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Abstract. In this paper we explore a new model of field carcinogenesis, inspired by lung
cancer precursor lesions, which includes dynamics of a spatially distributed population of
pre-cancerous cells c(t, x), constantly supplied by an influx µ of mutated normal cells. Cell
proliferation is controlled by growth factor molecules bound to cells, b(t, x). Free growth fac-
tor molecules g(t, x) are produced by precancerous cells and may diffuse before they become
bound to other cells. The purpose of modelling is to investigate the existence of solutions,
which correspond to formation of multiple spatially isolated lesions of pre-cancerous cells
or, mathematically, to stable spike solutions. These multiple lesions are consistent with the
field theory of carcinogenesis. In a previous model published by these authors, the influx
of mutated cells was equal to zero, µ = 0, which corresponded to a single pre-malignant
colony of cells. In that model, stable patterns appeared only if some of the growth factor
was supplied from outside, arguably, a biologically tenuous hypothesis. In the present model,
when µ > 0, that hypothesis is no more required, which makes this model more realistic.
We present a range of results, both mathematical and computational, which taken together
allow understanding the dynamics of this model. The equilibrium solutions in the current
model result from the balance between new premalignant colonies being initiated and the
old ones dying out.
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1. Introduction

1.1. Field theory and other theories of carcinogenesis

Field carcinogenesis states that as a result of exposure to carcinogens and/or of inherited
genetic variants (mutations), a substantial portion of an organ (called the field) can be
enriched in genetic variants of cells, which then may or may not acquire further genomic
modifications. These modifications will result in increased proliferation and invasion of the
surrounding tissues. The rearrangements involved may have different nature: They may
range from accumulation of point mutations or microsatellite variability, to gene amplifica-
tion, and to changes in DNA content, number and organisation of chromosomes (aneuploidy
and translocation). Therefore, although they may form a linear irreversible progression, it
is more likely that they form a more complex network. Because of the spatial dimensions of
the field, emerging groups of transformed cells (precancerous and early cancerous tumours;
[10, 11]) will represent different levels of transformation, and may exhibit both progression
and reversals. They will be frequently multifocal. This viewpoint is in opposition to the
clonal theory of carcinogenesis, which assumes linear irreversible progression and generally
unifocal lesions.

Let us consider a sample scenario of events, which might be partly corroborated by
published evidence. Suppose that cells of some type in a region of an organ have (as a result
of inheritance or exposure) an ineffective variant of a gene (such as the p53 gene) providing
a cell cycle checkpoint. The normal variant of this gene does not allow cells to enter division
if unrepaired damage in DNA is detected. However the mutant gene will allow this, and
the cells will go through a series of divisions, which may be not exactly symmetric, so that
part of the progeny will be deprived of some other genes and part will have these genes
amplified (increased number of gene copies) [1, 23]. Gradually, this will relax the controls
on correct segregation of chromosomes and lead to aneuploidy (irregular amount of DNA in
the cells [21]). Because of increase in the number of divisions, the telomeres in these partly
transformed cells will shorten, which will further impair correct segregation [7].

It has to be noted that it is unlikely to expect that in each cell lineage, these sequence of
events will be identical. Therefore, the field will frequently give rise to differently transformed
(genetically distinct) groups of cells (non-clonality [18]).

Another important aspect of early carcinogenesis is signalling and production of growth
factors. It has been recently proposed [2] that early carcinogenesis may be a result of
cooperative interactions between partly progressed cell populations, which produce growth
factors in a complementary way, for example cells of type 1 produce growth factor needed
by cells of type 2 and vice versa. Although this theory has experimental foundations, it is
missing the dynamic transformation element prominent in field carcinogenesis.

One of the important elements to be taken into account, is the spatial diffusion of growth
factors and other signalling molecules. As it is known, diffusion in connection with non-
linear kinetics and growth regulation may lead to instability and pattern formation. This
is an important prediction, since it suggests that in field carcinogenesis, diffusion of free
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growth factor molecules leads to diversified multifocal lesions arising on the background of
primed tissue, the exact pattern of which depends on chance and small fluctuations of initial
conditions.

1.2. The AAH → BAC→adenocarcinoma sequence in lung cancer

A specific biological example motivating our model is the atypical adenomatous hyperplasia
(AAH), which is considered a candidate precursor lesion for adenocarcinoma of the lung [8].
As illustrated in Figure 1A in [8], also reproduced in [13], the AAH lesions are placed along
the walls of smallest branchings of the bronchial tree (the alveoli). Citing from [8]: From
a morphological perspective there seems little doubt that AAH might progress and develop,
through a stage of bronchoalveolar adenocarcinoma (BAC), into invasive adenocarcinoma.
AAH lesions are usually invisible to the naked eye, but the larger ones or those with more
fibrosis in their walls may be visible on the cut surface of well inflated and formalin fixed
lung. In the process of progression, the tubular (or approximately linear) AAH structures
thicken in places and invade the surrounding tissue.

1.3. Modelling early carcinogenesis

In a series of recent papers [12, 13, 14] we analysed models of spatially-distributed growth
of clonal populations of pre-cancerous cells, which remained under control of endogenous or
exogenous growth factors diffusing in the extracellular medium and binding to cell surface.
In these models, which had the mathematical form of mixed reaction-diffusion and ordinary
differential equations, we found conditions for emergence of growth patterns concentrated
around discrete points along the spatial coordinate, which took the mathematical form of
spike-type spatially inhomogeneous steady states. This multifocality is as expected from the
field theory of carcinogenesis.

By a combination of analytic and computational methods, we investigated the dynamics
of these emerging patterns. The general conclusion was that although the clonal populations
exhibited multifocal growth patterns, these in turn might either lead to decay of the cell
population or to establishment of stable cell foci. The dynamics depended on supply of
free growth factor particles. If these were supplied from outside, stability emerged, whereas
if they were produced by premalignant cells themselves, only a transient growth followed
by decay was observed. This was only partly remedied by combining the model with the
cooperative mechanisms postulated by Axelrod and others [2, 12].

