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(R. A. Dean) Defi neT, to bethe set of all 2 x 2 matrices

0]

(i)
(iii)

a b
o= {3 .0,] anen)

Prove that 4 isacommutative ring whose operations are matrix addition
and matrix multiplication.

Prove that IF4 isafi eld having exactly 4 elements.
Show that I4 is not afi eld.

Prove that every domain R with afi nite number of elements must be afi eld. Using
Proposition 3.12, this gives a new proof of suffi ciency in Proposition 3.19.

Find al the unitsin thering Z [i ] of Gaussian integers.

Show that F = {a+ bv/2: a, b € Q) isafield.

0]
(i)

Show that F = {a+ bi : a,b € Q} isafi eld.
Show that every u € F hasafactorizationu = o1, where o, 8 € Z[i].
(see Exercise 3.49(ii) on page 249.)

If R isacommutative ring, defi ne arelation = on R by a = b if there is a unit
u € Rwithb = ua.

0)
(i)

Prove that = is an equivalence relation.
If a = b, prove that (a) = (b), where (&) = {ra : r € R}. Conversely,
prove that if Risadomain, then (a) = (b) impliesa = b.

If Risadomain, prove that thereis no subfi eld K of Frac(R) such that

R C K C Frac(R).

Let k be afi eld with one ¢, and let R be the subring

0]
(i)

(iii)
(i)
(i)
(iii)
0]

(i)
(iii)

R={ne:nez}

If Fisasubfield of k, provethat R C F.

Prove that a subfi eld F of k isthe prime fi eld of k if and only if it isthe
smallest subfi eld of k containing R; that is, there is no subfi eld F with
RCF CF.

If Risasubfi eld of k, prove that R isthe prime fi eld of k.

Show that every subfi eld of C contains Q.

Show that the prime fi eld of R isQ.

Show that the prime fi eld of C isQ.

For any fi eld F, provethat X (2, F)= Aff(1, F), where (2, F) denotes
the stochastic group (defi ned in Exercise 2.42 on page 144).

If Fisafinitefi eld with q elements, provethat |2 (2, F)| = q(q — 1).
Provethat X (2, F3) = .

3.3 POLYNOMIALS

Even though the reader is familiar with polynomials, we now introduce them
carefully. One modest consequence is that the mystery surrounding the “un-
known” x will vanish.
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Informally, a polynomial is an “expression” g + S1X + $aX2 + - - - 4 spx".
The key observation is that one should pay attention to where the coeffients of
polynomials live.

Defnition. If R is a commutative ring, then a sequence® in R is a function
c:N— R.

Informally, the expression sg + s1X + $oX2 4 -+ 4 5px" corresponds to the
sequence (So, S1, S2, - - -, Sn, 0, 0, .. ) of its coeffrients.

As any function, a sequence o is determined by its values; for each i € N,
write o (i) = sj € R, so that

o =1(50,51,52,...,Sj ...).

The entries s; € R are called the coefficients of the sequence. The term coef-
ficient means “acting together to some single end.” Here, coefftients combine
with powers of x to give the terms of a sequence.

By Proposition 2.2, two sequences o and 7 in R are equal if and only if
o(i) = (i) forall i > 0; that is, o = t if and only if they have the same
coeffrients.

Definition. A sequence ¢ = (Sp, S1, ..., Sj,...) In @ commutative ring R is
called a polynomial if there is some integer n > 0 with s; = 0 for all i > n; that
is,

o =1(S,51,...,51,0,0,...).

A polynomial has only fnitely many nonzero coefftients.
The sequence o = (0,0, 0, ...) isa polynomial, called the zero polynomial;
it is denoted by o = 0.

Definition. If o # 0 is a polynomial, then there is a natural number n with
Shn # 0ands; = O0foralli > n. One calls s, the leading coefficient of o, one
calls n the degree® of o, and one denotes it by deg(c).

The zero polynomial 0 does not have a degree because it has no nonzero
coeffrients; every other polynomial does have a degree.

Notation. If R is a commutative ring, then the set of all polynomials with
coeffients in R is denoted by R[x].

8Sequences in R are also called formal power series (see Exercise 3.36 on page 240).
9The word degree comes from the Latin word meaning “step.”
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We will soon prove that a polynomial (sg, S1,...,5n,0,0,...) of degree n
can be written as g + S1X + Spx2 + - - - + spx", but, until then, we proceed
formally. Equip R[x] with the following operations. Define

o+1=(o+1tS1+1t,...,8 +t,...)

and
ot = (ap,a1,...,aK,...),

where ag = )4 j_y Sitj = > Ko sitk_i; thus,
ot = (Solo, Sot1 + S1to, Sof2 + S1t1 + S2fp, .. .).

We will soon prove that R[x] is a commutative ring. The next proposition
shows where the formula for multiplication comes from.

Proposition 3.23. If R is a commutative ring and r, sj, tj € R fori > 0 and
j >0, then

(So+81r +-- )t +tr +--) =ag+air +- - +ar+---,

where ay = Ziﬂ-:k sitj forall k > 0.

