556 The Gaussian Integers

2. Simplify each of the following expressions, expressing your answer in the form of a Gaussian integer a + bi.

a)
$$(-1+i)^3(1+i)^3$$

b)
$$(3+2i)(3-i)^2$$

c)
$$(2+i)^2(5-i)^3$$

 \rightarrow 3. Determine whether the Gaussian integer α divides the Gaussian integer β if

a)
$$\alpha = 2 - i$$
, $\beta = 5 + 5i$.

e)
$$\alpha = 5$$
, $\beta = 2 + 3i$.

b)
$$\alpha = 1 - i, \beta = 8.$$

d)
$$\alpha = 3 + 2i$$
, $\beta = 26$.

4. Determine whether the Gaussian integer α divides the Gaussian integer β , where

a)
$$\alpha = 3$$
, $\beta = 4 + 7i$.

c)
$$\alpha = 5 + 3i$$
, $\beta = 30 + 6i$.

b)
$$\alpha = 2 + i, \beta = 15.$$

d)
$$\alpha = 11 + 4i$$
, $\beta = 274$.

5. Give a formula for all Gaussian integers divisible by 4 + 3i and display the set of all such Gaussian integers in the plane.

- 6. Give a formula for all Gaussian integers divisible by 4 i and display the set of all such Gaussian integers in the plane.
- 7. Show that if α , β , and γ are Gaussian integers and $\alpha \mid \beta$ and $\beta \mid \gamma$, then $\alpha \mid \gamma$.
- 8. Show that if α , β , γ , μ , and ν are Gaussian integers and $\gamma \mid \alpha$ and $\gamma \mid \beta$, then $\gamma \mid (\mu \alpha + \nu \beta)$.
- \longrightarrow Show that if ϵ is a unit for the Gaussian integers, then $\epsilon^5 = \epsilon$.
- 10. Find all Gaussian integers $\alpha = a + bi$ such that $\overline{\alpha} = a bi$, the conjugate of α , is an associate of α .
- \longrightarrow 1. Show that the Gaussian integers α and β are associates if $\alpha \mid \beta$ and $\beta \mid \alpha$.
- \longrightarrow 12. Show that if α and β are Gaussian integers and $\alpha \mid \beta$, then $N(\alpha) \mid N(\beta)$.
- 3. Suppose that $N(\alpha) \mid N(\beta)$, where α and β are Gaussian integers. Does it necessarily follow that $\alpha \mid \beta$? Supply either a proof or a counterexample.
 - 14. Show that if α divides β , where α and β are Gaussian integers, then $\overline{\alpha}$ divides $\overline{\beta}$.
 - 15. Show that if $\alpha = a + bi$ is a nonzero Gaussian integer, then α has exactly one associate c + di (including α itself), where c > 0 and $d \ge 0$.
 - 16. For each pair of values for α and β , find the quotient γ and the remainder ρ when α is divided by β computed following the construction in the proof of Theorem 14.6, and verify that $N(\rho) < N(\beta)$.

a)
$$\alpha = 14 + 17i$$
, $\beta = 2 + 3i$

c)
$$\alpha = 33$$
, $\beta = 5 + i$

b)
$$\alpha = 7 - 19i$$
, $\beta = 3 - 4i$

To each pair of values for α and β , find the quotient γ and the remainder ρ when α is divided by β computed following the construction in the proof of Theorem 14.6, and verify that $N(\rho) < N(\beta)$.

a)
$$\alpha = 24 - 9i$$
, $\beta = 3 + 3i$

c)
$$\alpha = 87i$$
, $\beta = 11 - 2i$

b)
$$\alpha = 18 + 15i$$
, $\beta = 3 + 4i$

18. For each pair of values for α and β in Exercise 16, find a pair of Gaussian integers γ and ρ such that $\alpha = \beta \gamma + \rho$ and $N(\rho) < N(\beta)$ different from that computed following the construction in Theorem 14.6.

14.1 Gaussian Integers and Gaussian Primes

557

- 19. For each pair of values for α and β in Exercise 17, find a pair of Gaussian integers γ and ρ such that $\alpha = \beta \gamma + \rho$ and $N(\rho) < N(\beta)$ different from that computed following the construction in Theorem 14.6.
- 20. Show that for every pair of Gaussian integers α and β with $\beta \neq 0$ and $\beta \not\mid \alpha$, there are at least two different pairs of Gaussian integers γ and ρ such that $\alpha = \beta \gamma + \rho$ and $N(\rho) < N(\beta)$.
- * 21. Determine all possible values for the number of pairs of Gaussian integers γ and ρ such that $\alpha = \beta \gamma + \rho$ and $N(\rho) < N(\beta)$ when α and β are Gaussian integers and $\beta \neq 0$. (Hint: Analyze this geometrically by looking at the position of α/β in the square containing it and with four lattice points as its corners.)
- \rightarrow 2. Show that if a number of the form r + si, where r and s are rational numbers, is an algebraic integer, then r and s are integers.
 - 23. Show that 1+i divides a Gaussian integer a+ib if and only if a and b are both even or both odd.
 - **24.** Show that if π is a Gaussian prime, then $N(\pi) = 2$ or $N(\pi) \equiv 1 \pmod{4}$.
 - 25. Find all Gaussian primes of the form $\alpha^2 + 1$, where α is a Gaussian integer.
- **26.** Show that if a + bi is a Gaussian prime, then b + ai is also a Gaussian prime.
- 27. Show that the rational prime 7 is also a Gaussian prime by adapting the argument given in Example 14.6 that shows 3 is a Gaussian prime.
- \rightarrow 8. Show that every rational prime p of the form 4k + 3 is also a Gaussian prime.
 - 29. Suppose that α is a nonzero Gaussian integer which is neither a unit nor a prime. Show that a Gaussian integer β exists such that $\beta \mid \alpha$ and $1 < N(\beta) \le \sqrt{N(\alpha)}$.
 - 30. Explain how to adapt the sieve of Eratosthenes to find all the Gaussian primes with norm less than a specified limit.
 - 31. Find all the Gaussian primes with norm less than 100.
 - 32. Display all the Gaussian primes with norm less than 200 as lattice points in the plane.