In the current paper, we consider the more biologically realistic situation in which a
constant influx of pre-cancerous cells is provided from mutation of normal cells. We will
demonstrate, among other, that this hypothesis leads to computationally stable multifocal-
ities, under conditions, which seem biologically justifiable. In particular, the assumption of
external supply of growth factors is not required.
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2. The model with mutated cell influx

2.1. Derivation of the model

The model of a precancerous cell population adopts some elements of the model of a ho-
mogeneous population of cells of one type we previously proposed [12, 13, 14]. The present
model is based on the following hypotheses:

• Precancerous cells c, existing in a spatial domain, proliferate at a rate a(b, c), which
is reduced by cell crowding but enhanced in a paracrine manner by a hypothetical
biomolecular growth factor b bound to cells.

• Free growth factor g is secreted by the cells at the rate κ(c), then it diffuses among
cells with diffusion constant D, and binds to cell membrane receptors at a rate α(c),
becoming the bound factor b. It then dissociates at a rate d, returning to the b-pool.

• Free and bound growth factor particles decay at rates dg and db, respectively.

Discussion of possible geometries for the spatial variable x can be found in previous papers
[13, 14]. One natural geometry is that of a line of cells, occupying the interval x ∈ [0, L],
There are three substances distributed over the line’s length, cells, free and bound growth
factor molecules, with densities c(x, t), g(x, t) and b(x, t), respectively. The resulting equa-
tions are identical as in our recent paper [12] except that now the pre-cancerous cells are
supplied at a constant rate µ by mutation of normal cells

∂c

∂t
= (a(b, c)− dc)c + µ, (2.1)

∂b

∂t
= α(c)g − dbb− db, (2.2)

∂g

∂t
=

1

γ
∆xg − α(c)g − dgg + κ(c) + db, (2.3)

with homogeneous Neumann (zero flux) boundary conditions for g,

∂xg(0, t) = ∂xg(1, t) = 0.

The kinetics were derived from the stochastic model describing the transitions between dif-
ferent states of the growth factor molecules [13, 14]. Diffusion equation is a macroscopic
approximation of the microscopic process of growth factor binding to membrane receptors,
under homogeneity hypotheses; it has been derived in [16]. Coefficient 1/γ is a composite
parameter including the diffusion constant and the domain scalling parameter, γ = L2/D.
Proliferation rate has the Hill function form

a(c, b) =
a1(b/c)

m

1 + (b/c)m
, (2.4)
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where a1 = (2p − 1)a0 and p is the eficiency of divisions. We will consider the special case
m = 1. Growth factor binding rate has the form

α(c) = αc2, (2.5)

which follows from conditions for diffusion-driven instability further on. Production of free
growth factor by cells has the Michaelis-Menten form

κ(c) =
κc

1 + c
. (2.6)

This form of κ reflects the assumption that there is no external supply of growth factor
particles.
Remark 2.1. In the context of the specific form of nonlinearities used in the present model,
the binding rate is assumed proportional to c1+ε (with c2 being a computationally conve-
nient special case). This assumption, which amounts to cooperativity in receptor binding,
is necessary for diffusion-driven instability to emerge. It is not needed if other forms of
nonlinearities in a(c, g) are used (see [13]).

2.2. Existence and boundedness of solutions

The regularity of the model solutions depends on the regularity of the initial conditions.
For the initial conditions in the spaces of continuously differentiable and α-Hlder functions
c0, b0 ∈ Cα(Ω̄) and g0 ∈ C2+α(Ω̄) there exists a local solution (c, b, g) ∈ Cα,1+α/2(Ω̄× [0, T ])×
Cα,1+α/2(Ω̄× [0, T ])×C2+α,1+α/2(Ω̄× [0, T ]) for all T ∈ (0, Tmax) of the initial value problem
(2.1)–(2.3), see Ref. [20] for the proof.

Using the framework of invariant rectangles (see [22] and [3] for Ω ⊂ Rn) we can show that
solutions of system (2.1)-(2.3) remain uniformly bounded and nonnegative for nonnegative
initial conditions. The existence of global solutions results from a standard argument based
on the theory of bounded invariant rectangles and a priori estimates [22].

3. Qualitative behaviour of the model with cell influx

We will explore a mechanism of pattern formation arising in the processes described by
the model (2.1)-(2.3). The mechanism responsible for destabilisation of the stationary spa-
tially homogeneous state and growth of spatially heterogeneous patterns is diffusion-driven
instability (Turing-type instability). It occurs when there exists a spatially homogeneous so-
lution, which is locally asymptotically stable in the space of constant functions, i.e., for the
kinetics system, but it is unstable under spatially inhomogeneous perturbations. Existence
and stability of spatially heterogeneous patterns arising in models exhibiting diffusion-driven
instability, but consisting of a single reaction-diffusion equation coupled with a system of
ODEs or even a single ODE is an interesting issue. Such models are very different from
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classical Turing-type models and the spatial structure of the pattern emerging from the
destabilisation of the spatially homogeneous steady state cannot be concluded from a lin-
ear stability analysis [15, 13, 19]. They exhibit qualitatively new patterns of behaviour of
solutions, including, in some cases, a strong dependence of the emerging pattern on initial
conditions and quasi-stability followed by rapid growth of solutions [15, 14, 13].

As mentioned in the Introduction, it follows from our previous analyses [12] that model
(2.1)-(2.3) with µ = 0 can exhibit diffusion-driven instability, which in turn may lead either
to decay of the cell population, or to the emergence of local growth foci, represented by spike-
like solutions. The dynamics depends on the form of the function κ describing the supply
of free growth factor particles. Our analysis confirmed by numerical simulations showed
that, with µ = 0, if κ(0) = 0 then all the solutions tend to zero, while κ(0) > 0 (and the
parameters admitting diffusion-driven instability) leads to the formation of the stationary
spike-like patterns.

