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Preface

Following the idea of the previous three volumes, the present one contains
original research works and surveys presented in the 4th Colloquium of the
series on Approximation Theory and Related Topics, Faculty of Physics and
Mathematics at Benemérita Universidad Autónoma de Puebla.

The meeting was held during five sessions: 1st in November 05–07, 2009,
2nd in December 02–05, 2009; 3th in January 03–05, 2010, 4th in February
04–05, 2010 and 5th in February 25–26, 2010.

The monographs in the serial are mainly useful for graduate students
as well as researchers in other areas. With this aim at hands we collect
here several talks of the Colloquium and emphasize that all papers in the
volume, the ones of the editors included, have been submitted to usual referee
procedure.

We would like to thank the University of Puebla, the Organizing Com-
mittee of the Colloquium, their participants, the authors, the anonymous
referees and all who make possible the edition of this book.

Jorge Bustamante González
Slaviša V. Djordjević

Miguel A. Jiménez Pozo
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Self-adjoint Riesz projections for
Hilbert space operators

B. P. Duggal1 and S. V. Djordjević2

Abstract: If a Hilbert space operator T is polar of order k for some
k ∈ N at a point λ ∈ isoσ(T ) and (λ− T )−k(0) ⊆ ((λ− T )∗)−k(0),
then the Riesz projection PT (λ) associated with λ is self-adjoint.

AMS Subject Classification: Primary: 47B20, 47A10, 47A11.

Keywords and phrases: Hilbert space, spectrum, isolated
point, Riesz projection, self-adjoint.

2.1 Introduction

The Riesz projection , or the spectral projection, PT (λ) associated with an
isolated point λ of the spectrum σ(T ), λ ∈ isoσ(T ), of a Banach space

18 Redwood Grove, Northfield Avenue, Ealing, London W5 4SZ,United Kingdom, e-
mail: bpduggal@yahoo.co.uk

2Faculta de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de
Puebla, e-mail: slavdj@fcfm.buap.mx
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operator T ∈ B(X) is the idempotent

PT (λ) =
1

2πi

∫

Γλ

(µ− T )−1dµ,

where µ−T = µI−T and Γλ is a positively oriented simple closed path with
λ, and no other point of σ(T ), in its interior. We recall, [10] and [13], that
the range of PT (λ), PT (λ)X, equals the quasinilpotent part H0(λ−T ) = {x ∈
X : limn→∞ ||(λ− T )nx|| 1n = 0} of λ−T and the kernel of PT (λ), PT (λ)−1(0),
coincides with the analytic core K(λ− T ),

K(λ− T ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for which

x = x0, (λ− T )xn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, · · · },
of λ − T . Here, for λ ∈ isoσ(T ), H0(λ − T ) and K(λ − T ) are closed
hyperinvariant subspaces of T such that (λ − T )−q(0) ⊆ H0(λ − T ) for all
q = 0, 1, 2, ... and (λ− T )K(λ− T ) = K(λ− T ).

Let H denote an infinite dimensional complex Hilbert space, B(H) the
algebra of operators on H, and let T ∈ B(H). The problem of determining
points λ ∈ isoσ(T ) for which the Riesz projection PT (λ) is self adjoint has
been considered by a number of authors in the recent past (see [2], [4], [8],
[11], [12], [14], [15], and [18]). Thus, if T ∈ B(H) is hyponormal, then PT (λ)
is self-adjoint for every λ ∈ isoσ(T ) [14]; more generally, if T ∈ B(H) is
p-hyponormal (0 < p ≤ 1) or M -hyponormal, then PT (λ) is self-adjoint for
every λ ∈ isoσ(T ) [2], [4]. Again, if T ∈ B(H) is w-hyponormal or (p, q)-
quasihyponormal or quasi-class A or paranormal, then PT (λ) is self-adjoint
for every non-zero λ ∈ isoσ(T ) ([4], [8], [11], [12], [15] and [16]). (All these
classes of operators are defined in the sequel.) In general, if T ∈ B(H) is
totally hereditarily normaloid (in the sense of [3]), then the points λ ∈ σ(T )
are (simple poles of the resolvent, hence) eigen-values of T ; if such an eigen-
value is normal, i.e. the corresponding eigen-space is reducing, then PT (λ) is
self-adjoint [4] (Corollary 2.1). In the following, we generalize this result to
prove that “if a point λ ∈ isoσ(T ) is a pole (of some order k) of the resolvent of
T ∈ B(H) and if T satisfies the property that (T −λ)−k(0) ⊆ (T − λ)∗−k(0),
then the Riesz projection associated with λ is self-adjoint".
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Recall [9] (p. 248] that an operator T ∈ B(X) is polar (resp., simply
polar) at λ ∈ isoσ(T ) if and only if it has a Drazin inverse S ∈ B(X) for
which, with k ∈ N (resp., k = 1),

(λ− T )kS(λ− T )− (λ− T )k = 0 = (λ− T )S − S(λ− T ), S(λ− T )S = S :

S is unique and double commutes with T , and the spectral projection PT (λ)
associated with λ is then given by

PT (λ) = I − S(λ− T ) = I − (λ− T )S.

In this note we establish when PT (λ) is self adjoint. We say that an operator
A ∈ B(H) has property (N), the normal eigenvalue property, at 0 if there is
inclusion

A−1(0) ⊆ A∗−1(0).

Apparently, if A satisfies property (N) at 0, then A−1(0) reduces A and

σ(A|A−1(0)) = {0}.

2.2 Results
As preliminaries, we prove:

Lemma 2.2.1 If Q = Q2 ∈ B(H), then for Q to be self-adjoint it is suffi-
cient that Q or I −Q satisfies property (N) at 0.

Proof. If Q = Q2 satisfies property (N) at 0, then

Q(I −Q)x = 0 =⇒ Q∗(I −Q)x = 0

for all x ∈ H. Hence
Q∗ = Q∗Q =⇒ Q = Q∗.

Similarly, if I −Q satisfies property (N) at 0, then

(I −Q)Qx = 0 =⇒ (I −Q)∗Qx = 0 for all x ∈ H =⇒ Q = QQ∗.

Once again, Q = Q∗.¤
Evidently, the condition of the lemma is necessary too.
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Lemma 2.2.2 T ∈ B(H) is polar (of some order k ∈ N) if and only if T ∗

is polar (of order k).

Proof. This is an immediate consequence of the fact that if λ−T is Drazin
invertible with Drazin inverse S, then

(λ− T )kS(λ− T )− (λ− T )k = 0 = (λ− T )S − S(λ− T ), S(λ− T )S = S

⇐⇒ (λ− T )∗S∗ = S∗(λ− T )∗, (λ− T )∗kS∗(λ− T )∗ − (λ− T )∗k = 0,

S∗(λ− T )∗S∗ = S∗. ¤

The following theorem subsumes most of the extant results on the de-
termination of points λ ∈ isoσ(T ) for which PT (λ) is self-adjoint: in the se-
quel,we shall apply the theorem to a wide variety of classes of Hilbert space
operators to recover these results. We assume, without loss of generality, in
the following that λ = 0, and write PT for PT (0).

Theorem 2.2.1 Let T ∈ B(H). If 0 ∈ isoσ(T ), then the following are
equivalent:

(i) T is polar of order k and T k satisfies property (N).
(ii) P ∗

T = PT and PT H = T−k(0).
(iii) P ∗

T = PT and P−1
T (0) = T kH.

Proof. (i) =⇒ (ii). If T is polar of order k and S denotes its Drazin
inverse, then PT = I − ST , I − PT is idempotent and

PT H = (I − ST )H = T−k(0).

Since, Lemma 2.2, T polar implies T ∗ polar (of the same order k), the same
(also) holds with T ∗ in place of T and S∗ in place of S, so that

PT ∗H = (I − S∗T ∗)H = (T k)∗−1(0).

This, taken along with the hypothesis that T satisfies property (N), implies

(I − PT ∗)
−1(0) = PT ∗H = (T k)∗−1(0) = T ∗−k(0)

⊇ T−k(0) = (T k)−1(0) = PT H = (I − PT )−1(0),
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which is property (N) for I − PT . Hence, Lemma 2.1, PT = P ∗
T , giving us

(ii).
(ii) =⇒ (iii). If (ii) is satisfied, then

H = PT H ⊕ (I − PT )H = T−k(0)⊕ P−1
T (0)

=⇒ T kH = 0⊕ T kP−1
T (0) = P−1

T (0).

Since already P ∗
T = PT , (ii) =⇒ (iii).

(iii) =⇒ (i). If (iii) is satisfied, then

P−1
T (0) = T kH =⇒ {0} = PT T kH =⇒ PT H = T−k(0)

=⇒ H = PT H ⊕ P−1
T (0) = T−k(0)⊕ T kH,

i.e., T is polar of order k at 0. Bringing in the fact that PT is self-adjoint,
we also have that

P ∗
T H = (T ∗k)−1(0) = T ∗−k(0)

= PT H = (T k)−1(0) = T−k(0).

Thus (iii) =⇒ (i).¤

2.3 Applications
We apply now Theorem 2.3 to classes of Hilbert space operators; the inter-
ested reader is referred to [7] and [4] for further information on these classes
of operators.

(a). If T ∈ B(H) is either hyponormal (|T ∗|2 ≤ |T |2), or p-hyponormal for
some 0 < p ≤ 1 (|T ∗|2p ≤ |T |2p), or log-hyponormal (log |T ∗|2 ≤ log |T |2), or
M -hyponormal (||(T −λ)∗x||2 ≤ M ||(T −λ)x||2 for every x ∈ H, all complex
λ and some M ≥ 1), or totally paranormal (||(T − λ)x||2 ≤ ||(T − λ)2x||||x||
for every x ∈ H and complex λ), or totally ∗-paranormal (||(T − λ)∗x||2 ≤
||(T − λ)2x||||x|| for every x ∈ H and complex λ), then T is simply polar
and (T − λ)−1(0) = (T − λ)∗−1(0) for every λ ∈ isoσ(T ). Hence the Riesz
projection PT (λ) is self-adjoint for every λ ∈ isoσ(T ) for all such T (see also
[2], [4] and [14]).
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(b). If T ∈ B(H) is either w-hyponormal (|T̃ ∗| ≤ |T | ≤ ˜|T |, where,
for the polar decomposition T = U |T | of T , T̃ = |T | 12 U |T | 12 ), or of class
A (|T |2 ≤ |T 2|), or quasi-class A (T ∗(|T 2| − |T |2)T ≥ 0), or paranormal
(||Tx||2 ≤ ||T 2x||||x|| for all x ∈ H), or ∗-paranormal (||T ∗x||2 ≤ ||T 2x||||x||
for all x ∈ H), then T is simply polar at every λ ∈ isoσ(T ) and (T−λ)−1(0) ⊆
(T − λ)∗−1(0) for every non-zero λ ∈ isoσ(T ). Hence the Riesz projection
PT (λ) is self-adjoint for every 0 6= λ ∈ isoσ(T ) for all such T (see also [4],
[8], [11] and [16]).

(c). If T ∈ B(H) is (p, k)-quasihyponormal, T ∗k(|T |2p−|T ∗|2p)T k ≥ 0, for

0 < p ≤ 1 and some positive integer k, then T =

(
T1 X
0 T2

)(
T kH

T ∗−k(0)

)
,

where T1 ∈ A and T2 is k-nilpotent [12]. (p, k)-quasihyponormal operators
T are simply polar at points 0 6= λ ∈ isoσ(T ) and k-polar at 0 ∈ isoσ(T ).
Furthermore, the inclusion (T − λ)−1(0) ⊆ (T − λ)∗−1(0) holds for every
non-zero λ ∈ isoσ(T ). Hence the Riesz projection PT (λ) is self-adjoint for
every 0 6= λ ∈ isoσ(T ) and all (p, k)-quasihyponormal T . The inclusion
(T − λ)−1(0) ⊆ (T − λ)∗−1(0) fails for λ = 0. To see this, let T have
the upper triangular representation above, where T1 ∈ A is invertible; then
T−k(0) = {x1 ⊕ x2 : x1 = T−1

1 Xx2} and T ∗−k(0) = {0 ⊕ x2}. Evidently,
PT (0) 6= P ∗

T (0) (see also [4], [12] and [15]).
(d). An operator T ∈ B(H) is normaloid if its norm equals its spec-

tral radius; T is totally hereditarily normaloid, T ∈ THN, if every part
of T (i.e., its restriction to a closed invariant subspace), as well as the in-
verse of every invertible part (whenever it exists), is normaloid. The class
of THN operators properly contains the class of paranormal (hence also,
hyponormal, p-hyponormal, w-hyponormal and class A) operators, but is
properly contained in the class of normaloid operators (see [3]). THN op-
erators T are simply polar at every λ ∈ isoσ(T ) [3], but may fail to satisfy
(T − λ)−1(0) ⊆ (T − λ)∗−1(0). However, if (T − λ)−1(0) ⊆ (T − λ)∗−1(0) at
a point λ ∈ isoσ(T ) for a THN operator T , then the Riesz projection PT (λ)
is self-adjoint [4] (Corollary 2.1).

(e). An operator T ∈ B(H) is a wF (p, r, q) operator for some p > 0,
r ≥ 0 and q ≥ 1 if (|T ∗|r|T |2p|T ∗|r) 1

q ≥ |T ∗| 2(p+r)
q and |T |2(p+r)(1− 1

q
) ≥
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(|T |p|T ∗|2r|T |p)1− 1
q . For an operator T ∈ wF (p, r, q) with polar decom-

position T = U |T , the operator Tp,r = |T |pU |T |r is m-hyponormal for
0 < m = min{ 1

q
, max{ p

p+r
, 1 − 1

q
}} [17]. Furthermore, T is subscalar if and

only if Tp,r is subscalar [18] (Lemma 3.3). Since m-hyponormal operators
are subscalar [6], operator T ∈ wF (p, r, q) are subscalar, and hence satisfy
the property that H0(T − λ) = (T − λ)−t(0) for some integer t ≥ 0 and all
complex λ [1] (p 175). Consequently, such operators T are polar at points
λ ∈ isoσ(T ) [5] (Example 2.1). Finally, since the non-zero eigenvalues of a
wF (P, r, q) operator are normal eigenvalues of the operator [17], the Riesz
projection corresponding to a non-zero isolated point of the spectrum of a
wF (p, r, q) operator is self-adjoint [19] (Theorem 2.1).

