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Abstract

Burnside’s Lemma offers a powerful technique for counting distinct configurations by averaging the number of fixed points under group actions. This poster

explains how to utilize the lemma to count non-equivalent colorings of a square’s vertices using three colors, considering symmetries from the dihedral group

D4. Each transformation in D4—including rotations and reflections—acts on the set of colorings, and we compute the number of different configurations

under these actions. After presenting the full calculation for D4, the method is extended conceptually to general dihedral groups Dn, which represent the

symmetries of regular n-gons. This poster exemplifies how algebraic structures can simplify combinatorial counting and highlights the intersection between

group theory and visual enumeration problems.

Burnside’s Lemma

Counts the number of distinct configurations of a set under the sym-

metries of a group.

Some useful definitions:

If G is a group acting on a set A, and a ∈ A and g ∈ G are some fixed

elements.

the stabilizer of a is the set in G defined by

Ga = {h ∈ G : h · a = a}.

the fixed points of g is the set in A defined by

fix(g) = {b ∈ A : g · b = b}.

the orbit of a is the set in A defined by

Ga = {h · a : h ∈ G} = {b ∈ A : b = h · a for some h ∈ G}.

Burnside’s Lemma:

number of orbits = 1
|G|

∑
g∈G

|fix(g)| = 1
|G|

∑
a∈A

|Ga|

D4: Vertex colorings of a square with 3 colors

D4 = {1, r, r2, r3, s, sr, sr2, sr3}, |D4| = 8

A =
{(

a11 a12
a21 a22

)
: aij ∈ {�,�,�}, i, j ∈ {1, 2}

}
Transformation Fix #

1=rot0◦ (1) (2) (3) (4) 34

r=rot90◦ (1 2 3 4) 31

r2 = rot180◦ (1 3 ) (2 4) 32

r3 = rot270◦ (1 4 3 2) 31

s=vertical reflection (1 2) (3 4) 32

sr= horizontal reflection (1 4) (2 3) 32

sr2 = diagonal reflection 1 (1) (2 4) (3) 33

sr3 = diagonal reflection 2 (1 3) (2) (4) 33

1
|D4|

∑
g∈D4

|fix(g)| = 1
8(34 + 3 + 32 + 3 + 32 + 33 + 32 + 33) = 21

Hence, the number of essentially different colorings is 21.

Dn Vertex colorings of a n-gonwith k colors

The method used for D4 applies to any dihedral group Dn.

Dn = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}, |Dn| = 2n.

We will use Polya’s Enumeration Theorem that complements Burn-

side’s Lemma.

Polya’s Enumeration Theorem: Each symmetry can be represented

as a permutation of the vertices, which decomposes into cycles. A

coloring is fixed under that symmetry if all the vertices in each cy-

cle share the same color. Thus, the number of fixed colorings is

k(# of cycles).

For k colors:

1. Rotations:

Let mr̃ be the number of vertices shifted by a rotation r̃.
Giving

kgcd(mr̃,n), the number of fixed colorings

for the corresponding rotation.

2. Reflections

If n is odd:

Reflection has 1 fixed vertex (a cycle of length 1) and (n − 1)/2
mirrored pairs (cycles of length 2). The number of fixed

colorings is

k(n+1)/2 .

If n is even:

Reflections through two opposite vertices fix k
n
2+1 colorings.

Reflections through two opposite edges fix kn/2 colorings.

Number of Distinct Colorings = 1
|Dn|

∑
g∈Dn

|fix(g)| =

= 1
2n

(
∑

r̃∈{1,r,,...,rn−1}

kgcd(mr̃,n) +

nk
n+1

2 , n odd

n
2k

n
2+1 + n

2k
n
2 , n even

).
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