Here, we aim to check how the assumption µ > 0 on the influx of new cells may change
the dynamics of the model solutions. In particular, we show that the model with cell influx
µ > 0 can exhibit the growth of spike-like patterns, even if κ(0) = 0, i.e., without the
assumption of external supply of growth.

3.1. Diffusion-driven instabilities

We start from the checking if the model (2.1)-(2.3) with µ > 0 may exhibit diffusion-driven
instabilities (DDI). To this aim we consider bifurcation from the steady state by examining
the response of the system to an initially small perturbation from the steady value. Stability
of smooth stationary solutions of reaction-diffusion equations may be analysed by considering
the eigenvalues of the linearised system (for a spectral criterion see e.g.,[4], and for the
systems coupled with ODEs [17]). The dispersion relation, λ = λ(µ2

m/γ), an algebraic
equation describing the dependence of the growth rate λ of the system with diffusion on the
eigenvalues µ2

n of the diffusion operator, indicates which eigenfunctions that is which spatial
patterns, are linearly unstable and grow with time.

For a generic system of two ordinary differential equations coupled with a reaction-
diffusion equation the following Proposition holds.

Proposition 3.1. (modified Lemma in [13]) Let us consider the system





∂tc = Fc(c, b, g),
∂tb = Fb(c, b, g),
∂tg = 1

γ
∆xg + Fg(c, b, g),

(3.7)

with A = {aij}, i = 1, 2, 3, j = 1, 2, 3 being the Jacobian matrix of the kinetics system of
(3.7), computed at a positive spatially homogeneous steady state (c̄, b̄, ḡ), and such that
(i) the diagonal elements of A are negative, i.e., aii < 0 for i = 1, 2, 3,
(ii) a12a21 > 0.
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There is a DDI for system (3.7) if and only if the following conditions are fulfiled,

−tr(A) > 0, (3.8)

−tr(A)
∑
i<j

|Aij|+ |A| > 0, (3.9)

−|A| > 0, (3.10)

|A12| < 0, (3.11)

where Aij is a submatrix of A consisting of the i-th and j-th column and i-th and j-th row,
and |A| and |Aij| denote the determinants of matrices A and Aij, respectively.

Conditions (3.8)–(3.10) are necessary for the stability of the steady state in the absence
of diffusion. Condition (3.11) is the sufficient and necessary condition for destabilisation of
this steady state in the system without autocatalysis, i.e. under the assumption (i) that all
aii < 0 for i = 1, 2, 3 and assumption (ii) that a12a21 > 0. Assumption (ii) is a straightforward
consequence of the biological model (for the Proof see [13]).

Proposition 3.1 indicates that in the case of systems with one diffusion operator a spatially
homogeneous steady state, if it exists and is stable in the absence of diffusion, is destablised if
and only if the ODE subsystem is unstable. This result can be generalised to larger systems of
ODEs coupled with one reaction-diffusion equation. For such system, the dispersion relation,
λ = λ(µ2

m/γ), which is an algebraic equation describing the dependence of the growth rate
of the full system on the eigenvalues of the diffusion operator, reads

λ(
µ2

m

γ
) : |A| − |A12|µ

2
m

γ
= 0. (3.12)

Condition λ(µ2
m

γ
) > 0 is verified if µ2

m/γ is large enough. As a consequence, for every γ, there
exist infinitely many different integer µm for which the above inequality is satisfied.

The consequence of the Proposition applied to model (2.1)-(2.3) is the following.

Theorem 3.2. The DDI for system (2.1)-(2.3) occurs if and only if there exists a nonneg-
ative steady state (c̄, b̄, ḡ), which is stable to the spatially homogeneous perturbations, i.e.,
conditions (3.8)-(3.10) hold, and

a1c̄
2b̄[α(c̄)− c̄α′(c)|c̄] + µ(c̄ + b̄)2α(c̄) < 0 (3.13)

Proof. We calculate |A12| = a11a22 − a12a21 using the steady states conditions,





a1
b̄

c̄+b̄
= dc − µ

c̄
,

ḡ = κ(c̄)−dbb̄
dg

,

α(c̄)ḡ = (db + d)b̄,

(3.14)

and conclude that |A12| < 0 if and only if (3.13) is satisfied. ¥
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Remark 3.3. Condition (3.13) is satisfied only if

α(c̄)− c̄α′(c)|c̄ < 0, (3.15)

which is satisfied when function α assumes the form,

α(c) = α1c
s+1, s > 0, (3.16)

i.e., when the process of binding free growth factor particles to cells is superlinear.
For the kinetics given by (3.16) condition (3.11) is automatically satisfied in the model

with µ = 0. For µ > 0 one might choose µ so large that (3.13) is not satisfied and therefore,
there is no diffusion-driven instability of the spatially homogeneous steady state (c̄, b̄, ḡ).

To substantiate this claim in a special case, let us note the following result.

Lemma 3.4. Suppose that α(c) = αc2, 4dc > a1 and the following condition holds

µ >
a2

1κ

db(4dc − a1)
. (3.17)

Then no DDI occurs in the system (2.1)-(2.3).
Proof. The destabilisation condition with α(c) = αc2 has the form −a1c̄

2b̄ + µ(c̄ + b̄)2 < 0.
Since c̄b̄ ≤ (c̄ + b̄)2/4, a sufficient condition for absence of destabilisation is that µ > a1c/4.
However, from Eq. (3.23) in Section 3.2., we obtain that

− µ

a1c̄
+

dc

a1

=
κc̄2

A(1 + c̄) + κc̄2 + dbc̄2(1 + c̄)
<

κ

dbc̄
,

or equivalently that c < (µ + a1κ/db)/dc. Therefore, µ > a1c/4 is satisfied if µ > a1(µ +
a1κ/db)/(4dc), which is equivalent to (3.17).

