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Abstract

A comparison between the evolution of cancer cell populations and RNA viruses reveals a number of remarkable similarities.

Both display high levels of plasticity and adaptability as a consequence of high degrees of genetic variation. It has been suggested

that, as it occurs with RNA viruses, there is a threshold in the levels of genetic instability affordable by cancer cells in order to be

able to overcome selection barriers (Trends Genet. 15 (1999) M57). Here we explore this concept by means of a simple mathematical

model. It is shown that an error threshold exists in this model, which investigates both competition between cancer cell populations

and its impact on overall tumor growth dynamics. Once the threshold is reached, the highly unstable tumor cell populations, which

were sustaining malignant growth, become unable to maintain their genetic information, which in turn triggers a slowed down

overall tumor growth regime.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Cancer; RNA viruses; Quasispecies; Genomic instability; Genetic instability; Tumor progression; Phase transitions; Error threshold
1. Introduction

A hallmark of cancer cells is their underlying genetic
instability. Often, this term is used to describe a state,
i.e., the occurrence of either small genetic alterations
such as nucleotide deletions or insertions or larger ones
such as alterations in the chromosomal number per se,
termed aneuploidy. Nonetheless, as Lengauer et al.
(1998) already pointed out, genetic instability should
denote a rate more than a state, hence the occurrence of
a particular mutation in the genome of the cell over
time. Such hypermutability has been liked to chemical
carcinogens (Bardelli et al., 2001) as well as non-DNA
damaging stress (Li et al., 2001). Different aspects of
hypermutation and its impact on cancer development
have been analysed from mathematical models (Wodarz
and Krakauer, 2001; Frank et al., 2003; Gatenby and
Frieden, 2002; Plotkin and Nowak, 2002).
ing author. ICREA-Complex Systems Lab, Universitat

, Dr Aiguader 80, 08003 Barcelona, Spain. Tel.: +34-

: +34-93-2213237.

ess: ricard.sole@cexs.upf.es (R.V. Sol!e).

e front matter r 2003 Elsevier Ltd. All rights reserved.

i.2003.08.018
Given the common conception of tumorigenesis as a
multistep process (Fearon and Vogelstein, 1990), with
continually accumulating mutations, and based on the
calculation that the normal, somatic mutation rate
accounts for only 1:4� 10�10 mutations=base pair=
cell generation; Loeb (1991) postulated the existence of
a so-called mutator phenotype. As the cited background
mutation rate cannot account for the marked hetero-
geneity seen in most solid cancers, he further argues that
‘‘cancer cells must exhibit or have exhibited a mutator

phenotype’’ (Loeb, 1994). Loeb concludes that this
mutator hypothesis as well as Novell’s generally
accepted concept of clonal evolution as the driving
force for tumor progression are not exclusive (Novell,
1976). Others, however, have argued that selection
without an increased mutation rate is both necessary
and sufficient to explain tumorigenesis (Tomlinson et al.,
1996) and to account for the mutations seen in tumors,
especially if the process of aging were to increase the
selective conditions for clonal expansion (Chow and
Rubin, 2000).
As discussed by Cahill et al., genetic instability in

cancer allows to overcome selection barriers, a process
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which fosters further tumor progression (Cahill et al.,
1999; see also Jackson and Loeb, 1998). Normal cells
display low levels of instability and tumor progression
will benefit from genetic instability by generating cellular
diversity. Such heterogeneous populations will include
genetic alterations to overcome the barriers and tumor
progression will continue (see for example Wodarz and
Krakauer, 2001). Although this situation is known to play
a key role in the initial stages of tumorigenesis, genetic
instability will be observable at late stages: it is carried
along with the clonally selected alterations.
A relevant point is the fact that too high levels of

instability might be harmful because of accumulated
damage. In other words, a limit to instability must exist
(Cahill et al., 1999). Such a threshold is actually very
similar to the so-called error catastrophe (or error

