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Abstract. The Hybrid Cellular Automata (HCA) modelling framework
can be an efficient approach to a number of biological problems, particu-
larly those which involve the integration of multiple spatial and temporal
scales. As such, HCA may become a key modelling tool in the develop-
ment of the so-called integrative biology. In this paper, we first discuss
HCA on a general level and then present results obtained when this
approach was implemented in cancer research.

1 Introduction

Traditionally, mathematical modelling of biological problems has focused on the
integration of the most crucial properties of the phenomenon under study into a
model formulated in terms of continuum ordinary differential equations (ODEs)
and/or partial differential equations (PDEs) [23]. However, these methods im-
pose a significant restriction on the modelled system’s time-scales.

Physiologically-structured models [11,6] are one of the many approaches pro-
posed to cope with this problem. In this paper we will focus on the hybrid cellular
automata (HCA), a multiple scale individual-based framework for modelling bi-
ological processes.

The paper is structured as follows. In Section 2, biological complexity and
complexity in cancer are introduced as limitations to the traditional modelling
approach. In Section 3, we give a general introduction to the HCA framework
and its uses in biology, focusing on its integrative capabilities. In Section 4, we
focus on a particular application of the HCA framework, namely evaluation of
the efficiency of CHOP chemotherapy on non-Hodgkin’s lymphoma.
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2 Biological Complexity and Complexity in Cancer

Biological complexity has been recognized as a limitation to the current math-
ematical research approach, particularly in areas such as physiology, molecular
biology and genetics [29]. Complexity in pathophysiology and therapeutics may
be due in part to the diversity of the levels of our knowledge: gene, molecular,
cellular, tissue, organ, body and population. All entities of a living organism
interact through quantitative functional relations with time scales varying from
nanoseconds to the organism’s lifespan. This observation has led to the develop-
ment of so-called systemic or integrative biology [16] and to the exploration of
new methodologies [21], which might be more appropriate for studying complex
and heterogeneous diseases such as cancer.

It is necessary to understand the many intricacies of cancer in order to design
efficient treatment. Many approaches to anticancer treatment have had limited
success. Certain biological properties of cancer render it even more problematic
than other complex diseases. One fundamental obstacle to cancer therapy is ac-
quired tumor “robustness”, i.e. a self-organizing system which builds resistance
to treatment [17]. Another feature is the multitude of intricate pathways for
signal transduction. Though intermediates of multiple signalling pathways have
been identified, understanding their function has proved to be an extremely
difficult task [18]. The increasing evidence of cross-talk between pathways via
signal transactivation adds an additional degree of complexity which is difficult
to incorporate into traditional modelling approaches. Only fully integrative de-
scriptive methods, capable of dealing with multiple scales, may assess disease
and afford reliable treatment prediction. In this context, HCA models possess
such capabilities.

3 HCA Modelling of Biological Processes

Cellular automata (CA) models have been applied to many areas of biology
(see [14,22,1,4] for an overview). In recent years, a modification to the classic
definition of CA has been introduced, yielding the so-called HCA.
The classic definition of CA involves only local rules for the evolution of the state
of a given element: the transition rules that define the site dynamics depend
only on the configuration of its spatial neighborhood. However, many biological
processes depend upon non-local signalling cues or nutrients. Chemical cues and
nutrients are usually diffusive substances, smaller than the typical cell.
Nutrient spatial distribution and various signalling processes play a fundamen-
tal role in tumor growth [12,24,5], as well as in developmental processes [20].
Therefore, in order to obtain an appropriate description of these processes in
CA modelling, it is necessary to expand the original setup to incorporate these
non-local effects. This expansion is the essence of the HCA framework, which
constitutes a first step towards an integrative (multiple scale) approach to biol-
ogy.

Given that molecules such as chemical cues and nutrients are usually small
when compared to the size of a cell, they can be described in terms of continuous
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fields that evolve according to appropriate reaction-diffusion equations (RDEs).
Signalling cues are secreted by the cell’s internal machinery in response to either
internal or external stimuli and feed back at the population level, altering the
observed macroscopic pattern. The macroscopic structure of the vascular system
affects the nutrient supply to the cells. In turn, nutrient levels modulate internal
cellular processes such as cell division [6]. The HCA concept has recently been
expanded to take into account such intra-cellular processes [6,25].

The HCA approach has been adopted to study various aspects of tumor
growth. The model proposed in [12] is formulated as a two-dimensional HCA
(or, more precisely a lattice-gas model) and reproduces many of the features of
avascular tumors in vitro, e.g. their layer structure. In [24], a hybrid CA model
of tumor growth in the presence of native vasculature is proposed to analyze the
role of host vascular density and tumor metabolism on tumor growth. It seems
that unlike normal cells, which use aerobic metabolism, tumor cell metabolism
is glycolytic. One by-product of glycolysis is increased acidity. Since tumor cells
are more resistant to acidity than their normal counterparts, it appears that can-
cer uses the glycolytic phenotype (which produces H+ ions) in order to increase
its invasiveness. Several results regarding the interplay between vessel density,
increased acidity, and tumor progression were obtained in this study. One of
the most significant conclusions is the existence of a sharp transition between
states of initial tumor confinement and efficient invasiveness when H+ produc-
tion passes through a critical value. This phenomenon has been observed in the
clinic [15]. Finally, studies proposed in [7,8] use HCA in order to obtain realistic
models for blood flow dynamics.

