60

2.3

Integer Representations and Operations

Complexity of Integer Operations

Once an algorithm has been specified for an operation, we can consider the amount of
time required to perform this algorithm on a computer. We will measure the amount of
time in terms of bit operations. By a bit operation we mean the addition, subtraction, or
multiplication of two binary digits, the division of a two-bit by a one-bit integer {obtain-
ing a quotient and a remainder), or the shifting of a binary integer one place. (The actual
amount of time required to carry out a bit operation on a computer varies depending on
the computer architecture and capacity.) When we describe the number of bit operations
needed to perform an algorithm, we are describing the computational complexity of this
algorithm.

In describing the number of bit operations needed to perform calculations, we will
use big-O notation, Big- O notation provides an upper bound on the size of a function in
terms of a particular well-known reference function whose size at large values is easily
understood.

To motivate the definition of this notation, consider the following situation. Suppose
that to perform a specified operation on an integer n requires at most n® + 8n2 log n bit
operations. Since 8n2log n < 8n3 for every positive integer, less than 9n bit operations
are required for this operation for every integer ». Since the number of bit operations
required is always less than a constant times n3, namely 9n7, we say that O (%) bit
operations are needed. In general, we have the following definition.

Definition. If f and g are functions taking positive values, defined for alf x € S, where
§ is a specified set of real numbers, then f is O(g) on S if thereis a positive constant X
such that f(x) < Kg(x) for all sufficiently large x € S. (Normally, we take § to be the
set of positive integers, and we drop all reference to §.)

Big-O notation is used extensively throughout number theory and in the analy-
sis of algorithms. Paul Bachmann introduced big-O notation in 1892 {[Ba94]). The
big-O notation is sometimes called a Landau symbol, after Edmund Landau, who used
this notation throughout his work in the estimation of various functions in number theory.
The use of big-O notation in the analysis of algorithms was popularized by renowned
computer scientist Donald Knuth,

We illustrate this concept of big-O notation with several examples.

Example2.10. 'We can show on the set of positive integers that nt+ 23 +5is O (n%).
To do this, note that n* + 2n3 + 5 < n 4 2n% + 5n* = 8n? for all positive integers. (We
take K = 8 in the definition.) The reader should also note that ntis O(n* + 213 4 5).

«

Example 2.11. We can easily give a big-O estimate for 377_; j. Noting that each
summand is less than » tells us that Zj.:l i< Zi;=1 n =n - n=n? Note that we could
also derive this estimate easily from the formula ’;:1 Jj=nin+1)/2, «

2.3 Complexity of Integer Operations 61

We now will give some useful results for working with big-O estimates for combi-
nations of functions. _
Theorem 2.2. If f is O(g) and ¢ is a positive constant, then cf is O(g).

Proof. 1f f is O{g), then there is a constant X with f(x) < Kg(x) for all x under
consideration. Hence ¢f (x) < (cK)g(x), so cf is O(g). [

Theorem 2.3. If fis O(gy) and f, is O(gy), then f;+ f5 is O(g, + &), and fifzis
0(8182). :

Froof. H fis O(gy) and f, is O(gy), then there are constants K; and K, such that
Si(x) < Kygi(x) and f,(x) < K,g,(x) for all x under consideration. Hence,

S1x)} + f2fx) < Kigix) + Kygo(x)

= K{g1(x) + g0,
where X is the maximum of K; and K. Hence, fi + f; is O(g; + g;).
Also,
[i(0) fa(x) < K181(x)}K,85(x)
= (K1K2)(g1{x)g2(x)),
s0 fif2is O(g182)- x

PAUL GUSTAV HEINRICH BACHMANN (1837-1920), the son of a pas-
tor, shared his father’s pious lifestyle, as well as his love of music. His talent for
mathematics was discovered by one of his early teachers. After recovering from
tuberculosis, he studied at the University of Berlin and later in Gottingen, where
he attended lectures presented by Dirichlet. In 1862, he received his doctorate
under the supervision of the number theorist Kummer. Bachmann became a pro-
fessor at Breslau and later at Miinster. After retiring, he continued mathematical
research, played the piano, and served as a music critic for newspapers. His
writings include 4 five-volume survey of number theory, a two-volume work on elementary number
theory, a book on irrational numbers, and a book on Fermat’s last theorem (this theorem is discussed
in Chapter 13). Bachmann introduced big-O notation in 1892.