threshold) displayed by RNA viruses (Domingo and
Holland, 1994; Domingo et al., 1995; Nowak and May,
2000). These viruses are known to mutate at very high
rates. As predicted by Eigen and Schuster’s theory of
quasispecies, a critical mutation rate exists beyond the
genomic information is lost i.e. no Darwinian selection
operates (Eigen, 1971; Schuster, 1994). This actually
corresponds to an example of a phase transition in a
complex biosystem and as such it allows to develop
powerful theoretical approximations (Sol!e et al., 1996;
Sol!e and Goodwin, 2001).
RNA viruses are known to replicate close to their

error threshold. Several theoretical approaches to this
problem have been developed in order to understand the
presence and implications of this threshold (Swetina and
Schuster, 1982; Eigen et al., 1987, 1988; Pastor-Satorras
and Sol!e, 2001; Kamp and Bornholdt, 2002; Kamp et al.,
2003). The evolutionary success of RNA viruses is due
to their enormous plasticity and adaptability to chan-
ging environments. The high mutation rate generates a
highly heterogeneous population, so-called molecular

quasispecies. The quasispecies structure provides an
extraordinary reservoir of variants with potentially
useful phenotypes in the face of environmental change.
How strong are the similarities between unstable

tumors and RNA populations? Several features are
clearly shared by both, at least qualitatively. One is the
presence of high levels of heterogeneity, both at the
genotype and phenotype levels. Different replication
and infection mechanisms in RNA viruses are matched
by wide levels of variability in cancer cells, affecting cell
communication, growth and apoptosis. Accordingly,
escape from the immune system (and other selection
barriers) operates in both systems. Viruses use antigenic
diversity whereas tumors evade the immune system by
loosing their antigens through mutation, or making use
of antigenic modulation and/or tumor-induced immune
suppression (Rosenberg, 2001).
Increased mutagenesis beyond the error catastrophe

can destroy the virus, since beyond the threshold no
Darwinian selection is at work (Schuster, 1994). The
exceptionally high mutation rates in RNA viruses is
illustrated by the finding that most HIV virions in blood
appear to be non-viable (Coffin, 1995). Similarly, genetic
instability in cancer cells will have detrimental effects on
cell’s fitness, since most random mutations are likely to
be harmful (see Gatenby and Frieden, 2002). Effective
experimental strategies have shown that the error
threshold can actually be exploited in antiviral therapy
(Holland et al., 1999; Loeb et al., 1999; Cottry et al.,
2001). Within the context of HIV treatment, using
promutagenic nucleoside analogs, viral replication of
HIV has been shown to be abolished in vitro (Loeb et al.,
1999). As indicated by Cahill et al., the best chance of
cure advanced cancers might be a result of tumor genetic
instability (Cahill et al., 1999; Loeb et al., 2003): cancer
cells are more sensitive to stress-inducing agents.
Cancer, it is argued, would provide a good target for
direct attack by drugs promoting genetic instability
selectively in tumor cells.
To elucidate the possible implications of the error

threshold in cancer from a theoretical standpoint, we
present a simple mathematical model, which investigates
the interplay between cell proliferation and mutation
rate within a simple tumor growth model. The results
support the notion of the existence of an error-threshold
in tumor systems, which corresponds to a ‘‘critical’’
value of genetic instability, which, once exceeded, will
trigger a concomitant sharp decrease in the tumor’s
proliferation rate. This concept of a trade-off between
two of the tumor’s key features therefore combines for
the first time the still controversial ‘‘mutator phenotype’’
hypothesis with the generally accepted, clonal selection-
driven optimization process. Important implications of
this work for both experimental studies and future
clinical work are discussed.
2. The error threshold in quasispecies

In this section we shortly review the simplest model of
quasispecies dynamics, the so-called Swetina–Schuster
model (1982). The starting point is the general Eigen–
Schuster quasispecies model, defined by the following
set of equations:

dxi

dt
¼
Xn

j¼1

xjfjQji � FðxÞxi; ð1Þ

where xi indicates the fraction of the population
associated to the i-th mutant genome (here i ¼ 1;y; n;
where n is very large) so that

Pn
j¼1 xj ¼ 1: Here fj is the

growth rate of the j-th mutant, Qij is the probability of
having a mutation i-j and FðxÞ is the average fitness
associated to the population vector x ¼ x1;y;xn; i.e.,
FðxÞ ¼