Remark. This proof should be an induction on k > 0, but we give an informal
proof instead. <«

Proof. Write 7 sir' = f(ryand }_; tjrl = g(r). Then

f(r)g(r) = (So +S1r 4 S2r2 +---)g(r)
= 50g(r) +s1rg(r) +spr2g(r) + - - -
=so(to +tar +---) +sar(to+tar +---)
+Szr2(to+t1r+...)+...
= Soto + (S1to + Sot1)r + (Szto + S1t1 + 50t2)r2+
(Sot3 + S1t2 + Sot1 4+ Sato)r3 + -+ . e

Lemma 3.24. Let R be a commutative ring and let o, 7 € R[x] be nonzero
polynomials.

(i) Either ot =0 ordeg(ot) < deg(o) + deg(z).
(if) If R is a domain, then ot £ 0 and

deg(o1) = deg(o) + deg(z).
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Proof.
(i) Let o = (Sp, S1, ...) have degree m, let T = (tp, t1, ...) have degree n, and
let ot = (ap, a1, ...). It suffces to prove thatay = 0 forallk > m +n. By

defhnition,

a = Z Sitj.

i+j=k

Ifi <m,then j=k—i>k—-m > n(becausek > m +n),andsotj =0
(because T has degree n); if i > m, then s; = 0 because o has degree m. In
either case, each term sjtj = 0, and so ax = Zi+j=k sitj = 0.
(if) Now let k = m + n. With the possible exception of syty (the product of the
leading coeffients of o and t), the same calculation as in part (i) shows that
each term sjtj in

am+n = Sotm4n + -+ + Sn—1tm41 + Sntm + Snpatm—1 + -+ - + Sm4nlo

isO. Ifi <m,thenm —i > 0,hence j =m—i+n>n,andsot; =0; if
i > m,thensj = 0. Hence
a8m+n = Smtn.

Since R is a domain, sy, # 0 and ty % 0 imply smty # O; hence, ot # 0 and
deg(oct) =m +n =deg(o) + deg(r). e

Proposition 3.25.

(i) If R is a commutative ring, then R[x] is a commutative ring that contains
R as a subring.

(ii) If R is a domain, then R[x] is a domain.

Proof.
(i) Addition and multiplication are operations on R[x]: the sum of two polyno-
mials o and t is a sequence which is also a polynomial (indeed, either o +7 = 0
or deg(o + t) < max{deg(o), deg(r)}), while the lemma shows that the se-
quence which is the product of two polynomials is a polynomial as well. Verifi
cations of the axioms for a commutative ring are again routine, and they are left
to the reader. Note that the zero is the zero polynomial, the one is the polynomial
(1,0,0,...),andthe negative of (Sg, S1, ..., Sj,...) IS(—S0, —S1, ..., —Sj, ...).
The only possible problem is proving associativity of multiplication; we give
the hint that if p = (ro,r1,...,ri,...), then the £th coordinate of the polyno-
mial p(o 1) turns out to be Zi+j+k:€ ri(sjtx), while the ¢th coordinate of the
polynomial (po )t turns out to be Zi+j+k:£(ri5j)tk; these are equal because of
associativity of the multiplication in R.

It is easy to check that R” = {(r,0,0,...) : r € R} is a subring of R[x],
and we identify R” with R by identifyingr € R with (r, 0,0, ...).
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(i) If R is a domain and if o and ¢ are nonzero polynomials, then Lemma 3.24
shows that ot # 0. Therefore, R[x] isa domain. e

Just as our assertion (in Theorem 3.21) that a domain is a subring of its frac-
tion feld was not quite true, so, too, our assertion here that a commutative ring
R is a subring of R[x] is not quite correct. There is a subring of R[x], namely
R’ = {(r,0,0,...) : r € R}, which strongly resembles R, and the statement of
Proposition 3.25 will be made precise once the notion of isomorphism is intro-
duced (see Example 3.31).

We can now recapture the usual notation.

Defnition. Defhne the indeterminate to be the element
x=1(0,1,0,0,...) € R[x].

Even though x is neither “the unknown” nor a variable, we call it the inde-
terminate to recall one’s first encounter with it in high school (see the discussion
on page 238). However, the indeterminate x is a specift element in the ring
R[x], namely, the polynomial (to, t1, t2, ...) with t; = 1 and all other tj = 0.
One reason we insist that commutative rings have ones is to enable us to make
this defiition; if the set E of even integers were a commutative ring, then E[x]
would not contain x (it would contain 2x, however). Note that if R is the zero
ring, then R[x] is also the zero ring.

Lemma 3.26.
(i) Ifo = (so,S1,...,Sj,...), then
xo = (0,80, 81,...,Sj,...);
that is, multiplying by x shifts each coefficient one step to the right.

(ii) Ifn > 1, then x" is the polynomial having 0 everywhere except for 1 in the
nth coordinate.