¥

3.2. Steady states of the kinetics system

In the further analysis we assume the explicit form of α(c) = αc2, which is the simplest
function satisfying necessary condition (3.15). We have the steady states equations,

(
a1b̄

c̄ + b̄
− dc)c̄ + µ = 0, (3.18)

αc̄2ḡ − dbb̄− db̄ = 0, (3.19)

−αc̄2ḡ − dgḡ + db̄ + κ(c̄) = b, (3.20)

From the second equation we obtain

ḡ =
db + d

αc̄2
b̄, (3.21)
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and by adding the second to the third equation and substituting (3.21)

b̄

(
dg(db + d)

αc̄2
+ db

)
= κ(c̄),

and therefore

b̄ =
κ(c̄)c̄2

dbc̄2 + A
,

where A = dg(db + d)/α. Substituting this into the first equation, we obtain after some
simplifications

κ(c̄)c̄

A + κ(c̄)c̄ + dbc̄2
= − µ

a1c̄
+

dc

a1

. (3.22)

For κ being a Michaelis-Menten function of c, i.e., κ(c) = κc/(1+ c), Eq. (3.22) is equivalent
to

f1(c̄) ≡ κc̄2

A(1 + c̄) + κc̄2 + dbc̄2(1 + c̄)
= − µ

a1c̄
+

dc

a1

≡ f2(c̄). (3.23)

Continuity of f1 and f2, and 0 = f1(0) > f2(0) = −∞ and f1(∞) < f2(∞) imply that there
exists at least one nonnegative root of Eq. (3.23). The number of nonnegative roots depends
on the model parameters in the following way:

(1) if the maximum of the function f1 is greater than dc/a1, then there exists a number
µ∗ such that for µ < µ∗ there exist three nonnegative roots of Eq. (3.23) (see Fig. 1),
whereas for for µ > µ∗ there exists one nonnegative root of Eq. (3.23).

(2) if the maximum of the function f1 is smaller than dc/a1, then Eq. (3.23) has also only
one root for a very small µ, and depending on the other parameters two scenarios are
possible: (a) there exist such values of µ that for µ∗1 < µ < µ∗2 Eq. (3.23) has three
roots (see Fig. 2), and (b) Eq. (3.23) has always only one root (see Fig. 3).

3.3. Asymptotic bounds on solutions

We first derive the equation for the total number of growth factor molecules. Adding equa-
tions (2.2)–(2.3) side-by-side and integrating the resulting equation with respect to x, leads
to

∂t

∫ 1

0

(b(t, x) + g(t, x))dx =

∫ 1

0

κ(c(t, x))dx −
∫ 1

0

(dbb(t, x) + dgg(t, x))dx. (3.24)

Since κ(c) is uniformly bounded by constant κ, we obtain that
∫
Ω
(b(t, x) + g(t, x))dx is

uniformly bounded from above.

Theorem 3.5.(i) Suppose that the condition

Q =
κa1

dc min(db, dg)
< 1
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Figure 1: Plots of the functions f1(c) (dashed line) and f2(c) (solid line) in case, where the
maximum of f1 is greater than dc/a1 (for parameters: a1 = 1/12, dc = 0.05, d = db = dg =
0.1, κ = 1, α = 0.1). We observe that there exist two regimes of the parameter value µ > 0.
For 0 < µ < µ∗ the curves intersect in three points, and for µ > µ∗ they intersect in only
one point. On the left-hand side we present graphs for µ = 0.001, and on the right-hand
side for µ = 0.01.
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Figure 2: Plots of the functions f1(c) (dashed line) and f2(c) (solid line) in case, where the
maximum of f1 is smaller than dc/a1 (for parameters: a1 = 0.07, dc = 0.05, d = db = dg =
0.1, κ = 1, α = 0.1). On the left-hand side we present graphs for µ = 0.001, in the center
for µ = 0.006, and on the right-hand side for µ = 0.1. The pictures show three possible
scenarios: for 0 < µ < µ∗1 f1 and f2 intersect in only one point, for µ∗1 < µ < µ∗2, the curves
intersect in three points, and for µ > µ∗2 they intersect in only one point.
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Figure 3: Plots of the functions f1(c) (dashed line) and f2(c) (solid line) in case, where the
maximum of f1 is smaller than dc/a1 (parameters: a1 = 0.055, dc = 0.05, d = db = dg = 0.1,
κ = 1, α = 0.1). On the left-hand side we present graphs for µ = 0.01, in the center for
µ = 0.02, and on the right-hand side for µ = 0.05. The pictures show that independent on
the value of µ, f1 and f2 intersect in only one point.

is satisfied for the coefficients of the system (2.1)-(2.3) with κ(c) = κc/(1 + c). Then,

lim sup
t

∫ 1

0

c(t, x)dx ≤ µ/[dc(1−Q)],

as t → ∞. A corresponding upper bound on lim supt B(t) can be deduced from the proof of
the Theorem.
(ii) The following lower bounds hold,

lim inf
t

c(t, x) ≥ µ/dc, (3.25)

lim inf
t

∫ 1

0

c(t, x)dx ≥ µ/dc, (3.26)

and

lim inf
t

∫ 1

0

[b(t, x) + d(t, x)]dx ≥ κµ/[(µ + dc) max(db, dg)]. (3.27)

