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Chapter 6 Vector Spaczs

The preceding idezs can be generalized to relate Lhe matrices | Tio g and [T
of a linear transformation 17: ¥ — W, where 8 and B8’ ave bases for Vand & and C
arebases for W, (See Exercise 44.)

Wz conclude this section by revisiting the Fundamental Theorem of Invectible

Matrices and incorporating some results from this chapter.

Theorem 6.30

Exercises 6.6

‘I'he Fundamental Theorem of [nvertible Matrices: Version 4

Lot A be an aXn mateix and lel T: V— W be a lincar transformation whose
mateix [ 7).y with respect to bases B and & of ¥ and W, respectively, is A. The
following statemients are equivalent:

. Ajis invertible.
Ax = b has a unique solution Zor every b in R,
As 0l voly the Livial solulion,
. ‘The reduced row cchelon form of Ais T,
A s a product of elementary mateices.
ravk{AY = n
. oullity! A =0
. 'T'he column vectors of A are finearly independent.
The colimn vecturs of A span "
The column vectors o A form a basis for R,
. The row vectors of A are linearly independent.
The row vectors of A span R,
.The row vectors of A form a basis for ",
.dei A £ 0
. }is 1ot an vigenvalue of A.
. Tisinveriible,
. Tis one-to-vne,
Tis onto.

. ker(T) = {0}
range{ Ty = W
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Prool  The equivalence [g) <= (s) ts Theorem 6.20, and () <= (1) ts the definition of
oo, Siuce A s X, we must have dim V= dina ¥ —= . From Theorems 6.21 and
6.24, we get (p) <3 (q) < (r). Finally; we cornec: the last five statements to the othurs
by Thewrem 6.28, which implics that (a) < (p). |

L {

In Fxercises 1-12, find the wmatrix [ T)e..g of the linear
transfarmation T V— Wwith respect 16 the bases B and C
af Vand W, respectively. Verify Theorera €.2€ for the vectorv 3. T
by computing 13v1 directly and using the theorem,
L% —9 delined by 2{a 3 bx) — b — ax,
B=C={lLa,v=p(x) =4 " 2x

T3P, —P. defined by Tla - bx) = b — ax

B={4xl—53.C—{Lxhv=pixl =442

(3P, = &) detined by T p[x)] = plx +2),

Ij""{l,x,x}(’ {1,x~
v—p(x) —a+ bx+ ox”

‘.,(x + z.] O



4. 1: P, — %, delined by T{ p(x) ) = p{x+ 2),
B={1,x+2(x+2)LC={Lxx
v=plxi=a—-bx+ &

5.1 P, — 1 detined by T( plx)) =

B= {l,x,xj}, = {E], eg},
vopx) — e+ X!

3. 14.

Svction 6.6 The Matrix of a Linear Transformation a1

Consider the subspace ¥ of 52, given by

W= span(e™ e ).

(a) Show that the diflecential operator £ maps W into
itself.

(b; Find the matrix of Dwith respect to B8 = {2, 7},

(¢) Compuicthe devivative of f{x) — ¢ — 347"
indirectly, using Theorcn 6.26, and verify that it

i = [p(9}" agrees with f°(x) as computed direclly.
6. T: 9, — R defined by T pix)) =  p(1) )’ # 115 Comsider the subspace W of &, given by W — span(e®,
B =[x e - {[1‘ []} 2% cos s ™ sin x).
n Ll vos Qi iJ g {8) rind Lhe maevix of D with respect 1o 8 — {e*,
v=p0) =g+ bxi oo e o x, ¢ sin xb.
70— defined by (b} qu;nI.Ju1r:lthc.d:rivatI\'c: of f{z) — 3™ — ™ cos Xt
P 2e**sin x indirectly, using Theoremn 6.26, and verify
A7 a+?2 , 1 ‘ ‘ 3 that it agrees with f'(x) as computed dicectly.
: b 4P CT Uzl - P ® 2 16, Consider the subspace Wof 9, given by
b T W — span(cosx, sin a £ o8 %, x sin ).
] 1

"1
|"1
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&. Repea: Exercis2 7 with v = {:J
® A T:M,, sM,definedby T{A) = ATLR=C=
(Eyys By, By, Eng)ov = A [: :]

{E22 Bzps Eyps Eptand

10. Repuat Exeicise & with 27
¢ - {EJJ' ESI! E??s FI'.}'
® 11 T: M, — M, delined by T(A) = A% — BA, where

1 -1
B— [_1 I]:H =C = {5, By B, B
a b
Y—A—|:C dJ

12. T: M,, = M, defined by T(A) = 4 — A, B

C= {E|I»E|E>Ez|, Eﬂ},v = A= {Jﬁ bJ
[

[35 13, Consider -he subspace Wof 3, given by

W = goan(sin x, ons x).

(a) Shosw Lhat the diffecential operator D maps Winto
itsell.

(b) Find the matrix of D with respect to
B = {sin x, cos x}.

