JORDAN CANONICAL FORM

11.52. Find all possible Jordan canonical forms for those matrices whose characteristic polynomial $\Delta(t)$ and minimum polynomial m(t) are as follows:

(a)
$$\Delta(t) = (t-2)^4(t-3)^2$$
, $m(t) = (t-2)^2(t-3)^2$

(b)
$$\Delta(t) = (t-7)^5$$
, $m(t) = (t-7)^2$

(c)
$$\Delta(t) = (t-2)^7$$
, $m(t) = (t-2)^3$

(d)
$$\Delta(t) = (t-3)^4(t-5)^4$$
, $m(t) = (t-3)^2(t-5)^2$

- 11.53. Show that every complex matrix is similar to its transpose. (Hint: Use its Jordan canonical form and Problem 11.50.)
- 11.54. Show that all $n \times n$ complex matrices A for which $A^n = I$ but $A^k \neq I$ for k < n are similar.
- 11.55. Suppose A is a complex matrix with only real eigenvalues. Show that A is similar to a matrix with only real entries.

CYCLIC SUBSPACES

- 11.56. Suppose $T: V \to V$ is linear. Prove that Z(v, T) is the intersection of all T-invariant subspaces containing v.
- 11.57. Let f(t) and g(t) be the T-annihilators of u and v, respectively. Show that if f(t) and g(t) are relatively prime, then f(t)g(t) is the T-annihilator of u + v.
 - 11.58. Prove that Z(u, T) = Z(v, T) if and only if g(T)(u) = v where g(t) is relatively prime to the T-annihilator of u.
 - 11.59. Let W = Z(v, T), and suppose the T-annihilator of v is $f(t)^n$ where f(t) is a monic irreducible polynomial of degree d. Show that $f(T)^n(W)$ is a cyclic subspace generated by $f(T)^n(v)$ and it has dimension d(n s) if n > s and dimension 0 if $n \le s$.

RATIONAL CANONICAL FORM

- 11.60. Find all possible rational canonical forms for:
 - (a) 6×6 matrices with minimum polynomial $m(t) = (t^2 + 3)(t + 1)^2$
 - (b) 6×6 matrices with minimum polynomial $m(t) = (t+1)^3$
 - (c) 8×8 matrices with minimum polynomial $m(t) = (t^2 + 2)^2(t + 3)^2$
- 11.61. Let A be a 4×4 matrix with minimum polynomial $m(t) = (t^2 + 1)(t^2 3)$. Find the rational canonical form for A if A is a matrix over (a) the rational field Q, (b) the real field R, (c) the complex field C.
- 11.62. Find the rational canonical form for the Jordan block $\begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$.
- 11.63. Prove that the characteristic polynomial of an operator $T: V \to V$ is a product of its elementary divisors.
- 11.64. Prove that two 3×3 matrices with the same minimum and characteristic polynomials are similar.