In each case, find an elementary matrix E that satisfies the given equation.

24.
$$EA = B$$

25.
$$EB = A$$

26.
$$EA = C$$

27.
$$EC = A$$

28.
$$EC = D$$

29.
$$ED = C$$

30. Is there an elementary matrix E such that EA = D? Why or why not?

In Exercises 31–38, find the inverse of the given elementary matrix.

31.
$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

32.
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

33.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

34.
$$\begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 1 \end{bmatrix}$$

35.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{36.} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

37.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{bmatrix}, c \neq 0$$

38.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, c \neq 0$$

In Exercises 39 and 40, find a sequence of elementary matrices E_1, E_2, \ldots, E_k such that $E_k \cdots E_2 E_1 A = I$. Use this sequence to write both A and A^{-1} as products of elementary matrices.

• 39.
$$A = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$
 • 40. $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$

• 40.
$$A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$$

- **41.** Prove Theorem 3.13 for the case of AB = I.
- 42. (a) Prove that if A is invertible and AB = O, then B = O.
 - (b) Give a counterexample to show that the result in part (a) may fail if A is not invertible.
- •43. (a) Prove that if A is invertible and BA = CA, then B=C.
 - (b) Give a counterexample to show that the result in part (a) may fail if A is not invertible.
- 44. A square matrix A is called *idempotent* if $A^2 = A$. (The word idempotent comes from the Latin idem, meaning "same," and potere, meaning "to have power." Thus, something that is idempotent has the "same power" when squared.)
 - (a) Find three idempotent 2×2 matrices.
 - (b) Prove that the only invertible idempotent $n \times n$ matrix is the identity matrix.
 - 45. Show that if A is a square matrix that satisfies the equation $A^{2} - 2A + I = 0$, then $A^{-1} = 2I - A$.

- 46. Prove that if a symmetric matrix is invertible, then its inverse is symmetric also.
 - 47. Prove that if A and B are square matrices and AB is invertible, then both A and B are invertible.

In Exercises 48-63, use the Gauss-Jordan method to find the inverse of the given matrix (if it exists).

48.
$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

49.
$$\begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix}$$

50.
$$\begin{bmatrix} 6 & -4 \\ -3 & 2 \end{bmatrix}$$

51.
$$\begin{bmatrix} 1 & a \\ -a & 1 \end{bmatrix}$$

• 52.
$$\begin{bmatrix} 2 & 3 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & -1 \end{bmatrix}$$

• 53.
$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 2 \\ 2 & 3 & -1 \end{bmatrix}$$

• 55.
$$\begin{bmatrix} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{bmatrix}$$

56.
$$\begin{bmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{bmatrix}$$

• 57.
$$\begin{bmatrix} 0 & -1 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & -1 & 3 & 0 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

$$\bullet 58. \begin{bmatrix} \sqrt{2} & 0 & 2\sqrt{2} & 0 \\ -4\sqrt{2} & \sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

59.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d \end{bmatrix}$$

60.
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 over \mathbb{Z}_2

61.
$$\begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$$
 over \mathbb{Z}_5

61.
$$\begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$$
 over \mathbb{Z}_5 62. $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ over \mathbb{Z}_3

63.
$$\begin{bmatrix} 1 & 5 & 0 \\ 1 & 2 & 4 \\ 3 & 6 & 1 \end{bmatrix}$$
 over \mathbb{Z}_7

Partitioning large square matrices can sometimes make their inverses easier to compute, particularly if the blocks have a nice form. In Exercises 64-68, verify by block multiplication that the inverse of a matrix, if partitioned as shown, is as claimed. (Assume that all inverses exist as needed.)

64.
$$\begin{bmatrix} A & B \\ O & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ O & D^{-1} \end{bmatrix}$$