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the equation ¢ () = 8 implies that no prime exceeding 9 divides n {otherwise ¢ (1) >
pj — 1> 8). Furthermore, 7 cannot divide n because if it did, 7 — 1 = 6 would be a factor
of ¢ (n). It follows that » = 293°5¢, where a, b, and ¢ are nonnegative integers. We can
also conclude that b =0 orb=tand thatc =Qorc=1; otherwise, 3 or 5 would divide

¢(n) = 8.

To find all solutions we need only consider four cases. When b = ¢ = 0, we have
n =27 where a > 1. This implies that ¢ () = 22~ 1, which means that ¢ = 4 and 1 — 16.
Whenb =0andc =1, wehaven ==2%. 5, where g > 1. This implies that ¢ (n) =27"1.4,
soa=2andn =20. Whenb = land ¢ =0, we have n = 29. 3, where g > 1. Thisimplies
that ¢ (n) = 2°71.2=2% s0a =3 and n = 24. Finally, when b = t and ¢ = 1, we have
n=29.3.5, We need to consider the case where a == 0, as well as the case where a > 1.
When a = 0, we have n = 15, which is a solution because ¢(15) = 8. When a > 1, we
have ¢ (n) =2971. 2.4 =2%2 This means thata = 1 and n = 30. Putting everything
together, we see that all the solutions to ¢ (1) = 8 are n = 15, 16, 20, 24 and 30. <

7.1 Exercises

—>1, Determine whether each of the following arithmetic functions is completely multiplica-
tive. Prove your answers,

a fim=0 d) f(n) =logn g) fiy=n+1
b) f(m) =2 e} f(n) = n? h) f(n) =n"
©) flny=n/2 f) f(n) =nl Dfn)=4n
=32, Find the value of the Enler phi-function at each of the following integers.
a) 100 d)2-3.5.7.11. 13
b) 256 e) 10
c} 1001 £y 20!

—>3. Show that $(5186) = ¢(5187) = $(5188).

- Find all positive integers n such that ¢ (n) has each of the following values. Be sure to
prove that you have found all solutions,

PN

a1l b)2 c)3 dy 4
5. Find all positive integers n such that ¢ (1) = 6. Be sure to prove that you have found all
solutions.

6. Find all positive integers n such that ¢(n) = 12. Be sure to prove that you have found
all solutions.

7. Find all positive integers n such that ¢ () = 24. Be sure to prove that you have found
all solutions.

8. Show that there is no positive integer n such that ¢ () = 14.

9. Can you find a rule involving the Euler phi-function for producing the terms of the
sequence 1,2,2,4,4,4,6,8,6,...7
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10.

—>11.

12.
13,
14.

—i5.

—>16.

17.
18.
19.

20.

=>11.

22.
23.

24,

25.

26.
27
28.

* 29,

Can you find a rule involving the Euter phi-function for producing the terms of the
sequence 2,3,0,4,0,4,0,5,0,...7

For which positive integers n does ¢ (3n) = 3¢ (n)?
For which positive integers n is ¢{n) divisible by 4?
For which positive integers n is ¢ (n) equal to 1 /2?
For which positive integers n does ¢{n) | n?

Show that if n is a positive integer, then

¢(my ifnisodd;
2¢(n} ifniseven.

¢(2n) = [

Show that if # is a positive integer having k distinct odd prime divisors, then ¢ (z) is
divisible by 2%,

For which positive integers n is ¢ (n) a power of 27
Show that if # is an odd integer, then ¢{dn) = 2¢{n).

Show that if n = 2¢(n), where # is a positive integer, then n = 24 for some positive
integer j.

Let p be prime. Show that p f n, where n is a positive integer, if and only if ¢lnp) =
{p — Do n).

Show that if m and n are positive integers and (m, n) = p, where p is prime, then
@ (nn) = ppmyg(n)/(p — 1).
Show that if m and k are positive integers, then G {mFy = m* 1 (m).
Show that if @ and & are positive integers, then
¢(ab) = {a, b)pla)p(b}/¢((a, b)).
Conclude that ¢ (ab) > p{a)p{b) when {a,b) > L

Find the least positive integer n such that the following hold.
a) ¢p(n) = 100 c) ¢{n) = 10,000
b) ¢ (i) = 1000 d) ¢(n) = 100,000

Use the Euler phi-function to show that there are infinitely many primes. (Hint: Assume
there are only a finite number of primes py, . . ., py. Consider the value of the Euler
phi-function at the product of these primes.} :

Show that if the equation ¢ (n) = k, where k is a positive integer, has exactly one solution
i, then 36 | n.

Show that the equation ¢ {n) = k, where & is a positive integer, has finitely many solutions
in integers 1 whenever k is a positive integer.
Show that if p is prime, 2°p + 1 is composite fora = 1,2, ...,r and p is not a Fermat

prime, where 7 is a positive integer, then ¢ (n) =27 p has no solution.

Show that there are infinitely many positive integers k such that the equation ¢{(n) =k
has exactly two solutions, where n is a positive integer. (Hint: Take k = 2. 357+ where
ji=52,...2
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% 31,

32
* 33,

34,
35.
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Show that if » is a positive integer with n % 2 and 1 # 6, then ¢(n) = /1.

