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*3.17 (R. A. Dean) Define � 4 to be the set of all 2× 2 matrices

� 4 =
{[

a b
b a + b

]
: a, b ∈ � 2

}
.

(i) Prove that � 4 is a commutative ring whose operations are matrix addition
and matrix multiplication.

(ii) Prove that � 4 is a field having exactly 4 elements.
(iii) Show that � 4 is not a field.

3.18 Prove that every domain R with a finite number of elements must be a field. Using
Proposition 3.12, this gives a new proof of sufficiency in Proposition 3.19.

*3.19 Find all the units in the ring � [i ] of Gaussian integers.
3.20 Show that F = {a + b

√
2 : a, b ∈ � } is a field.

*3.21 (i) Show that F = {a + bi : a, b ∈ � } is a field.
(ii) Show that every u ∈ F has a factorization u = αβ−1, where α, β ∈ � [i ].

(see Exercise 3.49(ii) on page 249.)
*3.22 If R is a commutative ring, define a relation ≡ on R by a ≡ b if there is a unit

u ∈ R with b = ua.
(i) Prove that ≡ is an equivalence relation.
(ii) If a ≡ b, prove that (a) = (b), where (a) = {ra : r ∈ R}. Conversely,

prove that if R is a domain, then (a) = (b) implies a ≡ b.
3.23 If R is a domain, prove that there is no subfield K of Frac(R) such that

R ⊆ K � Frac(R).

*3.24 Let k be a field with one ε, and let R be the subring

R = {
nε : n ∈ �

}
.

(i) If F is a subfield of k, prove that R ⊆ F .
(ii) Prove that a subfield F of k is the prime field of k if and only if it is the

smallest subfield of k containing R; that is, there is no subfield F′ with
R ⊆ F ′ � F .

(iii) If R is a subfield of k, prove that R is the prime field of k.
3.25 (i) Show that every subfield of � contains � .

(ii) Show that the prime field of � is � .
(iii) Show that the prime field of � is � .

*3.26 (i) For any field F , prove that �(2, F)∼= Aff(1, F), where �(2, F) denotes
the stochastic group (defined in Exercise 2.42 on page 144).

(ii) If F is a finite field with q elements, prove that |�(2, F)| = q(q − 1).
(iii) Prove that �(2, � 3 ) ∼= S3.

3.3 POLYNOMIALS

Even though the reader is familiar with polynomials, we now introduce them
carefully. One modest consequence is that the mystery surrounding the “ un-
known” x will vanish.
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Informally, a polynomial is an “ expression” s0 + s1x + s2x2 + · · · + snxn .
The key observation is that one should pay attention to where the coefficients of
polynomials live.

Definition. If R is a commutative ring, then a sequence8 in R is a function
σ : � → R.

Informally, the expression s0 + s1x + s2x2 + · · · + snxn corresponds to the
sequence (s0, s1, s2, . . . , sn, 0, 0, . . .) of its coefficients.

As any function, a sequence σ is determined by its values; for each i ∈ � ,
write σ(i) = si ∈ R, so that

σ = (s0, s1, s2, . . . , si . . . ).

The entries si ∈ R are called the coefficients of the sequence. The term coef-
ficient means “ acting together to some single end.” Here, coefficients combine
with powers of x to give the terms of a sequence.

By Proposition 2.2, two sequences σ and τ in R are equal if and only if
σ(i) = τ(i) for all i ≥ 0; that is, σ = τ if and only if they have the same
coefficients.

Definition. A sequence σ = (s0, s1, . . . , si , . . . ) in a commutative ring R is
called a polynomial if there is some integer n ≥ 0 with si = 0 for all i > n; that
is,

σ = (s0, s1, . . . , sn, 0, 0, . . . ).

A polynomial has only finitely many nonzero coefficients.
The sequence σ = (0, 0, 0, . . . ) is a polynomial, called the zero polynomial;

it is denoted by σ = 0.

Definition. If σ �= 0 is a polynomial, then there is a natural number n with
sn �= 0 and si = 0 for all i > n. One calls sn the leading coefficient of σ , one
calls n the degree9 of σ , and one denotes it by deg(σ ).