Proof. (i) The nonlinear term of Eq. (2.1) can be estimated, uniformly in c ≥ 0, by its

asymptotic value of b, cb
c+b

< b(t, x). Therefore, we obtain the following inequality ∂c(t,x)
∂t

+
dcc(t, x) ≤ a1b(t, x) + µ or, integrating with respect to x,

dC(t)

dt
+ dcC(t) ≤ a1B(t) + µ,

where C(t) =
∫

c(t, x)dx and B(t) =
∫

b(t, x)dx. Therefore, the solution satisfies

C(t) ≤ C(t0)e
−dc(t−t0) +

∫ t

t0

e−dc(t−u)[a1B(u) + µ]du.
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Let us denote β(t0) = supu≥t0 B(u). The estimate above yields C(t) ≤ C(t0)e
−dc(t−t0) +

[a1β(t0)+µ]/dc. Taking lim supt→∞ on both sides, we obtain lim supt C(t) ≤ [a1β(t0)+µ]/dc.
If this inequality holds for each t0, then it also holds in the limit as t0 → ∞ (which exists
since β(t0) is nonnegative and nonincreasing). But β(∞) = lim supt B(t). Therefore, we
eventually obtain

lim sup
t

C(t) ≤ [a1 lim sup
t

B(t) + µ]/dc. (3.28)

On the other hand, from (3.24) it follows that

d[G(t) + B(t)]

dt
+ min(db, dg)[G(t) + B(t)] ≤

∫
κc(t, x)/[1 + c(t, x)]dx ≤ κC(t).

Using an analogous procedure, we obtain

lim sup
t

B(t) ≤ lim sup
t

[G(t) + B(t)] ≤ [κ/ min(db, dg)] lim sup
t

C(t). (3.29)

Combining (3.28) and (3.29), we obtain

0 ≤ lim sup
t

C(t) ≤ Q lim sup
t

C(t) + µ/dc.

If the condition Q < 1 is satisfied, then the above can be iterated to yield the assertion of
part (i) the theorem.
(ii) Based on equation (2.1), we have

∂c

∂t
+ dcc ≥ µ, (3.30)

which implies (3.25), based on reasoning as in the proof of Part (i). Integrating (3.30) side-

by-side, with respect to x, we obtain ∂
∫ 1

0
c(t, x)dx/∂t + dc

∫ 1

0
c(t, x)dx ≥ µ, which yields

(3.26). To obtain (3.27), we note that (3.24) implies

∂t[B(t) + G(t)] + max(db + dg)[B(t) + G(t)] ≥
∫ 1

0

κ
c(t, x)

1 + c(t, x)
dx,

which yields

lim inf
t

[B(t) + G(t)] ≥ lim inf
t

∫ 1

0

κc(t, x)/[1 + c(t, x)]dx

≥
∫ 1

0

κ lim inf
t

c(t, x)/[1 + c(t, x)]dx = κµ/(µ + dc),

where the second inequality follows by a version of Fatou Lemma, stating that for nonnegative
a(t, x), lim inft→∞

∫ 1

0
a(t, x)dx ≥ ∫ 1

0
lim inft→∞ a(t, x)dx. ¥
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3.4. Existence of the inhomogeneous steady states

We will use the same technique as in the previous paper [12], i.e., analysis of existence of
periodic solutions of a second-order inhomogeneous steady-state ODE, satisfying the zero-
flux boundary conditions. This equation is formally identical to that used by Murray in
his works on pattern formation [19], however, here it emerges from a mixed-type system
and therefore its explicit solution is difficult to find. We will find sufficient conditions for
existence of periodic solutions and then verify they are satisfied in our system, under certain
conditions on coefficients.

Theorem 3.6. A general solution of differential equation

g′′(x) = f [g(x)], (3.31)

with a C∞ function f , defined on an appropriate domain in R, is given by a C2[0, 1] function
g(x), implicitly defined by the relationship [6]:

∫
[C2 + 2

∫
f(g)dg]−1/2dg = C1 ∓ x. (3.32)

Existence of two branches of the solution reflects the fact the second derivative is invariant
under sign change of x. Moreover, the sufficient condition for the solution of the “+” branch
to satisfy the boundary conditions g′(0) = g′(1) = 0 is that there exist g∗∗ > g∗ > 0 such that

∫ g

g∗
f(u)du ≥ 0, g ∈ (g∗, g∗∗);

∫ g∗∗

g∗
f(u)du = 0 (3.33)

and ∫ g∗∗

g∗
F (u)du = 1, (3.34)

where F (u) =
[
2
∫ u

g∗ f(v)dv
]−1/2

.

Proof. Calculate the first derivative of the solution defined by (3.32),

dg

dx
=

1

dx/dg
= ∓[C2 + 2

∫
f(g)dg]1/2. (3.35)

Repeated differentiation proves that, indeed, g′′ = f(g). The boundary conditions are easily
satisfied if the “+”-branch of solution is written in the form x =

∫ g

g∗ [2
∫ u

g∗ f(v)dv]−1/2du. ¥

Corollary 3.7. Consider equation (3.31) with the right-hand side defined as

fa(g) = af(g), a > 0. (3.36)
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If there exists an interval (g+, g−) such that fa(g
+) > 0 and fa(g

−) < 0, then there exists an
a > 0 such that the assertion of the Theorem holds.

Definition 3.8. (after [5], Definition 2.2) The local maximum x0 of real function f(x) of
class C2 is called a spike, if the nonlocal gradient of the first derivative of f , defined as

◦
∇ρf

′(x0) =
1

2ρ
[f ′(x0 + ρ)− f ′(x0 − ρ)]

satisfies, for ρ small enough, |
◦
∇ρf

′(x0)| > |f ′′(x0)|. The maximum is called a plateau if for

ρ small enough, it holds |
◦
∇ρf

′(x0)| < |f ′′(x0)|. The local minimum is called a spike (respec-

tively, plateau) if |
◦
∇ρf

′(x0)| < |f ′′(x0)| (respectively, |
◦
∇ρf

′(x0)| > |f ′′(x0)|).

The above criterion can be replaced by a simpler one, if the function f is regular enough.