Pn
j¼1 fjxj ¼ /fS:
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In its simplest form, we can consider a reduced system
of equations defining a population as formed by two
basic groups: the master sequence x1 and the other
sequences, which we assume to be grouped into an
‘‘average’’ sequence with population x2 (Swetina and
Schuster, 1982). Let us also assume (as a first
approximation) that mutations occur from the master
to the second compartment but not in the reverse sense.
The enormous size of the sequence space makes this
assumption a good first approximation:

dx1

dt
¼ f1x1Q � x1Fðx1; x2Þ; ð2Þ

dx2

dt
¼ f1x1ð1� QÞ þ f2x2 � x2Fðx1;x2Þ; ð3Þ

where it is assumed that f1 > f2; i.e. the master sequence
replicates faster than the mutant sequences. This over-
simplified model allows us to see the error threshold
condition under a mean field argument.
The fixed points here are located on the line x�1 ¼

1� x�2 ; with

x�2 ¼
f1ð1� QÞ

f1 � f2
: ð4Þ

The equilibrium of the previous points is obtained from
the Jacobi matrix

Lmðx�Þ ¼
f1Q � FðxÞ � x1

@F
@x1

�x1f2

f0ð1� QÞ � x2f1 f2 � FðxÞ � x2
@F
@x2

 !
:

ð5Þ

It can be shown, by means of standard stability analysis
that the state where the master sequence gets extinct (i.e.
ðx�1 ;x

�
2 Þ ¼ ð0; 1Þ) provided that the eigenvalues of the

matrix

Lmð0; 1Þ ¼
f1Q � f2 0

f0ð1� QÞ �f2

 !
ð6Þ
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Fig. 1. The basic model of quasispecies dynamics involving only two populat

that define the population (inset). Mutations occur at a rate m ¼ 1� Q:Here Q

(for f2 ¼ 0:05) Qc ¼ f 2=f 1 is shown against the replication rate of the master

prediction of the Swetina–Schuster mean field model (see text). Here we hav
are negative. This leads to

f1Qof2 ð7Þ

otherwise, the master sequence is able to survive and
Darwinian selection keeps operating. Once the mutation
rate exceeds this error threshold, no stable master
sequence can persist. The critical condition Qc ¼ f2=f1
is shown in Fig. 1(a), separating the quasispecies domain
from the drifting phase. The equilibrium population of
the master sequence x�1 is shown in Fig. 1(b) against the
mutation rate 1� Q: A linear decay is observed until the
threshold Qc is reached.
In the following section, the previous model will be

extended to a different situation: the growth of a tumor
involving genetic instability. As will be shown, although
different in a number of ways, the process of tumor-
igenesis under genetic instability can be mapped into a
quasispecies model displaying the error catastrophe.
3. The error threshold in cancer

In neoplastic cells, genetic alterations can arise from a
disparate source of mechanisms, e.g. from inaccurate
DNA replication to failure of DNA repair systems. And
indeed, the latter has been recently discussed in the
context of a biological equivalent to the mutator
phenotype as Fishel (2001) linked the selection for
mismatch repair defect in hereditary non-polyposis
colon cancer to resistance to DNA damage-induced
apoptosis. Previous models of cancer growth and
evolution have considered competitive interactions
among different cellular populations, usually tumor
and host cells (Gatenby, 1995, 1996). Here we extend
this type of approach by incorporating mutations
between different populations. In a simplified setting,
we consider a tumor cell population exhibiting genetic
instability as composed by three cell subpopulations,
0.2 0.4 0.6 0.8 1.0
Mutation rate 1-Q