It is our pleasure to thank Robin Harte for his help with the preparation
of this note.
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Upper estimates for one-sided
trigonometric approximation

Jorge Bustamante1

Abstract We present a constructive proof for one-sided approxi-
mation by trigonometric polynomials of a bounded function in the
Lp norm. The estimates are given in term of the average moduli
of smoothness. The only new results here are the estimates of the
constants related with the errors.:

Keywords: One-sided approximation, rate of convergence, trigono-
metric approximation, moduli of smoothness.

1Faculta de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de
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3.1 Introduction
Throughout the paper Lp[0, 2π] (1 ≤ p < ∞) is the family of all real

2π-periodic function f with the usual norm

‖f‖p =

(∫ 2π

0

| f(t) |p dt

)1/p

.

and Tn is the family of all trigonometric polynomials of degree not greater
than n.

For a function f ∈ Lp[0, 2π] bounded from below (above), the best lower
(upper) trigonometric approximation of order n is defined by

E−
n (f)p = inf { ‖T − f‖p : T ∈ Tn, f ≥ T a.e}

(E+
n (f)p = inf { ‖T − f‖p : T ∈ Tn, T ≥ f a.e.}).

These one-sided approximations in Lp spaces have been studied by dif-
ferent authors.

As usual, the difference of order r with step h is defined by

∆r
hf(x) =

r∑

k=0

(−1)k

(
r

k

)
f (x + kh) .

For a bounded 2π-periodic function f we consider the local modulus

ωr(f, x, t) = sup {| ∆r
hf(y) | : y, y + rh ∈ [x− rt, x + rt], | h |≤ t}. (3.1)

For 1 ≤ p < ∞ we set

τk(f, t)p = ‖ωk(f, ·, t)‖p =

(∫ 2π

0

|ωk(f, x, t)|p dx

)1/p

. (3.2)

Moduli of smoothness similar to (3.2) have been consider by several au-
thors (for instace, see [1], [2], [3], [4] and[5]). In particular Popov and An-
dreev proved that for each r, there exists a constant C(r) such that, for any
bounded 2π-periodic function f

E±
n (f)p ≤ C(r) τr

(
f,

2π

n

)

p

. (3.3)
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Some of the known proofs for these kind of inequalities use splines as an
intermediate approximation (see [1]). In [5] Sadrin used the Jackson kernels
to construct polynomials for one sided approximation. He found an upper
estimate for one-sided approximation with a modulus similar to (3.2), but
without the condition | h |≤ t in (3.1). In this paper we will refine some of
the arguments used by Sadrin to obtain an estimate of the constant C(r) in
(3.3). In particular, we show that in (3.3) we can take

C(r) =
75

32
πr+4.

In Section 3.2 we present some auxiliary result. The main theorem is
proved in Section 3.3.

3.2 Some properties of the moduli
Proposition 3.2.1 Let f be a 2π-periodic bounded function and fix r ∈ N.
Then for any u, t ∈ [0, π] and k, m ∈ N

(i) For any t > 0, ωk(f, ·, t) is a 2π-periodic function.
(ii) If 0 < u < t and x ∈ [−π, π], then

ωr(f, x, u) ≤ ωr(f, x, t).

(iii) If u, t, x ∈ [−π, π], then

| ∆r
tf(x) |≤ ωr(f, x + t, | u |) + ωr(f, x + sign(ut)u, | t |) (3.4)

and
ωr(f, x, | t |) + ωr(f, x + sign(ut) u, | t |) + ωr(f, x + t, | u |)

≤ 3ωr(f, x, 2 | t |) + 2ωr(f, x, 2 | u |). (3.5)

Proof. (i) and (ii) follows directly from the definition.
(iii) Case 1. Assume first that | t |≤| u |. If t ≥ 0, then

x + t− r | u |≤ x− (r − 1) | u |≤ x ≤ x + rt ≤ x + t + r | u | .
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Thus
| ∆r

tf(x) | ≤ ωr(f, x + t, | u |).
If t < 0, then

x + t− r | u |≤ x + rt ≤ x ≤ x + t + r | u | .

Thus
| ∆r

tf(x) | ≤ ωr(f, x + t, | u |).
Case 2. Now, assume that | u |<| t |.
If t ≥ 0 and 0 ≤ u, then

x + u− r | t |≤ x− (r − 1) | t |≤ x ≤ x + rt ≤ x + u + r | t | .

Thus
| ∆r

tf(x) | ≤ ωr(f, x + u, | t |).
If t ≥ 0 and u < 0, then

x− u− r | t |≤ x− (r − 1) | t |≤ x ≤ x + rt ≤ x− u + r | t | .

Thus
| ∆r

tf(x) | ≤ ωr(f, x− u, | t |).
If t < 0 and u ≥ 0, then

x− u− r | t |≤ x + rt ≤ x ≤ x− u + r | t | .

Thus
| ∆r

tf(x) | ≤ ωr(f, x− u, | t |).
If t < 0 and u < 0, then

x + u− r | t |≤ x + rt ≤ x ≤ x + u + r | t | .

Thus
| ∆r

tf(x) | ≤ ωr(f, x + u, | t |).
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(iv) Case 1. Assume | t |≤| u |. If

x + t− r | u | ≤ y, y + rh ≤ x + t + r | u |,

then
x− 2r | u | ≤ y, y + rh ≤ x + 2r | u | .

Therefore
ωr(f, x + t, | u |) ≤ ωr(f, x, 2 | u |)

If

x + sign(ut) u− r | t | ≤ y, y + rh ≤ x + sign(ut) u + r | t |,

then
x− 2r | u | ≤ y, y + rh ≤ x + 2r | u | .

Therefore
ωr(f, x + sign(ut) u, | t |) ≤ ωr(f, x, 2 | u |)

Case 2. Now, assume that | u |<| t |.
If

x + t− r | u | ≤ y, y + rh ≤ x + t + r | u |,
then

x− 2r | t | ≤ y, y + rh ≤ x + 2r | t | .
Therefore

ωr(f, x + t, | u |) ≤ ωr(f, x, 2 | t |)
If

x + sign(ut) u− r | t | ≤ y, y + rh ≤ x + sign(ut) u + r | t |,

then
x− 2r | t | ≤ y, y + rh ≤ x + 2r | t | .

Therefore
ωr(f, x + sign(ut) u, | t |) ≤ ωr(f, x, 2 | t |)
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Proposition 3.2.2 Let f be a 2π-periodic bounded function and fix r ∈ N.
If x ∈ [−π, π], t > 0 and n ∈ N, then

ωr(f, x, nt) ≤ nr max
−n≤k≤n

ωr(f, x + krt, t)

and, for p ∈ [1,∞),

τr(f, nt)p ≤ (2n + 1)nr τr(f, t)p.

Proof. Fix ε > 0, y and h such that | h |≤ nt,

x− rnt ≤ y, y + rh ≤ x + rnt,

and ωr(f, nt) < ε+ | ∆r
hf(y) |.

We will consider the case h > 0. Set h = ns. It can be proved (by
induction with respect to r) that

∆r
nsf(y) =

n−1∑
i1=0

· · ·
n−1∑
ir=0

∆r
sf(y + s(i1 + i2 + · · ·+ ir))

In order to estimate ∆r
sf(y + s(i1 + i2 + · · ·+ ir)), if s > 0, fix an integer

k such that

x + krt ≤ y + s

r∑
j=1

ij < x + r(k + 1)t.

Since

x− rnt ≤ y ≤ y + s

r∑
j=1

ij ≤ y + sr(n− 1) = y + rh− sr < x + rnt,

and one has −n ≤ k < n.
With k selected as above we obtain

x + r(k + 1)t− rt = x + krt ≤ y + s

r∑
j=1

ij < y + s

r∑
j=1

ij + rs
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≤ x + (k + 1)rt + rt.

Therefore

| ∆r
sf(y + s(i1 + i2 + · · ·+ ir)) |≤ ωr(f, x + r(k + 1)t, t).

If s < 0, then

x− rnt < y + rn− sr ≤ y + sr(n− 1) ≤ y + s

r∑
j=1

ij ≤ y ≤ x + rnt.

Thus we can fix an integer k (−n ≤ k < n), such that

x + krt < y + s

r∑
j=1

ij ≤ x + r(k + 1)t.

In this case

x + krt− rt ≤ y + s

r∑
j=1

ij + rs < y + s

r∑
j=1

ij ≤ x + (k + 1)rt.

Therefore

| ∆r
sf(y + s(i1 + i2 + · · ·+ ir)) |≤ ωr(f, x + rkt, t).

From the arguments give above one has

ωr(f, x, nt) ≤ ε + nr max
−n≤k≤n

ωr(f, x + krt, t),

and it is sufficient to prove the first inequality.
For the second we have

τr(f, nt)p =

(∫ π

−π

(ωr(f, x, nt))p dx

)1/p

≤ nr

(∫ π

−π

(
n∑

k=−n

ωr(f, x + krt, t)

)p

dx

)1/p
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≤ nr

n∑

k=−n

(∫ π

−π

(ωr(f, x + krt, t))p dx

)1/p

= (2n + 1)nr

(∫ π

−π

(ωr(f, x, t))p dx

)1/p

.¤

3.3 Main result

For s,m ∈ N the Jackson kernel is defined by

Is,m(t) = γs,m

(
sin(mt/2)

sin(t/2)

)2s

where γs,m is taken from the condition
∫ π

−π

Is,m(t)dt = 1.

It is known that Is,m is a trigonometric polynomial of degree s(m− 1).

Theorem 3.3.1 If 1 ≤ p < ∞ and f ∈ M , then for any r, n ∈ N one has

E−
n (f)p ≤ 75

32
πr+4τr

(
f,

2π

n

)

p

.

Proof. Let s the least integer satisfying r + 3 ≤ 2s and set m = 1 + [n/s]
([z] is the integer part of z).

Define

Tn(f, x) = −
∫ π

−π

∫ π

−π

U(f, x, t, u)Ir,m(t)Ir,m(u)dtdu.

where

U(f, x, t, u) = ωk(f, x + sign(ut) u, | t |) + ωk(f, x + t, | u |) + ∆r
tf(x)− f(x).
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Notice that Tn ∈ Ts(m−1) and s(m− 1) ≤ n.
Taking into account (3.4) and (3.5) we know that

0 ≤ f(x)− Tn(x)

=

∫ π

−π

∫ π

−π

[∆r
tf(x) + ωr(f, x + sign(ut) u, | t |)

+ωr(f, x + t, | u |)}Ir,m(t)Ir,m(u)dtdu

≤
∫ π

−π

∫ π

−π

[ωr(f, x, | t |) + ωr(f, x + sign(ut) u, | t |)

+ωr(f, x + t, | u |)}Ir,m(t)Ir,m(u)dtdu

≤
∫ π

−π

∫ π

−π

[3ωr(f, x, 2 | t |) + 2ωr(f, x, 2 | u |)}Ir,m(t)Ir,m(u)dtdu

= 10

∫ π

0

ωr(f, x, 2t)Ir,m(t)dt.

Taking the Lp-norm, changing the order of integration and using Prop.
3.2.2, we obtain

E−
n (f)p ≤ 10

∫ π

0

τr(f, 2t)pIr,m(t)dt

≤ 10τr

(
f,

2π

n

)

p

∫ π

0

(
3 +

2nt

π

)(
1 +

nt

π

)r

Ir,m(t)dt.

Let us estimate the last term. Taking into account that 2v/π ≤ sin v, for
v ∈ (0, π/2], one has

∫ π

−π

(
sin(mt/2)

sin(t/2)

)2s

dt = 2

∫ π

0

(
sin(mt/2)

sin(t/2)

)2s

dt

≥ 2

∫ π/m

0

(
(2/π)(mt/2)

t/2

)2s

dt = 2

(
2m

π

)2s
π

m
.

Hence
γs,m ≤

( π

2m

)2s m

2π
. (3.6)
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Since r ≤ 2s− 3, for 1 ≤ i ≤ r + 1,
∫ π

0

ti
(

sin(mt/2)

sin(t/2)

)2s

dt

=

∫ π/m

0

ti
(

sin(mt/2)

sin(t/2)

)2s

dt +

∫ π

π/m

ti
(

sin(mt/2)

sin(t/2)

)2s

dt

≤
∫ π/m

0

ti
(

m sin(t/2)

sin(t/2)

)2s

dt +

∫ π

π/m

ti
(π

t

)2s

dt

≤ m2s

i + 1

( π

m

)i+1

+
π2s

2s− i− 1

(m

π

)2s−i−1

≤ 3

2
m2s−i−1πi+1.

From the last inequality and (3.6) we obtain
∫ π

0

tiIs,m(t)dt ≤
( π

2m

)2s m

2π

3

2
m2s−i−1πi+1 =

(π

2

)2s 3

4

πi

mi
.

Then, ∫ π

0

(
3 +

2mt

π

)(
1 +

mt

π

)r

Is,m(t)dt

=
r∑

i=0

(
r

i

) ∫ π

0

(
3 +

2mt

π

)(
mt

π

)i

Is,m(t)dt

= 3
r∑

i=0

(
r

i

) (m

π

)i
∫ π

0

tiIs,m(t)dt + 2
r∑

i=0

(
r

i

) (m

π

)i+1
∫ π

0

ti+1Is,m(t)dt

≤ 3

2
+

3

4

(π

2

)2s
(

3
r∑

i=1

(
r

i

) (m

π

)i πi

mi
+ 2

r∑
i=0

(
r

i

) (m

π

)i+1 πi+1

mi+1

)

=
3

2
+

3

4

(π

2

)2s

(52r − 3) ≤ 3

2
+

3

4

(π

2

)r+4

(52r − 3) ≤ 15

64
πr+4,

since 2s ≤ r + 4.
From the arguments given above we obtain

E−
n (f)p ≤ 75

32
πr+4τr

(
f,

2π

n

)

p

.¤
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4

Where algebra and topology
meet: a cautionary tale

Robin Harte1 and Dragana Cvetković- Ilić2

Abstract: In a sense the Kuratowski conditions reduce topology
to algebra. In another sense a simple property of Banach algebras
ushers in a curious topology for rings.