EDMUND LANDAU (1877~1938) was the son of a Berlin gynecologist, and
atiended high school in Berlin. He received his doctorate in 1899 under the
direction of Frobenius, Landau first taught at the University of Berlin and then
moved to Gottingen, where he was full professor until the Nazis forced him
to stop teaching. His main contributions to mathematics were in the field of
analytic number theory; he established several important results concerning the
distribution of primes. He authored a three-volume work on number theory and
many other books on mathematical analysis and analytic number theory.

% 62 Integer Representations and Operations
|

Proof. Theorem 2.3 tells us that f; + f; is O(2g). But if fi+ f» < K(2g), then
fit+ fr<(2K)g,s0 fi+ fis O(g). =

The goal in using big-O estimates is to give the best big-O estimate possible while

using the simplest reference function possible. Well-known reference functions used in

d big-O estimates include 1, log 1, , n log n, 1 log n log log n, n2, and 2", as well as some

i other important functions. Calculus can be used to show that each function in this list is

smalter than the next function in the list, in the sense that the ratio of the functicn and the

next function tends to 0 as # grows without bound. Note that more complicated functions
than these occur in big-O estimates, as you will see in Iater chapters.

i
l Corollary 2.3.1. If £, and f, are O(g), then f; + f is O(g).
|
i

We illustrate how to use theorems for working with big-O estimates with the fol-
lowing example.

Example 2.12. To give a big-O estimate for (n + 8logn) (10n log n + 17n2), first
note that n 4 8 log r is O(n) and 10n logrn + 1712 is O(n?) (because log n is O(n) and
! n log n is O (n?)) by Theorems 2.2 and 2.3 and Corollary 2.3.1. By Theorem 2.3, we see
‘ that (n 4 8 log n)(10n log n + 1% is o(n%). «

Using big-O notation, we can see that to add or subtract two n-bit integers takes
& O (n) bit operations, whereas to multiply two n-bit integers in the conventional way takes
O (n?) bit operations (see Exercises 12 and 13 at the end of this section). Surprisingly,

DONALD KNUTH (b. 1938) grew up in Milwaukee where his father owned
a small printing business and taught bookkeeping. He was an excelient student
who also applied his intelligence in unconventional ways, such as finding more
than 4500 words that could be spelled from the letters in “Ziegler’s Giant Bar,”
winning a television set for his school and candy bars for everyone in his class.

Knuth graduated from Case Institute of Technology in 1960 with B.S. and
M.S. degrees in mathematics, by special award of the faculty who considered
his work outstanding, At Case he managed the basketball team and applied his
mathematical talents by evaluating each player using a formula he developed (receiving coverage on
CBS television and in Newsweek). Knuth received his doctorate in 1963 from the California Institute
of Technology.

Knuth taught at the California Institute of Technology and Stanford University, retiring in 1992
to concentrate on writing. He is especially interested in updating and adding to his famous series,
The Art of Computer Programming. This series has had a profound influence on the development of
computer science. Knuth is the founder of the modern study of computational complexity and has
made fundamental contributions to the theory of compilers. Knuth has also invented the widely used
TeX and Metafont systems used for mathematical (and general) typography. TeX played an important
role in the development of HTML and the Internet. He popularized the big-O notation in his work on
the analysis of algorithms.

Knuth has written for a wide range of professional journals in computer science and mathematics.
However, his first publication, in 1957, when he was a college freshman, was the “The Potrzebie
System of Weights and Measures,” a parody of the metric system, which appeared in MAD Magazine.

