# Updates on the uniqueness of the $HS^n_m(X)$ hyperspace

Gerardo Hernández Valdez, David Herrera Carrasco, Fernando Macías Romero

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla

#### Abstract

Let  $n, m \in \mathbb{N}$  with  $n \geq m$ , and X be a metric continuum. We consider the hyperspaces  $C_n(X)$  (respectively,  $F_n(X)$ ) of all nonempty closed subsets of X with at most n components (respectively, n points). The (n, m)-fold hyperspace suspension on X was defined in 2018 by Anaya, Maya, and Vázquez-Juárez, to be the quotient space  $C_n(X)/F_m(X)$ , denoted by  $HS_m^n(X)$ . In this work, we present several recent updates on the uniqueness of this hyperspace for some well-known families of continua.

### Introduction

Given a continuum X and  $n \in \mathbb{N}$ , we consider the following hyperspaces of X:

 $2^X = \{A \subset X : A \text{ is a nonempty closed subset of } X\},\$   $C_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ components}\},\$   $F_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\},\$ 

The hyperspaces  $F_n(X)$  and  $C_n(X)$  are called the n-fold symmetric product of Xand the *n-fold hyperspace* of X, respectively. In 2018 Anaya, Maya and Vázquez-Juárez, introduced the (n, m)-fold hyperspace X, denoted by  $HS_m^n(X)$ , we mean the quotient space  $C_n(X)/F_m(X)$  obtained from  $C_n(X)$  by shrinking  $F_m(X)$  to a point with the quotient topology [1]. For a continuum X and  $n, m \in \mathbb{N}$  satisfying that  $n \geq m$ , the symbol  $q_X^{(n,m)}$  denotes the natural projection  $q_X^{(n,m)}: C_n(X) \to HS_m^n(X),$ and  $F_X^m$  denotes the element  $q_X^{(n,m)}(F_m(X))$ . Notice that  $q_X^{(n,m)}|_{C_n(X)-F_m(X)}$ :  $C_n(X)$  —  $F_m(X) \to HS_m^n(X) - \{F_X^m\}$  is a homeomorphism.

# Classes of continua with unique hyperspace $HS_m^n(X)$

The following results summarize what we know about the uniqueness of hyperspaces for meshed continua and finite graphs.

# Theorem

Let X be a finite graph,  $n, m \in \mathbb{N}$  with  $n \geq m$ . Then X has unique hyperspace  $HS_m^n(X)$ 

## Theorem

Let X be a meshed continuum,  $n \in \mathbb{N} - \{1, 2\}$ ,  $m \in \mathbb{N} - \{1\}$  with  $n \geq m$ . Then X has a unique hyperspace  $HS_m^n(X)$ 

# Classes of continua without unique hyperspace $HS_m^n(X)$

Recall that a continuum X does not have unique hyperspace  $HS_m^n(X)$  if there exists a continuum Y such that  $HS_m^n(X)$  and  $HS_m^n(Y)$  are homeomorphic, but X and Y are not.

## Theorem

If X is a contractible locally connected continuum without free arcs and  $n, m \in \mathbb{N}$  such that  $n \geq m$ , then X does not have unique hyperspace  $HS_m^n(X)$ .

To illustrate this Theorem, take  $D_n$ ,  $D_m$  dendrites as constructed in [2, 2] with  $n, m \in \mathbb{N}-\{1,2\}$  and  $n \neq m$ . Observe that these dendrites are not homeomorphic, however  $HS_m^n(D_n)$  and  $HS_m^n(D_m)$  are, since they are Hilbert cubes ([3, 7.1.10]).

### Theorem

Let X be an almost meshed dendrite and  $r, m, n \in \mathbb{N}$  such that  $n \geq m$  and  $r \geq n$ . Suppose there exists a contractible closed subset B of  $\mathcal{P}(X)$  and pairwise disjoint nonempty open subsets  $U_1, \ldots, U_{r+1}$  of X such that  $X - B = \bigcup_{i=1}^{r+1} U_i$  and for each  $i \in \{1, 2, \ldots, r+1\}, B \subset_X (U_i)$ . Then X does not have unique hyperspace  $HS_m^n(X)$ .

