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*Expositor 

The hydrogen atom is the simplest known atom, consisting of a proton and an electron. Its study is important because it makes up a large part of 
visible matter and, being a simple atom, serves as a basis for understanding atomic structure. Additionally, it is important due to its various 
applications in industry and as an energy source. From the perspective of quantum mechanics, the hydrogen atom is the only one that allows an 
exact analytical solution to the Schrödinger equation. This work presents a study of the hydrogen atom using the quantum potential approach. 
We compute the quantum and classical trajectories for the electron in the hydrogen atom as determined by the eigenfunctions of the following 
operators: the Hamiltonian, the square of the orbital angular momentum, and the z-component of the orbital angular momentum. In particular, 
we show the relationship between quantum and classical trajectories, and we also study the intersection between the zeros of the quantum 
potential and the caustic.
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Quantum equations
Schrödinger equation:
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Eigenfunctions: 
෡𝑯𝛹𝑛𝑙𝑚 𝒓, 𝑡 = 𝐸𝑛𝛹𝑛𝑙𝑚 𝒓, 𝑡 ,

෠𝑳2𝛹𝑛𝑙𝑚 𝒓, 𝑡 = ℏ2𝑙 𝑙 + 1 𝛹𝑛𝑙𝑚 𝒓, 𝑡 ,
෠𝐿z𝛹𝑛𝑙𝑚 𝒓, 𝑡 = ℏ𝑚𝛹𝑛𝑙𝑚 𝒓, 𝑡 .

Wave equation:
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Quantum Hamilton's equations:
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Conclusions

In this work we have applied the quantum potential approach to study the dynamics of the electron in the hydrogen 
atom dictated by the stationary states, 𝛹𝑛𝑙𝑚(𝑟, 𝑡), which are eigenfunctions of the Hamiltonian, square of the orbital 
angular momentum, and the z-component of the orbital angular momentum operators. We found that each 
stationary state defines a quantum Hamiltonian system for the electron under the influence of an interaction that is 
proportional to the eigenvalue, mℏ, of the z-component of the orbital angular momentum operator. In accordance 
with the quantum potential approach the motion of the electron is given by a subset of solutions to the 
corresponding quantum Hamilton equations, that subset is singlet out by the condition that the quantum 
momentum of the electron is given by the gradient of the phase of the wave function.
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This image shows the  trajectory of a particle given by the classical Hamiltonian (blue) and the 
caustic region (red).  
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