4.1 Algebra
A Banach algebra is many things: a failed C∗ algebra, an over specialised
locally convex algebra: but first and foremost a ring - it has addition and
multiplication, which fit together like ordinary arithmetic. If you will forgive
us, our rings always have identity 1 - multiplicatively neutral:

1.1 1x = x = x1 .

Similarly the zero 0 is additively neutral:

1.2 0 + x = x = x + 0 .

1Trinity College Dublin, email: rharte@maths.tcd.ie
2University of Niš, email: gagamaka@ptt.yu
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So you can imagine 1 and 0 meeting at conferences, complaining how nobody
seems to appreciate them, think they do nothing. Which is of course to
underestimate zero: when she is turned loose on the multiplication

1.3 0x = 0 = x0 :

total loss of information, there is no way back when you have been multiplied
by zero. Now everything in a ring A must choose between 0 and 1 ; the friends
of 1 , the best friends of 1 , are known as the invertibles:

1.4 yx = 1 = xy .

Since all those inverses are unique - no single x can have two different inverses
y - we can give them names, and write - pace Oliver Heaviside -

1.5 y = x−1 .

We would also like to write

1.6 A−1 ⊆ A

for the set of those invertibles, known as the invertible group - you can easily
write down the inverse of the product of two invertibles,

1.7 (vu)−1 = u−1v−1 ,

the inverse of the inverse of an invertible, and the inverse of the identity
So that is the ring theory: a linear algebra also admits multiplication by

ordinary numbers. There are real and there are complex algebras: thanks to
the identity the scalars are in effect a subring.

4.2 Topology
So that is the algebra: the topology is smuggled in through the concept
of length. Everything x ∈ A has its “norm” ‖x‖ ∈ R: this is a positive
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real number, possibly zero (but only for x = 0), and subject to the triangle
inequality:

2.1 ‖x + y‖ ≤ ‖x‖+ ‖y‖ ;

analagously

2.2 ‖xy‖ ≤ ‖x‖ ‖y‖ ,

and ‖1‖ = 1. Length brings distance: the distance from x to y is the length
of y − x,

2.3 dist(x, y) = ‖y − x‖ .

Distance in turn brings topology: limits, convergence and continuity. We
shall document the neighbourhoods of a point, and the closure of a subset.
Specifically U ⊆ A is to be a “neighbourhood” of x ∈ A, written U ∈ Nbd(x),
if it completely insulates it from the outside world: there has to be a (strictly)
positive real number ε > 0 for which

2.4 dist(x, x′) < ε =⇒ x′ ∈ U .

Now x ∈ A is to be in the “closure” of K ⊆ A precisely when the complement
of K is not a neighbourhood of x: x ∈ cl(K) means that, no matter how
strict your tolerance ε > 0 there will be x′ ∈ A for which

2.5 x ∈ K and dist(x, x′) < ε ,

Closure obeys the Kuratowski axioms:

[Ku0] cl(∅) = ∅ ;

[Ku1] K ⊆ cl(K) ;

[Ku2] K ⊆ H =⇒ cl(K) ⊆ cl(H) ;

[Ku3] cl(cl(K)) ⊆ cl(K) ;

[Ku4] cl(K∪H) ⊆ cl(K)∪cl(H) .
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4.3 Neumann series
We are nearly at the end of the flatpack labelled “Banach algebra”; there is
a sort of guarantee at the bottom of the box which reads

3.1 anything that deserves to converge does converge .

Formally if for every neighbourhood U ∈ Nbd(0) there is N ∈ N for which

3.2 n ≥ m ≥ N =⇒ xn − xm ∈ U

then there is y ∈ A for which

3.3 n ≥ N =⇒ xn − y ∈ U .

We put this to work rather quickly. Suppose ‖x‖ < 1 : then on the one
hand [7], with no need for the guarantee, xn deserves to converge, and does
converge, to 0 :

3.4 xn → 0 as n →∞ .

For the same reason it is true [7], more delicately,

3.5 1 + x + x2 + . . . + xn deserves to converge .

Since evidently

3.6 (1− x)(1 + x + . . . + xn) = 1− xn+1 → 1− x0 = 1− 0 = 1 ,

it is clear that

3.7 1 + x + . . . + xn → y =⇒ (1− x)y = 1 = y(1− x) :

With the help of our guarantee (3.1) it follows

3.8 ‖x‖ < 1 =⇒ 1− x ∈ A−1 .

This simple observation is at the root of some of the simpler properties of a
Banach algebra. We extend its reach to a simple consequence of membership
of the closure of an arbitrary set K ⊆ A: if x ∈ cl(K) then

3.9 ∀y ∈ A , ∃x′ ∈ K : 1− y(x− x′) ∈ A−1.

3.10 Problem In a Banach algebra, is the condition (3.9) equivalent to x ∈
cl(K)?
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4.4 Algebraic closure
When you cannot establish an equality, you can always make a Definition:
in an arbitrary ring A declare x ∈ Cl(K) to be in the algebraic closure of
K ⊂ A iff (3.9) holds. If you feel that (3.9) looks a little “one sided”, do not
forget [7] the Jordan lemma:

4.1 1− y(x− x′) ∈ A−1 ⇐⇒ 1− (x− x′)y ∈ A−1 .

In return for such presumption, we are morally obliged to test (3.9) for Ku-
ratowski.

[Ku0], [Ku1] and [Ku2] are rather easy [3] and need not detain us; the
argument for [Ku3] says a lot about a certain kind of mathematical argument,
and also about the algebraic closure.

Towards [Ku3] therefore suppose x ∈ A is in the closure of the closure of
K ⊆ A: then if y ∈ A is arbitrary there is x′ in the closure of K for which

1− y(x− x′) ∈ A−1 invertible ,

and if z ∈ A is arbitrary there is x′′ in K for which

1− z(x′ − x′′) ∈ A−1 invertible .

Now - Edward de Bono Lateral Thinking moment - write something down:

1− y(x− x′′) = (1− y(x− x′))− y(x′ − x′′) .

Here this first term 1−y(x−x′) = u−1 is invertible, therefore can be divided
through:

1− y(x− x′′) = (1− y(x− x′))(1− uy(x′ − x′′)) .

At this point we look very hard at the provenance of x′′ ∈ K, which came
from z ∈ A. Choosing z = uy (method of undetermined coefficients!) gives

1− uy(x′ − x′′) = 1− z(x′ − x′′) = v−1 invertible :

thus
1− y(x− x′′) = u−1v−1 = (vu)−1 ∈ A−1 •
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4.5 Algebraic foreclosure
Unfortunately now we hit the buffers: we are unable to verify [Ku4]. Indeed
there is [3] a counterexample:

5.1 A = C2 ; K = {1} ×C ; H = {−1} ×C ; a = (2, 3)

gives

5.2 a ∈ Cl(K∪H) ; a /∈ Cl(K) ; a /∈ Cl(H) .

From this example it is clear that the solution of Problem 3.10 is negative.
In spite of this the “algebraic closure” is out there: for example

5.3 A−1
left ∩ Cl(A−1) = A−1 = A−1

right ∩ Cl(A−1) :

for if a ∈ A−1
left ∩ Cl(A−1

right) then there are a′ ∈ A and a′′ ∈ A−1
right for which

5.4 a′a = 1 ; 1− a′(a− a′′) ∈ A−1 ,

taking y = a′ in (3.9). This means firstly that a′′ ∈ A−1
right ∩A−1

left = A−1, and
secondly that a′ ∈ A−1

left ∩ A−1
right = A−1, giving finally a ∈ A−1 •

It then follows that for example

5.5 Cl(A−1
left) = A =⇒ A−1

right = A−1 = A−1
left .

Similar argument shows [6],[7] that anything in the closure of the invertibles
which has a generalized inverse also has an invertible generalized inverse, and
if it is in an abstract sense “Fredholm” then it is also [6],[7], in an abstract
sense, “of index zero”.

4.6 Rescue package
While the conditions [Ku0]− [Ku3] justify the epithet “closure”, in the sense
that for example the “convex hull” of a set of vectors is a kind of closure,
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a proper theory of limits really rests on [Ku4]. With hindsight we gave up
too soon when we settled for the definition (3.9); the proper version was a
whisker away:
Definition. In a ring A, the element x ∈ A will be said to be in the spectral
closure of the subset K ⊆ A, written x ∈ Cl(K), iff

6.1 ∀ finite J ⊆ A , ∃x′ ∈ K : 1− J(x− x′) ⊆ A−1 .

With this we get [Ku0]-[Ku3] and also [Ku4]. Indeed suppose x ∈ A is in the
closure of K∪H, and not in the closure of H: then there is (x′J) in K∪H for
which

6.2 1− J(x− x′J) ⊆ A−1 (J ∈ Finite(A)) .

There is also at least one finite subset L ⊆ A for which there does not exist
w ∈ H for which

6.3 1− L(x− w) ⊆ A−1 ,

This does not rule out the possibility that each individual y ∈ L satisfies
(3.9). But looking at J ∪ L, necessarily

x′J∪L ∈ K •
In effect (x′J) is a “generalized sequence”, and x′′J = x′J∪L a “generalized sub-
sequence”. While going to the extra trouble to replace (3.9) by (6.1) does not
materially alter the discussion of the norm closure in Banach algebras, it does
allow us to pass freely between “closure”, “interior” and “neighbourhood”, and
use the language of point set topology. Thus U ⊆ A is a neighbourhood of
0 ∈ A provided there exists finite J ⊆ A for which

6.4 1 + JU ⊆ A−1 ;

x = (xn) ∈ AN converges to y ∈ A provided that for every finite J ⊆ A there
is N ∈ N for which

6.5 n ≥ N =⇒ 1 + Jxn ⊆ A−1 .
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4.7 Housekeeping
For example this gives back the usual discrete topology on the ring of integers
Z:

7.1 K ⊆ Z =⇒ Cl(K) = K .

If A is a division ring then the closed sets are, apart from the whole space,
the finite sets: if K ⊆ A = A−1 ∪ {0} then

7.2 #K < ∞ =⇒ Cl(K) = K ; #K ≥ ∞ =⇒ Cl(K) = A .

Thus we do not get back the usual topology for real or complex scalars; in
this new environment the solution to Problem 3.10 remains negative. In a
general Banach algebra the norm topology is stronger than the algebraic: if
K ⊆ A then

7.3 cl(K) ⊆ Cl(K) .

Generally the closure of the single point is its coset modulo the radical: if
x ∈ A is arbitrary then

7.4 Cl({x}) = x + Rad(A) :

where

7.5 Rad(A) = {a ∈ A : 1− Aa ⊆ A−1} .

In particular it follows that for an arbitrary ring A

7.6 A separated ⇐⇒ A semi simple .

If A and B are rings then the cartesian product A × B = A ⊕ B is also a
ring, with coordinatewise addition and multiplication, and it is easily checked
that the algebraic closure on this product gives the cartesian product of the
topologies on the factor. In general addition and multiplication are jointly
continuous, from A × A to A, with respect to the spectral topology. The
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invertible group A−1 is an open set, and inversion z−1 : a 7→ a−1 is continuous
there:

7.7 A−1 = Int(A−1) .

Indeed for arbitrary x ∈ A−1

7.8 1− x−1(x− x′) ∈ A−1 =⇒ x′ ∈ A−1 .

Curiously enough if A is a “topological ring”, with separately continuous
multiplication, then the topological analogue of (7.7) is equivalent to the
comparison of topologies (7.3).

From (5.3) and (7.7) it follows that the topological boundary, relative
to the algebraic closure, of the invertible group is disjoint from the semi
invertibles A−1

left ∪ A−1
right.

4.8 Nearly invertibles
We shall describe elements of Cl(K) as being nearly in K ⊆ A: in particular
the nearly invertibles form the set

8.1 Cl(A−1) .

Evidently the nearly invertibles are closed under multiplication:

8.2 Cl(A−1)Cl(A−1) ⊆ Cl(A−1) .

By (5.3),

8.3 nearly invertible and semi invertible implies invertible .

Thus in particular, a nearly invertible implies a left-right consistent:, in the
sense [5] that for arbitrary b ∈ A

8.4 ab ∈ A−1 ⇐⇒ ba ∈ A−1 .
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Nearly invertibles with “generalized inverses” always have invertible general-
ized inverses: with

8.5 A∩ = {a ∈ A : a ∈ aAa}

and

8.6 A∪ = {a ∈ A : a ∈ aA−1a} ,

we have

8.7 A∩ ∩ Cl(A−1) ⊆ A∪ ,

with equality iff

8.8 A• ⊆ Cl(A−1) ,

where

8.9 A• = {a ∈ A : a2 = a} .

Indeed [5]
a = aa′a , b ∈ A−1 , 1− a′(a− b) = c−1 ∈ A−1

implies
a = (aa′)(bc) ∈ A•A−1 ⊆ A∪ ;

conversely
A∪ ⊆ A•A−1 = A−1A• .