Corollary 3.9 (after [5], Theorem 2.3) Assume f ∈ C5, and x0 is an extremum with
f ′′(x0) 6= 0 f iv(x0) 6= 0. Then, the extremum is a spike (respectively, a plateau) if f iv(x0)
has a different (respectively, the same) sign as f ′′(x0).

The corollary above allows to relate the intuitive notion of a “spiky” (sharp) or “plateau-like”
extremum to verifiable mathematical conditions. This is one of the ways in which numerical
simulations can be mathematically verified (compare Figs. 4 and 8).

Based on Theorem 3.6 and its corollary, it is possible to prove the following version of the
existence result for the periodic inhomogeneous equilibria. The proof is almost identical to
that in our previous paper [13]. The Theorem is used to guarantee the existence of periodic
spatially-inhomogeneous equilibria, such as the one depicted in Figure 4.

Theorem 3.10. Suppose that g(x) is the increasing branch of the solution to Eq. (3.31), on
the interval x ∈ [0, 1], satisfying conditions g′(0) = g′(1) = 0 and g(0) = g∗ < g(1) = g∗∗. Let
us choose natural number n, such that n ≥ 1. Then, the function h(x), defined on x ∈ [0, 1],
and such that

h|[(k−1)/(2n), k/(2n)] = hk, k = 1, 2, . . . , 2n,

where
hk(u) = g(k − 2nu), u ∈ [(k − 1)/(2n), k/(2n)], k odd,
hk(u) = g(2nu− k + 1), u ∈ [(k − 1)/(2n), k/(2n)], k even,

(3.37)

is of class C5[0, 1] and it satisfies the following equation

1

4n2
h′′(u) = f [h(u)] (3.38)

on u ∈ [0, 1].
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Moreover,

h( k
2n

) = g∗, h′( k
2n

) = 0, h′′( k
2n

) > 0, h′′′( k
2n

) = 0, hiv( k
2n

) = f ′[h( k
2n

)]h′′( k
2n

), k odd,

h( k
2n

) = g∗∗, h′( k
2n

) = 0, h′′( k
2n

) < 0, h′′′( k
2n

) = 0, hiv( k
2n

) = f ′[h( k
2n

)]h′′( k
2n

), k even,
(3.39)

This Theorem implies that if f ′[h( k
2n

)] is positive (respectively, negative), then the solu-
tion h has an extremum at u = k/(2n), which is a plateau (respectively, a spike).
Remark 3.11. Let us note that the numerical periodic spatially inhomogeneous solution
g(x) depicted in Figure 4 has maxima, which are plateaux and minima, which are spikes.
This is confirmed by a numerical study of the derivatives of function f(g) at the extrema.
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Figure 4: Spatial profile of the periodic equilibrium spatially inhomogeneous solutions c and
g of model (2.1)–(2.3) with parameters as in Fig. 7, except for γ = 1000. The graph was
obtained as a solution of the equilibrium equation (3.43).

We will now apply the results stated above to demonstrate that there exist coefficient
values in the equations (2.1)-(2.3) such that inhomogeneous steady states exist. We will
reduce the problem to existence of solutions of a second-order ODE such as in Theorem
3.10. Spatially inhomogeneous steady states of the system (2.1)-(2.3) satisfy the following
system of equations

0 = (
a1

1 + c/b
− dc)c + µ, (3.40)

0 = αc2g − dbb− db, (3.41)

0 =
1

γ
g′′(x)− αc2g − dgg + κ

c

c + 1
+ db, (3.42)

where now c = c(x), b = b(x), and g = g(x). Adding equations (3.41) and (3.42) side-by-side,
we obtain

1

γ
g′′(x) = dgg + dbb− κ

c

c + 1
. (3.43)
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From equation (3.40), we obtain b = c(cdc−µ)/[c(a1−dc)+µ], which after substitution into
(3.41) yields the following quadratic equation for c as a function of g

αg(a1 − dc)c
2 + [αµg − (db + d)dc]c + (db + d)µ ≡ Ac2 + Bc + C = 0, (3.44)

which has real roots if the discriminant ∆c is nonnegative

∆c = [αµg − (db + d)dc]
2 − 4αµg(a1 − dc)(db + d) ≥ 0. (3.45)

This latter is a quadratic polynomial in g, with a discriminant ∆g = 4α2µ2(db + d)2(4a2
1 −

4a1dc), which is positive if only a1 > dc. Therefore, ∆cis nonnegative if either g < g1or

g > g2, where g1,2 = 2 (db+d)a1

αµ
[(1− dc/2a1)∓

√
1− dc/a1] > 0. If g > g2, then under a1 > dc,

also g > (db + d)dc/(αµ), which means that B > 0. However the roots of (3.44) have the
form

c1,2 =
−B ∓√B2 − 4AC

2A
(3.46)

which means that in view of the fact that under a1 > dc, it holds A, C > 0, and therefore
c1,2 > 0 iff B < 0. Therefore, the only possibility remains that g < g1. We verify that
c1 > 0 if g ∈ (0, g1). This requires B < 0, i.e., g < g0, where g0 = (db + d)dc/(αµ). If we
consider the ratio g1/g0 = 2(a1/dc)[1− dc/(2a1)−

√
1− dc/a1], we see that it is of the order

of 2o(dc/a1)/(dc/a1), which is less than 1 if only dc/a1 is small enough.
Let us note the following identities:

c2
1,2 = −Bc1,2 + C

A
, (3.47)

c1,2/(1 + c1,2) =
C + Ac1,2

A−B + C
. (3.48)

Substituting the above into (3.43), taking into account that b = αc2g/(db + d), and choosing
branch c2, we obtain

1

γ
g′′(x) = dgg − αdbg

db + d

Bc2 + C

A
− κ

C + Ac2

A−B + C
≡ f(g)

Constant γ plays the same role as constant a in Corollary 3.7, therefore it is enough to prove
that there exists an subinterval (g+, g−) of the domain on which f(g) is well-defined, such
that f(g+) > 0 and f(g−) < 0. Let us notice that f(g) has a pole at A = 0 or equivalently
at g = 0. Also f(0+) = ∞, which means that we can find a suitable g+. On the other hand,
there exists a pole at A−B +C = 0, however, this latter occurs for a negative g if µ is small
enough, eg. if µ < a1 − dc. Also, we can select g− = g1, since if g = g1 then B = −2

√
AC

and c2(g1) = −B/(2A) =
√

C/A so that we obtain that

f(g1) = dgg1 +
αdbg1

db + d

C

A
− κ

2C −B

2(A−B + C)
.
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The term 2C−B
2(A−B+C)

has numerator and denominator positive if µ is small enough, therefore,

f(g1) < 0 if κ is large enough. In summary, we have the following corollary.