(iif) Ifr € R, then

(r,0,0,...)(s0,81,...,8j,...) =(rso, sy, ..., Isj,...).
Proof.
(i) Write x = (to,t1,...,t,...), where t; = 1 and all other t; = 0, and let
Xo = (ag, a1, ..., ak, ...). Now ag = tgSp = 0 because tg = 0. If k > 1, then

the only nonzero term in the sum ay = Ziﬂ-:k Sitj is sk—1t1 = sk—1, because
tp = landtj = 0fori # 1; thus, for k > 1, the kth coordinate ay of Xo is sk_1,
and xo = (0, Sp, S1, ..., Si,...).

(ii) An easy induction, using (i).

(iii) This follows easily from the defnition of multiplication. e
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If we identify (r, 0, 0, ...) with r, then Lemma 3.26(iii) reads
r(so,S1,...,Sj,...) =(rsp,rsg, ..., rsj,...).

We can now recapture the usual notation.

Proposition 3.27. Ifo = (S0,51,...,51,0,0,...), then
0 =80+ 51X + S2X% + - - - 4 5px",

where each element s € R is identified with the polynomial (s, 0,0, ...).

Proof.

o =1(5,51,...,51,0,0,...)
=(5,0,0,...)4+(0,51,0,...)+---4+(0,0,...,55,0,...)
=50(1,0,0,...)+s1(0,1,0,...) +---+55(0,0,...,2,0,...)

= S0+ SIX + 50X+ -+ 5x". e

We shall use this familiar (and standard) notation from now on. As is cus-
tomary, we shall write

f(X) = So + 51X + 52X% + - - - + 5"

instead of o = (S0, S1,...,51,0,0,...).

Definition. If R is a commutative ring, then R[x] is called the ring of polyno-
mials over R.

Here is some standard vocabulary associated with polynomials. If f(x) =
S0 + 51X + $2x2 + - - - + 57", where s, # 0, then sg is called its constant term
and, as we have already said, s, is called its leading coefficient. If its leading
coeffient s, = 1, then f (x) is called monic. Every polynomial other than the
zero polynomial 0 (having all coefficients 0) has a degree. A constant polyno-
mial is either the zero polynomial or a polynomial of degree 0. Polynomials of
degree 1, namely, a 4+ bx with b = 0, are called linear, polynomials of degree 2
are quadratic,® degree 3’s are cubic, then quartic, quintic, etc.

10Quadratic polynomials are so called because the particular quadratic x2 gives the area of
a square (quadratic comes from the Latin word meaning “four,” which is to remind one of the
4-sided figure); similarly, cubic polynomials are so called because 3 gives the volume of a
cube. Linear polynomials are so called because the graph of a linear polynomial in R[x] is a
line.
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Corollary 3.28. Polynomials f(x) = sg + S1X + Spx2 + - -+ + spx" and
g(x) = tg+t1x +tox2 + - - -+t x™ are equal if and only if s; = t; for all i € N.

Proof. We have merely restated the defiition of equality of polynomials in
terms of the familiar notation. e

We can now describe the usual role of the indeterminate x as a variable. If R
is a commutative ring, each polynomial f (x) = sg +S1X + X244 5x" €
R[x] defines a polynomial function f°: R — R by evaluation: ifr € R, define
fo°(r) = sop+s1r +sor2 + - +sr" € R [usually, one is not so fussy, and
one writes f(r) instead of f°(r)]. The reader should realize that polynomials
and polynomial functions are distinct objects. For example, if R is a fhite ring,
e.g., Iy, then there are only fnitely many functions from R to itself; a fortiori,
there are only fnitely many polynomial functions. On the other hand, if R is not
the zero ring, there are infiitely many polynomials. For example, all the powers
1,x,x2, ..., x" ... aredistinct, by Corollary 3.28.

Definition. Let F be a feld. The fraction feld of F[x], denoted by F(x), is
called the field of rational functions over F.

Proposition 3.29. The elements of F (x) have the form f (x)/g(x), where f (x),
g(x) € F[x]and g(x) # 0.

Proof. By Theorem 3.21, every element in the fraction feld F(x) has the form
fOgx)™L e

Proposition 3.30. If p is a prime, then the field of rational functions Fp (x) is
an infinite field whose prime field is .

Proof. By Proposition 3.25, Fp [x] is a domain. Its fraction feld Fp (x) is a feld
containing IFp [x] as a subring, while Fp[x] contains F as a subring, by Propo-
sition 3.25. That I is the prime feld follows from Exercise 3.24 on page 232.

In spite of the difference between polynomials and polynomial functions
(we shall see, in Corollary 3.52, that these objects coincide when the coeffient
ring R is an infhnite feld), one often calls R[x] the ring of all polynomials over
R in one variable (or polynomials over R in one indeterminate). If we write
A = R[x], then the polynomial ring A[y] is called the ring of all polynomials
over R intwo variables x and y (or indeterminates), and it is denoted by R[X, y].
For example, the quadratic polynomial ax? + bxy + cy? + dx 4+ ey + f can be
written cy? + (bx + e)y + (ax? + dx + f), a polynomial in y with coefftients
in R[x]. By induction, one can form the commutative ring R[X1, X2, ..., Xn]
of all polynomials in n variables (or indeterminates) with coeffients in R.