1-Qc

2f
x2

f  (1−Q)1

f  Q1

−x Φ

−x Φ

x1
1

2

ions of replicons: the master sequence ðx1Þ and the other sequences ðx2Þ
is the probability of replication without errors. In (a) the critical curve

sequence. In (b) The large diagram shows an example of the theoretical

e f1 ¼ 0:5; f2 ¼ 0:25 and thus Qc ¼ 0:5:
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Fig. 2. Mean-field model of a cancer cell population including three

basic compartments: a cell population with anomalous growth but no

genetic instability x0; a population derived from it involving a

mutation that allows for genetic instability ðx1Þ and a third one that

is composed by the set of all mutant sequences x2:
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which correspond each to an increasing number of
mutations, hence representing a raising level of genetic
instability (Fig. 2). The first one exhibits cancer growth
but is generally considered genetically stable, the second,
advanced one exhibits genetic instability (with a muta-
tion in a stability controlling gene, involved in generat-
ing a mutator phenotype) and a third, heterogeneous
population of mutants derived from the second.
The mean-field model here would be obtained from

the following system:

dx0

dt
¼ f0x0Q � x0Fðx0; x1; x2Þ; ð8Þ

dx1

dt
¼ f1x1Q

0 þ f0x0ð1� QÞ � x1Fðx0;x1;x2Þ; ð9Þ

dxi
2

dt
¼ f1ð1� Q0

i1Þx1 þ f i
2miix

i
2

þ
X

j

fjmijx
j
2 � x2Fðx0;x1;x2Þ: ð10Þ

In this model, the most unstable population is indicated
by a set of subpopulations fxi

2g with i ¼ 1;y; n: Here
some of them will result from mutations in x1; which will
occur at rates 1� Q0

i1: Additionally, cross-mutations
connect the different sub-clones through the mutation
term

P
j fjmijx

j
2 where mij indicate the mutation rates

from x
j
2 to xi

2: Following the approach used in the
previous section, we can lump together the previous set
into a single, average population x2 ¼

P
i xi

2: Now the
third equation would read:

dx2

dt
¼ f1x1ð1� Q0Þ þ f2x2 � x2Fðx0;x1;x2Þ: ð11Þ
Lmðx�Þ ¼

f0Q � FðxÞ � x0
@F
@x0

f0ð1� QÞ � x1
@F
@x0

�x2
@F
@x0

0
BBBBBB@
In this simplified system, two different mutation rates
are involved, m0 ¼ 1� Q and m1 ¼ 1� Q0: The first is
simply the rate at which cells with mutator phenotype
emerge from the non-unstable population (which is here
considered as an homogeneous compartment). The
second defines the degree of instability displayed by this
population, and it lumps together an extremely hetero-
geneous set of sequences, with some average rate f2 that
we should assume to be some function of Q0; since very
large instability rates should be largely deleterious.
Although the model does not explicitly consider
environmental constraints, such as blood supply,
hypoxia or acidosis, they can be considered as implicitly
introduced through the ffig set.
For Q0 ¼ 1 the previous model reduces to the initial

two-dimensional quasispecies model. A new ingredient
needs to be introduced here: the deleterious effects of
high genetic instability on the fitness of the unstable
population x2: This can be easily included by consider-
ing a functional relation

f2 ¼ af1fðm1Þ; ð12Þ

where fðm1Þ will be a decreasing function such that
fð0Þ ¼ 1; indicating the speed of fitness decays as
mutation increases and a > 1 is a competitive advantage
parameter, indicating how much faster the x2 popula-
tion grows in relation with the unstable phenotype x1-
population. For a ¼ 1 we would have the same
replication rates and only two (effective) cell types.
Three different scenarios are considered here in

relation with the functional response fðm1Þ: (a) linear
decay, which assumes that fðm1Þ ¼ 1� ym1 (here y ¼ 5).
A more realistic scenario involves (b) an exponential
decay with mutation rate, i.e. fðm1Þ ¼ expð�ym1Þ (here
y ¼ 5). A third situation would involve a threshold
function: fðm1Þ¼1�mz

1=ðm
z
1 þ yz

1Þ with yA½0; 1� and z > 1
(here z ¼ 5 and y ¼ 0:2). The parameter y would play
the role of a threshold mutation rate where a sharp
decrease in fitness would take place, whereas for m1oy
the fitness remains constant.
The previous system displays two attractors, one

involving the dominance of the unstable population (i.e.
x�u ¼ ð0; 0; 1Þ) corresponding to malignant, fast growth
and another where the three clones coexist. The stability
of these two attractors is performed by using the Jacobi
matrix, which here reads as
�x0
@F
@x1

