Proof. As we already know, there is a homomorphism θ of G onto G/N defined by $\theta(g) = Ng$. We define the mapping $\psi: G \to G/N$ by $\psi(g) = N\phi(g)$ for all $g \in G$. To begin with, ψ is onto, for if $g \in G$, $g = \phi(g)$ for some $g \in G$, since ϕ is onto, so the typical element Ng in G/N can be represented as $N\phi(g) = \psi(g)$.

If $a, b \in G$, $\psi(ab) = \mathcal{N}\phi(ab)$ by the definition of the mapping ψ . However, since ϕ is a homomorphism, $\phi(ab) = \phi(a)\phi(b)$. Thus $\psi(ab) = \mathcal{N}\phi(a)\phi(b) = \mathcal{N}\phi(a)\mathcal{N}\phi(b) = \psi(a)\psi(b)$. So far we have shown that ψ is a homomorphism of G onto G/\mathcal{N} . What is the kernel, T, of ψ ? Firstly, if $n \in \mathcal{N}$, $\phi(n) \in \mathcal{N}$, so that $\psi(n) = \mathcal{N}\phi(n) = \mathcal{N}$, the identity element of G/\mathcal{N} , proving that $N \subset T$. On the other hand, if $t \in T$, $\psi(t) = \text{identity}$ element of $G/\mathcal{N} = \mathcal{N}$; but $\psi(t) = \mathcal{N}\phi(t)$. Comparing these two evaluations of $\psi(t)$, we arrive at $\mathcal{N} = \mathcal{N}\phi(t)$, which forces $\phi(t) \in \mathcal{N}$; but this places t in N by definition of N. That is, $T \subset N$. The kernel of ψ has been proved to be equal to N. But then ψ is a homomomorphism of G onto G/\mathcal{N} with kernel N. By Theorem 2.7.1 $G/\mathcal{N} \approx G/\mathcal{N}$, which is the first part of the theorem. The last statement in the theorem is immediate from the observation (following as a consequence of Theorem 2.7.1) that $G \approx G/K$, $\mathcal{N} \approx \mathcal{N}/K$, $G/\mathcal{N} \approx (G/K)/(\mathcal{N}/K)$.

Problems

- 1. In the following, verify if the mappings defined are homomorphisms, and in those cases in which they are homomorphisms, determine the kernel.
 - (a) G is the group of nonzero real numbers under multiplication, G = G, $\phi(x) = x^2$ alf $x \in G$.
 - (b) G, \bar{G} as in (a), $\phi(x) = 2^x$.
 - (c) G is the group of real numbers under addition, $\bar{G} = G$, $\phi(x) = x + 1$ all $x \in G$.
 - (d) G, \overline{G} as in (c), $\phi(x) = 13x$ for $x \in G$.
 - (e) G is any abelian group, G = G, $\phi(x) = x^3$ all $x \in G$.
- 2. Let G be any group, g a fixed element in G. Define $\phi:G \to G$ by $\phi(x) = gxg^{-1}$. Prove that ϕ is an isomorphism of G onto G.
- 3. Let G be a finite abelian group of order α(G) and suppose the integer n is relatively prime to α(G). Prove that every g∈ G can be written as g = xⁿ with x∈ G. (Hint: Consider the mapping φ:G → G defined by φ(y) = yⁿ, and prove this mapping is an isomorphism of G onto G.)
 - 4. (a) Given any group G and a subset U, let \widehat{U} be the smallest subgroup of G which contains U. Prove there is such a subgroup \widehat{U} in G. (\widehat{U} is called the subgroup generated by U.)