Corollary 3.12. For any n ≥ 1 there exists a value of diffusion constants 1/γ, such that
inhomogeneous periodic steady states with period 1/n exist in the system (2.1)-(2.3), if µ
and dc are small enough and κ is large enough. Estimates for µ, dc and κ can be provided,
based on the detailed derivations, which are notationally complicated.

Numerical studies (not shown) indicate that the sufficient conditions provided in the
Corollary 3.12, are by far not necessary. However, the number of special cases to consider
seems to make a more accurate analytical result impractical.

4. Numerical computations

We simulate solutions of the model with parameters coresponding to different scenarios of
the number and stability of the spatially homogeneous steady states, as depicted in Figs. 1-3.
Numerical simulations illustrate the role of cell influx represented by the parameter µ > 0.
In the qualitative behaviour of the model, the magnitude of µ plays a major role, in that
it determines the number of equilibria of the kinetics system. As explained in Section 3.2.,
two special cases can be distinguished, depending on whether the ratio dc/a1 is greater or
smaller compared to the maximum of function f1, defined in expression (3.23).

If the maximum of function f1 is greater than dc/a1, then there exist three nonnegative
roots for µ below a threshold (see Fig. 1 left panel) and one nonnegative root for µ above this
threshold (see Fig. 1, right panel). The exact pattern of stability of these equilibria seems to
be difficult to investigate analytically because of the complicated form of algebraic conditions
for stability. Numerically, it appears that the smallest nonnegative steady state is always
stable, the second one is always unstable, and the third steady state (the greatest one) satis-
fies DDI conditions (3.8)–(3.11) and can be destabilised by diffusion. Numerical simulations
indicate transient growth of of spike-like solutions, which finally decay and converge to a
unique stable spatially homogeneous equilibrium (see Fig. 5).

When µ is larger than the threshold only one spatially homogeneous equilibrium exists.
The stability of this state depends on the value of µ (Corollary 3.12). There exists another
threshold such that for large enough µ, destabilisation condition (3.11) is not satisfied (c.f.
also Lemma 3.4). Accordingly, no destabilisation of the constant solution is observed (see
Fig. 6).

For µ between the two thresholds DDI conditions (3.8)–(3.11) are fulfiled and the destabil-
isation of the spatially homogeneous state leads to the formation of the stationary spike-like
patterns (see Figs. 7-8). The number of “spikes” depends on the scaling coefficient γ and, in
some cases, on the initial perturbation in similar manner as in our previous models. These
issues were discussed in [13].
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Figure 5: Time evolution of solutions of model (2.1)–(2.3) with parameters: a1 = 1/12,
dc = 0.05, d = db = dg = 0.1, κ = 1, α = 0.1 and µ = 0.001 and scaling coefficient
γ = 100: c(x, t) left, b(x, t) center, g(x, t) right. The upper and the lower panel show the
same solutions but from the different perspective. The parameterers correspond to the case,
when there exist three nonnegative spatially homogeneous steady states (as in Fig. 1 left
panel). We observe a destabilisation of the spatially homogeneous steady state, but the
solutions converge to the smallest spatially homogeneous state. In biological terms, this
means the emerging cancerous cell populations are not persistent.
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Figure 6: Time evolution of solutions of model (2.1)–(2.3): c(x, t) left, b(x, t) center, g(x, t)
right. Parameters are identical as in Fig. 5 but with greater µ = 0.5, such that there exists
only one nonnegative spatially homogeneous steady states (similar as in Fig. 1 right panel)
but the DDI condition is not fulfiled. We observe that there is no destabilisation of the
spatially homogeneous steady state.

Let us notice, that as opposed to the model in the previous paper [12], where no influx of
mutated cells was assumed (µ = 0), apparently stable spatially inhomogeneous limit states
appear in the case of Michaelis-Menten-type function κ(c) and no additional assumption on
the constant influx of growth factor particles is needed.

If the maximum of the function f1 is smaller than dc/a1, then the situation is more
complicated. Whereas there is always at least one nonnegative root, there may exist an
interval of µ, such that for µ inside this interval, three roots exist. The variants possible
are depicted in Figs. 2 and 3. For the case of dc/a1 large compared to the maximum of the
function f1, when µ is small, there exists always only one spatially homogeneous solution,
which is always stable (Fig. 2 left panel). If there exists an interval of µ, for which three spa-
tially homogeneous equilibria exist (Fig. 2 center panel), the largest equilibrium is unstable
to the spatially heterogeneous perturbations. Interestingly, the long time dynamics in this
case (persistence of spatial pattern or decay to the spatially constant equilibrium) also may
depend on the scaling coefficient γ (see Fig. 9).

If µ is larger and such that again only one spatially homogeneous equilibrium exists
(Fig. 2 right panel), solutions of the model converge to the stationary spike-like pattern (see
Fig. 10).

