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 This work presents an analysis of tunneling across diverse configurations of potential barriers by solving the time-independent Schrödinger 

equation. We investigated arrays of barriers and wells with controllable spacing and geometry, focusing on tractable distributions and extending the 

study to multiple architectures, including single and double barriers or mixed arrays encompassing periodic, quasiperiodic, and self-similar (fractal) 

arrangements. We calculate the energies of states along with the reflection and transmission coefficients to characterize tunneling across the 

respective distributions. Our results show robust tunneling behavior in these families and reveal fractal features in the energy-resolved transmission 

and reflection spectra, such as self-similar scaling, hierarchical resonances, and fine structure associated with the formation of minibands that persist 

under systematic variations of the geometric parameters. 

I . Mathematical Induction 
 

Mathematical induction is one of the fundamental forms 

of proof in mathematics taught from the first semesters, 

but it is not necessarily simple. Mathematical induction 

requires a countable sequence of processes, considering 

and verifying the validity of the first S1, S2, and S3, and 

constructing the inducible hypothesis for the process Sn. 

It is then demonstrated for the process Sn+1, thereby 

considering the sequence of processes valid for all n in 

the (natural) numbers, or even, in some cases, 

considering zero [1]. 

 

 

II. Potential Barriers 

 

In quantum mechanics, many models of 

electromagnetic, chemical, and thermodynamic 

potentials have applications in various areas where 

potential distributions in n dimensions (nD) can be 

related to macroscopic phenomena. For example, in the 

solid state, these can be electrolytic potentials that 

maintain the atomic lattice of crystals (generally solids) 

[2, 3]. The distribution of potential barriers is freely 

chosen depending on the phenomenon [3, 4], and in our 

case, we will use simple geometries for the 

arrangements such that said arrangements admit an 

inducible distribution for symmetric potentials, where 

these potentials are the potential barriers [3, 4]. 

Figure 1: Symmetrical distributions of potential barriers 

 

The different configurations of potential barriers are 

modeled so that the distributions are integrated into the 

time-independent Schrödinger equation. 

 

 

 

Whose solution is made considering is matrix 

considering step matrices on the regions Ri and interface 

matrices entering or leaving the barrier at points xi. 

To proof that the different distributions of potential 
barriers are inducible, which we divide into 
symmetric and non-symmetric. Within the 
symmetric ones we focus on potentials of the same 
magnitude (V0), same width and distance between 
the barriers, since each matrix Mi=Ii-1Pi-1IiPi (first 
interface of the space at the beginning of the 
barrier Ii-1 propagation within the barrier, Pi-1, 
second interface when leaving the barrier, Ii, and 
the propagation when leaving the barrier, Pi) we 
satisfactorily demonstrate that the following 
distributions are inducible: Circular distributions 
equally spaced according to the diameter of the 
barrier, square distributions equally spaced 
according to the width of the barrier and different 
distances between barriers but constant. In other 
configurations it was proven that they were not 
inducible but did show recursive and periodic 
results. 

 

As we demonstrated the mathematical induction, 
based on the final matrix M=MnMn-1...M2M1, then 
according to Eq. 2 the transmission coefficient was 
always verified to corroborate the tunnel effect in 
said arrangements. 

 

III. Results 

 

Conclusions 

Inducible sets exhibit certain geometric properties in the 
results that manifest themselves in experimental events that 
we are still investigating. In theory, periodic and stable 
behaviors are observed that can be reproduced. However, in 
the case of minimal alterations such as doping, the properties 
are lost, although quantum tunneling occurs. 
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