EXERCISES

- 1.38. (i) Write a multiplication table for S_3 .
 - (ii) Show that S_3 is isomorphic to the group of Exercise 1.37. (*Hint*. The elements in the latter group permute $\{0, 1, \infty\}$.)
- 1.39. Let f: X → Y be a bijection between sets X and Y. Show that α → f ∘ α ∘ f⁻¹ is an isomorphism S_X → S_Y.
- 1.40. Isomorphic groups have the same number of elements. Prove that the converse
 is false by showing that Z₄ is not isomorphic to the 4-group V defined in
 Exercise 1.36.
 - 1.41. If isomorphic groups are regarded as being the same, prove, for each positive integer n, that there are only finitely many distinct groups with exactly n elements.
 - 1.42. Let $G = \{x_1, \ldots, x_n\}$ be a set equipped with an operation *, let $A = [a_{ij}]$ be its multiplication table (i.e., $a_{ij} = x_i * x_j$), and assume that G has a (two-sided) identity e (that is, e * x = x = x * e for all $x \in G$).
 - (i) Show that * is commutative if and only if A is a symmetric matrix.
 - (ii) Show that every element $x \in G$ has a (two-sided) inverse (i.e., there is $x' \in G$ with x * x' = e = x' * x) if and only if the multiplication table A is a *Latin square*; that is, no $x \in G$ is repeated in any row or column (equivalently, every row and every column of A is a permutation of G.)
 - (iii) Assume that $e = x_i$, so that the first row of A has $a_{ii} = x_i$. Show that the first column of A has $a_{i1} = x_i^{-1}$ for all i if and only if $a_{ii} = e$ for all i.
 - (iv) With the multiplication table as in (iii), show that * is associative if and only if $a_{ii}a_{jk} = a_{ik}$ for all i, j, k.
- 1.43. (i) If $f: G \to H$ and $g: H \to K$ are homomorphisms, then so is the composite $g \circ f: G \to K$.
 - (ii) If $f: G \to H$ is an isomorphism, then its inverse $f^{-1}: H \to G$ is also an isomorphism.
 - (iii) If \(\mathscr{C}\) is a class of groups, show that the relation of isomorphism is an equivalence relation on \(\mathscr{C}\).
- 1.44. Let G be a group, let X be a set, and let f: G → X be a bijection. Show that there is a unique operation on X so that X is a group and f is an isomorphism.
 - 1.45. If k is a field, denote the columns of the $n \times n$ identity matrix E by $\varepsilon_1, \ldots, \varepsilon_n$. A permutation matrix P over k is a matrix obtained from E by permuting its columns; that is, the columns of P are $\varepsilon_{\alpha 1}, \ldots, \varepsilon_{\alpha n}$ for some $\alpha \in S_n$. Prove that the set of all permutation matrices over k is a group isomorphic to S_n . (Hint. The inverse of P is its transpose P^1 , which is also a permutation matrix.)
- 1.46. Let T denote the circle group: the multiplicative group of all complex numbers of absolute value 1. For a fixed real number y, show that $f_y : \mathbb{R} \to \mathbb{T}$, given by $f_y(x) = e^{iyx}$, is a homomorphism. (The functions f_y are the only continuous homomorphisms $\mathbb{R} \to \mathbb{T}$.)
- 1.47. If a is a fixed element of a group G, define γ_a : $G \to G$ by $\gamma_a(x) = a * x * a^{-1}$ (γ_a is called *conjugation* by a).

- (i) Prove that γ_a is an isomorphism.
- (ii) If $a, b \in G$, prove that $\gamma_a \gamma_b = \gamma_{a \star b}$.
- 1.48. If G denotes the multiplicative group of all complex nth roots of unity (see Exercise 1.35), then $G \cong \mathbb{Z}_n$.

19

- 1.49. Describe all the homomorphisms from \mathbb{Z}_{12} to itself. Which of these are isomorphisms?
- 1.50. (i) Prove that a group G is abelian if and only if the function $f: G \to G$, defined by $f(a) = a^{-1}$, is a homomorphism.
 - (ii) Let $f: G \to G$ be an isomorphism from a finite group G to itself. If f has no nontrivial fixed points (i.e., f(x) = x implies x = e) and if $f \circ f$ is the identity function, then $f(x) = x^{-1}$ for all $x \in G$ and G is abelian. (Hint. Prove that every element of G has the form $x * f(x)^{-1}$.)
- 1.51 (Kaplansky). An element a in a ring R has a left quasi-inverse if there exists an element $b \in R$ with a + b ba = 0. Prove that if every element in a ring R except 1 has a left quasi-inverse, then R is a division ring. (Hint. Show that $R \{1\}$ is a group under the operation $a \circ b = a + b ba$.)
- 1.52. (i) If G is the multiplicative group of all positive real numbers, show that $\log: G \to (\mathbb{R}, +)$ is an isomorphism. (Hint: Find a function inverse to \log)
 - (ii) Let G be the additive group of $\mathbb{Z}[x]$ (all polynomials with integer coefficients) and let H be the multiplicative group of all positive rational numbers. Prove that $G \cong H$. (Hint. Use the Fundamental Theorem of Arithmetic.)

Having solved Exercise 1.52, the reader may wish to reconsider the question when one "knows" a group. It may seem reasonable that one knows a group if one knows its multiplication table. But addition tables of $\mathbb{Z}[x]$ and of H are certainly well known (as are those of the multiplicative group of positive reals and the additive group of all reals), and it was probably a surprise that these groups are essentially the same. As an alternative answer to the question, we suggest that a group G is "known" if it can be determined, given any other group H, whether or not G and H are isomorphic.

⁴ It is easy to see that $\delta_a: G \to G$, defined by $\delta_a(x) = a^{-1} * x * a$, is also an isomorphism; however, $\delta_a \delta_b = \delta_{b*a}$. Since we denote the value of a function f by f(x), that is, the symbol f is on the left, the isomorphisms γ_a are more natural for us than the δ_a . On the other hand, if one denotes $\delta_a(x)$ by x^a , then one has put the function symbol on the right, and the δ_a are more convenient: $x^{a*b} = (x^a)^b$. Indeed, many group theorists nowadays put all their function symbols on the right!