4.9 Fredholm theory
A homomorphism T : A → B is by definition a mapping that respects
addition and multiplication, and for us preserves identity. It is easily checked
that if T : A → B is a homomorphism then

9.1 T (A) = B =⇒ T continuous .
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Since it we always have

9.2 T (A−1) ⊆ B−1 ,

homomorphisms T : A → B generate Weyl and Fredholm elements of the
departure ring A:

9.3 A−1 ⊆ A−1 + T−1(0) ⊆ T−1B−1 ⊆ A .

For example if A = B(X) is the bounded operators on a Banach space X
and T : A → B the Calkin homomorphism from A to B = A/J , with either
J = K(X) the compact operators or J = K0(X) the finite rank operators,
then

9.4 T−1B−1 = {a ∈ A : max(dim a−1(0), dim X/a(X)) < ∞}

gives back the classical “Fredholm operators”, with finite dimensional null
spaces and closed ranges of finite codimension, while

9.5 A−1 + T−1(0) = {a ∈ T−1B−1 : dim a−1(0) = dim X/a(X)}

gives back the Fredholm operators “of index zero”. If instead A = C(D) is
the continuous functions on the closed unit disc D ⊆ C, B = C(∂D) the
functions on the unit circle S = ∂D ⊆ C and T : A → B the restriction
mapping, then

9.6 T−1B−1 = {a ∈ A : a−1(0) ∩ ∂D = ∅}

consists of those functions on the disc which never vanish on the circle while

9.7 A−1 + T−1(0) = {a ∈ T−1B−1 : index(Ta) = 0}

consists of those whose restrictions have index or “winding number” zero. It
is plausible that

nearly invertible Fredholm ⇐⇒ Weyl :
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for this to work some restriction [11] is needed on T : A → B. If T has
inverse-closed range,

9.8 B−1 ∩ T (A) ⊆ T (A)−1 ,

then there is inclusion

9.9 Cl(A−1) ∩ T−1B−1 ⊆ A−1 + T−1(0) :

because

a ∈ T−1B−1 =⇒ ∃d ∈ A : {1− ad, 1− da} ⊆ T−1(0)

and
a ∈ Cl(A−1) =⇒ ∃c ∈ A−1 : 1− (a− c)d = e−1 ∈ A−1

giving

a = e(1− (a− c)d)a = e(1−ad)a+ ec(da−1)+ ec ∈ T−1(0)+T−1(0)+A−1 .

Conversely iff T has weakly Riesz [5] null space

9.10 1 + T−1(0) ⊆ Cl(A−1) ,

then there is inclusion

9.11 A−1 + T−1(0) ⊆ Cl(A−1) ∩ T−1B−1 :

because
A−1 + T−1(0) = A−1(1 + T−1(0)) ⊆ A−1Cl(A−1) .

Also necessary and sufficient for T−1(0) to be weakly Riesz is that it have
“stable rank zero”, in the sense

9.12 1 + T−1(0) ⊆ Cl(1 + T−1(0))−1 .
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4.10 Stable range
There is a property of rings which can be thought of as a non commutative
analogue of “topological dimension”, in that when specialized to the ring
C(X) it reflects the dimension of the topological space X. Roughly, for
Banach algebra, “dimension zero” says that the invertible group is (norm)
dense in the whole ring. A curious reduction property for “jointly invertible”
tuples intervenes in the following hybrid result: If

10.1 An ⊆ Clright(A
−n
right)

then for arbitrary (a, b) ∈ An × A there is implication

10.2 (a, b) ∈ A−n−1
left ⊆ An × A =⇒ (a− Anb) ∩ A−n

left 6= ∅ .

Here we are making a different definition of “closure” for the product An:
writing for x, y ∈ An

10.3 y · x =
n∑

j=1

yjxj

we declare for K ⊆ An that x ∈ Clright(K) iff

10.4 ∀ J ∈ Finite(An) , ∃ x′ ∈ K : 1− (x− x′) · J ⊆ A−1 .

Indeed suppose

a′ · a + b′b = 1 with a′ ∈ Clright(A
−n
right) ,

so that there are a′′, a′′′ ∈ An with

b′b = 1− a′ · a = d− a′′ · a with d ∈ A−1 , a′′ · a′′′ = 1 :

then d−1a′′ · (a + a′′′b′b) = d−1(a′′ · a + b′b) giving

a− cb = a′′′d ∈ A−n
left with c = −a′′′b′ •
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This is essentially Theorem 2.3 of [10]. When b = 0 it nearly gives back
(5.3). For a C* algebra A the condition (10.1), its norm analogue, and (10.2)
are [8] equivalent; in contrast when A is the disc algebra then (10.2) holds
([9] Theorem 1) with n = 1, while

10.3 cl(A−1) 6= A :

this makes it acutely interesting to know whether or not (10.1) holds.
Ara, Pedersen and Perera [1],[2] define a ∈ Cl∼left(K) to mean that for

arbitrary b ∈ A there is implication

10.4 (a, b) ∈ A−2
left ⊆ A2 =⇒ (a− Ab) ∩K 6= ∅ .

This is another kind of “algebraic closure”, and indeed satisfies the conditions
[Ku0]−[Ku3] but not [Ku4]. We believe that it admits a modification similar
to ours, if we instead define, for K ⊆ An,

a ∈ Cl∼left(K) ⊆ An ⇐⇒ ∀J ∈ Finite(A) : (a, J) ⊆ A−n−1
left

10.5 =⇒ ∃a′ ∈ K : a′ ∈
⋂

b∈J

(a− Anb) .

With this notation the implication (10.1)=⇒(10.2) says

10.6 A ⊆ ClrightA
−n
right =⇒ A ⊆ Cl∼leftA

−n
left .
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5.1 Introduction

The theory of abstract harmonic analysis has been a relevant progress in
the last decades. An increasing number of mathematicians have adopted the
point of view that the most appropriate setting for the development of the
theory of Fourier analysis is furnished by the class of all locally compact
groups.

The structure of topological groups was extensively studied in the years
1925-1940, and the subject is far from dead even today. The study of the
direct products of topological groups have been started since the beginning of
the theory of topological groups. Pontryagin [41] examined very extensively
the structure of countable direct products treated special cases of finite direct
products. Vilenkin [1] obtained several results for the commutative cases.

The theory of Walsh series is a special case of the study of harmonic
analysis on compact abelian groups if we represented them on the dyadic
group. This group is the simplest but nontrivial model of the complete
product of finite groups. A natural generalization on the Walsh-Paley system
is the Vilenkin system introduced by Vilenkin [1] in 1947. He used the set
of all characters of the complete product of arbitrary cyclic groups to obtain
the commutative case. In Hungary a dyadic analysis team works leaded by
Schipp having several results in this theory.

The idea of study the complete product of finite, but not-necessarily
abelian groups is based on the many results obtained previously for Vilenkin
groups and the results of Benke [4] in 1978. He proved that the Lipschitz
class to which a function belongs can be identified by the best approxima-
tion characteristics of the function by trigonometric polynomials (represen-
tative product systems), and that functions which are easily approximated
by trigonometric polynomials have absolutely convergent Fourier series. The
authors of this work were the first who deal with the convergence in Lp-norm
and almost everywhere of Fourier series and Fejér means with respect to
representative product systems (see [26]). Starting of the classical theory of
Fourier series and integrals the relative ease with which the basic concepts
and theorems can be transferred to this general context in the abelian case
is not valid for the non-commutative case.
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In this work we denote by N, P, C the set of nonnegative, positive integers
and complex numbers, respectively.

5.2 The Walsh functions
The Walsh functions form an orthonormal system which takes on only the
values −1 and 1. This property makes these functions can be well used
in practice, namely data transmission, filtering, image processing, and many
other applications. Some enumerations of Walsh functions have been studied,
however, in this work we are only dealing with the enumeration introduced
by Paley. He was first to recognize that Walsh functions are products of
Rademacher functions.

Let r be the function defined on the unit interval [0, 1[ by

r(x) :=

{
1 for x ∈ [0, 1

2
[

−1 for x ∈ [1
2
, 1[.

extended to the real line by periodicity of period 1. The sequence of functions

rn(x) := r(2nx) (x ∈ [0, 1[, n ∈ N)

is called the Rademacher system on the unit interval [0, 1[. The Paley’s
enumeration is based on the fact that every positive integer n has an unique
binary expansion

n =
∞∑

k=0

nk2
k,

where nk = 0 or nk = 1 for all k ∈ N. The Walsh-Paley system is defined by
the sequence

ωn(x) :=
∞∏

k=0

rnk
k (x) (x ∈ [0, 1[, n ∈ N).

Notice that this product is always finite because nk = 1 only for finitely many
values of k. Moreover all of finite product of Rademacher functions can be
written in this form.
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The Walsh-Paley system is an orthonormal system, i.e.

∫ 1

0

ωn(x)ωm(x) dx =

{
0 for n 6= m

1 for n = m.

5.3 The Dyadic group

Let Z2 be the discrete cyclic group of order 2, i.e. the set {0, 1} with the
discrete topology and modulo 2 addition. The Dyadic group G is the compact
group formed by the complete direct product of Z2 with the product of the
topologies and operations (+), say

G := Z2 × Z2 × . . .

Thus any element x of G can be represented by a sequence x = (x0, x1, . . . )
where xk = 0 or xk = 1 for all k ∈ N. G is a compact topological group
where the sets

In(x) := {y ∈ G : yi = xi, for 0 ≤ i < n}

are a countable base of the topology. We call these sets the dyadic intervals
of G.

In order to obtain the normalized Haar measure on G we give first a mea-
sure on Z2 assigning each singleton the measure 1

2
. The product measure on

G is the founded Haar measure. We denote it by µ. Measurable functions on
G whose p-th power are integrable, play an important role in approximation.
For 1 < p < ∞ let Lp(G) represent the set of this functions which is a Banach
space with norm

‖f‖p :=

(∫

G

|f |p dµ

) 1
p

.

Since the measure µ is finite the relation

Lq(G) ⊂ Lp(G) ⊂ L1(G) (1 < p < q < ∞)
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holds. For this reason the most extensive set of functions on G we consider
is just L1(G). Similarly L∞(G) represent the set of all measurable functions
f such that

‖f‖∞ := inf{y ∈ R : |f(x)| ≤ y for a.e. x ∈ G}

is finite.
The characters of G are the finite many products of the characters of Z2,

i.e. the finite many products of the functions

ϕk(x) := (−1)xk (xk ∈ {0, 1}).

We enumerate the characters of G in the Paley’s sense, so define

ψn(x) :=
∞∏

k=0

ϕnk
k (x) (x ∈ G, n ∈ N),

where (n0, n1, . . . ) is the binary expansion of n. Characters are continuous
complex - valued maps on G which satisfy

ψ(xy) = ψ(x)ψ(y) (x, y ∈ G).

and
|ψ(x)| = 1 (x ∈ G).

From these properties we can obtain:

Theorem 5.3.1 The system ψ is an orthonormal and complete system on
L2(G).

The Dyadic group can be identified in the interval [0, 1[ in such a way
that the system of characters ϕ on G correspond to the Walsh-Paley system
ω on [0, 1[. For this reason we also call the system ϕ the Walsh-Paley system
on G. The representation of G in the interval [0, 1] is constructed as follows
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The topology of G is metrizable. Moreover, the metric we concerned is
induced by the norm

|x| :=
∞∑

k=0

xk

2k+1
(x ∈ G).

The proceeded metric d(x, y) := |x + y| induces the topology of G and 0 ≤
|x| ≤ 1 for all x ∈ G. On the other hand, any x ∈ [0, 1[ can be written

x :=
∞∑

k=0

xk

2k+1
(xk = 0 or xk = 1),

but there are numbers with two expressions of this form. They are all num-
bers in the set

Q :=
{ p

2n
: 0 ≤ p < 2n, n, p ∈ N

}

called dyadic rational numbers. The other numbers have only one expression.
The dyadic rational numbers have an expression terminates in 0’s and other
terminates in 1’s. We choose the first one to make an unique relation for
all numbers in the interval [0, 1[ with their expression, named the dyadic
expansion of the number. In this manner we assign to a number in the
interval [0, 1] having an dyadic expansion (x0, x1, . . . ) an element of G with
expansion (x0, x1, . . . ). We denote this relation by ρ called Fine’s map. Thus

ωn := ψn ◦ ρ (n ∈ N).

and
ψn(x) := ωn(|x|) (x ∈ G \Q, n ∈ N).

The following theorem show the relation between the Haar integration on
G and the Lebesgue integration on the interval [0, 1].

Theorem 5.3.2 Let ρ denote the Fine’s map.

(a) If f is Haar measurable on G then f ◦ ρ is Lebesgue measurable on [0, 1[.
Conversely, if g is Lebesgue measurable on [0, 1[ and

f(x) := g(|x|) (x ∈ G) (5.1)

then f is Haar measurable on G.
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(b) If f is Haar integrable on G then f ◦ ρ is Lebesgue integrable and
∫

G

f dµ =

∫ 1

0

(f ◦ ρ)(x) dx.

Conversely, if g is Lebesgue integrable and f is defined by (5.1) then f
is Haar integrable on G and

∫ 1

0

g(x) dx =

∫

G

f dµ.

We summarize now the results with respect to the convergence of Walsh-
Fourier series. For f ∈ L1(G) we define the Fourier coefficients by

f̂k :=

∫

G

fψkdµ (k ∈ N),

and the n-th partial sums of Walsh-Fourier series by

Snf(x) :=
n−1∑

k=0

f̂kψk(x) (x ∈ G, n ∈ P).

Theorem 5.3.3 If 1 < p < ∞ and f ∈ Lp(G) then the n-th partial sums of
Walsh-Fourier series Snf converge to f a.e. and in Lp norm.

The above theorem is not true for p = 1. The Dirichlet kernels are defined
as follows:

Dn(x) :=
n−1∑

k=0

ψk(x) (n ∈ P).

It is easy to see that

Snf(x) =

∫

G

f(y)Dn(x + y)dµ(y).

This mutates the importance of the Dirichlet kernels in the study of the
convergence of Fourier series.
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Lemma 5.3.1 (Paley lemma) Let e be the identity of G and In := In(e). If
n ∈ N and x ∈ G, then

D2n(x) =

{
2n for x ∈ In,

0 for x 6∈ In

The Paley lemma is used to prove that the S2nf partial sequence of Fourier
sums converge to f a.e. and in Lp-norm, if f ∈ Lp(G) and 1 ≤ p < ∞.
Indeed, the

S2nf(x) =

∫

G

f(y)D2n(x + y)dµ(y) =
1

µ(In(x))

∫

In(x)

fdµ

operator is the conditional expectation with respect to the σ-algebra gener-
ated by the sets In(x), x ∈ G. Thus, the following statement is a consequence
of the martingale convergence theorem (see [38]).