Recently, HCA has been applied to study the effect of blood flow heterogene-
ity on tumor growth [5]. Oxygen reaches the tissues via the vascular system. Due
to the highly complex nature of blood flow and its interaction with the structure
of the vascular system, which is also affected by the metabolic needs of the sur-
rounding tissue, blood flow appears to be highly heterogeneous. Consequently,
the spatial distribution of blood-borne nutrients and drugs is also heterogeneous.
This heterogeneity has significant implications on tumor growth [5] and therapy,
as we will observe in the following sections.

In the next section, we will discuss a particular example of the application of
HCA in order to evaluate the efficiency of current clinical protocols for CHOP
therapy of non-Hodgkin’s lymphoma.

4 CHOP Therapy for Non-Hodgkin’s Lymphoma:
Insights from an HCA Model

In this section, we present an application of HCA for assessing chemotherapy
treatment for non-Hodgkin’s lymphoma (NHL) [25].

NHL patients are currently treated with CHOP chemotherapy
(Cyclophosphamide, Doxorubicin, Oncovin, Prednisone) in which Doxorubicin
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and Cyclophosphamide are the more active drugs [19]. CHOP is usually ad-
ministered over a total of 6 to 8 cycles separated by 21-day intervals [10]. The
relationship between this dosing interval and the efficiency of NHL CHOP treat-
ment has not been systematically analyzed. However, theory suggests that the
success of cancer chemotherapy is primarily determined by the frequency of drug
administration [2,3].

4.1 Methods

A two-dimensional HCA-based mathematical model aimed at simulating the
effect of Doxorubicin on NHL was developed. The model takes into account two
key factors which influence the efficiency of drug delivery:

– coupling of NHL growth to the vascular network [31], which affects the struc-
ture of the blood vessels;

– blood flow heterogeneity which results from this diverse construction.

The domain corresponds to a 2 mm square tissue initially filled with NHL cells
forming a random pattern, and composed of 110 vessels whose radii are subject
to adaptation through vessel structural modification processes [5].

Fig. 1. Representation of NHL cells and the honeycomb-like vascular network on the
computational domain (see [5]).
Left: a fully populated domain; Right: the domain following significant cell depletion.

The blood flow in each vessel is assumed to be laminar steady Poiseuille flow.
For the dynamics of nutrient and drugs, the adiabatic approximation is applied,
according to which chemicals (nutrient and drug) can be considered instan-
taneously in steady state. For drug pharmocokinetics (PK), i.e. decay of the
blood-borne drug, a one-compartment model, in which the drug concentration
in plasma over time declines exponentially, is considered. For drug pharmaco-
dynamics (PD), i.e. effect of the extracellular concentration of drug on NHL
cells, a simple logit relation is used for determining the probability for a cell to
survive the drug. See the Appendix for the continuous model equations and [25]
for further details.
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The initial cell colony is composed of NHL cells divided into two categories:
proliferative and quiescent cells.

To model cell division, a simple cell-cycle model is considered in which the
duration of each phase of the cell-cycle was set according to various NHL-kinetic
studies [9,13,27]. Each cell is assigned an age, which increases at each iteration.
Thus, the cells progress through the different stages of the cell-cycle. Normal
progression through the cell-cycle may be disrupted by lack of nutrient, leading
to quiescence or cell death, or cells may be killed by the drug. A significant
attribute of this model is the ability of the cell colony to influence vascular mor-
phology. Normal vasculature is known to be well organized and endowed with
smooth muscle cells and pericytes. This allows the vessels to adapt their struc-
ture to various mechanochemical stimuli [28]. Due to neovascularisation, cancer
vessels are immature and therefore lack this structure. Consequently they are
not able to undergo structural adaptation. Furthermore, cancer cells can desta-
bilize established, mature vasculature, rendering it immature [31]. Therefore,
in the model presented in [25] whenever a vessel is engulfed by cancer cells it
is assumed that it loses its ability for adaptation and its radius is fixed at ran-
dom. Vessels not surrounded by lymphoma cells retain the structural adaptation
mechanism [5]. The status of all vessels (mature and immature) is updated at
each time step.
The following CA rules hold for each cell and at each time step of the model.

– The probability of cell death is determined by the drug concentration and
PD;

– If the cell is not killed by the drug, it advances one time step in its cycle
phase;

– Between G1 and S-phase, the cell can either die, be arrested, or continue
progressing through the cell cycle according to its local environment, i.e,
local concentration of nutrient and over-crowdedness.

