- (e) Let $A \in M_{n \times n}(F)$ and $\beta = \{x_1, \dots, x_n\}$ be a basis for F^n consisting of eigenvectors of A. If Q is the $n \times n$ matrix whose ith column is x_i (i = 1, 2, ..., n), then $Q^{-1}AQ$ is a diagonal matrix.
- (f) A linear operator T on a finite-dimensional vector space is diagonalizable if and only if the multiplicity of each eigenvalue λ equals the dimension of E₂.
- (g) Every diagonalizable linear operator on a nonzero vector space has at least one eigenvalue.
- (h) If a vector space is the direct sum of subspaces W_1, W_2, \ldots, W_k , then $W_i \cap W_i = \{0\} \text{ for } i \neq j.$
- $V = \sum_{i=1}^{k} W_i$ and $W_i \cap W_j = \{0\}$ for $i \neq j$, (i) If

then $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.

2. For each of the following matrices A in $M_{n\times n}(R)$, test A for diagonalizability, and if A is diagonalizable, find a matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.

(a)
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$ (e) $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$

$$\begin{pmatrix} 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
(g) $\begin{pmatrix} 3 & 1 & 1 \end{pmatrix}$

$$\begin{pmatrix}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{pmatrix}$$

- 3. For each of the following linear operators T, test T for diagonalizability. If T is diagonalizable, find a basis β such that $[T]_{\beta}$ is a diagonal matrix.
 - (a) T: $P_3(R) \rightarrow P_3(R)$ defined by T(f) = f' + f'', where f' and f'' are the first and second derivatives of f, respectively.
 - (b) T: $P_2(R) \rightarrow P_2(R)$ defined by $T(ax^2 + bx + c) = cx^2 + bx + a$.
 - (c) T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ -a_1 \\ 2a_3 \end{pmatrix}.$$

- (d) T: $P_2(R) \to P_2(R)$ defined by $T(f)(x) = f(0) + f(1)(x + x^2)$.
- (e) T: $\mathbb{C}^2 \to \mathbb{C}^2$ defined by $\mathbb{T}(z, w) = (z + iw, iz + w)$.
- (f) T: $M_{2\times 2}(R) \to M_{2\times 2}(R)$ defined by $T(A) = A^t$.
- 4. Prove the matrix version of the corollary to Theorem 5.10: If $A \in M_{n \times n}(F)$ has n distinct eigenvalues, then A is diagonalizable.