�x0
@F
@x2

f1Q
0 � FðxÞ � x1

@F
@x1

�x1
@F
@x2

f1ð1� Q0Þ � x2
@F
@x1

f2 � FðxÞ � x2
@F
@x2

1
CCCCCCA
: ð13Þ
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Here, given the definition of FðxÞ; we have @F=@xi ¼ fi:
We are here interested in the domain at which the

malignant growth becomes dominant and its stability.
The stability analysis of the fixed point x�u ¼ ð0; 0; 1Þ
leads to the following eigenvalues from the Jacobi
matrix:

l1 ¼ f0Q � f2; l2 ¼ f1Q
0 � f2; l3 ¼ �f2; ð14Þ

which imposes the two inequalities f0Qof2 and f1Q
0of2

to be satisfied simultaneously. Using the mutation rates
m0 ¼ 1� Q and m1 ¼ 1� Q0 the stability of x�u is
satisfied provided that

m0o
f2 � f0

f0
; m1o

f2 � f1

f1
: ð15Þ

Since m05m1; the first inequality is expected to be
satisfied and thus we can concentrate in the second one.
This can be re-written as

f1ðm1 þ 1Þof2ðm1Þ ð16Þ

and using the previous assumption for the functional
response, we have the stability condition

a > ac ¼
m1 þ 1

fðm1Þ
: ð17Þ

In Fig. 3 the phase space for these three different
situations is shown, where the domain of genetic
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defines the parameter space where malignant growth takes place, while the l

are considered: (a) linear, (b) exponential and (3) threshold (see text). The low

a ¼ 2 at different mutation rates.
instability is indicated in gray shade. The line separating
the two domains describes an error-threshold condition:
as we move from left to right starting from a point in the
gray zone, we cross from a domain of malignant growth
to a domain (sharply separated from the first) where
growth takes place at the rate defined by f0 (slow
growth). An example of the changes experienced by the
three populations is shown in Fig. 3 (lower set). Here the
continuous, dashed and thick lines correspond to the
x0;x1 and x2-populations, respectively.
The sharp character of this transition is better

appreciated in Fig. 4, where the stationary population
of the mutators x2 is shown against a and m1: The
plateau corresponds to the malignant growth phase,
where x2 dominates. The boundary defining the error
catastrophe is very well defined and the rapid decline
clear. This decay is actually sharper for higher values of
a: In other words, the faster replicating the unstable
population, the easier to drop to minimum levels. This
indicates that genetic instability behaves in a rather all-
or-none way suggesting that increased levels of mutation
would stop malignant growth. This observation fits the
qualitative prediction suggesting that genetic instability
is thresholded so that appropriate levels of instability
allow to overcome selection barriers but too much
instability leads to extinction of the unstable clone
(Cahill et al., 1999).
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4. Discussion

In recent years, it has become increasingly clear that
many diseases cannot be treated without taking into
account their multifactorial character. This recognition
led to the coining of a new term, complex disease to label
this family of illnesses where many different factors or
genes are involved. Cancer belongs to this family of
complex diseases, thus needs to be investigated as such
and targeted accordingly. Based on PCR analysis of
samples from colorectal premalignant polyp and carci-
noma cell genomes estimated that about 11 000 genomic
alterations occur in a cancer cell. Such instability
provides ample opportunities for the emergence of the
clonal heterogeneity seen in many human cancers. This
is of clinical importance as tumor cell subpopulations
have been shown to interact with each other, thereby
affecting their growth rate, chemo-sensitivity and meta-
static phenotype (e.g. Miller et al., 1981, 1987; Poste
et al., 1981).
Over the years, one of the more controversial