5.4 Vilenkin systems
Vilenkin systems are generalizations of the Walsh-Paley system which were
introduced by Vilenkin [1] in 1947. These are systems composed of the set
of all characters of the complete product of arbitrary cyclic groups. In this
regard we introduce the following notation.

Let m := (mk, k ∈ N) be a sequence of positive integers such that mk ≥ 2
and Zk the cyclic group with order mk, (k ∈ N). Suppose that each group
has discrete topology and normalized Haar measure µk. A Vilenkin group G
is defined by the compact group formed by the complete direct product of Zk

with the product of the topologies, operations and measures (µ). Thus each
x ∈ G consist of sequences x := (x0, x1, ...), where 0 ≤ xk < mk, (k ∈ N).
We call this sequence the expansion of x.

We can generalize the concept of Rademacher functions for cyclic groups
with order mk > 2 as follows

ϕs
k(x) = exp(2πısx/mk) (s ∈ {0, . . . mk − 1}, x ∈ Zmk

, ı2 = −1). (5.2)
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Generalized Rademacher functions are the characters of the cyclic group.
Thus the characters of the product group G are the set of all finite numbers
of functions given by (5.2). The construction of the system of characters is
similar to the Paley’s method, but we work with the sequence

M0 := 1, Mk+1 := mkMk (k ∈ N)

instead the powers of 2. Indeed every n ∈ N can be uniquely expressed as

n =
∞∑

k=0

nkMk, (0 ≤ nk < mk, nk ∈ N).

This allows us to say that the sequence (n0, n1, . . . ) is the expansion of n
with respect to m. With the expansion of n and x we define the system ψ by

ψn(x) :=
∞∏

k=0

ϕnk
k (xk) (x ∈ G),

and it is called a Vilenkin systems. In this case he property of characters
also secures:

Theorem 5.4.1 The system ψ is an orthonormal and complete system on
L2(G).

For an integrable complex function f defined in G we define Vilenkin-
Fourier coefficients and partial sums by

f̂k :=

∫

Gm

fψk dµ (k ∈ N), Snf :=
n−1∑

k=0

f̂kψk (n ∈ N). (5.3)

In terms of the convergence of Vilenkin-Fourier series we have to see the
sequence m from which we obtain the Vilenkin group G. If it is a bounded
sequence, we called G a bounded group. For bounded Vilenkin groups we can
use the method applied for the dyadic case with relative similitude. Thus we
obtain:
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Theorem 5.4.2 Let G be a bounded Vilenkin group. If 1 < p < ∞ and
f ∈ Lp(G) then the n-th partial sums of Walsh-Fourier series Snf converge
to f a.e. and in Lp norm.

The unbounded cases are more difficult to treat. However Young [60],
Schipp [45] and Simon [48] can proved the convergence in Lp norm for an
arbitrary Vilenkin group.

Theorem 5.4.3 (Young, Schipp and Simon) Let G be a Vilenkin group. If
1 < p < ∞ and f ∈ Lp(G) then the n-th partial sums of Vilenkin-Fourier
series Snf converge to f in Lp norm.

The almost everywhere convergence is not yet proved for unbounded
Vilenkin groups, i.e. the problem corresponding to the Theorem of Car-
leson for the trigonometric system, is open. It makes more relevant the fact
that for all f ∈ Lp(G) and 1 ≤ p < ∞ there exists a partial sequence of
Fourier sums which converges to f a.e. Indeed, the partial sequence SMnf is
also the conditional expectation with respect to the σ-algebra generated by
the sets In(x), x ∈ G, so we can applied the martingale convergence theorem.

5.5 Results and open problems
First, we would like to talk about almost everywhere summability of Walsh
series of one variable integrable functions. The n-th (C, 1) mean, the n-th
Riesz’s logarithmic mean of f ∈ L1(G):

σnf(y) :=
1

n

n−1∑

k=0

Skf(y),

Rnf(y) :=
1

log n

n∑

k=1

Skf(y)

k
.

Let have a look for the situation with the (C,α) means. What are they?
Later on, we are going to introduce them in details at section 9. Now, briefly
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let Aα
n := (1+α)...(n+α)

n!
, where n ∈ N and α ∈ R (−α /∈ N). The n-th (C, α)

mean of the function f ∈ L1(G):

σα
n+1f =

1

Aα
n

n∑

k=0

Aα−1
n−kSkf.

It is of main interest in the theory of Fourier series that how to reconstruct
the function from the partial sums of its Fourier series. Just to mention
two examples: Billard proved [5] the theorem of Carleson for the Walsh-
Paley system, that is, for each function in L2 we have the almost everywhere
convergence Snf → f . Fine [8] proved every Walsh-Fourier series (in the
Walsh case mj = 2 for all j ∈ N) is a.e. (C, α) summable for α > 0.
His argument is an adaptation of the older trigonometric analogue due to
Marcinkiewicz [36]. In 1975 Schipp [45] - with respect to the Walsh case -
gave a simpler proof for the case α = 1, i.e. σnf → f a.e. (f ∈ L1(G)).
He proved that σ∗ := sup |σn| is of weak type (L1, L1). This means that
supλ>0 µ(σ∗f > λ) ≤ C‖f‖1. This led to a new technique to prove the a.e.
convergence of Fejér means and also Cesàro (C, α) means. The theorem of
(C, 1) summability is generalized to the p-series fields (mj = p for all j ∈ N)
by Taibleson [49], and later to bounded Vilenkin systems by Pál and Simon
[40]. The result of Fine [8] and Schipp [45] on bounded Vilenkin groups is
due to Weisz [57]. In other words, with respect to the Walsh or bounded
Vilenkin systems the maximal convergence space of the (C,α) means is the
L1 Lebesgue space. That is, the largest possible.

Now, what about the Vilenkin groups with unbounded generating sequen-
ces? This is quite a different story. The methods known in the trigonometric
or in the Walsh, bounded Vilenkin case are not powerful enough. One of the
main problems is that the proofs on the bounded Vilenkin groups (or in the
trigonometric case) heavily use the fact that the L1 norm of the Fejér kernels
are uniformly bounded. This is not the case if the group G (that is the
generating sequence m) is an unbounded one [42]. From this it follows that
the original theorem of Fejér does not hold on unbounded Vilenkin groups.
Namely, Price proved [42] that for an arbitrary sequence m (supn mn = ∞)
and a ∈ G there exists a function f continuous on Gm and σnf(a) does
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not converge to f(a). Moreover, he proved [42] that if log mn

Mn
→ ∞ , then

there exists a function f continuous on G whose Fourier series are not (C, 1)
summable on a set S ⊂ G which is non-denumerable.

Moreover, the result of Price also implies that for each unbounded Vilen-
kin group G one can give an integrable function f ∈ L1(G) such that even the
special subsequence of the Fejér means σMnf do not converge to the function
in the Lebesgue norm L1.

On the other hand, norm convergence of the full partial sums for Lp, p > 1,
is known for the unbounded case. This result is proven by Schipp - as it can
be read above. This trivially implies the norm convergence σnf → f for all
f ∈ Lp, where 1 < p < ∞. But what positive can be said with respect to the
L1 case?

The concept of Nörlund logarithmic means is as follows

tnf :=
1

log n

n−1∑

k=1

Skf

n− k
.

For further information with respect to Nörlund logarithmic means on
Walsh-Paley systems see some papers of Gát and Goginava and Tkebuchava
[24,23,25]. In their paper Gát and Goginava [24] proved (for Walsh-Paley
system), that there exists an f ∈ L1 such that

‖tnf − f‖1 6→ 0.

On the other hand, Blahota and Gát [6] proved that the Nörlund logarithmic
means have better approximation properties on some unbounded Vilenkin
groups, than the Fejér means. Namely:

Theorem 5.5.1 If f ∈ L1 and

lim sup
n∈N

∑n−1
k=0 log2 mk

log Mn

< ∞,

then
‖tMnf − f‖1 → 0.
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In the case f ∈ C the convergence holds in the supremum norm. This means
that in the case of some unbounded Vilenkin groups the behavior of the
Nörlund means tMn means is better than the behavior of the Fejér means
σMn .

On the other hand, this can not be said in general, that is for the means
tn. That is, Blahota and Gát proved [6]:

If log mn = O(nδ) for some 0 < δ < 1/2, then there exists an f ∈ L1 such
that

‖tnf − f‖1 6→ 0.

It is surprising that the behavior of the Nörlund logarithmic means is
worse than the behavior of the Fejér means in the Walsh-Paley or in the
bounded Vilenkin case, but the situation changes on a class of unbounded
Vilenkin groups. For the time being it is an open question that it is possible
to give an unbounded generating sequence m such that we would have the
norm convergence ‖tnf − f‖1 → 0 for all integrable function f .

We already have written about the behavior of the Nörlund logarithmic
means. Another weighted mean of the partial sums of the Fourier series is
the Riesz logarithmic means, which seems to be very similar to the Nörlund
ones (recall its definition):

1

log n

n−1∑

k=1

Skf

k
.

Problem. It is easy to see in the trigonometric, Walsh and bounded Vilenkin
case, that for each integrable function f the Riesz logarithmic means converge
to f both in norm and a.e. This is a trivial consequence of the nice properties
of the Fejér means and the Abel transformation. On the other hand, if we
investigate these means on unbounded Vilenkin groups then the situation
is different. Namely, for the time being there is no result with respect to
convergence of these Riesz means of integrable functions.

Now, turn back to the Fejér means. Nurpeisov gave [39] a necessary
and sufficient condition of the uniform convergence of the Fejér means σMnf
of continuous functions on unbounded Vilenkin groups. Namely, define the
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uniform modulus of continuity as

ωn(f) := sup
h∈In(0),x∈G

|f(x + h)− f(x)|.

Let ω be a real sequence with property ωn ↘ 0.We say that f belongs to
the Hölder class Hω if ωn(f) ≤ ωn for all n ∈ N. Nurpeisov proved [39]:
A necessary and sufficient condition that the means σMnf of the Fourier
series of the continuous function f converge uniformly to f on an unbounded
Vilenkin group for all f belonging to the Hölder class ω is that

ωn−1(f) log(mn) = o(1).

Since the uniform modulus of continuity can be any nonincreasing real se-
quence which converges to zero (for the proof see [43], [9]), then as a con-
sequence of this it is possible to give a sequence m increasing enough fast,
and a function even in the Lipschitz class Lip(1), such that the Mnth Fejér
means do not converge to the function uniformly.

So, it seems that it is impossible to give a (Hölder) function class such
that the uniform convergence of the Fejér means would hold for all functions
in this class if there is no condition on sequence m at all.

It also seems that some difference could occur in the case of Nörlund
logarithmic means. For the time being there is no result is known with
respect to this issue.

Concerning the a.e. convergence and Fejér means on unbounded Vilenkin
groups we can say a bit more. Namely, in 1999 one of the authors [11] proved:

Theorem 5.5.2 If f ∈ Lp(Gm), where p > 1, then σnf → f almost every-
where.

This was the very first “positive” result with respect to the a.e. conver-
gence of the Fejér means of functions on unbounded Vilenkin groups. One
might say that this result is an easy consequence of the result of Carleson,
that is the a.e. convergence Snf → f for functions f ∈ Lp(G), where p > 1.
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The ”only problem” is that to prove this a.e. convergence result of the par-
tial sums is the one of the greatest open problems in the theory of Fourier
analysis on Vilenkin groups.

However, it is possible to step further in the direction of space L1(G).
In 2001 Simon proved [47] the following theorem with respect to the Fejér
means of L1 functions. A sequence m is said to be strong quasi-bounded if

1

Mn+1

n−1∑
j=0

Mj+1 < C log mn.

Then every bounded m is quasi-bounded, and there are also some unbounded
ones. Let m be strong quasi-bounded. Then for all f ∈ L1(G)

σMnf(x)− f(x) = o(max(log m0, . . . , log mn−1)).

Later, in 2003, Gát improved [14] this result, and gave a partial answer for
the L1 case. He discussed this partial sequence of the sequence of the Fejér
means. Namely,

Theorem 5.5.3 if f ∈ L1(Gm), then ([14]) σMnf → f almost everywhere,
where m is any sequence.

Remark. Recall that we have told that it is possible to give integrable
function f ∈ L1(G) such that even the special subsequence of the Fejér
means σMnf do not converge to the function in the Lebesgue norm L1 and
in spite of this fact the a.e. convergence does hold. In our opinion this is a
very interesting property of the unbounded Vilenkin systems.

Problem. In our opinion, it is highly likely that the methods of the papers
[11,14] can be applied and improved in order to prove the a.e. relation
σnf → f for all f ∈ L log+ L and m. Anyway, it is not an easy task...

With respect to another class of unbounded Vilenkin groups Gát proved
the original Lebesgue theorem. This class is called ”rarely unbounded”. What
does it mean?
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If there exists a constant C and L ∈ N such that for all i, j ∈ N we have

min(mi,mi+j)

(mi+1 · · · · ·mi+j−1)L
≤ C

(the empty product is defined to be 1, and the constant C may depend on
the sequence m - of course), then we call the Vilenkin group G a rarely
unbounded Vilenkin group. Every bounded Vilenkin group is a rarely un-
bounded Vilenkin group. Unfortunately, not all unbounded ones are rarely
unbounded, since for instance the rarely unboundedness implies the inequal-
ity min(mi,mi+1) ≤ C. So, e.g. if (mn) tends to plus infinity, then G is not
rarely unbounded. On the other hand, there are many unbounded Vilenkin
groups, which are rarely unbounded ones.

In paper [18] one can find:

Theorem 5.5.4 Let G be a rarely unbounded Vilenkin group. Then the ope-
rator σ∗ is of weak type (1, 1).