{c}) Compute the derivativie of f{x] = 3sinx ~ 5cosx
indivectly, using Theorem 6.26, and verily that i¢
agrees with £ (%) s computed directly,

(2) Find the matrix of Duwith respectto B = {cos %,
SIn %, 2008 x, X8in X}

{b) Cnrpule he derivative of {x) = cosx + 2xcosx
indizcc:ly, using Taeorem 6.26, and verily thar it
agrecs with f'(x) as enmnputed dircctly.

Int Bxercises 17 and 18, T': U Vg 51V — W are finear
transforsations amd B, C, and D are bases jor U1, V; and W,
respectively, Compute [5e Vlp_ g in two ways: () by
fmehing So T directly and then computing its matyix and

() by finding the matrices of § and 1 sepuretely and using
Theorem 6.27.

17. T: %, — [ detined by T(p(x)) = [;E‘H

],B - (1%}

LS R% - 2

I3 R—2h
defined by 3 ] :[
¥ b[ & Za — h
C =1D={e, e}
18, 1. P %, defined by 1{pix)) = p(x + 1),
$:9P, — P, delired by S{p{x)) = p{x + 1),
B={,x,C=D={L%*}
It Exercises 19-26, deterittine whether the finear trausfor-
wmattion T 5 invertible by considering §is matrie with respect

to the standard bases. If T' §s inversible, wse Theorens 5.28
and the method of Example 6.82 to find T,

19, Tin Exercise | 20. Tir. Exercise 5

21. Tin Evercisc 3

w22, T, =P, defined by T(p{x)) = p'(x)

® 223 T2, 9, defined by T(pix)) = p(x) + p'()
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24, 1 My, + M delined by T{A) = AB, where it ta compue the crthogonal projection of vonlo W,
% wherc
2 1 v - L-1
25. Tin Fxercise 11 26. Tin Exercise 12 2

Compare your answer with Example 5,11
[IIins: Tind an vrthogonal decomposition of K as

E’&[ﬂ Exercises 27—30, nse the method of Exemple 6.83 R = W+ W usingan orthogonal basis for W. See
to cvoluate the given Trfegral. Frample 3.3,

® 27 [ (sinx — 3 cos xlelx (See Fazraise 15.) 39, Let £: V' » Whea linear Lranslormalion belween
28, [ 5e7* dx {Sce Lxervise 14.) finite-dimensional vector spaces and let B and € be

® 29. | (¢ cos x — 2¢* sin %) dx (See Fxerrise 15.) hases for Vand W, respeciively. Show that the matvix

of T with respect to B aud € Is unigue. That is, il A is a
matrix such that A'v|z = [ Tiv) , for all vin ¥, then
A — [ Neoep. Mo Find valnes ol v that will show
this, one colamm at a time. |

30. J (xcos x -+ xsin &) dx (See Exercise 16,)

Jat Exercises 3136, a lintear ransformaiion T: V— Vie

given. If possible, find a basis.C for Vsuch that the artrix In Exervises 4045, let T: V— W be a Gnear transformation

[Tla of T with respect to C is eiagosral, betwarn fotie-dismenstonal vector spaces V and W, Let 8 and
n B C be buses for V and W, respectively, nnd let A = [ Tieep

31. T: R — R defined by T[ b] iy b] 40. Show that aullityi T) — nullity(A).

- 41. Show that rank(?) = rank(A4).
32, T: R — R* defined by '1|:a:| = 4" b:| 42.If V= Ward 8 = C, saow that Tis diagonalizable if

b a+b and onby if A is diazonalizahle.
33, T: P, — P dafinad by T(a | bed ={da | 28) | 43, Use the results of his seclion to give a malria-
(a4 30X based proof of the Runk Theorern ( Theoremn 6,19
3. T:%, > P, defined by T{p(x)) = plx— 1) 44. If B und C’ are also bases for Vand W, respectively,
® .35 1:% P, defined by T(p(:)) = p) + xp'(x] whal is Lhe relationship helween [ T]a, pand [T o p?

Prave vonr assertion.

36, 1: P, — P, dzined by T(p(x)) = piix--2) # 45. [F ditn V= nand dim W = s, prove that J£(V, W) =

37. Let { he the linc through the origis: in [ with direction M. (See the exerises for Section 6.4.) |11 Let B
a N 3 1 . 7 Jvelsr
Terade J| . Use the method of Example 6.85 to and L'be bases for_Vand W, res]lject}\el}. Show that the
i mapping w(T) — o g lor Tin L{y, W), defines a
find the standard matrix of a reflection in £. linear Lranslormation g 220V, W) — M, hat is an
38. Tet Whe the plane in B with cquation x = v+ isornorphism.]
2z = 0.Us¢ the metlod of Lxample .85 to find 46. If Vis a vector space, ihen the dual spuce of Vis the
the stondard matrix of an orthogona projection vector space V¥ = PV, R Prove that il ¥ is finile-

ento W Verify that your answer is correct by using dimensional, then V¥ =V,
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In Exercises 1-4:

(a) Find the coordinate vectors[x)p and [x], of x with
respect to the bases B and C, respectively.

(b) Find the change-of-basis matrix Pp_g from B to C.