– If the environmental conditions are appropriate, the cell enters into G2 and
divides, daughter cells moving towards higher nutrient concentrations.

4.2 Results

When the dynamics of a simulated NHL cell colony under CHOP chemotherapy
were examined [25], a significant phenomenon was observed. After the initial
effect of a drug application, the tumor begins to regrow at a steady and rapid
rate. However, beyond a certain point, the cell colony’s growth ceases to be sta-
ble and begins to display unpredictable oscillations of significant amplitude (see
Figure 2). Blood flow heterogeneity appears to be a key factor in this result
and its effect is illustrated in Figure 3, which compares cell recovery from a
chemotherapy cycle when the vessel maturation/destabilization process is taken
into account, compared to a case in which this assumption is relaxed [25]. Con-
sequently, one of the conclusions from this study is that in order for treatment
to be efficient, additional drug cycles must be administered before the tumor
can enter the unstable stage of its regrowth. Note that we have considered a
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Fig. 2. Model prediction of tumor growth with Doxorubicin chemotherapy treatment
cycles separated by 21 days.

regular hexagonal array of blood vessels which is unrealistic, in actual tumors
the vasculature is very heterogeneous so we would expect the effects of blood
flow heterogeneity to be even more pronounced.

The HCA framework has also been used to describe tumor structures in
two pathophysiological settings in a study of which the purpose was to predict
the efficacy of two different conventional strategies for chemotherapy intensifica-
tion [26]. Results suggest the existence of a critical drug regimen intensity (CI)
value, i.e. the ratio between the total dose administered and the duration of
the treatment. If the regimen intensity is lower than CI, the tumor succeeds in
recovering to its initial size over the duration of the dosing interval.

5 Conclusion

HCA can be viewed as an effective means of dealing with some of the problems
raised by biological complexity. Through its ability to integrate different tempo-
ral and spatial scales, it constitutes a promising investigative tool for analyzing
complex biological systems such as cancer and cancer therapy. In the example
we presented, an HCA model has been used for investigating the efficacy of cur-
rent and potential therapies of non-Hodgkin’s lymphoma. Within the context
of certain model assumptions, our results have raised relevant and interesting
conclusions on the issue of treatment efficacy.
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Fig. 3. Model prediction on the effect of vessel maturation/destabilization process on
cell population recovery following a 10 mg/m2 Doxorubicin administration.
Thin line: with vessel maturation/destabilization; Empty circles (thick line): no vessel
maturation/destabilization is assumed.
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A HCA Model Equations

A.1 Blood Flow

Assuming Poiseuille flow, the flow rate (Q̇) and resistance (Z) in each vessel are
given respectively by:

Q̇ =
∆P

Z
(1)

Z =
8µ(r, H)L

πr4 (2)

where ∆P is the pressure drop between two points of the network, L, r, and H
are respectively the resistance, length, radius, and hematocrit. µ is the radius
and hematocrit dependent viscosity [5].

A.2 Vessel Structural Modification

We assume that the radius of each immature vessel (rim) is modified at each
time step according to the equation:

rim = rmat · (1 + ε) (3)

where rmat is the initial radius of the mature vessels, and ε is a random number
uniformly distributed in the interval (0, 3) according to [30].
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A.3 Nutrient and Drug Diffusion

Assuming adiabatic conditions, the diffusion equation for the concentration
(C(x, y, t)) of nutrient or drugs is given by:

K∇2C(x, y, t) − q(x, y) · C(x, y, t) = 0 (4)

where K is a diffusion coefficient and q(x, y) the uptake coefficient at position
(x, y).
On the vessel walls, we impose the boundary conditions:

− Knw · ∇C(x, y, t) = P · (Cb − C) (5)

where nw is the unit vector, orthogonal to the vessel wall, Cb is the drug or
nutrient concentration in the blood, and P the permeability of the vessel.
On the edges of the computational domain we impose no-flux boundary condi-
tions:

n|∂Ω · ∇C(x, y, t) = 0 (6)

where n|∂Ω is the unit outward vector, orthogonal to the boundary of the domain.

A.4 Doxorubicin PK/PD

The decline of drug concentration in plasma (Cb) is given by:

∂Cb

∂t
= −k · Cb(t) (7)

with initial condition:
Cb(0) =

dose

Vd
(8)

where Vd is the volume of distribution of the drug, and k the fraction of drug
which is eliminated from the compartment per unit time, inversely related to
the half-life t1/2:

k =
ln(2)
t1/2

(9)

The survival fraction SF (percentage of cells that survives the drug at each time
step) is given by:

SF =
a · Cb(t)

Cb(t) + Ec1/2
(10)

where Cb(t) is the relevant drug concentration and a, Ec1/2 are constants.
See [25] for model parameters and further details.
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