A straightforward consequence of Theorem 5.5.4 is the proof of the Fejér-
Lebesgue theorem on rarely unbounded Vilenkin groups. That is,

Theorem 5.5.5 Let G be a rarely unbounded Vilenkin group and f ∈ L1(G).
Then we have the a.e. relation σnf → f .

It is also interesting to add that the concept of rarely unbounded Vilenkin
groups is natural in the point of view of the Carleson’s theorem. Since it can
be proved that if the theorem of Carleson holds on every rarely unbounded
Vilenkin group, then it also holds on every Vilenkin groups.

Problem. Nothing has done on unbounded Vilenkin groups with respect
to (C, α) (0 < α < 1) or Riesz summability. In our opinion it would be
possible to investigate these means by the help of methods in the papers of
Gát regarding Fejér means on unbounded Vilenkin groups. First, we would
suggest to try with the following summation operators:

1

log Mn

Mn∑

k=1

Skf

k
,

1

Aα
Mn

Mn∑

k=0

Aα−1
n−kSkf.
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It is also of prior interested that what can be said - with respect to this
reconstruction issue - if we have only a subsequence of the partial sums. In
1936 Zalcwasser [62] asked how ”rare” can be the sequence of integers a(n)
such that

1

N

N∑
n=1

Sa(n)f → f. (5.4)

This problem with respect to the trigonometric system was completely solved
for continuous functions (uniform convergence) in [44], [61], [2] and [7]. That
is, if the sequence a is convex, then the condition

sup
n

n−1/2 log a(n) < +∞

is necessary and sufficient for the uniform convergence for every continuous
function. For the time being, this issue with respect to the Walsh-Paley
system has not been solved. Only, a sufficient condition is known, which is
the same as in the trigonometric case. The paper about this is written by
Glukhov [28]. See the more dimensional case also by Glukhov [29].

With respect to convergence almost everywhere, and integrable functions
the situation is more complicated. Belinksky proved [3] for the trigono-
metric system the existence of a sequence a(n) ∼ exp( 3

√
k) such that the

relation (5.4) holds a.e. for every integrable function. In this paper Be-
linksky also conjectured that if the sequence a is convex, then the condition
supn n−1/2 log a(n) < +∞ is necessary and sufficient again. So, that would be
the answer for the problem of Zalcwasser [62] in this point of view (trigono-
metric system, a.e. convergence and L1 functions). One of the authors of
this paper proved [19] that this is not the case for the Walsh-Paley system.
See below Theorem 5.5.6. On the other hand, this difference between the
Walsh-Paley and the trigonometric system is not so surprising. Because of
the following. Let v(n) :=

∑∞
i=0 |ni − ni+1|, (n =

∑∞
i=0 ni2

i) be the variation
of the natural number n expanded in the number system based 2. It is a
well-known result in the literature that for each sequence a tending strictly
monotone increasing to plus infinity with the property supn v(a(n)) < +∞
we have the a.e. convergence Sa(n)f → f for all integrable function f . Is
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it also a necessary condition? This question of Balashov was answered by
Konyagin [34] in the negative. He gave an example. That is, a sequence a
with property supn v(a(n)) = +∞ and he proved that Sa(n)f → f a.e. for
all integrable function f .

In paper [19] it is proved (see Theorem 5.5.6) that for each lacunary
sequence a (that is a(n + 1)/a(n) ≥ q > 1) and each integrable function
f the relation (5.4) holds a.e. This may also be interesting in the following
point of view. If the sequence a is lacunary, then the a.e. relation Sa(n)f → f
holds for all functions f in the Hardy space H. The trigonometric and the
Walsh-Paley case can be found in [65] (trigonometric case) and [35] (Walsh-
Paley case). But, the space H is a proper subspace of L1. Therefore, it is of
interest to investigate relation (5.4) for L1 functions and lacunary sequence
a.

In that paper - using the method of the proof of Theorem 5.5.6 one can
find (Theorem 5.5.7) that for any convex sequence a (with a(+∞) = +∞
- of course) and for each integrable function the Riesz’s logarithmic means
of the function converges to the function almost everywhere. That is, the
Riesz’s logarithmic summability method can reconstruct the corresponding
integrable function from any (convex) subsequence of the partial sums in the
Walsh-Paley situation. For the time being there is no result known with
respect to a.e. convergence of logarithmic means of subsequences of partial
sums, neither in the trigonometric nor in the Vilenkin case.

The following a.e. convergence theorems with respect to the Fejér and
logarithmic means of subsequences of the partial sums of the Walsh-Fourier
series of integrable functions are proved by Gát [19].

Theorem 5.5.6 Let a : N → N be a sequence with property a(n+1)
a(n)

≥ q >

1 (n ∈ N). Then for all integrable function f ∈ L1(Q) we have the a.e.
relation

1

N

N∑
n=1

Sa(n)f → f.
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Theorem 5.5.7 Let a : N→ N be a convex sequence with property a(+∞) =
+∞. Then for each integrable function f we have the a.e. relation

1

log N

N∑
n=1

Sa(n)f

n
→ f.

Problems and remarks. Here we remark, that these two theorems have
no antecedents in the theory of trigonometric system. Therefore it is of
prior interest to investigate them. We also mention that there is no result
with respect to this issue concerning the Vilenkin systems (even in the more
simple bounded case). Below, we introduce some necessary preliminaries and
notations related the investigation of the two dimensional Walsh and Vilenkin
systems and also deliver some results and problems. There is no result at
all concerning the two (or more) dimensional case even for the Walsh system
with respect to these a.e. convergence results above.

Problem. It is highly likely that one can investigate the problem of a.e.
convergence of (C, α) means of subsequence of the partial sums of Walsh-
Fourier (or Vilenkin-Fourier (bounded case)) series. That is, to discuss the
behavior of 1

Aα
n

∑n
k=0 Aα−1

n−kSa(k)f . For the time being, nothing has done into
this direction yet.

What can be said in the two (more) dimensional situation? This is quite
a different story. Define the two-dimensional Walsh-Paley functions in the
following way:

ψn(x) := ωn1(x
1)ψn2(x

2),

where n = (n1, n2) ∈ N2, x = (x1, x2) ∈ G2. Let f be an integrable function.
Its Fourier coefficients, partial sums of its Fourier series:

f̂n :=

∫

G2

f(x)ψn(x)dx,

Sn1,n2f :=

n1−1∑

k1=0

n2−1∑

k2=0

f̂k1,k2ψk1,k2 .
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Moreover, the two-dimensional Fejér or (C, 1) means of the function f ∈
L1(G2):

σn1,n2f :=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

Sk1,k2f (n ∈ P2).

In 1931 Marczinkiewicz and Zygmund proved for the two-dimensional trigo-
nometric system [36], and in 1992 Móricz, Schipp and Wade verified for the
two-dimensional Walsh-Paley system, that for every f ∈ L log+ L(G2)

σn1,n2f → f

a.e. as min{n1, n2} → ∞, that is, in the Pringsheim sense.
Since L log+ L(G2) is a proper subspace of L1(G2), then it would be in-

teresting to "enlarge" the convergence space, if possible. In 2000 Gát proved
[12] (in the Walsh case), that it is impossible. That is, for each measurable
function δ : [0, +∞) → [0, +∞), δ(∞) = 0, (that is vanishing at plus infinity)
there exists a

f ∈ L log+ Lδ(L) such that σn1,n2f 6→ f

a.e. (in the Pringsheim sense).
However, what "positive" can be said for the functions in L1(G2) as if

the a.e. convergence of the two-dimensional Fejér means in the Pringsheim
sense can not be said? That could be the so called restricted convergence.
For the two-dimensional trigonometric system Marcinkiewicz and Zygmund
proved [33] in 1939, that

σn1,n2f → f

a.e. for every f ∈ L1(G2) as if min{n1, n2} → ∞, provided that

2−α ≤ n1

n2

≤ 2α

for some α ≥ 0. In other words, the set of admissible indices (n1, n2) remains
in some cone. This theorem for the two-dimensional Walsh-Paley system was
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verified by Móricz, Schipp and Wade in 1992 in the case when n1, n2 both
are powers of two.

σ2n1 ,2n2f → f

a.e. for every f ∈ L1(G2) as if min{n1, n2} → ∞, provided that |n1−n2| ≤ α
for some α ≥ 0.

The proof of the Marcinkiewicz-Zygmund theorem [33] (with respect to
the Walsh-Paley system) for arbitrary set of indices remaining in some cone
is due to Gát and Weisz [10] and [15], separately in 1996.

It is an interesting question that is it possible to weaken somehow the
"cone restriction" in a way that a.e. convergence remains for each function
in L1. Maybe for some "interim space" if not for space L1. The answer
is negative both in the point of view of space and in the point of view of
restriction. Namely, in 2001 Gát proved [13] the theorem below:

Let δ : [0, +∞) → [0, +∞) measurable, δ(+∞) = 0 and let w : N →
[1, +∞) be an arbitrary increasing function such that

sup
x∈N

w(x) = +∞.

Moreover, ∨n := max(n1, n2), ∧n := min(n1, n2) . The, there exists a func-
tion f ∈ L log+ Lδ(L) such that

σn1,n2f 6→ f

a.e. as ∧n → ∞ such that the restriction condition ∨n
∧n

≤ w(∧n) is also
fulfilled. That is there is no "interim" space. Either we have space L log+ L
and "no restriction at all", or the "cone restriction" and then the maximal
convergence space is L1. As a consequence of this we have that

σn1,n2f → f

a.e. for each f ∈ L(G2) as min{n1, n2} → ∞, provided that

∨n

∧n
≤ w(∧n)
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if and only if
sup w(x) < ∞.

Another question. What is the situation with the (C,α) summation of
2-dimensional Walsh-Fourier series? What is this?

σα
n1+1,n2+1f =

1

Aα
n1

Aα
n2

n1∑

k1=0

n2∑

k2=0

Aα−1
n1−k1

Aα−1
n2−k2

Sk1,k2f.

In 1999 Weisz proved [57], that

σα
n1,n2

f → f

a.e. as min{n1, n2} → ∞ for each f ∈ L log+ L(G2) and α > 0.
The question is that is it possible to give a "larger" convergence space for

the (C,α) summability method (α > 0)? Is there such an α? If α ≤ 1, then
not. Because for the (C, 1) method one can not give such a "larger" space.

Problems. What is the situation with the (C,α) methods, for α > 1? This
question - in our opinion it could be investigated by the method of [12]. Also
would be interesting to investigate in the point of view above, the behavior
of the two dimensional Riesz logarithmic means. Is its maximal convergence
space larger then L log+ L - as in the case of the Fejér summation? Or is it
the same?

What about this issue in the point of view of Vilenkin systems? As, it
has written, Gát proved [12] that the maximal convergence space of the two
dimensional Fejér means σn,k is the space L log+ L. This theorem of Gát is
generalized on bounded two dimensional Vilenkin groups [17]. This diver-
gence result has not been proved for unbounded two dimensional Vilenkin
groups yet. It is interesting in the following point view. It is very usual that
to prove some divergence result with respect to unbounded Vilenkin systems
is easier or less complicated than in the case of bounded Vilenkin systems or
in the Walsh-Paley setting. That is, - when we try to determine the max-
imal convergence space of the two dimensional Vilenkin-Fejér means in the
Pringsheim setting, - we have a little bit unusual situation.
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What ”positive” can be said in the two-dimensional case with respect to
unbounded Vilenkin systems? In 1997 Wade proved [54] the following. Let

βk,j := max{m0, . . . , mk−1, m̃0, . . . , m̃j−1}.

The sequence m is called δ-quasi bounded, 0 ≤ δ < 1, if the sums

n−1∑
j=0

mj/(mj+1 . . . mn)δ

are (uniformly) bounded. Let the generating sequences m, m̃ be δ-quasi
bounded. Then for all (at this point denote by Gm and Gm̃ the two Vilenkin
groups) f ∈ L1(Gm ×Gm̃) we have

σMn,M̃k
f(x)− f(x) = o(βn,kβ

2r
n+r,k+r),

as n, k →∞, provided that |n− k| < α, where α, r ∈ N are some constants
for almost every x ∈ Gm ×Gm̃.

On the other hand, there was nothing concerning the almost everywhere
convergence (or divergence) before the following result of the author. In [16]
he proved:

Theorem 5.5.8 Let f ∈ (L log+ L)(Gm×Gm̃). Then we have σMn1 ,M̃n2
f →

f almost everywhere, where min{n1, n2} → ∞ provided that the distance of
the indices is bounded, that is, |n1 − n2| < α for some fixed constant α > 0.

Here it is necessary to emphasize that in this paper m, m̃ can be any
sequences.

It also seems to be interesting to discuss the almost everywhere conver-
gence of Marcinkiewicz means 1

n

∑n−1
j=0 Sj,jf of integrable functions on two-

dimensional unbounded Vilenkin groups. Although, this mean is defined for
two-variable functions, in the view of almost everywhere convergence there
are similarities with the one-dimensional case. For the trigonometric, Walsh-
Paley, and bounded Vilenkin case see the papers of Zhizhiasvili, Weisz and
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Gát [63,56,15]. With respect to the Walsh case see also the papers of Gogi-
nava [30,31]. Some results can also be found in [58,59].

Problems. It is highly likely that by the application of the method of the
proof of the a.e. relation σMnf → f (on unbounded Vilenkin groups), it
would be possible to prove the a.e. relation

1

Mn

Mn−1∑
j=0

Sj,jf → f

with respect to unbounded Vilenkin systems for every integrable f . What
about the (C, α) or logarithmic means of quadratic partial sums? What
about the situation if we take only a subsequence of the quadratic partial
sums?

Recall the definition of the n-th Nörlund logarithmic mean of the integrable
function f :

tnf :=
1

log n

n−1∑

k=1

Skf

n− k
.

