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Hence, 1=5—2-2=5—(7—5-1).2=5.3—-2-7=(12-7-1):3-2-7=
12 -3 —5-7. Therefore, a particular solution to the linear diophantine equation is
xg = —20 and y, = 12. Hence, all solutions of the linear congruences are given by
x =—20=4 (mod 12). -«

Later we will want to know which integers are their own inverses modulo p, where
p is prime. The following theorem tells us which integers have this property.

Theorem 4.11. Let p be prime. The positive integer a is its own inverse modulo p if
and only if ¢ = 1 (mod p) or a = —1(mod p).

Proof 1Ifa=1(mod p) ora =-1{(mod p), then a? =1 (mod p), so that a is its own

inverse modulo p.

Conversely, if a is its own inverse modulo p, then a?=a -a= 1{mod p). Hence,
rl {a? - 1). Since at—~1=(a—D{a+D,eitherp[(a—Dorp|a+1). Therefore,
either @ = 1 (mod p) or a = —1{mod p). ]

4.2 Exercises

—> 1, Find all solutions of each of the following linear congruences.

a)2x=5{mod7) d) 9x = 3 (mod 25)
b)3x =6 (mod 9) e) 103x = 444 (mod 999)
¢) 19x =30 (mod 40) ) 980x = 1500 {mod 1600)
2. Find all solutions of each of the folowing linear congruences.
a)3x =2 (mod 7) d) 15x =9 (mod 25)
b) 6x = 3 (mod 9) ) 128x = 833 (mod 1001}
¢) 17x = 14 (mod 21) £)987x = 610 (mod 1597)

93. Find all solutions to the congruence 6,789,783x = 2,474,010 (mod 28,927,591,

4. Suppose that p is prime and that @ and b are positive integers with (p, a} =1 The
following method can be used to solve the lincar congruence ax = b (mod p).

a) Show that if the integer x is a solution of ax = & (mod p), then x is also a solution
of the linear congruence
ax = —b[m/a} (mod p},

where a, is the least positive residue of p modulo a. Note that this congruence is of
the same type as the original congruence, with a positive integer smaller than a as
the coefficient of x.

b) When the procedure of part (a) is iterated, one obtains a sequence of linear con-

gruences with coefficients of x equal to ag =a > a; > @y > - - -. Show that there is a
positive integer » with @, = 1, so that at the nth stage, one obtains a linear congruence
x = B (mod p).

¢) Use the method described in part (b) to solve the linear congruence 6x =7 (mod 23).
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- An astronomer knows that a satellite orbits the Earth in a period that is an exact multiple

of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11
orbits in an interval that starts when a 24-hour clock reads 0 hours and ends when the
clock reads 17 hours, how long is the orbital period of the satelfite?

. For which integers ¢, 0 < ¢ « 30, does the congruence 12x = ¢ (mod 30) have solutions?

—>7.

When there are solutions, how many incongruent solutions are there?

For which integers ¢, 0 < ¢ < 1001, does the congruence 154x = ¢ (mod 1001) have
solutions? When there are solutions, how many incongruent solutions are there?

. Find an inverse modulo 13 of each of the following integers.

a)2 ¢S5
b} 3 d) 11

. Find an inverse modulo 17 of each of the following integers.

ay4 cy7
b) 5 dy 16

a) Determine which integers a, where 1 < a < 14, have an inverse modulo 14.
b) Find the inverse of each of the integers from part (a} that have an inverse modulo 14.

. a) Determine which integers a, where 1 < a < 30, have an inverse modulo 30.

b} Find the inverse of each of the integers from part (a) that have an inverse modulo 30.

Show that if ¢ is an inverse of a modulo m and b is an inverse of # modulo m, then & b
is an inverse of ab modulo m.

Show that the linear congruence in two variables ax + by = ¢ (inod m), where a, b, ¢,
and m are integers, m > 0, with d = (a, b, m), has exactly dm incongruent solutions if
d | ¢, and no solutions otherwise.

Find all solutions of each of the following linear congruences in two variables,

a)2x +3y=1{mod 7) ¢) 6x +3y=0(mod 9)
b) 2x + 4y =6 {mod 8) d) 10x + 5y =9 (mod 15)

+ Let p beanodd prime and k a positive integer. Show that the congruence x2 = 1 (mod 7

has exactly two incongruent solutions, namely x = +1 (mod p*).

Show that the congruence x2 = 1(mod 2*) has exactly four incongruent solutions,
namely x =1 or £(1+ 2571 (mod 2*), when k > 2. Show that when k = 1 there
is one solution and that when k = 2 there are two incongruent solutions.

Show that if a and m are relatively prime positive integers such that a < m, then an
inverse of @ modulo n can be found using Q{log® ) bit operations.

Show that if p is an odd prime and a is a positive integer not divisible by p, then the
congruence x2 = a (mod p) has either no solution or exactly two incongruent solutions.
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