questions in cancer research has been if the vast amount
of mutations found in human tumors can be the product
of the normal, somatic mutation rate only, guided by
selection pressures or if it requires some sort of a hyper-
mutability, termed a mutator phenotype population and
if so, if both seemingly mutually exclusive concepts
could possibly be combined to one paradigm. Theore-
tical models such as the one presented here can help
address this question, thus possibly yield new, important
insights into the complexity of tumor progression, which
in turn may lead to novel and experimentally testable
hypotheses and, eventually, more successful clinical
approaches.
Based on the underlying assumption of the existence
of a mutator-phenotype population, our results support
the notion that such an error threshold is operating in
cancer as well. Specifically, if the level of genetic
instability conferred through the mutation rate m1; of
the mutator-phenotype population, x1; exceeds a certain
threshold, the replication rate of the more malignant
subpopulation, x2 is reduced to a point where it exhibits
no competitive advantage anymore. According to the
clonal expansion concept, this will soon lead to the
extinction of these highly aggressive x2-cells from the
overall cancer cell population, which in turn induces
much slower, i.e. slow tumor growth dynamics.
The phase transition between these two growth

regimes is both sharp and robust. A recent analysis
(Sol!e, 2003) using a bit string description of the
sequences confirms the validity of the mean field model.
The clear distinction between these phase spaces
demonstrates that there is a growth advantage for
tumor cells operating with a limited amount of genetic
instability. However, if the level of genetic instability
exceeds a certain threshold, the deleterious effects of this
instability outweigh by far its beneficial effects of being
able to survive a variety of environmental stresses
(Li et al., 2001). A tumor cell population, in which
instability exceeds this threshold rapidly looses fitness
and evidently breaks down. A similar concept has
already been suggested by Cahill et al. (1999) on the
basis of insights from studies on bacteria.
Our findings yield several novel insights into tumor

progression. Uninhibited cell proliferation is a hallmark
of malignancy and recent reports argue that genetic
instability confers a selection advantage for tumors in
order to escape recognition by the immune system (for a
review see Khong and Restifo, 2002). Environmental
stresses such as conferred by the immune system itself
(Pettit et al., 2000) apply selection pressure, hence
potentially triggering an increase in the tumor’s genetic
instability and thus ultimately enabling the tumor to
evade the very same (immune) system. Taken together,
our results argue that malignant tumors may in fact
progress towards both, maximum proliferation rate and
maximum genetic instability. If so, the target the tumor
optimization process is of course in the malignant
domain of phase space, yet close to the phase transition
(Figs. 3 and 4).
The implications for the development of novel

treatment strategies seem grim at first. Many treatment
approaches such as adjuvant immunotherapy will
inevitably select for traits that facilitate immune evasion,
thus increase the tumor cell population harboring
genetic instability and thereby ensure further growth.
Conversely, selectively inducing more genetic instability
within the tumor cell populations may have some
therapeutic potential. For example, by specifically
inhibiting the DNA repair enzyme alkyltransferase with
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O6-benzylguanine Rhines et al. (2000) were able to
potentiate the activity of the anti-proliferative agent
BCNU. More work will therefore be necessary to
determine the impact of different treatment regimens
on the phase transition.
In its underlying conceptual framework, the model

combines the existence of a mutator-phenotype popula-
tion, responsible for the marked increase in genetic
instability, with a selection-driven, clonal expansion
process. As such, our model incorporates both pre-
viously thought to be mutually exclusive concepts and
suggests that this combination may function as a driving
force behind the progression of malignant tumors. In
this context, treatment would exploit an intrinsic feature
of unstable tumors that is actually an Achilles heel for
cancer. The recent success in the removal of RNA
viruses from cell cultures by taking advantage of the
error threshold suggests that genetic destabilization
could be a promising strategy also in anticancer therapy.
Acknowledgements

We thank Isabel Gonz!alez-Garcia (who suggested
interesting links between RNA viruses and cancer) and
to Josep Costa for useful discussions. This work has
been supported by grants MCYT BFM 2001-2154 and
by the Santa Fe Institute (RVS) and by the Harvard-
MIT (HST) Athinoula A. Martinos Center for Biome-
dical Imaging, the Department of Radiology and the
Molecular Neuro-Oncology Laboratory at Massachu-
setts General Hospital (TSD).
References

Bardelli, A., Cahill, D.P., Lederer, G., Speicher, M.R., Kinzler, K.W.,

Vogelstein, B., Lengauer, C., 2001. Carcinogen-specific induction

of genetic instability. Proc. Natl. Acad. Sci. USA 98, 5770–5775.