In 1992 Móricz and Siddigi [37] raised the question about the validity of the
norm convergence ‖tnf − f‖1 → 0 for each f ∈ L1. This holds for the Riesz
logarithmic means. That is for, Rnf := 1

ln

∑n
k=1

Skf
k

we have Rnf → f in
norm and also a.e. The answer for the question of Móricz is negative. In
2006 Gát and Goginava proved [20] that the maximal convergence space of
the L1-norm convergence is L log+ L. Namely, let δ : [0, +∞) → [0, +∞) be
measurable and δ (+∞) = 0. Then there exists a h ∈ L log+ Lδ (L) (G), such
that tnh 6→ h in L1-norm. What can be said in the two-dimensional case?
In 2004 Gát and Goginava [21] introduced the Nörlund logarithmic mean
operator of the square partial sums of the two-dimensional Fourier series:

tnf(x, y) =
1

log n

n−1∑
i=1

Si,if(x, y)

n− i
,

and the Nörlund logarithmic mean operator of the two-dimensional partial
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sums of the two-dimensional Fourier series:

tn,mf (x, y) =
1

log n log m

n−1∑

k=1

m−1∑

l=1

Sk,lf (x, y)

(n− k)(m− l)
.

The L1 norm convergence holds in both cases for functions in L(log+ L)2.
Besides, this can not be improved in neither cases. That is, the situation
in the second case is the same as in the "square case". The situation is not
worse! This is highly surprising as we compare the Marcinkiewicz means and
the two-dimensional Fejér means. The Fejér means:

1

nm

n−1∑
j=0

m−1∑

k=0

Sj,kf.

The Marcinkiewicz means:
1

n

n−1∑
j=0

Sj,jf.

It is known that the Marcinkiewicz means of any integrable function converge
to the function a.e. and in L1 norm too [56]. In 2005 Gát and Goginava [22]
proved (Walsh case), that if δ : [0, +∞) → [0, +∞) measurable, δ (+∞) = 0,
then there exists a two-variable h ∈ L(log+ L)2δ (L) (G2) such that tn,mh does
not converge h in L(G2) norm. Gát and Goginava proved (Walsh case) in
another joint paper [21], the same result for the Nörlund logarithmic means
of the square partial sums of the two-dimensional Fourier series. The proof of
this theorem is more difficult then the proof for the two-dimensional Nörlund
logarithmic means.

5.6 Representative product systems
Until the end of this article we deal with a generalization of Vilenkin groups
an systems. The main idea is to take the complete direct product of arbitrary
finite groups, even non-abelian groups. The characters of a finite non-abelian
group can not form a complete system because they are less than the order
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of the group. The missing functions can be obtained computing the repre-
sentations of the group. For this reason we introduce first some concepts of
Representation Theory. The notation which we used is similar to the one
appeared in [32].

Let G a not-necessarily abelian group. A representation U of a group G

is a homomorphism of G into the semigroup of all operators defined in some
linear space E over an arbitrary field F . That is, U : x → Ux such that
Ux : E → E is a linear transformation for all x ∈ G and

Uxy = UxUy (x, y ∈ G).

The linear space E is called the representation space of U , and let the di-
mension of a representation be the dimension of its own representation space.
We can assume that Ue is the identity operator on E, because E is the direct
sum of invariant subspaces E0 and E1 such that Ux(E0) = {0} for all x ∈ G,
and Ue is the identity operator on E1, hence we can take E by E1.

Throughout this work suppose that the representation space of all repre-
sentations is a reflexive complex Banach space which is a topological linear
space under the metric and norm induced by the inner product 〈., .〉. The
representation U is called unitary if all of operators Ux are unitary, i.e. Ux is
a linear isometry of E onto E. A representation U with representation space
E is called irreducible if only the spaces {0} and E are invariant under all
operators Ux (x ∈ G).

We can define an equivalence relation in the set of all continuous irre-
ducible unitary representations of the group G in the following manner. Two
representations U and U ′ with representation spaces E and E ′ respectively
are equivalent if there is a bounded linear isometry T : E → E ′ such that

U ′
xT = TUx (x ∈ G).

Denote by Σ the set of all equivalence classes induced by the above relation.
Σ is called the dual object (Σ) of the group G. The common dimension of all
representations in the class σ ∈ Σ is denoted by dσ. All group have a trivial
representation with dimension 1, namely the one which is identically equal
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to 1. A representation with dimension 1 is called a character, i.e. a character
is a mapping χ : G → C such that

χ(xy) = χ(x)χ(y) (x, y ∈ G), |χ(x)| = 1 (x ∈ G).

Theorem 5.6.1 Let G be a finite group. Then

(a) |Σ| is equal to the number of conjugacy class in G. (The system of the
conjugacy classes is a partition of G induced by the equivalence relation:
a ∼ b if and only if ∃x ∈ G : a = xbx−1).

(b) if Σ = {σ1, σ1 . . . σ|Σ|}, then |G| = d2
σ1

+ d2
σ2

+ · · ·+ d2
σ|Σ|.

(c) dσi
is a divisor of |G| (1 ≤ i ≤ |Σ|).

(d) if the group G is abelian, then |Σ| = |G| and all representations of G are
characters.

(e) if the group G is not abelian, then there is a representation with dimension
greater than 1.

The above properties of finite groups suggests to us the construction of
d2

σ numbers of functions by every σ ∈ Σ. Coordinate functions have just
this property and are defined as follows. Let U (σ) be a continuous irreducible
representation in the class σ of the dual object of G. Functions

u
(σ)
i,j (x) := 〈U (σ)

x ξi, ξj〉, i, j ∈ {1, . . . , dσ}
are called coordinate functions for U (σ), where ξ1, . . . , ξdσ is a fixed orthonor-
mal basis in the representation space of U (σ).

Finite groups are compact groups with the discrete topology. Thus the
normalized Haar measure µ on the compact finite groups G of order m has
the following property: for every set A ∈ G and function f : G → C

µk(A) =
|A|
m

and
∫

G

f dµ =
1

m

∑

x∈G

f(x).

One of the main theorem in harmonic analysis is the Weyl-Peter’s Theo-
rem.
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Theorem 5.6.2 (Weyl-Peter) Let G be a compact group with Haar measure
µ. Then for all σ ∈ Σ and j, k ∈ {1, 2, . . . , dσ} the set of functions

√
dσu

(σ)
j,k

is an orthonormal basis for L2(G). Thus for f ∈ L2(G), we have

f =
∑
σ∈Σ

dσ∑

j,k=1

dσf̂(i, j, σ)u
(σ)
j,k , (5.5)

where
f̂(i, j, σ) :=

∫

G

fu
(σ)
j,k dµ

and the series in (5.5) converges in the metric of L2(G). Furthermore, if
{a(σ)

j,k : j, k ∈ {1, 2, . . . , dσ; σ ∈ Σ} is any set of complex numbers such that

∑
σ∈Σ

dσ∑

j,k=1

dσ|a(σ)
j,k |2 < ∞,

there is a unique function g in L2(G) such that f̂(i, j, σ) = a
(σ)
j,k for all j, k ∈

{1, 2, . . . , dσ}; σ ∈ Σ} and for which accordingly

g =
∑
σ∈Σ

dσ∑

j,k=1

dσa
(σ)
j,k u

(σ)
j,k .

The Weyl-Peter’s Theorem assures us that if we normalize all coordi-
nate functions of the finite group G in L2(G), we obtain an orthonormal and
complete system. A normalized coordinate function is the product of the
function and the square root of its respective dimension. Notice that if G is a
commutative group then all of its representations are characters. Otherwise,
the G has at least one representation with dimension greater than 1. Hence
the L∞-norm of normalized coordinate functions of these representations is
greater than 1.

We take now a sequence of finite groups Gk with order mk and dual object
Σk, (k ∈ N). Suppose that each group has discrete topology and normalized
Haar measure µk. For a fixed k ∈ N let {ϕs

k : 0 ≤ s < mk} be a system
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of all normalized coordinate functions of Gk. We do not decide now the
enumeration of the system ϕ, only suppose that ϕ0

k is always the character
1. Thus for every 0 ≤ s < mk there exists a σ ∈ Σk, i, j ∈ {1, ..., dσ} such
that

ϕs
k(x) =

√
dσu

(σ)
i,j (x) (x ∈ Gk).

If the finite group Gk is commutative, then dσ = 1 for all σ ∈ Σk and the
coordinate functions are characters.

Let G be the compact group formed by the complete direct product of Gk

with the product of the topologies, operations and measures (µ), as well as
the Vilenkin groups. So here we can define concepts and notations similar to
those defined for Vilenkin groups, namely the concept of a bounded group,
the expansion of a member of G, the M sequence and the expansion of a non-
negative integer n. In order to simplicity we always use the multiplication to
denote the group operation and use the symbol e to denote the identity of
the groups.

Theorem 5.6.3 Let G be the complete direct product of the finite groups Gk

(k ∈ N). Then

(a) since G is compact, the set Σ is countable and the dimensions of all
representations of G are finite.

(b) U is a continuous irreducible representation of G if and only if U is the
tensor product of finite numbers of continuous irreducible representations
of distinct groups Gk.

The above theorem helps us to construct an orthonormal and complete
system on G. Indeed, by the tensor product, we only need to enumerate the
finite product of functions appeared in different systems ϕk, where k ∈ N.
So we construct an orthonormal system like Vilenkin systems:

ψn(x) :=
∞∏

k=0

ϕnk
k (xk) (x ∈ G),

where n is of the form n =
∑∞

k=0 nkMk and x = (x0, x1, ...). Thus we say
that ψ is the representative product system of ϕ. The Weyl-Peter’s theorem
assures us that the system ψ is orthonormal and complete on L2(G).
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5.7 Convergence in Lp-norm of Fourier series

For representative product system we define the Fourier coefficients and par-
tial sums of Fourier series just like (5.3) for Vilenkin systems. A basic problem
of Fourier analysis is to obtain the values of p (1 ≤ p < ∞) such that for all
function f ∈ Lp(G) the sequence of partial sums Snf of the Fourier series of
f converges to the function f in Lp-norm. Convergence for p = 2 is obvious
on an arbitrary group G since L2(G) is a Hilbert space. On the other hand,
we obtain

Theorem 5.7.1 (Toledo) For all G groups there exists a function f ∈ L1(G)
such that the sequence of partial sums Snf of the Fourier series of f does not
converge to the function f in L1-norm.

For Vilenkin-Fourier series we have convergence at the interval 1 < p <
∞. However, we can not state the same for an arbitrary representative
product system. In this regard, we study the simplest non-abelian structure,
i.e. the complete product of the symmetric group on 3 elements.

Let mk = 6 for all k ∈ N and S3 be the symmetric group on 3 elements.
Let Gk := S3 for all k ∈ N. S3 has two characters and a 2-dimensional
representation. Using a calculation of the matrices corresponding to the 2-
dimensional representation we construct the functions ϕs

k. In the notation
the index k is omitted because all of the groups Gk are the same.

e (12) (13) (23) (123) (132) ‖ϕs‖1 ‖ϕs‖∞
ϕ0 1 1 1 1 1 1 1 1
ϕ1 1 −1 −1 −1 1 1 1 1
ϕ2

√
2 −√2

√
2

2

√
2

2
−
√

2
2

−
√

2
2

2
√

2
3

√
2

ϕ3
√

2
√

2 −
√

2
2

−
√

2
2

−
√

2
2

−
√

2
2

2
√

2
3

√
2

ϕ4 0 0 −
√

6
2

√
6

2

√
6

2
−
√

6
2

√
6

3

√
6

2

ϕ5 0 0 −
√

6
2

√
6

2
−
√

6
2

√
6

2

√
6

3

√
6

2

Notice that the functions ϕs
k can take the value 0, and the product system

of ϕ is not uniformly bounded. This facts encumber the study of this systems.
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On the other hand,

max
0≤s<6

‖ϕs‖1‖ϕs‖∞ =
4

3
.

For an arbitrary group G define

Ψk := max
n<Mk

‖ψn‖1‖ψn‖∞ (k ∈ N).

Ψk is the multiplication of the greatest product of the square root of the
dimension and L1-norm of the functions ϕ appeared in all group Gmj

for
0 ≤ j < k. If G is the complete product of S3 we have

Ψk =

(
4

3

)k

→∞

if k → ∞. The boundedness of the sequence Ψ plays an important role in
the norm convergence of Fourier series.

Theorem 5.7.2 (Toledo [51]) If G is a bounded group with unbounded se-
quence Ψ and suppose that all the same finite groups appearing in the product
of G have the same system ϕ at all of their occurrences. Then for all p 6= 2,
1 < p < ∞ there exists a function f ∈ Lp(G) such that the sequence of partial
sums Snf of the Fourier series of f does not converge to the function f in
Lp-norm.

The complete product of S3 satisfies the conditions of the above theorem,
so in this case we only can state for p = 2 that the n-th partial sums of Fourier
series Snf converge to f in Lp-norm for all f ∈ Lp(G). For other bounded
cases not covered by Theorem 5.7.2, the convergence of Fourier series has not
been proved. More result concerning this topic are appeared in [51].

It easy to construct a bounded group G with bounded sequence Ψ. Let
mk = 8 for all k ∈ N and Q2 be the the quaternion group of order 8, i.e.

Q2 := {[a, b] : a4 = e, b2 = a2, bab−1 = a3}.
Let Gk = Q2 for all k ∈ N. Q2 has four characters and a 2-dimensional
representation (8 = 12 + 12 + 12 + 12 + 22). Using a calculation of the
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matrices corresponding to the 2-dimensional representation we construct the
functions ϕs

k. In the notation the index k is also omitted.

e a a2 a3 b ab a2b a3b ‖ϕs‖1 ‖ϕs‖∞
ϕ0 1 1 1 1 1 1 1 1 1 1

ϕ1 1 1 1 1 −1 −1 −1 −1 1 1

ϕ2 1 −1 1 −1 1 −1 1 −1 1 1

ϕ3 1 −1 1 −1 −1 1 −1 1 1 1

ϕ4
√

2
√

2ı −√2 −√2ı 0 0 0 0
√

2
2

√
2

ϕ5
√

2 −√2ı −√2
√

2ı 0 0 0 0
√

2
2

√
2

ϕ6 0 0 0 0
√

2 −√2ı −√2
√

2ı
√

2
2

√
2

ϕ7 0 0 0 0 −√2 −√2ı
√

2
√

2ı
√

2
2

√
2

ϕ4,. . . ,ϕ7 correspond to the 2-dimensional representation. Notice that
values of |ϕs| are 0 or the square of the corresponding dimension only. Hence,
the absolute value of the (not normalized) coordinate functions are 0 or 1 re-
spectively. Representations of this form are called monomial representations.
If all of the representations are monomial, then Ψk = 1 for k ∈ N.

