients 376 and 369 is 0.519, these observations 

represent 50% of the influence of elements from Ima×. 

5.3. Testing Proportional Hazards 

We know that  hazards are said to be proportional if ratios of hazards are independent of time. 
If there are one or more explanatory variables in the model whose coefficients vary with time, or 
if there are explanatory variables that  are time-dependent, the proportional hazards assumption 
will be violated. So, it is required a method to detect this possibility: if there is some form of 

time dependency in particular variables. 
The tests and graphical diagnostics for proportional hazards are based on the scaled Sehoenfeld 

residuals, r~j i [8, p. 117], and are useful in evaluating the assumption of proportional hazards 

after fitting a Cox regression model. 
Grambsch and Therneau [10] show that  the expected value of the i th  scaled Schoenfeld residual 

is given by E (r*pji) ~ ~j (t~) - ~j, and so a plot of the values of r*pj~ + ~j against the death times 

should give information about the form of the time-dependent coefficient of Xj,  flj (t). 
The interpretation of these graphs is greatly facilitated by smoothing shown on each graph 

by a solid line. An horizontal line in each graph of the Figure 10 indicates no suggestion of 
nonproportional hazards and that  the coefficients of these variables are constant. 

This graphical diagnostic is supplemented by a test for each variable, along with a global test 
for the model as a whole. In Table 3, it is showed the mentioned global test and the tests for 

each variable. 
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Schoenfeld res iduals  aga ins t  t i m e  for each variable.  

Tes t  for the  p ropor t iona l  hazards .  

Variable 

p T a  

G2 

G3 

1 - 3 c m  

> 3 c m  

Adr iamic ine  

Cisp la t ine  

No t r e a t m e n t  

O t he r s  t r e a t m e n t s  

G L O B A L  

rho  chisq 

- 0 . 1 0 4  2.543 

- 0 . 0 5 5  0.734 

- 0 . 1 1 7  3.034 

- 0 . 0 0 3  0.002 

- 0 . 0 7 7  1.369 

0.138 4.334 

0.063 0.919 

0.022 0.107 

--0.002 0.001 

14.474 

Here, rho is the Pearson product-moment correlation between the scaled Schoenfeld residuals 
and time for each variable. The column chisq gives the tests statistics for each variable and the 
last row GLOBAL gives the global test for a X 2 of 9 degree of freedom. There is some weak 
evidence for nonproportionality shown in the large GLOBAL test statistic. So, it is examined 
the assumption of nonproportionality for the variables grade, particularly in G3, and treatment,  

particularly in Adriamicine. 

To test the overM1 effects of grade and treatment  on proportionality, a two- and a four-degree 
of freedom tests for all two and four coefficients are constructed. The p-values for testing whether 

flj (t) = fly for grade and t reatment  are 0.187 and 0.25, respectively. So, it 's rejected the assump- 
tion of nonproportionality and it isn't considered the addition of any time-dependent variable in 

the model. 
However, another tests, such as log cumulative hazard plot made us consider the possibility of 

t ime-dependent in some variable. In that  case, a subsequent task would be to include a time- 
dependent variable into Cox model, or to stratify the initial model according to the variable that  
violates the assumption of proportional hazard. 
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6. C O N C L U S I O N S  

The Cox model allows us to compare easily risks among the different groups in which patients 
have been divided according to variables. The reference individual is a man with stage pTa, 
grade G1, size < 1 cm, treated with Thiotepa after TUR. Main comparisons are summarized in 
Table 2. 

Stage. Pa t i en t s  with t umor  pT1 have a risk of recurrence 29~ ,  

h (t; stage = pT1)  
h (t; stage = pTa)  = exp (-0.343) = 0.710, 

lower than patients with tumor pTa. 

Grade. Patients with tumor G2 have a risk of recurrence 27.5% higher than patients with 

tumor GI, while risk in case of tumor G3 increases 98.6% respect to reference 

individual. 

Size. Individuals with tumor between I and 3 em have a risk 35.2~ bigger than patients 

with tumor < i cm, while those with size > 3cm increase risk a 52.3~ with 

respect to the same group. 

Treatment. The treatment with less risk of recurrence is Thiotepa. However, patients treated 

with Thiotepa represent 57.6~0 of our data base. So, we may consider that this 

result isn't enough reliable. 

Along the study it has been observed that patients 369 and 376 have high values of Martingale 
and deviance residuals, and they are also the most influential on the estimation of the whole set 

of parameters. Both observations belong to the same groups: stage pTI, grade GI, size > 3 cm 

and treated with Adriamicine. The two last characteristics correspond to the highest risk of 

recurrence according with the set model, and, however, they are among the patients with longest 

time of disease. This fact could justify their behavior in this study. 
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