Cahill, D.P., Kinzler, K.W., Vogelstein, B., Lengauer, C., 1999.

Genetic instability and darwinian selection in tumors. Trends

Genet. 15, M57–M61.

Chow, M., Rubin, H., 2000. Clonal selection versus genetic instability

as the driving force in neoplastic transformation. Cancer Res. 60,

6510–6518.

Coffin, J.M., 1995. HIV population dynamics in vivo: implications for

genetic variation, pathogenesis and therapy. Science 267, 483–489.

Cottry, S., Cameron, C.E., Andino, R., 2001. RNA virus error

catastrophe: direct molecular test by using ribavirin. Proc. Natl.

Acad. Sci. USA 98, 6895–6900.

Domingo, E., Holland, J.J. (Eds.), 1994. Mutation rates and rapid

evolution of RNA viruses. In: Morse, S. (Ed.), The Evolutionary

Biology of RNA Viruses. Raven Press, New York, pp. 161–183.

Domingo, E., Holland, J.J., Biebricher, C., Eigen, M., 1995.

Quasispecies: the concept and the word. In: Gibbs, A., Calisher,

C., Garcia-Arenal, F. (Eds.), Molecular Evolution of the Viruses.

Cambridge University Press, Cambridge.

Eigen, M., 1971. Self-organization of matter and the evolution of

biological macromolecules. Naturwiss. 58, 465–523.
Eigen, M., McCaskill, J., Schuster, P., 1987. The molecular

quasispecies. Adv. Chem. Phys. 75, 149–263.

Eigen, M., McCaskill, Schuster, P., 1988. Molecular quasi-species.

J. Phys. Chem. 92, 6881–6891.

Fearon, E.R., Vogelstein, B., 1990. A genetic model for colorectal

tumorigenesis. Cell 61, 759–767.

Fishel, R., 2001. The selection for mismatch repair defects in

hereditary nonpolyposis colorectal cancer: revising the mutator

hypothesis. Cancer Res. 61, 7369–7374.

Frank, S.A., Iwasa, Y., Nowak, M.A., 2003. Patterns of cell division

and the risk of cancer. Genetics 163 (4), 1527–1532.

Gatenby, R.A., 1995. Models of tumor–host interactions as competing

populations. J. Theor. Biol. 176, 447–455.

Gatenby, R.A., 1996. Application of competition theory to tumour

growth: implications for tumour biology and treatment. Eur.

J. Cancer 32A, 722–726.

Gatenby, R.A., Frieden, B.R., 2002. Application of information

theory and extreme physical information to carcinogenesis. Cancer

Res. 62, 3675–3684.

Holland, J.J., Domingo, E., de la Torre, J.C., Steinhauer, D.A., 1999.

Mutation frequencies at defined single codon sites in vesicular

stomatitis virus and poliovirus can be increased only slightly by

chemical mutagenesis. J. Virol. 64, 3960–3962.

Jackson, J., Loeb, L.A., 1998. The mutation rate and cancer. Genetics

148, 1483–1490.

Kamp, C., Bornholdt, S., 2002. Co-evolution of quasispecies: B-cell

mutation rates maximize viral error catastrophes. Phys. Rev. Lett.

88, 068104.

Kamp, C., Wilke, C.O., Adami, S., Bornholdt, S., 2003. Viral

evolution under the pressure of an adaptive immune system—

optimal mutation rates for viral escape. Complexity 8 (2), 28–32.

Khong, H.T., Restifo, N.P., 2002. Natural selection of tumor variants

in the generation of ‘‘tumor escape’’ phenotypes. Nat. Immunol. 3,

999–1005.

Lengauer, C., Kinzler, K.W., Vogelstein, B., 1998. Genetic instabilities

in human cancers. Nature 396, 643–649.

Loeb, L.A., 1991. Mutator phenotype may be required for multistage

carcinogenesis. Cancer Res. 51, 3075–3079.

Loeb, L.A., 1994. Microsatellite instability: marker of a mutator

phenotype in cancer. Cancer Res. 54, 5059–5063.