The zero polynomial 0 does not have a degree because it has no nonzero
coefficients; every other polynomial does have a degree.

Notation. If R is a commutative ring, then the set of all polynomials with
coefficients in R is denoted by R[x].

8Sequences in R are also called formal power series (see Exercise 3.36 on page 240).
9The word degree comes from the Latin word meaning “step.”
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We will soon prove that a polynomial (s0, s1, . . . , sn, 0, 0, . . . ) of degree n
can be written as s0 + s1x + s2x2 + · · · + snxn , but, until then, we proceed
formally. Equip R[x] with the following operations. Define

σ + τ = (s0 + t0, s1 + t1, . . . , si + ti , . . . )

and
στ = (a0, a1, . . . , ak, . . . ),

where ak = ∑
i+ j=k si t j = ∑ k

i=0 si tk−i ; thus,

στ = (s0t0, s0t1 + s1t0, s0t2 + s1t1 + s2t0, . . . ).

We will soon prove that R[x] is a commutative ring. The next proposition
shows where the formula for multiplication comes from.

Proposition 3.23. If R is a commutative ring and r, si , t j ∈ R for i ≥ 0 and
j ≥ 0, then

(s0 + s1r + · · · )(t0 + t1r + · · · ) = a0 + a1r + · · · + akrk + · · · ,

where ak = ∑
i+ j=k si t j for all k ≥ 0.

Remark. This proof should be an induction on k ≥ 0, but we give an informal
proof instead. �

Proof. Write
∑

i si r i = f (r) and
∑

j t j r j = g(r). Then

f (r)g(r) = (s0 + s1r + s2r2 + · · · )g(r)

= s0g(r) + s1rg(r) + s2r2g(r) + · · ·
= s0(t0 + t1r + · · · ) + s1r(t0 + t1r + · · · )

+ s2r2(t0 + t1r + · · · ) + · · ·
= s0t0 + (s1t0 + s0t1)r + (s2t0 + s1t1 + s0t2)r2+

(s0t3 + s1t2 + s2t1 + s3t0)r3 + · · · . •

Lemma 3.24. Let R be a commutative ring and let σ , τ ∈ R[x] be nonzero
polynomials.

(i) Either στ = 0 or deg(στ) ≤ deg(σ ) + deg(τ ).
(ii) If R is a domain, then στ �= 0 and

deg(στ) = deg(σ ) + deg(τ ).
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Proof.
(i) Let σ = (s0, s1, . . . ) have degree m, let τ = (t0, t1, . . . ) have degree n, and
let στ = (a0, a1, . . . ). It suffices to prove that ak = 0 for all k > m + n. By
definition,

ak =
∑

i+ j=k
si t j .

If i ≤ m, then j = k − i ≥ k − m > n (because k > m + n), and so t j = 0
(because τ has degree n); if i > m, then si = 0 because σ has degree m. In
either case, each term si t j = 0, and so ak = ∑

i+ j=k si t j = 0.
(ii) Now let k = m + n. With the possible exception of smtn (the product of the
leading coefficients of σ and τ ), the same calculation as in part (i) shows that
each term si t j in

am+n = s0tm+n + · · · + sn−1tm+1 + sntm + sn+1tm−1 + · · · + sm+nt0

is 0. If i < m, then m − i > 0, hence j = m − i + n > n, and so t j = 0; if
i > m, then si = 0. Hence

am+n = smtn .

Since R is a domain, sm �= 0 and tn �= 0 imply smtn �= 0; hence, στ �= 0 and
deg(στ) = m + n = deg(σ ) + deg(τ ). •

Proposition 3.25.
(i) If R is a commutative ring, then R[x] is a commutative ring that contains

R as a subring.
(ii) If R is a domain, then R[x] is a domain.