We can define the notion of congruence for Gaussian integers. Suppose that α , β , and γ are Gaussian integers and that $\gamma \neq 0$. We say that α is *congruent* to β modulo γ and we write $\alpha \equiv \beta \pmod{\gamma}$ if $\gamma \mid (\alpha - \beta)$.

- 33. Suppose that μ is a nonzero Gaussian integer. Show that each of the following properties holds.
 - a) If α is a Gaussian integer, then $\alpha \equiv \alpha \pmod{\mu}$.
 - b) If $\alpha \equiv \beta \pmod{\mu}$, then $\beta \equiv \alpha \pmod{\mu}$.
 - c) If $\alpha \equiv \beta \pmod{\mu}$ and $\beta \equiv \gamma \pmod{\mu}$, then $\alpha \equiv \gamma \pmod{\mu}$.
- 34. Suppose that $\alpha \equiv \beta \pmod{\mu}$ and $\gamma \equiv \delta \pmod{\mu}$, where $\alpha, \beta, \gamma, \delta$, and μ are Gaussian integers and $\mu \neq 0$. Show that each of these properties holds.

```
a) \alpha + \gamma \equiv \beta + \delta \pmod{\mu} c) \alpha \gamma \equiv \beta \delta \pmod{\mu}
b) \alpha - \gamma \equiv \beta - \delta \pmod{\mu}
```

35. Show that two Gaussian integers $\alpha = a_1 + ib_1$ and $\beta = a_2 + ib_2$ can multiplied using only three multiplications of rational integers, rather than the four in the equation shown

558 The Gaussian Integers

in the text, together with five additions and subtractions. (*Hint:* One way to do this uses the product $(a_1 + b_1)(a_2 + b_2)$. A second way uses the product $b_2(a_1 + b_1)$.)

36. When a and b are real numbers, let $\{a+bi\} = \{a\} + \{b\}i$, where $\{x\}$ is the closest integer to the real number x, rounding up in the case of a tie. Show that if z is a complex number, no Gaussian integer is closer to z than $\{z\}$ and $N(z - \{z\}) \le 1/2$.

Let k be a nonnegative integer. The Gaussian Fibonacci number G_k is defined in terms of the Fibonacci numbers with $G_k = f_k + i f_{k+1}$. Exercises 37–39 involve Gaussian Fibonacci numbers.

- 37. a) List the terms of the Gaussian Fibonacci sequence for k = 0, 1, 2, 3, 4, 5. (Recall that $f_0 = 0$.)
 - b) Show that $G_k = G_{k-1} + G_{k-2}$ for k = 2, 3, ...
- 38. Show that $N(G_k) = f_{2k+1}$ for all nonnegative integers k.
- 39. Show that $G_{n+2}G_{n+1} G_{n+3}G_n = (-1)^n(2+i)$, whenever n is a positive integer.
- **40.** Show that every Gaussian integer can be written in the form $a_n(-1+i)^n+a_{n-1}(-1+i)^{n-1}+\cdots+a_1(-1+i)+a_0$, where $a_j=0$ or 1 for $j=0,1,\ldots,n-1,n$.
- Show that if α is a number of the form r + si, where r and s are rational numbers and α is a root of a monic quadratic polynomial with integer coefficients, then α is a Gaussian integer.
 - 42. What can you conclude if $\pi = a + bi$ is a Gaussian prime and one of the Gaussian integers (a + 1) + bi, (a 1) + bi, a + (b + 1)i, and a + (b 1)i is also a Gaussian prime?
 - 43. Show that if $\pi_1 = a 1 + bi$, $\pi_2 = a + 1 + bi$, $\pi_3 = a + (b 1)i$, and $\pi_4 = a + (b + 1)i$ are all Gaussian primes and |a| + |b| > 5, then 5 divides both a and b and neither a nor b is zero.
 - 44. Describe the block of Gaussian integers containing no Gaussian primes that can be constructed by first forming the product of all Gaussian integers a+bi with a and b rational integers, $0 \le a \le m$, and $0 \le b \le n$.
 - **45.** Find all Gaussian integers α , β , and γ such that $\alpha\beta\gamma=\alpha+\beta+\gamma=1$.
 - 46. Show that if π is a Gaussian prime with $N(\pi) \neq 2$, then exactly one of the associates of π is congruent to either 1 or 3 + 2i modulo 4.

14.1 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or *Mathematica*, or programs you have written, carry out the following computations and explorations.

- 1. Find all pairs of Gaussian integers γ and ρ such that $180 181i = (12 + 13i)\gamma + \rho$ and $N(\rho) < N(12 + 13i)$.
- 2. Use a version of the sieve of Eratosthenes to find all Gaussian primes with norm less than 1000.
- 3. Find as many different pairs of Gaussian primes that differ by 2 as you can.