Group Theory Ch. 2

Proof. As we already know, there is a homomorphism 8 of G onto
G|S defined by 8(§) = §§. We define the mapping ¢:G — G/§ by
W(g) = Né(g) for all geG. To begin with, ¥ is onto, for if ge G,
g = ¢(g) for some ge G, since ¢ is onto, so the typical element 8§ in
(| ¥ can be represented as Né(g) = y(g).

Ifa,beG, ylab) = Np(ab) by the definition of the mapping . How-
ever, since ¢ is a homomorphism, ¢(ab) = $la)d(b). Thus y(ab) =
Ro(a)p(b) = N¢p(a)Nd(s) = Y(a)¥(b). So far we have shown that ¢ is
a homomorphism of G onto G/§. What is the kernel, T, of ¢? Firstly, if
ne N, ¢(n) € ¥, so that y(n) = N¢(n) = §, the identity element of
G| N, proving that N = T. On the other hand, if t& T, Y(t) = identity
element of G/8 = N; but (1) = S¢(1). Comparing these two evaluations
of (1), we arrive at § = N¢(1), which forces ¢(t) € N; but this places
{in N by definition of N. Thatis, T = N. The kernel of  has been proved
to be equal to N. But then ¢ is a homomorphism of G onto G/& with
kernel N. By Theorem 2.7.1 G/N = G|N, which is the first part of the
theorem. The last statement in the theorem is immediate from the
observation (following as a consequence of Theorem 2.7.1) that ¢ = G/K,
N = NK, GIN = (GIK)(NIK).

Problems

® |. In the following, verify if the mappings defined are homomorphisms,
and in those cases in which they are homomorphisms, determine the
kernel.
(a) G is the group of nonzero real numbers under multiplication,
G = G, ﬂl{.l':l -x:inEG,
(b) G, Gasin (a), ¢(x) =2
(¢) G is the group of real numbers under addition, G = G, ¢(x) =
x+ lallxelG.
(d) G, G asin (c), ¢(x) = 13xforx e C.
(¢) G is any abelian group, € = G, ¢(x) = x* all xe G.
® 2. Let G be any group, g a fixed element in G. Define ¢ G — G by
¢(x) = geg”'. Prove that ¢ is an somorphism of G onto G.
® 3. Let G be a finite abelian group of order o G) and suppose the integer
n is relatively prime to o(G). Prove that every g € G can be written
as g = x* with xe G. (Hint: Consider the mapping ¢:GC - G
defined by ¢(») = ¥, and prove this mapping is an isomorphism
of G onto G.)

4. (a) Given any group G and a subset U, let O be the smallest sub-

group of G which contains U. Prove there is such a subgroup
in G. (O is called the mbgroup generated by L))
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(i) Write a multiplication table for S;.
(i) Show that 8, is isomorphic to the group of Exercise 1.37. (Hint. The ele-
ments in the latter group permute {0, 1, c0}.)

Let 2 X — Y be a bijection between sets X and ¥ Show that grs foxo ft
is an isomorphism Sy — Sy.

Isomorphic groups have the same number of elements. Prove that the converse
is false by showing that Z, is not isomorphic to the 4-group V defined in
Exercise 1.36.

If isomorphic groups are regarded as being the same, prove, for each positive
integer a1, that there are only finitely many distinct groups with exactly »
elements.

Let G = {x,..., x,} be a set equipped with an operation *, let 4 = [a,] be its .
multiplication table (i.e., ay = X, * x;), and assumne that G has a (two-sided) iden-
tity ¢ (thatis, e+ x = x = xxeforall x e G).

() Show that  is commutative i and only if 4 is a symmetric matrix.

(i) Show that every element x £ & has a (two-sided) inverse (e, thersis x* e G
with x#x' = ¢ = x"*x) if and only if the multiplication table A is a Latin
square; that is, no x € G is repeated in any row or column (equivalently,
every row and every colutin of A is a pertutation of G.)