Finally, we shall remark that the converge almost everywhere of Fourier
series is yet an open problem.

5.8 Relation with the interval [0, 1[

In [50] the author establishes a natural relation between the Haar integration
on the complete direct product of finite discrete topological groups and the
Lebesgue integration on the interval [0, 1[. With this intention, order the ele-
ments of all Gk (k ∈ N) groups in some way such that the first is always their
identity. In fact, the ordering is a bijection between Gk and {0, 1, . . . , mk−1}
which give to every x ∈ Gk the integer 0 ≤ x < mk (e = 0). Define

|x| :=
∞∑

k=0

xk

Mk+1

(x ∈ G).
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It is easy to see that |.| is a norm and the proceeded metric d(x, y) := |xy−1|
induces the topology of G. In addition, 0 ≤ |x| ≤ 1 for all x ∈ G. Using this
fact we represent the group G in the interval [0, 1[.

Any x ∈ [0, 1] can be written

x :=
∞∑

k=0

xk

Mk+1

(0 ≤ xk ≤ mk − 1),

but there are numbers with two expressions of this form. They are all num-
bers in the set

Q :=

{
p

Mn

: 0 ≤ p < Mn, n, p ∈ N
}

called m-adic rational numbers. The other numbers have only one expression.
The m-adic rational numbers have an expression terminates in 0’s and other
terminates in mk − 1’s. We choose the first one to make an unique relation
for all numbers in the interval [0, 1] with their expression, named de m-adic
expansion of the number. In this manner we assign to a number in the
interval [0, 1] having an m-adic expansion (x0, x1, . . . ) an element of G with
expansion (x0, x1, . . . ) denoting this relation by ρ. ρ is called the Fine’s map.
Using Fine’s map we introduce a new operation on the interval [0, 1[:

x¯ y := |ρ(x)ρ(y)| (x, y ∈ [0, 1[).

Let L0(G) denote the set of all measurable functions on G which are
a.e. finite. In some way denote by L0 the set of all Lebesgue measurable
functions on [0, 1] which are a.e. finite. The following theorem shows the
relation between the Haar integration on G and the Lebesgue integration on
the interval [0, 1[.

Theorem 5.8.1 (Toledo [50]) Let ρ denote the Fine’s map.

(a) If f ∈ L0(G) then f ◦ ρ ∈ L0. Conversely, if g ∈ L0 and

f(x) := g(|x|) (x ∈ G) (5.6)

then f ∈ L0(G).
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(b) If f is integrable on G then f ◦ ρ is Lebesgue integrable and

∫

G

f dµ =

∫ 1

0

(f ◦ ρ)(x) dx.

Conversely, if g is Lebesgue integrable and f is defined by (5.6) then f
is integrable on G and

∫ 1

0

g(x) dx =

∫

G

f dµ.

According to Theorem 5.8.1, we can represent the system ψ on the interval
[0, 1[ substituting it by the

υn := ψn ◦ ρ (n ∈ N)

system. In Figure 1 we plot the corresponding values of ψ12 and ψ23 with
respect to the complete product of S3. These graphs show two properties of
the system ψ which are different to the commutative cases and difficult the
study of the noncommutative cases: the system ψ is not uniformly bounded
and can take the value 0.

The complete product of S3      n=12

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

The complete product of S3      n=23

–1.5

–1

–0.5

0

0.5

1

1.5

0.2 0.4 0.6 0.8 1

Figure 5.1: ψ12 and ψ23 with respect to the complete product of S3.
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5.9 Dirichlet kernels

The Dirichlet kernels are defined as follows:

Dn(x, y) :=
n−1∑

k=0

ψk(x)ψk(y) (n ∈ N).

It is easy to see that

Snf(x) =

∫

G

f(y)Dn(x, y)dµ(y), (5.7)

which shows the importance of the Dirichlet kernels in the study of the
convergence of Fourier series.

The set of intervals are given by I0(x) := G,

In(x) := {y ∈ G : yk = xk, for 0 ≤ k < n} (x ∈ G,n ∈ P).

The set of intervals In := In(e) is a countable neighborhood base at the
identity e of the product topology on G.

The authors proved in [26] the fact, that the Paley’s lemma is also holds
for non-abelian cases.

Lemma 5.9.1 (Paley’s lemma) If n ∈ N and x, y ∈ G, then

DMk
(x, y) =

{
Mk for x ∈ Ik(y),

0 for x 6∈ Ik(y)

By Paley’s lemma the operator SMnf is the conditional expectation with
respect to the σ-algebra generated by the sets In(x), x ∈ G. So we obtain:

Theorem 5.9.1 For all 1 ≤ p < ∞ and f ∈ Lp(G) the the partial sequence
SMnf with respect to any representative product system converge to f in Lp-
norm and a.e.
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The above statement has even more significance in non-commutative
cases. For functions belongs to Lp(G) it is possible that the Fourier se-
ries do not converge to the function, but it has a partial sequence which
already converges to the function, even for p = 1 and almost everywhere.
This happens when G is the complete product of S3.

Paley’s lemma holds for all representative product systems, but Dirichlet
kernels are very different in non-abelian cases. We see the difference for
instance if we consider the maximal value of Dirichlet kernels

Dn := sup
x, y∈G

|Dn(x, y)| (n ∈ P).

For Vilenkin systems Dn = n for all n ∈ P, but the general case is a bit more
different.

Theorem 5.9.2 (Toledo [52]) If n ∈ P and A := max{k ∈ N : nk 6= 0},
then

n ≤ Dn ≤ MA+1.

0
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200 400 600 800 1000 1200
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Figure 5.2: Dn (n ≤ 64) on the complete product of S3
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5.10 Fejér means and Cesàro means of order α

We stated that For functions belongs to Lp(G) (1 ≤ p < ∞) it is possible
that the Fourier series do not converge to the function, even G is a bounded
group. For this reason it is very interesting the fact that it is not possible for
Fejér means, if G is a bounded group. Fejér means of Fourier series of the
function f are given by

σnf =
1

n

n−1∑

k=0

Skf (n ∈ P).

Thus, we have

Theorem 5.10.1 (Gát and Toledo [26]) If G is a bounded group and f ∈
Lp(G), 1 ≤ p < ∞, then σnf → f in Lp-norm.

We state similar statements for the Cesàro means of order α. First we
introduce the Cesàro numbers of order α given by the formula

Aα
n =

(α + 1)(α + 2) . . . (α + n)

n!
(n ∈ N)

where α is a real number. We summarize the main properties of this numbers
as follows (see [64]).

Aα
n =

n∑

k=0

Aα−1
n−k, (5.8)

Aα
n − Aα

n−1 = Aα−1
n , (5.9)

lim
n→∞

Aα
n

nα
=

1

Γ(α + 1)
(α 6= −1,−2, . . . ), (5.10)

the numbers Aα
n are positive if α > −1, and Aα

n < 1 if − 1 < α < 0,
(5.11)

the sequence Aα
n increasing for α > 0 and decreasing for − 1 < α < 0.

(5.12)
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Using the notation above we denote the Cesàro means of order α of Fourier
series or simply (C,α) means by

σα
n+1f :=

1

Aα
n

n∑

k=0

Aα−1
n−kSkf (n ∈ P). (5.13)

It is not difficult to see that

σ0
nf = Snf and σ1

nf = σnf.

Theorem 5.10.2 (Gát and Toledo [27]) Let G be a bounded group,

α0 := lim sup
k→∞

logmk

(
max

0≤s<mk

‖ϕs
k‖1‖ϕs

k‖∞
)

,

α0 < α < 1 and f ∈ Lp(G) for 1 ≤ p < ∞. Then σα
nf → f in Lp-norm.

We remark that the number α0 exists and it less than 1
2
since ‖ϕs

k‖2
∞ < mk

and ‖ϕs
k‖1 ≤ 1 for all k ∈ N. On the other hand, if the group G are monomial

the property ‖ϕs
k‖1‖ϕs

k‖∞ = 1 implies α0 = 0. Hence we obtain immediately
the next corollary for monomials and so for commutative cases.

Corollary 5.10.1 If G is a bounded monomial group, 0 < α < 1 and f ∈
Lp(G), 1 ≤ p < ∞, then σα

nf → f in Lp-norm.

It is not difficult to calculate that α0 = log6
4
3
for the complete product

of S3. Thus we obtain:

Corollary 5.10.2 Let G be the complete product of S3. If f ∈ Lp(G), 1 ≤
p < ∞ and α > log6

4
3
, then σα

nf converge to the function f in Lp-norm.

On the other hand, suppose we have a bounded group G with α0 > 0.
Thus we obtain divergence in the following case.
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Theorem 5.10.3 (Gát and Toledo [27]) Let G be a bounded group,

α1 := lim inf
k→∞

logmk

(
max

0≤s<mk

‖ϕs
k‖1‖ϕs

k‖∞
)

,

and 0 < α < α1. Then there exists an f ∈ L1(G) such that σα
nf does not

converge to the function f in L1-norm.

Finally, we remark that if G is the complete product of the same finite
group with the same system ϕ, then α1 = α0. Hence we obtain:

Corollary 5.10.3 (see [27]) Let G be the complete product of S3. If α <
log6

4
3
, then there exists an f ∈ L1(G) such that σα

nf does not converge to the
function f in L1-norm.
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6.1 Introduction
Let X be an arbitrary complex Banach space. By B(X) we will denote the

set of bounded linear operators from X into X. For an operator T ∈ B(X)
and a subspace M ⊆ X we write

T (M) = {y ∈ X : ∃x ∈ M, Tx = y}.
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In particular, we write R(T ) = T (X) and we call this the range of T . If
R(T ) = X we say that T is surjective. In a similar way, we write

T−1(M) = {x ∈ X : Tx ∈ M}.

In particular, we write N(T ) = T−1(0) and we call this the null space of T .
If N(T ) = {0} we say that T is injective.

Let M and N be subspaces of X. If for every x ∈ X there exists u ∈ M
and v ∈ N such that x = u + v we say that X is the sum of M and N ,
denoted X = M + N . If M and N are also closed and M ∩N = {0} we say
that X is the (topological) direct sum of M and N , denoted by X = M ⊕N .
In this case, we say that M is (topologically) complemented and that N is
the (topological) complement of M . Analogously N is complemented by M .

If there exist subspaces M, N of X such that X = M⊕N we say that the
pair (M, N) decomposes X and that (M,N) is a decomposition of X. If M is
finite dimensional (denoted dim M < ∞) then it is closed and complemented.
If M ⊂ X is not finite dimensional, then we can not guarantee that M is
complemented, even if it is closed.

In our study, we will find the “projection” operators very helpful. An
operator P ∈ B(X) is a projection if P = P 2. Let x ∈ R(P ), then there
exists y ∈ X such that x = Py. Hence, Px = PPy = P 2y = Py = x.

We see that if P is a projection, then I − P also is, where I denotes the
identity operator Ix = x. Also, if x ∈ R(P ), then Px = x and (I − P )x =
x− Px = 0, thus R(P ) = N(I − P ). In the same way, N(P ) = R(I − P ).

Theorem 6.1.1 ([18, Lemma 5.64]) For the subspaces M and N of X, the
following statements are equivalent:
(1) X = M ⊕N .
(2) There exist a projection P ∈ B(X) such that R(P ) = M and N(P ) = N .

Proof. (1)⇒ (2). Let P be defined by Px = x if x ∈ M and Px = 0 if
x ∈ N . It is clear that R(P ) = M , N(P ) = N and since P 2x = PPx = Px,
we have P = P 2. To see that P ∈ B(X), by using the Closed Graph
Theorem, we have to prove that the graph of P is closed.
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Let (xn, Pxn)n be a sequence in the graph G(P ) of P such that it con-
verges to (x, y) in X ×X. To see that G(P ) is closed we have to prove that
(x, y) is in G(P ), that is, y = Px. Since M is closed and Pxn converges to
y, we have that y ∈ M . Moreover, xn − Pxn = (I − P )xn is in N for every
n, hence x− y = limn→∞(xn − Pxn)n is in N since N is closed. Therefore,

0 = P (x− y) = Px− Py = Px− y.

(2)⇒ (1). Let x ∈ X, and let u = Px and v = (I − P )x. Then,
x = Px + x − Px = u + v, u ∈ R(P ) and v ∈ R(I − P ) = N(P ). Thus,
X = M + N . Let x ∈ R(P ) ∩N(P ), we have x = Px = 0, so M ∩N = {0}.
Since P is continuous, N(P ) = N is closed. Also I − P is continuous, so
N(I − P ) = R(P ) = M is closed.¤

As we saw in the above theorem, the mapping x 7→ u = Px from X into
X is continuous, hence the name of topological direct sum and topological
complement. This should not be confused with the algebraic direct sum.
Every subspace is algebraically complemented, but it is not, in general, in
the topological sense we have been dealing with.

Let T ∈ B(X). We say that a subspace M ⊂ X is T invariant if T (M) ⊂
M . For a subset M ⊂ X, we denote by T |M the restriction of T to the
subspace M given by T |Mx = Tx for every x ∈ M .

Let (M, N) be a decomposition of X. If M and N are T invariant,
then we say that (M,N) decomposes T . Let T1 = T |M : M → M and
T2 = T |N : N → N . We say that (T1, T2) is a decompositon of T , which is
also denoted T = T1 ⊕ T2.

Let S, T ∈ B(X). Let us suppose that ST = TS. Let x ∈ R(S), then,
there exist y ∈ X such that x = