Supplementary Problems

- 1. Let R be a commutative ring; an ideal P of R is said to be a prime ideal of R if $ab \in P$, $a, b \in R$ implies that $a \in P$ or $b \in P$. Prove that P is a prime ideal of R if and only if R/P is an integral domain.
- Let R be a commutative ring with unit element; prove that every maximal ideal of R is a prime ideal.
 - Give an example of a ring in which some prime ideal is not a maximal ideal.
- If R is a finite commutative ring (i.e., has only a finite number of elements) with unit element, prove that every prime ideal of R is a maximal ideal of R.
 - 5. If F is a field, prove that F[x] is isomorphic to F[t].
 - Find all the automorphisms σ of F[x] with the property that σ(f) = f for every f∈ F.
- If R is a commutative ring, let N = {x ∈ R | xⁿ = 0 for some integer n}.

 Prove
 - (a) N is an ideal of R.
 - (b) In $\mathcal{R} = R/N$ if $\tilde{x}^m = 0$ for some m then $\tilde{x} = 0$.
- 8. Let R be a commutative ring and suppose that A is an ideal of R. Let $N(A) = \{x \in R \mid x^n \in A \text{ for some } n\}$. Prove
 - (a) N(A) is an ideal of R which contains A.
 - (b) N(N(A)) = N(A).

N(A) is often called the radical of A.

- If n is an integer, let J_n be the ring of integers mod n. Describe N (see Problem 7) for J_n in terms of n.
- 10. If A and B are ideals in a ring R such that $A \cap B = (0)$, prove that for every $a \in A$, $b \in B$, ab = 0.
- 11. If R is a ring, let $Z(R) = \{x \in R \mid xy = yx \text{ all } y \in R\}$. Prove that Z(R) is a subring of R.
- 12. If R is a division ring, prove that Z(R) is a field.
 - 13. Find a polynomial of degree 3 irreducible over the ring of integers, J_3 , mod 3. Use it to construct a field having 27 elements.
 - 14. Construct a field having 625 elements.
 - 15. If F is a field and $p(x) \in F[x]$, prove that in the ring

$$R=\frac{F[x]}{(p(x))},$$

N (see Problem 7) is (0) if an only if p(x) is not divisible by the square of any polynomial,