Sec. 3.5 More Ideals and Quotient Aings

Exampla 3.52 Let & he the ring of all the real-valued, continuous
functions on the closed unit interval. {See Example 3.3.5.) Let

M= {fxeR|f(}) =0}

M is certainly an ideal of £. Moreover, it is a maximal ideal of R, for if the
ideal L' contains M and &7 # A, then there iz a function g{z) & L))
g(x) ¢ M. Since g} M, g(b) =2 # 0 Now Afx) = g{x) =« b such
that i1 = gft) —a =0, 5o that Alx' e M = £/, But g{z) is also in £F;
therefore = = g(x} — Alx) €L’ and so | = ax~ ' &/, Thus for any
function ¢(x) e R, =} = ltix) e I/, in consequence of which U' = R.
M is therelore a maximal ideal of B. Similarly if y is a real number ¢ 5
y= I, then M, = {fix)e B|f(y) =0} s a maximal ideal of £ It
can be shown (see Problem 4 at the end of this section) that every maximal
ideal is of this form. Thus here the maximal ideals correspond to the points
on the unit interval,

Having seen some maximal ideals in some concrete rings we are ready
to continue the general development with

THEOREM 35.1 ff R ir a commulaive ring with unit element and M is an
ideal of R, then M is @ maximal ideaf of R if and only if RIM is a fidd.

Proof. Suppose, first, that M is an ideal of & such that R{M is a field.
Since R{M is a field its only ideals are () and RJAM itself, But by Theorem
3.4.]1 there is a one-to-one correspondence between the set of ideals of
RIM and the set of ideals ol £ which contain M. The ideal M of R corre-
sponds to the ideal (00 of B/A whereas the ideal R of B corresponds to
the ideal B/M of R{M in this one-to-one mapping. Thus there is no ideal
between M and R other than these two, whenee M s a maximal ideal.

On the other hand, if M is a maximal ideal of R, by the correspondence
mentioned above RIM Las only (00 and itself as ideals. Furthermore B/ A
is commutative and has a unit element since R enjoys hoth these properties.
All the conditions of Lemma 3.5.1 are fulfilled for 2jM 0 we can conclude,
by the result of that lemma, that RIM is a Aeld

We shall have many occasions to refer back to this result in our study of
polynomial rings and in the theory of field extensions.

Problams

# 1. Let B be a ring with unit element, & not necessarily commutative, such
that the only right-ideals of & are {0) and . Prove that R is a division
ring.
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this Lecomes: (ad + bejb'd’ = add'd + beb'd’ = al'dd’ + bbed' = ba'dd’ +
e = bd{a'd + 8¢, which i the desired equality,

Clearly [0, §] acts 2z a zern-element for thiz addition and [=—a, #] as the
negative of [a, &]. It is a simple matter to verify that & is an abelian group
under this additinn.

We now tarm to the multiphication in F. Again motivated by our pre-
liminary heuristic discussion we define [a, 8][¢, 2] = [#6,8d]. As in the
case ol addition, since § 20, 420, &4 £ 0 and 50 [ag, ] eF A com-
putation, very much in the spirit of the one just carried out, proves that if
[a, 8] = [, ¥] and [c, d] = [¢', d'] then [a, 8][c, 4] = [&, &][¢", &']. One
can now show that the nonzero elements of 7 (that is, all the elements
[4, #] where a # ) form an abelian group under multiplication in which
[4, €] acts as the unit element and where

[c,d]™4 = [d, c] (since ¢ # O, [4, ] is in F).

It iz a routine computation to see that the distributive law holds in F.
4715 thus a field.

All that remains i3 to show that D) can be imbedded in F. We shall
exhibit an explicit isormorphizsm of O into #. Before doing so we first notice
that for x £ 0, ¥ # 0in D, [ax, x] = [ar,»] because {ax) » = x(g0); let us
denote [ax,x] by [a,1}). Define ¢ = F by ¢ia) = [a, 1] for every
aell. We leave it to the reader to werify that ¢ is an isomnorphisin of O
into F, and that if £ haz 2 unit element 1, then ¢ (1} is the unit element of F.
The theorem is now proved in its entirety,

Fis usually called the field of quotients of D. In the special case in which
D iz the ring of integers, the F o constructed iz, of coursze, the field of
rational numbers,

Problems

# 1. Prove that if [a, 4] = [27, ¥'] and [¢, 4] = [¢', 4] then [a, &][¢, €] =
[, ¥ e 4.
2 Prove the distriltive law in F.
# 3. Prove that the mapping ¢:D — F defined by ¢(a) = [, 1] 15 an
isomnorphism of D into F,
4. Prove that if & is any field which contains I} then K contains a subfield
isomorphic to F. (In this sense F s the smalledd field conlaimng D)
*5, [et R be a commgative ring with unit element. A nonempty suliset
5 of £ is called a multiplicative systern if

l.ogs
2. 5, 53 & 8 implies that 55, e 5.



Sec. 3.7  Euclidaean Rings

Let A be the set of all ordered pairs fr, 1} where re B, s §. In
A define {r, #) ~ (r',5") if there exists an clement ¢* £ & such that

M — 2 =0,

{a) Prove that this defines an equivalence relation nn #,

Let the equivalence class of {7, 5) be denoted by [r, 5], and let By Le
the set of all the equivalence classes. In £y define [, 5] + [r1, 2] =
[risg + rpbps 1ufe] and [, 54[7, 53] =[5z, 18]

(b} Prove that the addition and multiplication described above are
well defined and that £, forms a ring under these nperatinns.

o) Can & e imbedded in 8,7

{d) Prove that the mapping ¢:R — R, defined by ¢ia) = [as, 5] is
a hamomorphism of & into R and lind the kernel of o,

{2} Prove that this kernel has no element of § in ir,

{fy Prowe that every clement of the form [#, 5;]{where £, 53 € 3) in
R has an inverse in fg.

#6. Let D be an integral domain, a, 4 & IY. Suppose that " = #* and
a® = & for two relatively prime positive integers m and 7. Prove that
a = .
7. Let & be a ring, possibly noncommutative, in which 2 = U linplics
x=0cry =0 1Ifg beg &£ and 2" = #" and &% = #™ for two relatvely
prime positive integers m and 7, prove that 2 = b

3.7 Euglidean Rings

The class of rings we propose 1o study now iz motivated Ly several existing
cxamnples—the ring of integers, the Gaussian integers (Section 3.8), and
palynomial rings (Section 3.9%. The delinition of this class is designed to
incorporate in it certain outstanding characteristics of the three concrete
examples listed albove,

DEFINITION An integral domain R is said to be a Kustidean rang if for
every a % 0 in & there is defined a nonnegative inteper d{a) such that

l. For all a, & & f, both nonzero, dia) < d(ab).
2. TFor any a, # € &, both nontero, there cxist ¢, r 2 R such thata =t + ¢
where either v = Oor #ir) < 4(4).

We do not assign a value to d{0t). The integers serve as an cxample of a
Euclidean ring, where &{a) = absolute value of @ acts as the required
function. In the next section we shall see that the Gaussian integers also
form a Buclidean ring. Out of that observation, and the results developed
in this part, we shall prove a classic theorem in numnber theory duc to

143



	T4AnillosYCamposSP18p1
	T4AnillosYCamposSP18p2
	T4AnillosYCamposSP18p3