Show that if  is a composite positive integer and ¢ () [n — 1, thenn is square-free and
is the product of at least three distinct primes.

Show that if m and » are positive integers with m | n, then ¢ (m) | @ ().

Prove Theorem 7.5, using the principle of inclusion-exclusion (see Exercise 16 of
Appendix B),

Show that a positive integer  is composite if and only if ¢(m) < — ./n.

Let n be a positive integer, Define the sequence of positive integers ny, 115, 713, . . .
recursively by ny = ¢(n) and .y = ¢(n,) for k=1,2,3,.... Show that there is a
positive integer r such that n, = 1.

A multiplicative function is called strongly multiplicative if and only if f(p*) = f(p) for
every prime p and every positive integer &.

—>36.

Show that f(n) = ¢(n}/n is a strongly multiplicative function.

Two atithmetic functions f and g may be multiplied using the Dirichlet product, which is

—>37.

defined by
(fre)m =3 fldg(/d).
din
Show that f g =g * f.
38. Show that (f % g) # h == f = {g = k).
We define the 1 funcrion by
_ |1 ifm=1
Hon) = { 0 ifn>1

—>39,

40.

—>d1.

42,

a) Show that ¢ is a multiplicative function.
b) Showthat ¢ f= f% (= f for all arithmetic functions f.

The arithmetic function g is said to be the inverse of the arithmetic function fif fege
& % f = 1. Show that the arithmetic function f has an inverse if and only if f(1}# 0.
Show that if f has an inverse it is unique. (Hin: When f(1) # 0, find the inverse £t
of f by calculating f”l(n) recursively, using the fact that ((#) = Edm f(d)f“l{n/d).)

Show thatif f and g are multiplicative functions, then the Dirichlet product f % g is also
multiplicative.

Show that if f and g are arithmetic functions, F = f # g, and £ is the Dirichlet inverse
of g,then f = F % h.

We define Liouville’s function A (n), named after French mathematician Joseph Liouville, by

A1y =1, and for nn > 1, A{n) = (— 1)@ F02t+an whare the prime-power factorization of n
: — 1,10 -
BR=Dpy Py

43.

Find A(n) for each of the following values of n,

ay12 c) 210 e} 1601 £) 20!
b) 20 d) 1000 f) 101
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44, Show that A(n) is completely muliiplicative.

45. Show that if  is a positive integer, then »,,, A(d) equals 0 if 7 is not a perfect square,
and equals 1 if # is a perfect square.

—>46

Show that if f and g are multiplicative functions, then fg is also multiplicative, where
(fg)(my = f(n)g(n) for every positive integer 7.

—>47. Show thatif f and g are completely multiplicative functions, then fg is also completely

multiplicative.
—>48. Show that if f is completely multiplicative, then f(n) = f(p)“ f(p2}*--- f (P ),
where the prime-power factorization of # is n = pf‘ pgz coe pam.

Afunction f that satisfies the equation f (mn) = f(m) + f (n} for all relatively prime positive
integers m and n is called additive, and if the above equation holds for all positive integers m
and 2, f is called completely additive.

—=>49, Show that the function f(n) = log n is completely additive.

The function ({n) is the function that denotes the number of distinct prime factors of the
positive integer 1.

50, Find w(n) for each of the following integers,
a) l b)2 )20 d)8 e)128

JOSEPH LIOUVILLE (1809-1882), born in Saint-Omer, France, was the
son of a captain in Napoleon’s army. He studied mathematics at the Collége
St. Louis in Paris, and in 1825 he enrolled in the Ecole Polytechnique; after
graduating, he entered the Ecole des Ponts et Chaussées (School of Bridges
and Roads). Health problems while working on engineering projects and his
interest in theoretical topics convirced him to pursue an academic career. He
left the Ficole des Ponts et Chaussées in 1830, but during his time there he wrote
papers on electrodynamics, the theory of heat, and partial differential equations.

Liouville's first academic appointment was as an assistant at the Feole Polytechnigue in 1831.
He had a teaching load of around 40 hours & week at several different institutions. Some of his less
able students complained that he lectured at too high a level. In 1836, Liouvilte founded the Journal
de Mathématiques Pures et Appliguées, which played an important role in French mathematics in the
nineteenth century, In 1837, he was appointed to lecture at the Collége de France and the following year
he was appointed Professor at the Eeole Polytechnique. Besides his academie interests, Liouville was
also involved in politics. He was elected to Constituting Assembly in 1848 as a moderate republican,
but lost in the election of 1849, embittering him. Liouville was appointed to a chair at the Coilege
de France in 1851, and the chair of mechanics at the Faculté des Sciences in 1857. Around this time,
his heavy teaching load began to take its toll. Liouville was a perfectionist and was unhappy when he
could not devote sufficient time to his lectures.

Liouville’s work covered many diverse areas of mathematics, including mathernatical physics,
astronomy, and many areas of pure mathematics. He was the firsf person to provide an explicit example
of a transcendenta! number. He is #lso known today for what is now called Sturm-Liouville theory, used
in the solution of integral equations, and he made important contributions to differential geometry.
His total output exceeds 400 papers in the mathematical sciences, with nearly half of those in number
theory alone.
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