(c) Use your answer to part (b) to compute [x]e and
compare your answer with the one found in part (a).

(d) Find the change-of-basis matrix Pg_, from C to B.
(e) Use your answers to parts (c) and (d) to compute [X | p,
and compare your answer with the one found in part (a).

wx= o= {a} [T}
c= bl =w

1 1| o] [o
3.x = oLB=<i(0,|1[,]01,,
| —1 ] Lol Lo L1
(1] 0] [0
C=<|1L|1[]0]7inR’
L1 L1 [t
3] RO TGy 1]
*4x=\|1|,B= 115101:|0]2;
| 5 o] L1] Lo
(1] (o] [1]
C=«q|1|,[1),]0{pinR
o L1t 1]

In Exercises 5-8, follow the instructions for Exercises 1—4
using p(x) instead of x.

5.p(x) =2—xB={1,x},C={x1+ x}in @,

6.p(x) =1+3xB={1+x1- x}, C = {2x,4} in P,

7.p(x) =1+ x5 B={1 + x + x4 x + x% x%},
C={l,x%x*%}in®,

*8.p(x)=4—-2x—x,B={x1+ x5 x + x%,
C={11+ xx%indP,
In Exercises 9 and 10, follow the instructions for
Exercises 1-4 using A instead of x.

*$9 A= [3 _ﬂ, B = the standard basis,

o= {03 210 0 3 P

[ 1

| Lo
e~ {010 0 ) e

In Exercises 11 and 12, follow the instructions for
Exercises 14 using f(x) instead of x.

11. f(x) = 2sinx — 3cos x, B = {sin x + cos x, cos x},
C = {sin x, cos x} in span(sin x, cos x)

.
0.
.

0
1
1
il

.
0
.
1

0
]
1

(-

d

12. f(x) = sinx, B = {sin x + cos x, cos x}, C = {cos x —
sin x, sin x + cos x} in span(sin x, cos x)

13. Rotate the xy-axes in the plane counterclockwise
through an angle 6 = 60° to obtain new x’y’-axes.
Use the methods of this section to find (a) the
x'y'-coordinates of the point whose xy-coordinates
are (3,2) and (b) the xy-coordinates of the point
whose x'y'-coordinates are (4, —4).

14. Repeat Exercise 13 with 8 = 135°,

15. Let B and C be bases for R% If C = {[ﬂ, [ﬂ} and

the change-of-basis matrix from B to C is

. _[ 1 —1]
CeB 1 2

find B.

# 16. Let B and C be bases for P,. If B = {x,1 + x,

1 — x+ x’} and the change-of-basis matrix
from Bto Cis

O

Pewn =

- N O
e >

find C.

In calculus, you learn that a Taylor polynomial of degree n
about a is a polynomial of the form

P =t + a(x — @) + ax — af +- + a,(x — )"

where a,, # 0. In other words, it is a polynomial that has
been expanded in terms of powers of x — a instead of powers

of x. Taylor polynontials are very useful for approximating
functions that are “well behaved” near x = a.
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* ThesetB={1,x— a,(x — a)’...,(x — a)"}isa * 21. Let B, C, and D be bases for a finite-dimensional vec-
basis for P, for any real number a. (Do you see a quick way tor space V. Prove that
to show this? Try using Theorem 6.7.) This fact allows us
to use the techniques of this section to rewrite a polynomial PpcPees = Ppes

as a Taylor polynomial about a given a.

17. Express p(x) = 1 + 2x — 5% as a Tavlor polynomial * 22, Let V'be an n-dimensional vector space with basis

abouta = 1. B = {v,...,v,}. Let Pbe an invertible nX n matrix
3 _ and set
18. Express p(x) = 1 + 2x — 5x as a Taylor polynomial
abouta = —2. u; = piivy FHESE o Pui¥y
19. Express p(x) = x’ as a Taylor polynomial about
a= —1. fori=1,...,nProve thatC = {u,,...,u,} is a basis
20. Express p(x) = x as a Taylor polynomial about a = 3. for Vand show that P = Py, .

T

|24 Linear Transformations

We encountered linear transformations in Section 3.6 in the context of matrix trans-
formations from R” to R™. In this section, we extend this concept to linear transfor-
mations between arbitrary vector spaces.

Definition A linear transformation from a vector space Vto a vector space W
1s a mapping T: V— Wsuch that, for all wand v in V and for all scalars ¢,

1. Tlu+v) — T(u) + T(v)
2. T(cu) = cT(n)

It is straightforward to show that this definition is equivalent to the requirement
that T preserve all linear combinations. That is,

T: V— Wis alinear transformation if and only if

T(cyv, + vy + -+ + gvp) = ¢ 2wy ) FG L T Ci L

forallv,,...,v,in Vandscalars ¢, ..., ¢.

>
Exampie 6.49 Every matrix transformation is a linear transformation. That is, if A is an mX n matrix,
then the transformation T, : R” — R™ defined by
¢ T,(x) = Ax forxinR"

is a linear transformation. This 1s a restatement of Theorem 3.30. ,



