Hence, $1 = 5 - 2 \cdot 2 = 5 - (7 - 5 \cdot 1) \cdot 2 = 5 \cdot 3 - 2 \cdot 7 = (12 - 7 \cdot 1) \cdot 3 - 2 \cdot 7 = 12 \cdot 3 - 5 \cdot 7$. Therefore, a particular solution to the linear diophantine equation is $x_0 = -20$ and $y_0 = 12$. Hence, all solutions of the linear congruences are given by $x = -20 = 4 \pmod{12}$.

Later we will want to know which integers are their own inverses modulo p, where p is prime. The following theorem tells us which integers have this property.

Theorem 4.11. Let p be prime. The positive integer a is its own inverse modulo p if and only if $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$.

Proof. If $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$, then $a^2 \equiv 1 \pmod{p}$, so that a is its own inverse modulo p.

Conversely, if a is its own inverse modulo p, then $a^2 = a \cdot a \equiv 1 \pmod{p}$. Hence, $p \mid (a^2 - 1)$. Since $a^2 - 1 = (a - 1)(a + 1)$, either $p \mid (a - 1)$ or $p \mid (a + 1)$. Therefore, either $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$.

4.2 Exercises

1. Find all solutions of each of the following linear congruences.

- a) $2x \equiv 5 \pmod{7}$
- d) $9x \equiv 5 \pmod{25}$
- b) $3x \equiv 6 \pmod{9}$
- e) $103x \equiv 444 \pmod{999}$
- c) $19x \equiv 30 \pmod{40}$
- f) $980x \equiv 1500 \pmod{1600}$

2. Find all solutions of each of the following linear congruences.

- a) $3x \equiv 2 \pmod{7}$
- d) $15x \equiv 9 \pmod{25}$
- b) $6x \equiv 3 \pmod{9}$
- e) $128x \equiv 833 \pmod{1001}$
- c) $17x \equiv 14 \pmod{21}$
- f) $987x \equiv 610 \pmod{1597}$

→3. Find all solutions to the congruence $6,789,783x \equiv 2,474,010 \pmod{28,927,591}$.

- **4.** Suppose that p is prime and that a and b are positive integers with (p, a) = 1. The following method can be used to solve the linear congruence $ax \equiv b \pmod{p}$.
 - a) Show that if the integer x is a solution of $ax \equiv b \pmod{p}$, then x is also a solution of the linear congruence

$$a_1 x \equiv -b[m/a] \pmod{p}$$
,

where a_1 is the least positive residue of p modulo a. Note that this congruence is of the same type as the original congruence, with a positive integer smaller than a as the coefficient of x.

- b) When the procedure of part (a) is iterated, one obtains a sequence of linear congruences with coefficients of x equal to $a_0 = a > a_1 > a_2 > \cdots$. Show that there is a positive integer n with $a_n = 1$, so that at the nth stage, one obtains a linear congruence $x \equiv B \pmod{p}$.
- c) Use the method described in part (b) to solve the linear congruence $6x \equiv 7 \pmod{23}$.

- 5. An astronomer knows that a satellite orbits the Earth in a period that is an exact multiple of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11 orbits in an interval that starts when a 24-hour clock reads 0 hours and ends when the clock reads 17 hours, how long is the orbital period of the satellite?
- 6. For which integers c, $0 \le c < 30$, does the congruence $12x \equiv c \pmod{30}$ have solutions? When there are solutions, how many incongruent solutions are there?
- \rightarrow 7. For which integers c, $0 \le c < 1001$, does the congruence $154x \equiv c \pmod{1001}$ have solutions? When there are solutions, how many incongruent solutions are there?
 - 8. Find an inverse modulo 13 of each of the following integers.
 - a) 2
- c) 5
- b) 3 d) 11
- -> Find an inverse modulo 17 of each of the following integers.
 - a) 4
- c) 7 d) 16
- b) 5
- \rightarrow 10. a) Determine which integers a, where $1 \le a \le 14$, have an inverse modulo 14.
 - b) Find the inverse of each of the integers from part (a) that have an inverse modulo 14.
- \rightarrow 11. a) Determine which integers a, where $1 \le a \le 30$, have an inverse modulo 30.
 - b) Find the inverse of each of the integers from part (a) that have an inverse modulo 30.
- \longrightarrow 12. Show that if \ddot{a} is an inverse of a modulo m and \tilde{b} is an inverse of b modulo m, then \tilde{a} \tilde{b} is an inverse of ab modulo m.
- 3. Show that the linear congruence in two variables $ax + by \equiv c \pmod{m}$, where a, b, c, and m are integers, m > 0, with d = (a, b, m), has exactly dm incongruent solutions if $d \mid c$, and no solutions otherwise.
- 4. Find all solutions of each of the following linear congruences in two variables.
 - a) $2x + 3y \equiv 1 \pmod{7}$
- c) $6x + 3y \equiv 0 \pmod{9}$
- b) $2x + 4y \equiv 6 \pmod{8}$
- d) $10x + 5y \equiv 9 \pmod{15}$
- ⇒5. Let p be an odd prime and k a positive integer. Show that the congruence $x^2 \equiv 1 \pmod{p^k}$ has exactly two incongruent solutions, namely $x \equiv \pm 1 \pmod{p^k}$.
- Show that the congruence $x^2 \equiv 1 \pmod{2^k}$ has exactly four incongruent solutions, namely $x \equiv \pm 1$ or $\pm (1 + 2^{k-1}) \pmod{2^k}$, when k > 2. Show that when k = 1 there is one solution and that when k = 2 there are two incongruent solutions.
 - 17. Show that if a and m are relatively prime positive integers such that a < m, then an inverse of a modulo m can be found using $O(\log^3 m)$ bit operations.
- \rightarrow 18. Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^2 \equiv a \pmod{p}$ has either no solution or exactly two incongruent solutions.