- (b) If $gug^{-1} \in U$ for all $g \in G$, $u \in U$, prove that \hat{U} is a normal subgroup of G.
- 5. Let U = {xyx⁻¹y⁻¹ | x,y ∈ G}. In this case Û is usually written as G' and is called the commutator subgroup of G.
 - (a) Prove that G' is normal in G.
 - (b) Prove that G/G' is abelian.
 - (c) If G/N is abelian, prove that $N \supset G'$.
 - (d) Prove that if H is a subgroup of G and H ⊃ G', then H is normal in G.
- 6. If N, M are normal subgroups of G, prove that $NM/M \approx N/N \cap M$.
- 7. Let V be the set of real numbers, and for a, b real, a ≠ 0 let τ_{ab}: V → V defined by τ_{ab}(x) = ax + b. Let G = {τ_{ab} | a, b real, a ≠ 0} and let N = {τ_{1b} ∈ G}. Prove that N is a normal subgroup of G and that G/N ≈ group of nonzero real numbers under multiplication.
 - 8. Let G be the dihedral group defined as the set of all formal symbols $x^i y^j$, $i = 0, 1, j = 0, 1, \dots, n 1$, where $x^2 = \epsilon$, $y^n = \epsilon$, $xy = y^{-1}x$. Prove
 - (a) The subgroup $N = \{e, y, y^2, \dots, y^{n-1}\}$ is normal in G.
 - (b) That $G/N \approx W$, where $W = \{1, -1\}$ is the group under the multiplication of the real numbers.
- 9. Prove that the center of a group is always a normal subgroup.
 - Prove that a group of order 9 is abelian.
 - 11. If G is a non-abelian group of order 6, prove that $G \approx S_3$.
- 12. If G is abelian and if N is any subgroup of G, prove that G/N is abelian.
 - Let G be the dihedral group defined in Problem 8. Find the center of G.
 - 14. Let G be as in Problem 13. Find G', the commutator subgroup of G.
- 15. Let G be the group of nonzero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1 (that is, $a + bi \in N$ if $a^2 + b^2 = 1$). Show that G/N is isomorphic to the group of all positive real numbers under multiplication.
 - #16. Let G be the group of all nonzero complex numbers under multiplication and let \overline{G} be the group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, where not both a and b are 0, under matrix multiplication. Show that G and \overline{G} are isomorphic by exhibiting an isomorphism of G onto \overline{G} .