Loeb, L.A., Essigmann, J.M., Kazazi, F., Zhang, J., Rose, K.D.,

Mullins, J.I., 1999. Lethal mutagenesis of HIV with mutagenic

nucleoside analogs. Proc. Natl. Acad. Sci. USA 96, 1492–1497.

Loeb, L.A., Loeb, K.R., Anderson, J.P., 2003. Multiple mutations and

cancer. Proc. Natl. Acad. Sci. USA 100, 776–781.

Li, C.-Y., Little, J.B., Hu, K., Zhang, W., Zhang, L., Dewhirst, M.W.,

Huang, Q., 2001. Persistent genetic instability in cancer cells

induced by non-DNA-damaging stress exposures. Cancer Res. 61,

428–432.

Miller, B.E., Miller, F.R., Heppner, G.H., 1981. Interactions between

tumor subpopulations affecting their sensitivity to the antineoplas-

tic agents cyclophosphamide and methotrexate. Cancer Res. 41,

4378–4381.

Miller, B.E., Miller, F.R., Wilburn, D.J., Heppner, G.H., 1987.

Analysis of tumour cell composition in tumours composed of

paired mixtures of mammary tumour cell lines. Br. J. Cancer 56,

561–569.

Novell, P.C., 1976. The clonal evolution of tumor cell populations.

Science 194, 23–28.

Nowak, M., May, R.M., 2000. Virus Dynamics. Oxford University

Press, Oxford.

Pastor-Satorras, R., Sol!e, R.V., 2001. Field theory of a reaction–

diffusion model of quasispecies dynamics. Phys. Rev. E 64, 051909.

Pettit, S.J., Seymour, K., O’Flaherty, E., Kirby, J.A., 2000. Immune

selection in neoplasia: towards a microevolutionary model of

cancer development. Br. J. Cancer 82, 1900–1906.



ARTICLE IN PRESS
R.V. Sol!e, T.S. Deisboeck / Journal of Theoretical Biology 228 (2004) 47–5454
Plotkin, J.B., Nowak, M.A., 2002. The different effects of apoptosis

and DNA repair on tumorigenesis. J. Theor. Biol. 214, 453–467.

Poste, G., Doll, J., Fidler, I.J., 1981. Interactions among clonal

subpopulations affect stability of the metastatic phenotype in

polyclonal populations of B16 melanoma cells. Proc. Natl. Acad.

Sci. USA 78, 6226–6230.

Rhines, L.D., Sampath, P., Dolan, M.E., Tyler, B.M., Brem, H.,

Weingart, J., 2000. O6-benzylguanine potentiates the antitumor

effect of locally delivered carmustine against an intracranial rat

glioma. Cancer Res. 60, 6307–6310.

Rosenberg, S.A., 2001. Progress in human tumour immunology and

immunotherapy. Nature 411, 380–384.

Schuster, P., 1994. How do RNA molecules and viruses explore their

worlds? In: Cowan, G.A., Pines, D., Meltzer, D. (Eds.), Complex-
ity: Metaphors, Models and Reality. Addison-Wesley, Reading,

MA, pp. 383–418.

Sol!e, R.V., 2003. Phase transitions in unstable cancer cell populations.

Eur. Phys. J. B 35, 117–124.

Sol!e, R.V., Goodwin, B.C., 2001. Signs of Life: How Complexity

Pervades Biology. Basic Books, Perseus, NY.

Sol!e, R.V., Manrubia, S., Luque, B., Delgado, J., Bascompte, J., 1996.

Phase transitions and complex systems. Complexity 1 (4), 13–26.

Swetina, J., Schuster, P., 1982. Self-replication with errors. A model

for polynucleotide replication. Biophys. Chem. 16, 329–345.

Tomlinson, I.P.M., Novelli, M.R., Bodmer, W.F., 1996. The mutation

rate and cancer. Proc. Natl. Acad. Sci. USA 93, 14800–14803.

Wodarz, D., Krakauer, D., 2001. Genetic instability and the evolution

of angiogenic tumor cell lines (review). Oncology Rep. 8, 1195–1201.


	An error catastrophe in cancer?
	Introduction
	The error threshold in quasispecies
	The error threshold in cancer
	Discussion
	Acknowledgements
	References