An application of this result can be found in next section.

A continuum without unique hyperspace HS(X) but with unique hyperspace  $HS_1^2(X)$ 

# Example

Let  $m \in \mathbb{N}$  and

 $Z_3 = ([-1, 1] \times \{0\}) \cup \left(\bigcup_{m \ge 2} \left\{-\frac{1}{m}\right\} \times \left[0, \frac{1}{m}\right]\right) \cup \left(\bigcup_{m \ge 2} \left\{\frac{1}{m}\right\} \times \left[0, \frac{1}{m}\right]\right)$ 

The following conditions are satisfied

- $Z_3$  is an almost meshed locally connected continuum without unique hyperspace  $HS(Z_3)$ .
- The continuum  $Z_3$  has unique hyperspace  $HS_1^2(Z_3)$ .

To prove the first part, notice that  $\mathcal{P}(Z_3) = \{(0,0)\}$  and  $Z_3$  is not a meshed continuum. Using last Theorem, it follows that  $Z_3$  does not have unique hyperspace  $HS(Z_3)$ .

Recall that

 $\mathcal{G}(Z_3) = \{x \in Z_3 : x \text{ has a neighborhood in } Z_3 \text{ which is a finite graph}\},$ 

Consider a homeomorphism  $\phi: \mathcal{G}(Z_3) \to \mathcal{G}(Y)$ .

Let

$$\mathcal{G}_{L}(Z_{3}) = ([-1,0) \times \{0\}) \cup \left[ \bigcup_{m \geq 2} \left\{ -\frac{1}{m} \right\} \times \left[ 0, \frac{1}{m} \right],$$

$$\mathcal{G}_{R}(Z_{3}) = (0,1] \times \{0\}) \cup \left[ \bigcup_{m \geq 2} \left\{ \frac{1}{m} \right\} \times \left[ 0, \frac{1}{m} \right] \right]$$

Observe that  $\mathcal{G}(Z_3) = \mathcal{G}_L(Z_3) \cup \mathcal{G}_R(Z_3)$ . Let  $\phi(\mathcal{G}_L(Z_3)) = \mathcal{G}_L(Y)$  and  $\phi(\mathcal{G}_R(Z_3)) = \mathcal{G}_R(Y)$ . Therefore,  $\mathcal{G}(Y) = \mathcal{G}_L(Y) \cup \mathcal{G}_R(Y)$ . Let  $\theta_L \in_Y (\mathcal{G}_L(Y)) - \mathcal{G}_L(Y)$  and  $\theta_R \in_Y (\mathcal{G}_R(Y)) - \mathcal{G}_R(Y)$ . Then,  $\theta_L = \theta_R$ .



Figure 1: $Z_3$ 



Let  $\theta_h \in cl_Y(\mathcal{G}(Y)) - \mathcal{G}(Y)$ . We may define a function  $\Phi: Z_3 \to Y$  given by

$$\Phi(z) = \begin{cases} \phi(z), & \text{if } z \in \mathcal{G}(Z_3), \\ \theta_h, & \text{if } z = \theta. \end{cases}$$

Thus,  $\Phi$  is a homeomorphism from  $Z_3$  into Y.

### References

- [1] F. Vázquez-Juárez J.G. Anaya, D. Maya.
- The hyperspace  $hs_m^n(x)$  for a finite graph x is unique. Topology Appl., 157:428–439, 2018.
- [2] W.J. Charatonik J.J. Charatonik.
  - Dendrites.

    Aportaciones Mat. Comun., 22:227–253, 1998.
- [3] S. Macías.
- On the n-fold hyperspace suspension of continua. Topology Appl., 138:125–138, 2004.

#### Contact Information

- Email: gerareg09@gmail.com
- Phone: +52 811 666 2888