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Proof.  Applying the Euclidean algorithm, and using the defining relation for the Fibo-
nacci numbers f =fiat+ f ;2 in each step, we see that

f;1+2 = fn-}-l 14+ Jas
f:‘t+1 =fu- 14 fnﬁ[’

fa=f3-1+ fo,

fi=fr-2
Hence, the Euclidean algorithm takes exactly n divisions, to show that ( Jut2s fra) =

fzrl. L]

The Complexity of the Euclidean Algorithin . We can now prove a theorem first proved
by Gabriel Lamé, a French mathematician of the nineteentk century, which gives an
estimate for the number of divisions needed to find the greatest common divisor using
the Euclidean algorithm.

@heorem 3.13. Lamé’s Theorem. The number of divisions needed to find the greatest
common divisor of two positive integers using the Euclidean algorithm does not exceed
five times the number of decimal digits in the smaller of the two integers.

Proof. 'When we apply the Euclidean algorithm to find the greatest common divisor of
a =rgand b =r; with a > b, we obtain the following sequence of equations:

o =r'[q1—|—r2, 05?'2 <T
Fi =T+, 0<r3<r,
T =Ty 1gu_1+ 1y, O<r, < n—1
Fp1=r,qy.

We have used n divisions. We note that each of the quotients g, gy, . . ., q,_; > 1, and
49y = 2, because r, < r,_;. Therefore,

GABRIEL LAME (1795-1870) was a graduate of the Fcole Polytechnigue.
A civil and railway engineer, he advanced the mathematical theory of elasticity
and invented curvilinear coordinates. Although his main contributions were to
mathematical physics, he made several discoveries in number theory, including
the estimate of the number of steps required by the Euclidean algorithm, and
the proof that Fermat’s last theorem holds for » = 7 (see Section 13.2), It

is interesting to note that Gauss considered Lamé to be the foremost French
mathematician of his time,
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ry=1l=fs,
ry_1= 2= 2f2 = f3=
Ny Z bty 1+, = f3t+ o= fa
T3 Z g2t = fa+ =1

rpzry3tre> fum1t+ foa = S
b=ri>r _+r3 > fat fa1= f;t+l-

Thus, for there to be n divisions used in the Euclidean algorithm, we must have b > f,,7+1.
By Example 1.28, we know that £, > o" 1 for n > 2, where & = (1 + +/5)/2. Hence,
b > a1, Now, since log;y o > 1/5, we see that

logipb > (n —~ Dloggo = (n— D/S.
Consequently,
n-—-1<5-logb.

Let b have k decimal digits, so that b < 10% and log,y b < k. Hence, we see that
n — 1 < 5k, and because k is an integer, we can conclude that # < Sk. This establishes
L.amé’s theorem. |

The following result is a consequence of Lamé’s theorem. It tells us that the
Euclidean algorithm is very efficient.
Corollary 3.13.1. The greatest common divisor of two positive integers a and b with

a > b can be found using O({log, a)?) bit operations.

Proof We know from Lamé’s theorem that (J(log, a) divisions, each taking
O ((log, a)z) bit operations, are needed to find {a, b). Hence, by Theorem 2.3, (a, b)
may be found using a total of O((log, a)*) bit operations. "

Expressing Greatest Common Divisors—As Linear Combinafions The Euclidean
algorithm can be used to express the greatest common divisor of two integers as a linear
combination of these integers. We illustrate this by expressing (252, 198) = 18 as alinear
combination of 252 and 198. Referring to the steps of the Euclidean algorithm used to
find (252, 198), by the next to the last step we see that

1§=>54—1.36.
By the preceding step, it follows that
36=198—3.54,
which implies that

18=54 —1-(198 - 3.54) =4 .54 —1-198.
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@heorem 3.14. Leta and b be positive integers. Then
(a,b) =s,a+t,b,
where s, and 1, are the rth terms of the sequences defined recursively by

So=1, I‘G=0,
Sl=0, I1=1,

and
§j=S8j_2—4qj-15j-1 =12~ qj-1fj-1

for j =2,3,...,n, where the g; are the quotients in the divisions of the Euclidean
algorithm when it is used to find {a, b).

Proof. 'We will prove that
(3.2) 1‘j=Sja+fjb
for j =0,1,...,n. Since {a, b) = r,,, once we have established (3.2), we will know that
{a, by =s,a + 1,b.
We prove (3.2) using the second principle of mathematical induction. For j =90,

we have a =rg=1-a + 0 - b= s9a + fph. Hence, (3.2) is valid for j = 0. Likewise,
b=pr;=0-a+1.-b=sa+tb,sothat (3.2)is valid for j = 1.