Another interesting case is the one in which, independently on the values of µ, there
always exists only one nonnegative spatially homogeneous steady state (as depicted in Fig. 3).
Such steady state is always stable.
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Figure 7: Time evolution of solutions of model (2.1)–(2.3): c(x, t) left, b(x, t) center, g(x, t)
right. The upper and the lower panel show the same solutions but from the different per-
spective. Parameters are identical as in Fig. 5 but with greater µ = 0.01, such that there
exists only one nonnegative spatially homogeneous steady state (as in Fig. 1 right panel
and the steady state fulfils the DDI condition. We observe a destabilisation of the spatially
homogeneous steady state that leads to the growth of stable spike-like solutions.
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Figure 8: Spatial profile of the limit spatially inhomogeneous solutions c and g of model
(2.1)–(2.3) with parameters as in Fig. 7. The graph was obtained from long-time simulation
of the model.

Figure 9: Time evolution of cell density c(x, t), solution of model (2.1)–(2.3) with parameters:
a1 = 0, 07, dc = 0.05, d = db = dg = 0.1, κ = 1, α = 0.1 and µ = 0.006 and different scaling
coefficients: γ = 1 left, γ = 100 center, γ = 10000 right. Parameters correspond to the case
presented in in Fig. 2, center panel. We observe a destabilisation of the spatially homogeneous
steady state (the largest one) and growth of spike-like solutions, which are not stable and
decay to the spatially homogeneous steady state for large scaling coefficient (small diffusion)
and seem to be stable for a smaller scaling coefficient.
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x

Figure 10: Time evolution of cell density c(x, t), solution of model ((2.1)–(2.3) with param-
eters identical as in Fig. 9, except for µ = 0.1. Parameters correspond to the case presented
in in Fig. 2, right panel. Scaling coefficients are : γ = 10 left, γ = 100 center, γ = 1000
right. We observe a destabilisation of the spatially homogeneous steady state and growth of
spike-like solutions, which persist in time independently on the scaling coefficient.

5. Discussion

We consider a model, in which pre-malignant cells are supplied via mutation from the nor-
mal cell population. For simplicity, the mutation rate is assumed constant and uniformly
distributed over the spatial domain (unit interval). Previously, in references [12, 13, 14], we
considered models, in which no cell influx was present. These earlier models all had a trivial
equilibrium, which attracted solutions unless external supply of growth factors was assumed.
As a result, even when the diffusion destabilisation was present, the emerging spatially dis-
tributed colonies were frequently transient. Biologically, these models corresponded to the
situation in which a single colony of pre-malignant cells, once established, may stabilise or
die out.

The current model lacks the trivial equilibrium. It can display, as explained in Section 4.
from one to three nontrivial equilibria. The solutions represent a variety of behaviours, also
discussed in Section 4. The prominent role of parameter µ emerges from this analysis. This
is confirmed by the Theorem 3.5, which provides asymptotic bounds on solutions (in the
limes superior and limes inferior sense). Part (i) of this results shows that as parameter µ
becomes small, the upper bound (in the sense of limes superior of the L1-norm) on solutions
also becomes small and equal to 0 when µ = 0 (as was the case in models in [12, 13, 14]).
Interestingly, the pointwise lower bound on limes inferior becomes close to the L1 upper
bound on limes superior, when the factor Q approaches zero. In such situation, either the
amplitude of oscillations becomes small, or the spatially inhomogeneous steady state includes
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very narrow spike-type peaks separated by wide and shallow troughs. When Q becomes equal
to zero, for example when κ = 0, both bounds are identical and equal to µ/dc. This means
the solution converges to this value, the fact which is intuitively obvious, but provides a
consistency check on Lemma 3.4 (condition of for no DDI is automatically satisfied when
κ = 0) and Corollary 3.12 (f(g1) > 0 when κ = 0).

Numerical simulations suggest that the diffusion-driven instabilities emerging in the
model may be stable (Section 4.). whether or not this happens, depends on the number
and stability of spatially homogeneous steady states. If there exists only one spatially ho-
mogeneous state and the state satisfies conditions for DDI, then the solutions tend to the
stationary spike-like pattern. This is corroborated by existence of spatially inhomogeneous
steady states, as discussed in Section 3.4. (see Fig. 4). As stated in Theorem 3.10, the
inhomogeneous steady states have extrema of spike or plateau type, depending on the sign
of the derivative of f at the extremum. Due to a complicated form of this function, this
condition can be only numerically verified. An example is discussed in Remark 3.11.

Another novelty in the dynamics of the model solution is that small changes of param-
eter a1 may change qualitative behaviour of the model solutions. As shown in numerical
simulations even for the same values of µ small change of a1 may change the stability of the
spatially homogeneous steady states, and for example a stable state can become unstable
for the spatially heterogeneous perturbations leading to the emergence of the stable spatial
patterns. It corresponds to the situation, when a small increase of the proliferation rate leads
to the destabilisation of cell population, even if the influx of mutated cells is unchanged.

Biologically, we obtain behaviour, which seems to be consistent with the field theory of
carcinogenesis. Lesions started by pre-malignant cells are frequently transient (as in the
model in the previous work [13]). However, when there is a constant low-level supply of
these founder cells, due to mutation of normal cells (the current model), a stable distribu-
tion is obtained, which is spatially inhomogeneous and sensitive to initial conditions. When
the mutation rate is large, which is an unrealistic scenario (typical mutation rates in mam-
malian cells are below 10−6 per division, c.f. [9] and references therein), the system saturates
and produces only asymptotically spatially homogeneous solutions. The current model is
an intermediate step between the model of references [12, 13, 14], in which just a single
premalignant colony was considered, and a comprehensive model, which should involve sta-
bilisation of some of the pre-malignant colonies by means of progressive deregulation of the
genome. This model will be subject of further studies.

It seems appropriate to stress once more the critical role of diffusion of free growth
factors in emergence of spatial patterns similar to those observed in early carcinogenesis.
As discussed in [13], models taking diffusion into account may behave in a way, which is
intuitively difficult to predict and leads to different conclusions.
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