Proof.
(i) Addition and multiplication are operations on R[x]: the sum of two polyno-
mials σ and τ is a sequence which is also a polynomial (indeed, either σ +τ = 0
or deg(σ + τ) ≤ max{deg(σ ), deg(τ )}), while the lemma shows that the se-
quence which is the product of two polynomials is a polynomial as well. Verifi-
cations of the axioms for a commutative ring are again routine, and they are left
to the reader. Note that the zero is the zero polynomial, the one is the polynomial
(1, 0, 0, . . . ), and the negative of (s0, s1, . . . , si , . . . ) is (−s0, −s1, . . . , −si , . . . ).
The only possible problem is proving associativity of multiplication; we give
the hint that if ρ = (r0, r1, . . . , ri , . . . ), then the �th coordinate of the polyno-
mial ρ(στ) turns out to be

∑
i+ j+k=� ri (s j tk), while the �th coordinate of the

polynomial (ρσ )τ turns out to be
∑

i+ j+k=�(ri s j )tk ; these are equal because of
associativity of the multiplication in R.

It is easy to check that R′ = {(r, 0, 0, . . . ) : r ∈ R} is a subring of R[x],
and we identify R′ with R by identifying r ∈ R with (r, 0, 0, . . . ).
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(ii) If R is a domain and if σ and τ are nonzero polynomials, then Lemma 3.24
shows that στ �= 0. Therefore, R[x] is a domain. •

Just as our assertion (in Theorem 3.21) that a domain is a subring of its frac-
tion field was not quite true, so, too, our assertion here that a commutative ring
R is a subring of R[x] is not quite correct. There is a subring of R[x], namely
R′ = {(r, 0, 0, . . .) : r ∈ R}, which strongly resembles R, and the statement of
Proposition 3.25 will be made precise once the notion of isomorphism is intro-
duced (see Example 3.31).

We can now recapture the usual notation.

Definition. Define the indeterminate to be the element
x = (0, 1, 0, 0, . . . ) ∈ R[x].

Even though x is neither “ the unknown” nor a variable, we call it the inde-
terminate to recall one’s first encounter with it in high school (see the discussion
on page 238). However, the indeterminate x is a specific element in the ring
R[x], namely, the polynomial (t0, t1, t2, . . . ) with t1 = 1 and all other ti = 0.
One reason we insist that commutative rings have ones is to enable us to make
this definition; if the set E of even integers were a commutative ring, then E[x]
would not contain x (it would contain 2x , however). Note that if R is the zero
ring, then R[x] is also the zero ring.

Lemma 3.26.
(i) If σ = (s0, s1, . . . , s j , . . . ), then

xσ = (0, s0, s1, . . . , s j , . . . );
that is, multiplying by x shifts each coefficient one step to the right.

(ii) If n ≥ 1, then xn is the polynomial having 0 everywhere except for 1 in the
nth coordinate.

(iii) If r ∈ R, then
(r, 0, 0, . . . )(s0, s1, . . . , s j , . . . ) = (rs0, rs1, . . . , rs j , . . . ).

Proof.
(i) Write x = (t0, t1, . . . , ti , . . . ), where t1 = 1 and all other ti = 0, and let
xσ = (a0, a1, . . . , ak, . . . ). Now a0 = t0s0 = 0 because t0 = 0. If k ≥ 1, then
the only nonzero term in the sum ak = ∑

i+ j=k si t j is sk−1t1 = sk−1, because
t1 = 1 and ti = 0 for i �= 1; thus, for k ≥ 1, the kth coordinate ak of xσ is sk−1,
and xσ = (0, s0, s1, . . . , si , . . . ).
(ii) An easy induction, using (i).
(iii) This follows easily from the definition of multiplication. •
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If we identify (r, 0, 0, . . . ) with r , then Lemma 3.26(iii) reads

r(s0, s1, . . . , si , . . . ) = (rs0, rs1, . . . , rsi , . . . ).

We can now recapture the usual notation.

Proposition 3.27. If σ = (s0, s1, . . . , sn, 0, 0, . . . ), then

σ = s0 + s1x + s2x2 + · · · + snxn,

where each element s ∈ R is identified with the polynomial (s, 0, 0, . . . ).

Proof.