Now, we assume that

rjzsja—i-tjb

for j =1,2,...,k — 1. Then, from the kth step of the Euclidean algorithm, we have
P = Vg2 = Fp-19k-1-
Using the induction hypothesis, we find that
7y = (Sgp2@ + g gb) — (Se—1a + le1D) gt

= (Spp = 1@k + (T2 = f—1gk—10
=5,a+ tkb.
This finishes the proof. N
The following example illustrates the use of this algorithm for expressing (a, b} as

a linear combination of @ and b.

Example 3.14. We summarize the steps used by the extended Euclidean algorithm to
express (252, 198) as a linear combination of 252 and 193 in the following table.
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J | 75 Tivl i1 Tiga S5
0| 252 198 1 54 1 0
1 198 54 3 36 0 1
2 54 36 1 18 1 -1
3 36 18 2 0 3 4
4 4 -5
The values of s ; and t, J= 0.1, 2,3, 4, are computed as follows:
Sg = 1, fg == 0,
51 == 0, fl = 1,

Sz”—*—SU—'S[qlzl—O'i:l,
S3=Sl—'32q2:0—1'3:“*3,

sq=8 =53 =1—-(-3)-1=4,

B=h—hgp=1-(-D3=4
f4=f2—'[3CI3:—'1—4'1:—'5.

Because ry = 18 == (252, 198) and r,4 = s4a + t4b, we have

18=1¢252,198)=4-252 —~ 5-.198.

105

-«

Note that the greatest common divisor of two integers may be expressed as a linear
combination of these integers in an infinite number of ways. To see this, let d = (a, b)
and let d = sa + tb be one way to write d as a linear combination of & and b, guaranteed
to exist by the previous discussion. Then for all integers £,

d=(s +k/d))a+ (t —k(a/d)b.

Example3.15. Witha = 252 and b = 198, we have 18 = (252, 198) = (4 + 11£)252+

{(—5 — 14k)198 for any integer k.

3.4 Exercises

-«

1. Use the Euclidean algorithm to find each of the following greatest common divisors.

2. Use the Euclidean algorithm to find each of the following greatest common divisors.

a) (45, 75) c) (666, 1414)

b) (102, 222} d} (20785, 44350)

a) (51,87 c) (981, 1234)

b) (105, 300} d) (34709, 100313)
3.

as a linear combination of these integers.

Foreach pair of integers in Exercise I, express the greatest common divisor of the integers

4, For each pair of integers in Exercise 2, express the greatest common divisor of the integers
as a linear combination of these integers.

5. Find the greatest common divisor of each of the following sets of integers.

c) 280, 330, 405, 490

a) 6,10, 15 b} 70, 98, 105
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Congruences

Example 4.10. Because 13 =3 (mod 5) and 7 = 2 (mod 5), using Theorem 3.5 we
seethat 20=13+7=3+2=5(mod5),6=13—7=3—2=1{mod 5), and 91 =
13-7=3-2=06 (mod 5). «

The following lemma helps us to determine whether a set of m numbers forms a
compilete set of residues modulo m.

Lemmad.l. Asetofm incongruent integers modulo i forms a complete set of residues
modulo .

Proof. Suppose thata set of s incongruent integers modulo 11 does not form a complete
set of residues modulo m. This implies that at least one integer @ is not congruent to any
of the integers in the set. Hence, there is no integer in the set congruent modulo m to
the remainder of @ when it is divided by m. Hence, there can be at most i - 1 different
remainders of the integers when they are divided by m. It follows (by the pigeonhole
principle, which says that if more than n objects are distributed into 7 boxes, at least two
objects are in the same box) that at least two integers in the set have the same remainder
modulo . This is impossible, because these integers are incongruent modulo »1. Hence,
any m incongruent integers modulo m form a complete system of residues modulo .

| |

heorem 4.6. Ifry, ry, . . ., 1, is a complete system of residues modulo m, and if a

15 a positive integer with (@, 1) = 1, then

ari+b,ary+b,...,ar, +b
is a complete system of residues modulo # for any integer b.
Proof. First, we show that no two of the integers

ari+b,ars+b,...,ar, +b
are congruent modulo . To see this, note that if

ar; + b =ar, + b (mod m},
then, by (ii) of Theorem 4.3, we know that
ar; = ary (mod m).
Because (a, m) = 1, Corollary 4.4.1 shows that
ri=rg (mod m).

Given that r; s ry, (mod m) if j # k, we conclude that j = .

By Lemma 4.1, because the set of integers in question consists of m incongruent
integers modulo m, these integers form a complete system of residues modulo /2.~ m

The following theorem shows that a congruence is preserved when both sides are
raised to the same positive integral power.
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