3.4 The Euclidean Algorithm 101

Proof.  Applying the Euclidean algorithm, and using the defining relation for the Fibo-
nacci numbers f =fiat+ f ;2 in each step, we see that

f;1+2 = fn-}-l 14+ Jas
f:‘t+1 =fu- 14 fnﬁ[’

fa=f3-1+ fo,

fi=fr-2
Hence, the Euclidean algorithm takes exactly n divisions, to show that ( Jut2s fra) =

fzrl. L]

The Complexity of the Euclidean Algorithin . We can now prove a theorem first proved
by Gabriel Lamé, a French mathematician of the nineteentk century, which gives an
estimate for the number of divisions needed to find the greatest common divisor using
the Euclidean algorithm.

Theorem 3.13. Lamé’s Theorem. The number of divisions needed to find the greatest
common divisor of two positive integers using the Euclidean algorithm does not exceed
five times the number of decimal digits in the smaller of the two integers.

Proof. 'When we apply the Euclidean algorithm to find the greatest common divisor of
a =rgand b =r; with a > b, we obtain the following sequence of equations:

o =r'[q1—|—r2, 05?'2 <T
Fi =T+, 0<r3<r,
T =Ty 1gu_1+ 1y, O<r, < n—1
Fp1=r,qy.

We have used n divisions. We note that each of the quotients g, gy, . . ., q,_; > 1, and
49y = 2, because r, < r,_;. Therefore,

GABRIEL LAME (1795-1870) was a graduate of the Fcole Polytechnigue.
A civil and railway engineer, he advanced the mathematical theory of elasticity
and invented curvilinear coordinates. Although his main contributions were to
mathematical physics, he made several discoveries in number theory, including
the estimate of the number of steps required by the Euclidean algorithm, and
the proof that Fermat’s last theorem holds for » = 7 (see Section 13.2), It
is interesting to note that Gauss considered Lamé to be the foremost French
mathematician of his time,
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ry=1l=fs,
ry_1= 2= 2f2 = f3=
Ny Z bty 1+, = f3t+ o= fa
T3 Z g2t = fa+ =1

rpzry3tre> fum1t+ foa = S
b=ri>r _+r3 > fat fa1= f;t+l-

Thus, for there to be n divisions used in the Euclidean algorithm, we must have b > f,,7+1.
By Example 1.28, we know that £, > o" 1 for n > 2, where & = (1 + +/5)/2. Hence,
b > a1, Now, since log;y o > 1/5, we see that

logipb > (n —~ Dloggo = (n— D/S.
Consequently,
n-—-1<5-logb.

Let b have k decimal digits, so that b < 10% and log,y b < k. Hence, we see that
n — 1 < 5k, and because k is an integer, we can conclude that # < Sk. This establishes
L.amé’s theorem. |

The following result is a consequence of Lamé’s theorem. It tells us that the
Euclidean algorithm is very efficient.
Corollary 3.13.1. The greatest common divisor of two positive integers a and b with

a > b can be found using O({log, a)?) bit operations.

Proof We know from Lamé’s theorem that (J(log, a) divisions, each taking
O ((log, a)z) bit operations, are needed to find {a, b). Hence, by Theorem 2.3, (a, b)
may be found using a total of O((log, a)*) bit operations. "

Expressing Greatest Common Divisors—As Linear Combinafions The Euclidean
algorithm can be used to express the greatest common divisor of two integers as a linear
combination of these integers. We illustrate this by expressing (252, 198) = 18 as alinear
combination of 252 and 198. Referring to the steps of the Euclidean algorithm used to
find (252, 198), by the next to the last step we see that

1§=>54—1.36.
By the preceding step, it follows that
36=198—3.54,
which implies that

18=54 —1-(198 - 3.54) =4 .54 —1-198.