2.3 Complexity of Integer Operations 63

there are faster algorithms for multiplying large integers. To develop one such algorithm,
we first consider the muttiplication of two 2n-bit inte ger18, 88y @ = (@y, 12y - . . A1)y
and b = (by, by, 5. .. bby),. We write

a=2"A+ Ay b=2"B, + B,
where
Ay =(Gy-1fp_gz . .. Gy 110,) Ap= (@y_1a,5 . .. a1ap),
By=u-1bon-2. - bysibu)y Bo=(by_1by—y ... bibg),.
We will use the identity _
(2.2) ab= (2" + 2MA B, + 2"(A; — Ag)(By — BY) + (" + 1)AgBy.

To find the product of @ and b using (2.2) requires that we perform three multiplications
of n-bit integers (namely, A|B;, (A; — Ap) (By — By), and AyByp), as well as a number
of additions and shifts. This is illustrated by the following example.

Example 2.13. We can use (2.2) to multiply (1101), and (1011),. We have (1161), =
22(11), + (01); and (1011), = 22(10), + (1 1),. Using (2.2}, we find that

(1108,(1011); = 2* + 2% (11),(10); + 22((1 D), — (O1)y) - ((11) — (10),)+
2% + HOD,(11),
= (2* +25)(110), + 2%(10),(0D), + 22 + 1A,
= (1100000), + (11000), + (1000); -+ (1100); + (11),
= (10001111),. <

We will now estimate the number of bit operations required to multiply two -bit integers
by using (2.2) repeatedly. If we let M (n) denote the number of bit operations needed to
multiply two »-bit integers, we find from (2.2) that

(2.3) M(@2n) <3M(n) + Cn,

where C is a constant, because each of the three multiplications of n-bit integers takes
M () bit operations, whereas the number of additions and shifts needed to compute ab
via (2.2) does not depend on r, and each of these operations takes O (n) bit operations.

From (2.3), using mathematical induction, we can show that
{2.4) M(28 < c(3F -2,

where ¢ is the maximum of the quantities M (2) and € (the constantin (2.3)). To carry out
the induction argument, we first note that with k = 1, we have M(2) < (3t — 2) =,
because c is the maximum of M (2} and C.

As the induction hypothesis, we assume that

MY <3 — 2%,

|
!

64

Integer Representations and Operations

Then, using {2.3), we have

M2y < 3p2%) + c2F
<3c(3F —2%) + 2
<3t o 3.0k 4 ook
< C(3k+1 _ 2k+1).
This establishes that (2.4) is valid for all positive integers k.

Using inequality (2.4), we can prove the following theorem.

Theorem 2.4, Multiplication of two #-bit integers can be performed using O (n'oB2 3)
bit operations. (Note: log, 3 is approximately 1.585, which is considerably less than the
exponent 2 that occurs in the estimate of the number of bit operations needed for the
conventional multiplication algorithm.)

Proof. From (2.4}, we have

M(n) = M(2°827) < M (20082 H)
< 6(3[10g2 a1 _ 2[10g2 MH~1)

<3¢ . 302 n] < 30 . glosa — 3cnl®823 (becanse 310827 = n'o823y,
Hence, M (n) is O(n'%82%), =

We now state, without proof, two pertinent theorems. Proofs may be found in [Kn97}
or [Kr79].

Theorem 2.5. Given a positive number ¢ > 0, there is an algorithm for multiplication
of two 7-bit integers using O (n'*€) bit operations.

Note that Theorem 2.4 is a special case of Theorem 2.5 with € = log; 3 — 1, which
is approximately 0.585.

Theorem 2.6. There is an algorithm to multiply two n-bit integers using
O(n log, n log; log, n) bit operations.

Since log, n and logy logy n are much smaller than n* for large numbers n,
Theorem 2.6 is an improvement over Theorem 2.5. Although we know that M(n) is
O (n log, n log, log, n), for simplicity we will use the obvious fact that M (r) is 0(n?)
in our subsequent discussions.

The conventional algorithm described in Section 2.2 performs a division of a
2n-bit integer by an n-bit integer with O(n?) bit operations. However, the number of
bit operations needed for integer division can be related to the number of bit operations
needed for integer multiplication. We state the following theorem, which is based on an
algorithm discussed in [Kn97).

