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Some Special Congruences

Example 6.6. To find 2°' (mod 5, 157, 437), we perform the following sequence of
computations:

ry=ri=2" =4 (mod 5,157,437)
ry=r; =4’ =64 (mod 5,157437)
ry=ry = 64* = 1,304,905 (mod 5,157,437)
rs=rj = 1,304,905" = 404,913 (mod 5,157.437)
re=r =404,913% =2,157,880 (mod 5,157.437)
ry=r] =2,157,880" = 4,879,227 (mod 5,157:437)
rg=r8=4,879,227" = 4,379,778 (mod 5,157437)
ro=rg =4,379,778° = 4,381,440 (mod 5,157,437).
It follows that 2% = 4,381,440 (mod 5,157,437). <

The following example illustrates the use of the Pollard p — I method to find a factor
of the integer 5,157,437.

Example 6.7. To factor 5,157,437 using the Pollard p — 1 method, we successively
find ry, the least positive residue of 2% modulo 5,157,437, for k=1,2,3,..., as
was done in Example 6.6. We compute (r, — 1, 5,157,437) at each step. To find
a factor of 5,157,437 requires nine steps, because (rp — 1, 5,157,437) = 1 for k =
1,2,3,4,5,6,7,8 (as the reader can verify), but (rg — 1, 5,157,437) = (4,381,439,
5,157,437y = 2269. It follows that 2269 is a divisor of 5,157,437. T«

The Pollard p — 1 method does not always work. However, because nothing in the
method depends on the choice of 2 as the base, we can extend the method and find a factor
for more integers by using integers other than 2 as the base. In practice, the Pollard p — 1
method is used after trial divisions by small primes, but before the heavy artillery of such
methods as the quadratic sieve and the elliptic curve method.

6.1 Exercises

1. Show that 10!+ 1is divisible by 11, by grouping together pairs of inverses modulo 11
that occur in 10L

2. Show that 121+ 1 is divisible by 13, by grouping together pairs of inverses modulo 13
that occur in 12!,

>3, What is the remainder when 16! is divided by 197
4, What is the remainder when 5!25! is divided by 31?

95. Using Wilson’s theorem, find the least positive residue of 8- 9- 10 - 11- 12 - 13 modulo 7.
6. What is the remainder when 7. 8-9- 15. 1617 - 2324 - 25 - 43 is divided by 117
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6.1 Wilson’s Theorem and Fermat’s Little Theorein 221

. What is the remainder when 18! is divided by 4377

. What i3 the remaimder when 40! is divided by 17637

» What is the remainder when 5'% is divided by 77

- What is the remainder when 62°° is divided by 117

+ Using Fermat’s little theorem, find the least positive residue of 399299599 moduto 7.
+ Using Fermat’s ittle theorem, find the least positive residue of 21909099 poduo 17,

» Show that 3! = 1 (mod 11?). -—#

o
!:_,,‘ [

+ Using Fermat’s little theorem, find the last digit of the base 7 expansion of 3107,

. Using Fermat’s little theorem, find the solutions of the following linear congruences.

a) 7x =12 (mod 17} b) 4x =11 {mod 19)

. Show that if # is a composite integer with #4, then (n — 1}! = 0 (mod n).
. Show that if p is an odd prime, then 2(p — 3)! = —| {mod p).

- Show that if n is odd and 3 } n, then 52 = 1 (mod 24).

. Show that a'? - 1 s divisible by 35 whenever (a, 35)=1.

Show that a5 — 1 is divisible by 168 whenever (a, 42) = 1,

. Show that 42 | (n” — ») for all positive integers .
. Show that 30 | (n® — n} for ail positive integers n.

« Show that 177t 427~1 . 3p=1 4 ... L (p— @D = _{ (mod p) whenever p is

prime. (Tt has been conjectured that the converse of this is also true,)

» Show that 17 + 27 + 37 + ... 4+ (p — DP = 0 (mod p) when p is an odd prime.

» Show thatif p is prime and @ and b are integers not divisible by p, witha? = b” (mod p),

then a” = b? (mod p?).
Use the Pollard p — 1 method to find a divisor of 639,

Use the Pollard p — 1 method to find a divisor of 7,331,117, (For this exercise, you will
need to use either a calculator or computational software.}

Show that if p and ¢ are distinct primes, then p?—! + gt =1 (mod pa)-
Show that if p is prime and « is an integer, then plia?+(p—la).
Show that if p is an odd prime, then 1232 - - . (p — 4)2(p — 2)2 = (—1)P+D/2 (0d p).

« Show that if p is prime and p = 3 (mod 4), then ((p — 1}/2)1=£1 (mod p).

a} Let p be prime, and suppose that r is a positive integer less than p such that
(—1Yr!=—1(mod p). Show that (p—r 4+ BDl=—1(mod p).
b) Using part (a), show that 61! = 631 = —1 (mod 71).

» Using Wilson’s theorem, show that if p is a prime and p =1 ({mod 4), then the

congrience x* = —1(mod p) has two incongruent solutions given by x =
+((p — 1/2)! (mod p).
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me Special Congruences

. Show that if p is a prime and 0 < k < p, then (p — k)!(k — D= (—D)* (mod p).
Show that if # is an integer, then

ﬂ(n)zz[(j—I.)!+1_[(j—’l)!:|].

s j J

For which positive integers # is n* 1 4" prime?

. Show that the pair of positive integers n and n + 2 are twin primes if and only if
A((n — D!+ 1)+ n =0 (mod n(n + 2)), where n 7# 1.

. Show that if the positive integers » and n + k, where >k and k is an even

positive integer, are both prime, then kD2 — DI+ D +akl - DKk — D=
0 (mod n(n + k).

. Show that if p is prime, then (2;) =2 (mod p).

. Exercise 74 of Section 3.5 shows that if p is prime and k is a positive integer less than

p
k

theorem to show that if @ and b are integers, then (g + b)Y =a” + b? {mod p).

p, then the binomial coefficient is divisible by p. Use this fact and the binomial

Prove Fermat's little theorem by mathematical induction. (Hint: In the induction step,
use Exercise 40 to obtain a congruence for {a + 1)¥)

Using Exercise 30 of Section 4.3, prove Gauss’s generalization of Wilson’s theorem,
namely that the product of all the positive integers less than m that are relatively prime
to m is congruent to 1 {mod i), untess m =4, p',or2p', where p is an odd prime and
t is a positive integer, in which case it is congruent to —1 {mod m).

A deck of cards is shuffled by cutting the deck into two piles of 26 cards. Then, the new

deck is formed by alternating cards from the two piles, starting with the bottom pile.

a) Show thatif a card begins in the cth position in the deck, it will bein the bth position
in the new deck, where b = 2¢ (mod 53) and 1 < b < 52.

b) Determine the number of shuffles of the type described above that are nceded to return
the deck of cards to its original order.

Let p be prime and let ¢ be a positive integer not divisible by p. We define the Fermat
quotient q,(a) by q,(a) = (a?~! — 1)/ p. Show that if ¢ and b are positive integers not
divisible by the prime p, then g,{ab) =g, {a) + qp (b) (mod p).

Let p be prime and let ay, a3, . . ., a,and by, by, . . ., b, be complete systems of residues
modulo p. Show thataiby, azhs, . . - ,a,b, isnota complete system of residues modulo p.

Show that if 7 is a positive integer with n > 2, then n does not divide 2" — 1.
Let p be an odd prime. Show that (p — D = —1 (mod p™).

Show that if p is a prime with p > 5, then (p — D!+ lhas at least two different prime
divisors.

Show that if @ and » are relatively prime integers with n > 1, then n is prime if and
only if (x — a)” and x" — a are congruent modulo n as potynomials. (Recall from the
preamble to Exercise 40 in Section 4.1 that two polynomials are congruent modulo r as
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236 Some Special Congruences

Example 6.20. We know that 2¢®) % — 261 — 25 = 32 = 5 (mod 9) is an inverse of
2 modulo 9. «<

We can solve linear congruences using this observation. To solve ax = b (mmod m1),

where {a, m) = 1, we multiply both sides of this congruence by a?®=1 1o obtain

a® gy = g1y (mod m).

Therefore, the solutions are those integers x such that x = a?®~1b (mod m).

Example 6.21. The solutions of 3x = 7 (mod 10) are given by x = 30017 =
3.7 =19 (mod 10), because ¢{10) = 4. <

6.3 Exercises

1

Find a reduced residue system modulo each of the following integers.

06 N9 ol d)1d4 e)le )17

. Find a reduced residue system modulo 2™, where m is a positive integer.

. Showthatifey, ¢z, .. ., €4y Is areducedresidue system modulo m, wherem isa positive

integer with m # 2, then¢; + ¢ + - - - + ¢y = 0 (mod m).

. Show that if a and m are positive integers with (a,m} = (@ — 1,m) =1, then 1 +a +

al+ ... 4+a®*™-1=0 (modm).

. Find the last digit of the decimal expansion of 3'%%,
. Find the last digit of the decimal expansion of 7%°%°%°,
. Use Euler’s theorem to find the least positive residue of 390 moduid 35.

. Show that if « is an integer such that a is not divisible by 3 or such that a is divisible by

9, then a’ = a (mod 63).

. Show that if @ is an integer relatively prime to 32,760, then a'2 = 1 (mod 32,760).
. Show that a?® + p%@ = | (mod ab), if a and b are relatively prime positive integers.

. Solve each of the following linear congruences using Euler’s theorem.

a) 5x =3 (mod i4) bY4x =7 (mod 15) ¢) 3x =35 (mod 16)

. Show that the solutions to the simultaneous system of congruences

x =ay {mod m)

X = a, {mod m;)

x =a, (mod m,),
where the m ; are pairwise relatively prime, are given by
x=aM? LM o a,M?0%) (mod M),

where M =mymy---m and M; = M/mjfor j=12,...,r.
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6.3 Euler’s Theorem 237

Use Exercise 12 to solve each of the systems of congruences in Exercise 4 of Section
4.3. .

Use Exercise 12 to solve the system of congruences in Exercise 5 of Section 4.3.
Use Euler’s theorem to find the last digit in the decimal expansion of 71000

Use Euler’s theorem to find the last digit in the hexadecimal expansion of 51060000
Find ¢ (n) for the integers n with 13 <n=<20.

Show that every positive integer relatively prime to 10 divides infinitely many repunits
(see the preamble to Exercise 11 of Section 3.1). (Hint: Note that the n-digit repunit
1. 1= (10" — 1)/9)

Show that every positive integer relatively prime to & divides infinitely many base b
repunits (see the preamble to Exercise 15 of Section 5.1

Show that if m is a positive integer, m > 1, then q = gm—#(m (mod m) for all positive
integers a.

6.3 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Mapie or Mathematica, or prograrns you have wrilten,
carry out the following computations and explorations.

1.

2.

Find ¢ (n) for all integers » less than 1000, What conjectures can you make about the
values of ¢ (n)?

Let ©{n) =37 &(n). Investigate the value of ® (n)/n? for increasingty large values
of n, such as n = 100, n = 1000, and » = 10,000. Can you make a conjecture about the
limit of this ratio as n grows large without bound?

Progfammx‘ng Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following,

1.

Construct a reduced residue system modulo 1 for a given positive integer 5.

2, Solve linear congruences using Euler’s theorem.

3. Find the solutions of a simultaneous system of linear congruences using Euler’s theorem

and the Chinese remainder theorem {see Exercise 12).
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7.1 The Euler Phi-Function 245

the equation ¢ () = 8 implies that no prime exceeding 9 divides n {otherwise ¢ (1) >
pj — 1> 8). Furthermore, 7 cannot divide n because if it did, 7 — 1 = 6 would be a factor
of ¢ (n). It follows that » = 293°5¢, where a, b, and ¢ are nonnegative integers. We can
also conclude that b =0 orb=tand thatc =Qorc=1; otherwise, 3 or 5 would divide

¢(n) = 8.

To find all solutions we need only consider four cases. When b = ¢ = 0, we have
n =27 where a > 1. This implies that ¢ () = 22~ 1, which means that ¢ = 4 and 1 — 16.
Whenb =0andc =1, wehaven ==2%. 5, where g > 1. This implies that ¢ (n) =27"1.4,
soa=2andn =20. Whenb = land ¢ =0, we have n = 29. 3, where g > 1. Thisimplies
that ¢ (n) = 2°71.2=2% s0a =3 and n = 24. Finally, when b = t and ¢ = 1, we have
n=29.3.5, We need to consider the case where a == 0, as well as the case where a > 1.
When a = 0, we have n = 15, which is a solution because ¢(15) = 8. When a > 1, we
have ¢ (n) =2971. 2.4 =2%2 This means thata = 1 and n = 30. Putting everything
together, we see that all the solutions to ¢ (1) = 8 are n = 15, 16, 20, 24 and 30. <

7.1 Exercises

—>1, Determine whether each of the following arithmetic functions is completely multiplica-
tive. Prove your answers,

a fim=0 d) f(n) =logn g) fiy=n+1
b) f(m) =2 e} f(n) = n? h) f(n) =n"
©) flny=n/2 f) f(n) =nl Dfn)=4n
=32, Find the value of the Enler phi-function at each of the following integers.
a) 100 d)2-3.5.7.11. 13
b) 256 e) 10
c} 1001 £y 20!

—>3. Show that $(5186) = ¢(5187) = $(5188).

- Find all positive integers n such that ¢ (n) has each of the following values. Be sure to
prove that you have found all solutions,

PN

a1l b)2 c)3 dy 4
5. Find all positive integers n such that ¢ (1) = 6. Be sure to prove that you have found all
solutions.

6. Find all positive integers n such that ¢(n) = 12. Be sure to prove that you have found
all solutions.

7. Find all positive integers n such that ¢ () = 24. Be sure to prove that you have found
all solutions.

8. Show that there is no positive integer n such that ¢ () = 14.

9. Can you find a rule involving the Euler phi-function for producing the terms of the
sequence 1,2,2,4,4,4,6,8,6,...7
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10.

—>11.

12.
13,
14.

—i5.

—>16.

17.
18.
19.

20.

=>11.

22.
23.

24,

25.

26.
27
28.

* 29,

Can you find a rule involving the Euter phi-function for producing the terms of the
sequence 2,3,0,4,0,4,0,5,0,...7

For which positive integers n does ¢ (3n) = 3¢ (n)?
For which positive integers n is ¢{n) divisible by 4?
For which positive integers n is ¢ (n) equal to 1 /2?
For which positive integers n does ¢{n) | n?

Show that if n is a positive integer, then

¢(my ifnisodd;
2¢(n} ifniseven.

¢(2n) = [

Show that if # is a positive integer having k distinct odd prime divisors, then ¢ (z) is
divisible by 2%,

For which positive integers n is ¢ (n) a power of 27
Show that if # is an odd integer, then ¢{dn) = 2¢{n).

Show that if n = 2¢(n), where # is a positive integer, then n = 24 for some positive
integer j.

Let p be prime. Show that p f n, where n is a positive integer, if and only if ¢lnp) =
{p — Do n).

Show that if m and n are positive integers and (m, n) = p, where p is prime, then
@ (nn) = ppmyg(n)/(p — 1).
Show that if m and k are positive integers, then G {mFy = m* 1 (m).
Show that if @ and & are positive integers, then
¢(ab) = {a, b)pla)p(b}/¢((a, b)).
Conclude that ¢ (ab) > p{a)p{b) when {a,b) > L

Find the least positive integer n such that the following hold.
a) ¢p(n) = 100 c) ¢{n) = 10,000
b) ¢ (i) = 1000 d) ¢(n) = 100,000

Use the Euler phi-function to show that there are infinitely many primes. (Hint: Assume
there are only a finite number of primes py, . . ., py. Consider the value of the Euler
phi-function at the product of these primes.} :

Show that if the equation ¢ (n) = k, where k is a positive integer, has exactly one solution
i, then 36 | n.

Show that the equation ¢ {n) = k, where & is a positive integer, has finitely many solutions
in integers 1 whenever k is a positive integer.
Show that if p is prime, 2°p + 1 is composite fora = 1,2, ...,r and p is not a Fermat

prime, where 7 is a positive integer, then ¢ (n) =27 p has no solution.

Show that there are infinitely many positive integers k such that the equation ¢{(n) =k
has exactly two solutions, where n is a positive integer. (Hint: Take k = 2. 357+ where
ji=52,...2
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Show that if » is a positive integer with n % 2 and 1 # 6, then ¢(n) = /1.

Show that if  is a composite positive integer and ¢ () [n — 1, thenn is square-free and
is the product of at least three distinct primes.

Show that if m and » are positive integers with m | n, then ¢ (m) | @ ().

Prove Theorem 7.5, using the principle of inclusion-exclusion (see Exercise 16 of
Appendix B),

Show that a positive integer  is composite if and only if ¢(m) < — ./n.

Let n be a positive integer, Define the sequence of positive integers ny, 115, 713, . . .
recursively by ny = ¢(n) and .y = ¢(n,) for k=1,2,3,.... Show that there is a
positive integer r such that n, = 1.

A multiplicative function is called strongly multiplicative if and only if f(p*) = f(p) for
every prime p and every positive integer &.

—>36.

Show that f(n) = ¢(n}/n is a strongly multiplicative function.

Two atithmetic functions f and g may be multiplied using the Dirichlet product, which is

—>37.

defined by
(fre)m =3 fldg(/d).
din
Show that f g =g * f.
38. Show that (f % g) # h == f = {g = k).
We define the 1 funcrion by
_ |1 ifm=1
Hon) = { 0 ifn>1

—>39,

40.

—>d1.

42,

a) Show that ¢ is a multiplicative function.
b) Showthat ¢ f= f% (= f for all arithmetic functions f.

The arithmetic function g is said to be the inverse of the arithmetic function fif fege
& % f = 1. Show that the arithmetic function f has an inverse if and only if f(1}# 0.
Show that if f has an inverse it is unique. (Hin: When f(1) # 0, find the inverse £t
of f by calculating f”l(n) recursively, using the fact that ((#) = Edm f(d)f“l{n/d).)

Show thatif f and g are multiplicative functions, then the Dirichlet product f % g is also
multiplicative.

Show that if f and g are arithmetic functions, F = f # g, and £ is the Dirichlet inverse
of g,then f = F % h.

We define Liouville’s function A (n), named after French mathematician Joseph Liouville, by

A1y =1, and for nn > 1, A{n) = (— 1)@ F02t+an whare the prime-power factorization of n
: — 1,10 -
BR=Dpy Py

43.

Find A(n) for each of the following values of n,

ay12 c) 210 e} 1601 £) 20!
b) 20 d) 1000 f) 101
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248 Multiplicative Functions

44, Show that A(n) is completely muliiplicative.

45. Show that if  is a positive integer, then »,,, A(d) equals 0 if 7 is not a perfect square,
and equals 1 if # is a perfect square.

—>46

Show that if f and g are multiplicative functions, then fg is also multiplicative, where
(fg)(my = f(n)g(n) for every positive integer 7.

—>47. Show thatif f and g are completely multiplicative functions, then fg is also completely

multiplicative.
—>48. Show that if f is completely multiplicative, then f(n) = f(p)“ f(p2}*--- f (P ),
where the prime-power factorization of # is n = pf‘ pgz coe pam.

Afunction f that satisfies the equation f (mn) = f(m) + f (n} for all relatively prime positive
integers m and n is called additive, and if the above equation holds for all positive integers m
and 2, f is called completely additive.

—=>49, Show that the function f(n) = log n is completely additive.

The function ({n) is the function that denotes the number of distinct prime factors of the
positive integer 1.

50, Find w(n) for each of the following integers,
a) l b)2 )20 d)8 e)128

JOSEPH LIOUVILLE (1809-1882), born in Saint-Omer, France, was the
son of a captain in Napoleon’s army. He studied mathematics at the Collége
St. Louis in Paris, and in 1825 he enrolled in the Ecole Polytechnique; after
graduating, he entered the Ecole des Ponts et Chaussées (School of Bridges
and Roads). Health problems while working on engineering projects and his
interest in theoretical topics convirced him to pursue an academic career. He
left the Ficole des Ponts et Chaussées in 1830, but during his time there he wrote
papers on electrodynamics, the theory of heat, and partial differential equations.

Liouville's first academic appointment was as an assistant at the Feole Polytechnigue in 1831.
He had a teaching load of around 40 hours & week at several different institutions. Some of his less
able students complained that he lectured at too high a level. In 1836, Liouvilte founded the Journal
de Mathématiques Pures et Appliguées, which played an important role in French mathematics in the
nineteenth century, In 1837, he was appointed to lecture at the Collége de France and the following year
he was appointed Professor at the Eeole Polytechnique. Besides his academie interests, Liouville was
also involved in politics. He was elected to Constituting Assembly in 1848 as a moderate republican,
but lost in the election of 1849, embittering him. Liouville was appointed to a chair at the Coilege
de France in 1851, and the chair of mechanics at the Faculté des Sciences in 1857. Around this time,
his heavy teaching load began to take its toll. Liouville was a perfectionist and was unhappy when he
could not devote sufficient time to his lectures.

Liouville’s work covered many diverse areas of mathematics, including mathernatical physics,
astronomy, and many areas of pure mathematics. He was the firsf person to provide an explicit example
of a transcendenta! number. He is #lso known today for what is now called Sturm-Liouville theory, used
in the solution of integral equations, and he made important contributions to differential geometry.
His total output exceeds 400 papers in the mathematical sciences, with nearly half of those in number
theory alone.
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inversion formula is that we can turn this statement around. That is, if the summatory
function F of an arithmetic function f is multiplicative, then so is £,

Theorem7.17. Let f bean arithmetic function withsummatory F = ¥° din S (d). Then,
iff F is multiplicative, f is also multiplicative.

Proof.  Suppose that m and 1 are relatively prime positive integers. We want to show
that f(mn) = f(m)f (n). To show this, first note that by Lenuna 3.7, if 4 is a divisor
of mun, then d = d,d, where dytm,dy|n, and (d,dy) = 1. Using the Mbbius inversion
formula and the fact that i and F are multiplicative, we see that

SfOnn) = Z w(dYF (n;l)

dlimn
mn
= 2. wlddy)F (;{1—)
dijm, dy|n 12
i n
= Y utdpuyF ((7) F (d—)
d|m, dy|n 1 2
m n
=) wd)F (3) Y uldy)F (d—)
dy|m 1 dyln 2
= f(m)f(n). n
7.4 Exercises
91. Find the following values of the Mdbius function,
a) p(12) d} pu(50) 2) p(10y
b) &(15) e) n(1001)
) 1£(30) Hu-3-5-7-11.13)
2. Find the following values of the Mdbius function.
a) u(33) d) j£(740) 8) 1(10/(5H%)
b) (105} e) 1(999)
¢ u(liy F)p(3-7-13-19-23)

93. Find the value of 1 (i) for each integer # with 100 < n < 110.
4. Find the value of p{n) for each integer n with 1000 < n < 1010.
—>5. Find all integers 1, 1< n < 100 with winy =1
6. Find all composite integers r, 100 =n =200 with w(n) = —1,
The Mertens function M (n) is defined by M(n) = Z:f:l w(i).
7. Find M (n) for all positive integers not exceeding 10,
8. Find M (n) for n = 100.
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10.
11.

12,

13

14.

—>15

-

16.

—347.

18

19.
20.
21,

—322.

. Show that M (n) is the difference between the number of square-free positive integers

not exceeding n with an even number of prime divisors and those with an odd number
of prime divisors.

Show that if 7 is a positive integer, then p(n)p(n + Duln + Dun+3)==0

Prove or disprove that there are infinitely many positive integers n such that win) 4
pin+ 1 =0.

Prove or disprove that there are infinitely many positive integers » such that (i — 1} +
w@y+pn + =0

For how many consecutive integers can the Mobius function p(n) take a nonzero value?
For how many consecutive integers can the Mobius function yu{n) take the value 07

Show that if n is a positive integer, then ¢ (1) =1} djn p{d)/d. (Hint: Use the Mobius
inversion formula.)

Use the Mobius inversion formula and the identity r = 3y, ¢ (1#/d), demonstrated in
Section 7.1, to show the following.

a) ¢(p)=p' — p'~!, whenever pisprime and r is a positive integer.
b) ¢{n) is multiplicative.

Suppose that f is a multiplicative function with (1) = 1. Show that

Z p(d fdy =0 — Fp)A = flp))--- 0= fpehs

dln

where n = p{'py* . .. pi* is the prime-power factorization of n.

Use Exercise 17 to find a simple formula for 3, di(d) for all positive integers n.
Use Exercise 17 to find a simple formula for 3, 14(d) /d for all positive integers .
Use Exercise 17 to find a simple formula for } din i{d)z(d) for all positive integers .
Use Exercise 17 to find a simple formuta for din Md)o (d) for all positive integers n.

Let # be a positive integer. Show that

—1 ifnis a prime;
H uidy= 0 if n has a square factor;
din 1 if » is square-free and composite.

. Show that

Z [.LZ (d) — 20)(}!)’

dln

where w(n) denotes the number of distinct prime factors of n.

—34. Use Exercise 23 and the Mobius inversion formula to show that

Wy =y pd2*®?.
dln
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25. Show that 2 M@Y= 29 for all positive integers n, where w(n) is the number
of distinct prime factors of 1. (See the preamble to Exercise 43 in Section 7.1 for a
definition of A(n).)

26, Show that )", A(n/d)2%@ = | for all positive integers .
Exercises 27-29 provide a proof of the M&bius inversion formula and Theorem 7.17 using

the concepts of the Dirichlet product and the Dirichlet inverse, defined in the exercise set of
Section 7.1.

27. Show that the Mobius function f(n) is the Dirichlet inverse of the function vin) =1L

28. Use Exercise 38 in Section 7.1 and Exercise 27 to prove the Mobius inversion formula,

29. Prove Theorem 7.17 by noting that if F = f » v, where v = 1 for all posiiive integers #,
then f=F % .

The Mangoldt function A is defined for all positive integers n by

Ay = log p ifn=p* where pis prime and & is a positive integer;
otherwise.

30. Show that Zd‘[n A{d) =log n whenever # is a positive integer.
31. Use the Mobius inversion formula and Exercise 30 to show that

Ay =— Z u{d)logd.

dln

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple ot Mathematica, or programs you have written,
carry-out the following computations and explorations.

1. Find p(n) for each of the following values of »,
a) 421,602,180,943 b) 186,728,732,190 ¢) 737,842,183,177

2. Find M (n}, the value of the Mertens function at #, for each of the following integers.
(See the preamble to Exercise 7 for the definition of M {n).)

a) 1000 b) 10,000 ¢) 100,000

3. A famous conjecture made in 1897 by F. Mertens, and disproved in 1985 by A. Odlyzko
and H. te Riele (in [Odte85]), was that 1M ()| < /n for all positive integers », where
M (n) is the Mertens function. Show that this conjecture, called Mertens’ conjecture,
is true for all integers » for as large a range as you can. Do not expect to find a
counterexample, because the smallest 1 for which the conjecture is false is fantastically
large. What is known is that there is a counterexample less than 3.21 - 105, Before the
conjecture was shown to be false, it had been checked by computer for all integers » up to
10'%, This shows that even a tremendous amount of evidence can be misleading, because
the smallest counterexample to a conjecture can nevertheless be titanically large.
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bol

10.

—>i1.
—>i2,
—3.

14,
15.

16.

—>17.

18.

. Simplify each of the following expressions, expressing your answer in the form of a

Gaussian integer a + bi.

) (=14 ¥ 1+1)? b) (34203 i) 2+ D5 -0y

. Determine whether the Gaussian integer o divides the Gaussian integer 8 if

Qda=2—i,f=5+5. Qa=5p=2+3i

ba=1-—1i, =38 o =3+2i, =26

. Determine whether the Gaussian integer o divides the Gaussian integer B, where
Aa=35=4+7i Q)o=5+3i,=304+6i.
be=2+i,p=15 do=11+4i, =274

. Give a formula for all Gaussian integers divisible by 4 + 3i and display the set of all

such Gaussian integers in the plane.

. Give a formula for all Gaussian integers divisible by 4 — i and display the set of all such

Gaussian integers n the plane.

Show that if &, B, and y are Gaussian integers and o |pand £y, thene | y.

. Show that if a, B, ¥, f, and v are Gaussian integers and y | o and y | B, then

v | (no +vp).

. Show that if € is a unit for the Gaussian integers, then & =e.

Find all Gaussian integers o = a + bi such that @ = a — bi, the conjugate of «, is an
associate of a.

Show that the Gaussian integers « and B are associates if o | f and B | a.
Show that if @ and 8 are Gaussian integers and « | B, then N{a) | N(B).

Suppose that N(«) | N(B), where « and B are Gaussian integers. Does it necessarily
follow that o | 7 Supply either a proof or a counterexample.

Show that if « divides 8, where & and 8 are Gaussian integers, then @ divides B.

Show that if & = a -+ bi is a nonzero Gaussian integer, then « has exactly one associate
¢ + di (including « itself), where ¢ > 0 and d = 0.

For each pair of values for o and 8, find the quotient y and the remainder p when o
is divided by B8 computed following the construction in the proof of Theorem 14.6, and
verify that N{p) < N(B).

Ata=14+17i,=2+3i oa=33p=5+1
ba=7—19%,=3-4i
For each pair of values for o and §, find the quotient y and the remainder p when o

is divided by 8 computed following the construction in the proof of Theorem 14.6, and
verify that N{p} < N(B).

aye=24—9,=3+3i o =87,p=11-2
bya=18+4 15, =344
For each pair of values for o and 3 in Exercise 16, finda pair of Gaussian integers y and

p such thate = fy + o and N(p} < N{(B) different from that computed following the
construction in Theorem 14.6.
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19,

20.

% 21,

—>2.

23.

24.
25,
26.

—>27.
—a8.

29.
30.

31.
32,
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For each pair of values for & and 8 in Exercise 17, find a pair of Gaussian integers ¥ and
p such that « = By + p and N(p) < N(B) different from that computed following the
construction in Theorem 14.6.

Show that for every pair of Gaussian integers ¢ and 8 with 8 # 0 and 8 A «, there
are at least two different pairs of Gaussian integers 3 and p such that o = By + p and

N(p} < N{B).

Determine all possible values for the number of pairs of Gaussian integers ¥ and p such
thate = By + p and N (p) < N(B) whena and g are Gaussian integers and 8 £ 0. (Hinz:
Analyze this geometrically by looking at the position of o/ in the square containing it
and with four lattice points as its corners.)

Show that if a number of the form » + si, where r and s are rational numbers, is an
algebraic integer, then r and s are integers,

Show that 14 7 divides a Gaussian integer a + /b if and only if a and b are both even or
both odd.