(iii) Assume that e = x, so that the first row of A has a,; = x,. Show that the
first column of A has a;, = x;* for all i if and only i a,; = e for all i.

{iv) With the multiplication table as in (iii), show that « is agsociative if and only
if ayuy = ag for alli,j, k.

(i) If f: G— H and g: H - K are homomorphisms, then so is the composite
gef G- K
(i) If - G— H is an isomorphism, then its inverse f~': H » G is also an
isomorphist.
(iily If % is a class of groups, show that the relation of isomorphistm is an equiva-
lence relation on %

Let G be a group, let X be a set, and [et /2 G — X be a bijection. Show that there
is 2 unique operation oh X so that X is a group and { is an isomorphism.

If & is a field, denote the columns of the n x # identity matrix E by gy, ..., 5. A
permrtation meirix P over k is 2 matrix obtained from E by permuting its
columns; that is, the columns of P areé,,, ..., &g (0T some ¢ € §,. Prove that the
set of all permutation matrices over & is 2 group i1somorphic to S,. (Hint. The
inverse of P is its transpose P, which is also a pertilutation matrix.)

Let T denote the corcle group: the multiplicative group of all complex nutbers
of absolute value 1. For a fixed real number y, show that f: R T, given
by f.(x) = eP* is a homomorphism. (The functions f, are the oaly contimious
homomorphisms R — T.)

If @ is a fixed element of a group G, define v, G—» G by y,(x) = axx 0™ (y, is
called confugation by a).
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(i) Prove that y, is an isomorphism.
(1) If a, b € G, prove that 3,3, = y..,-*

® i.48. If G denotes the multiplicative group of all complex ath roots of unity (see
Exercise 1.35), theh G = Z,.

1.49. Describe all the homomorphistms from #,, to itself. Which of these are
isomorphisms?

1.50. (i) Prove that a group G is abelian if and oaly if the function f: G — G, defined
by fia) = o™, is a homomorphism.

(ii) Let : G — G be an isomorphism from a finite group G to itself. If § has no
nontrivial fixed points (i.e, f(x) = x implies x = &) andif f o f is the identity
function, then f(x) = x™ for all x e G and G is abelian. (Hint. Prove that
every element of G has the form x» f{x) ")

1.51 (Kaplansky). An element a in a ring R has a kft quasi-frwerse if there exists an
element be R with a + b — ba = 0. Prove that if every element in a ring R
except 1 has a left quasi-inverse, then R is a division ring. (Hint. Show that
R — {1} is a group under the operation ae b= a + b — ba.)

® 1.52. (i) If G is the multiplicative group of all positive real numbers, show that
log: G — (R, -+) is an isomorphist. (Hint: Find a function inverse to log)

(i) Let G be the additive group of Z[x] (all polynomials with integer coeffi-

cients) and let  be the multiplicative group of all positive rational numbers.
Prove that ¢ = H. (Hint. Use the Fundamental Theorem of Arithmetic.)

Having solved Exercise 1.52, the reader may wish to reconsider the ques-
tion when one “knows” a group. It may seem reasonable that one knows a
group if one knows its muitiplication table. But addition tables of Z[x] and
of H are certainly well known (as are those of the multiplicative group of
positive reals and the additive group of all reals), and it was probably a
surprise that these groups are essentially the same. As an alternative answer
to the question, we suggest that a group G 1s “known™ if it can be determined,
given any other group H, whether or not & and H are isomorphic.

41t is easy to See that 3,: G — G, defined by §,(x) = a™* % x4, 15 al50 an ifomorphisn; however,
&8, = &,.,. Since we denote the value of a function § by f(x), that ig, the symbol {5 on the left,
the isomorphisms y, are more natural for us than the 8,. On the other hand, if one denoles 5,(x)
by x° then one has put the function symbol on the right, and the 8, are mote convenienl:
x™" = (x)%. Indeed, many group theorists nowadays put all their function symbols on the dght!



