is a unit in R then U = R (see Problem 5). If, on the other hand, x is a unit in R, then $x^{-1} \in R$ and the relation $a_0 = xu_0$ becomes $u_0 = x^{-1}a_0 \in A$ since A is an ideal of R. This implies that $U \subset A$; together with $A \subset U$ we conclude that U = A. Therefore there is no ideal of R which fits strictly between A and R. This means that A is a maximal ideal of R.

Problems

- I. In a commutative ring with unit element prove that the relation a is an associate of b is an equivalence relation.
- 2. In a Euclidean ring prove that any two greatest common divisors of a and b are associates.
- **/** 3. Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a unit is that d(a) = d(1).
- ✓ 4. Prove that in a Euclidean ring (a, b) can be found as follows:

$$b = q_0 a + r_1, \text{ where } d(r_1) < d(a)$$

$$a = q_1 r_1 + r_2, \text{ where } d(r_2) < d(r_1)$$

$$r_1 = q_2 r_2 + r_3, \text{ where } d(r_3) < d(r_2)$$

$$\vdots$$

$$\vdots$$

$$r_{n-1} = q_n r_n$$

$$r_n = (a, b).$$

and

- ✓ 5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.
- 6. Prove that the units in a commutative ring with a unit element form an abelian group.
- 7. Given two elements a, b in the Euclidean ring R their least common multiple c ∈ R is an element in R such that a | c and b | c and such that whenever a | x and b | x for x ∈ R then c | x. Prove that any two elements in the Euclidean ring R have a least common multiple in R.
- ✓ 8. In Problem 7, if the least common multiple of a and b is denoted by [a, b], prove that [a, b] = ab/(a, b).

3.8 A Particular Euclidean Ring

An abstraction in mathematics gains in substance and importance when, particularized to a specific example, it sheds new light on this example. We are about to particularize the notion of a Euclidean ring to a concrete ring, the ring of Gaussian integers. Applying the general results obtained about Euclidean rings to the Gaussian integers we shall obtain a highly nontrivial theorem about prime numbers due to Fermat.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Prof. Carlos Alberto López Andrade Materia: Anillos y Campos

- I) Find all the units in $\mathbb{Z}[i]$.
- II) If a + bi is not a unit of $\mathbb{Z}[i]$ prove that $a^2 + b^2 > 1$.
- III) Let $\pi \in \mathbb{Z}[i]$ be such that $d(\pi) = p$, where p is a prime in \mathbb{Z} . Show that π is a prime of $\mathbb{Z}[i]$.
- IV) Show that 2 is equal to the product of a unit and the square of a prime in $\mathbb{Z}[i]$.
- v) Consider $\alpha = 7 + 2i$ and $\beta = 3 4i$ in $\mathbb{Z}[i]$. Find σ and ρ in $\mathbb{Z}[i]$ such that $\alpha = \beta \sigma + \rho$ with $d(\rho) < d(\beta)$.
- VI) Use a Euclidean algorithm in $\mathbb{Z}[i]$ to find a gcd of
 - a) 8 + 6i and 5 15i in $\mathbb{Z}[i]$.
 - b) 3 + 4i and 4 3i in $\mathbb{Z}[i]$.

Puebla, Pue., a 5 de marzo de 2018