Show that if 7 is a Gaussian prime, then N () =2 or N(r) = 1 (mod 4).
Find all Gaussian primes of the form a? 4+ 1, where « is a Gaussian integer,
Show that if @ + bi is a Gaussian prime, then b + ai is also a Gaussian prime.

Show that the rational prime 7 is also a Gaussian prime by adapting the argument given
in Exampie 14.6 that shows 3 is a Gaussian prime.

Show that every rational prime p of the form 4k + 3 is also a Gaussian prime.

Suppose that « is a nonzero Gaussian integer which is neither a unit nor a prime. Show
that a Gaussian integer f exists such that 8 | & and [ < N(B) < /N (a).

Explain how to adapt the sieve of Eratosthenes to find all the Gaussian primes with norm
less than a specified limit.

Find all the Gaussian primes with norin less than 100,

Display all the Gaussian primes with norm less than 200 as lattice points in the plane.

We can define the notion of congruence for Gaussian integers. Suppose that «, 3, and y are
Gaussian integers and that y # 0. We say that « is congruent to § modulo y and we write

o=

33.

3.

35.

B (mod y)ify | (a — B).

Suppose that ;. is a nonzero Gaussian integer. Show that each of the following properties
holds.

a) If « is a Gaussian integer, then ¢ = & (mod pt).

b) o= p (mod u), then 8 = o (mod w).

c) foe=p (modp)and =y (mod u), then & = y (mod u).

Suppose thatae = # (mod ) andy =§ (mod ), where o, 8, y, 8, and p are Gaussian
integers and g # 0. Show that each of these properties holds.

a)a+y =8+ 35 (mod u) )y = B8 (mod u)
bya —y =B — & (mod )

Show that two Gaussian integers ¢ = a, -+ ib; and 8 = a, + ib, can multiplied using
only three multiplications of rational integers, rather than the four in the £quation shown
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in the text, together with five additions and subtractions. (Hint: One way to do this uses
the product (a; + b){az + b,). A second way uses the product bo(ay + by).)

36. When a and b are real numbers, letfa+bi}={a} ¥ {b}i, where {x}is the closest integer
to the real number x, rounding up in the case of a tie. Show that if z is a complex nurnber,
no Gaussian integer is closer to z than fz}and Nz —{zh = 1/2.

Let k be a nonnegative integer. The Gaussian Fibonacci number Gy is defined in terms of
the Fibonacci numbers with G = fy +1 fiy1- Exercises 37-39 involve Gaussian Fibonacci
numbers,

37, a) List the terms of the Gaussian Fibonacci sequence fork=0,1,2,3,4,5 {Recall that
fo=10)
b) ShO\V tha{ Gk = Gk—l -+ Gk—2 fOI' k =2,3, N

38, Show that N(Gp) = fag41 for all nonnegative integers k.
39, Show that G, 2G 1 G G, =2+ i}, whenevern is a positive integer.

40. Show that every Gaussian integer can be written in the form a,(—1+1 »+
A (—1+ i by (- D+ ag, wherea; =90 or Lfor j=0,1....0— i,n.

—>41, Show that if & is a number of the form r + si, where r and s are rational numbers and o

14.1

is a root of a monic quadratic polynomial with integer coefficients, then o is a Gaussian
integer.

42. What can you conclude if w =a + bi is a Gaussian prime and one of the Gaussian
integers (¢ + 1) + bi, (a—1)+bi,a+ (b+ i, and a + (b—Diisalsoa Gaussian
prime?

43, Showthatifm;=a — 1+ bi,my=a-+1t+ bi,my=a- (b— li,andmy=a+ b+ i
are all Gaussian primes and |a| + [b] > s, then 5 divides both a and b and neither a nor
b is zero.

44. Describe the block of Gaussian integers containing no Gaussian primes that can be
constructed by first forming the product of all Gaussian integers a + bi with a and b
rational integers, 0 < a = m, and0<b<n.

45. Find all Gaussian integers o, f, and y such that afy =& + g+y=L

46. Show that if 7 is a Gaussian prime with N (7} # 2, then exactly one of the associates of
7 is congruent to either 1 or 3+ 2i moduto 4.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, OF programs you have written,
carry out the following computations and explorations.

1. Find all pairs of Gaussian integers y and p such that 80— 18l = (124+ 13Dy +» and
N(p) <« N2+ 131).

2. Use a version of the sieve of Eratosthenes to find all Gaussian primes with norm less
than 1000,

3, Find as many different pairs of Gaussian primes that differ by 2 as you can,
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