σ = (s0, s1, . . . , sn, 0, 0, . . . )

= (s0, 0, 0, . . . ) + (0, s1, 0, . . . ) + · · · + (0, 0, . . . , sn, 0, . . . )

= s0(1, 0, 0, . . . ) + s1(0, 1, 0, . . . ) + · · · + sn(0, 0, . . . , 1, 0, . . . )

= s0 + s1x + s2x2 + · · · + snxn. •

We shall use this familiar (and standard) notation from now on. As is cus-
tomary, we shall write

f (x) = s0 + s1x + s2x2 + · · · + snxn

instead of σ = (s0, s1, . . . , sn, 0, 0, . . . ).

Definition. If R is a commutative ring, then R[x] is called the ring of polyno-
mials over R.

Here is some standard vocabulary associated with polynomials. If f (x) =
s0 + s1x + s2x2 + · · · + snxn , where sn �= 0, then s0 is called its constant term
and, as we have already said, sn is called its leading coefficient. If its leading
coefficient sn = 1, then f (x) is called monic. Every polynomial other than the
zero polynomial 0 (having all coefficients 0) has a degree. A constant polyno-
mial is either the zero polynomial or a polynomial of degree 0. Polynomials of
degree 1, namely, a + bx with b �= 0, are called linear, polynomials of degree 2
are quadratic,10 degree 3’s are cubic, then quartic, quintic, etc.

10Quadratic polynomials are so called because the particular quadratic x2 gives the area of
a square (quadratic comes from the Latin word meaning “four,” which is to remind one of the
4-sided figure); similarly, cubic polynomials are so called because x3 gives the volume of a
cube. Linear polynomials are so called because the graph of a linear polynomial in � [x] is a
line.
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Corollary 3.28. Polynomials f (x) = s0 + s1x + s2x2 + · · · + snxn and
g(x) = t0 + t1x + t2x2 +· · ·+ tmxm are equal if and only if si = ti for all i ∈ � .
Proof. We have merely restated the definition of equality of polynomials in
terms of the familiar notation. •

We can now describe the usual role of the indeterminate x as a variable. If R
is a commutative ring, each polynomial f (x) = s0 + s1x + s2x2 + · · · + snxn ∈
R[x] defines a polynomial function f � : R → R by evaluation: if r ∈ R, define
f �(r) = s0 + s1r + s2r2 + · · · + snrn ∈ R [usually, one is not so fussy, and
one writes f (r) instead of f �(r)]. The reader should realize that polynomials
and polynomial functions are distinct objects. For example, if R is a finite ring,
e.g., �

m, then there are only finitely many functions from R to itself; a fortiori,
there are only finitely many polynomial functions. On the other hand, if R is not
the zero ring, there are infinitely many polynomials. For example, all the powers
1, x, x2, . . . , xn, . . . are distinct, by Corollary 3.28.

Definition. Let F be a field. The fraction field of F[x], denoted by F(x), is
called the field of rational functions over F .

Proposition 3.29. The elements of F(x) have the form f (x)/g(x), where f (x),
g(x) ∈ F[x] and g(x) �= 0.
Proof. By Theorem 3.21, every element in the fraction field F(x) has the form
f (x)g(x)−1. •

Proposition 3.30. If p is a prime, then the field of rational functions �
p (x) is

an infinite field whose prime field is �
p .

Proof. By Proposition 3.25, �
p [x] is a domain. Its fraction field �

p (x) is a field
containing �

p [x] as a subring, while �
p [x] contains �

p as a subring, by Propo-
sition 3.25. That �

p is the prime field follows from Exercise 3.24 on page 232.
•

In spite of the difference between polynomials and polynomial functions
(we shall see, in Corollary 3.52, that these objects coincide when the coefficient
ring R is an infinite field), one often calls R[x] the ring of all polynomials over
R in one variable (or polynomials over R in one indeterminate). If we write
A = R[x], then the polynomial ring A[y] is called the ring of all polynomials
over R in two variables x and y (or indeterminates), and it is denoted by R[x, y].
For example, the quadratic polynomial ax2 + bxy + cy2 + dx + ey + f can be
written cy2 + (bx + e)y + (ax2 + dx + f ), a polynomial in y with coefficients
in R[x]. By induction, one can form the commutative ring R[x1, x2, . . . , xn]
of all polynomials in n variables (or indeterminates) with coefficients in R.


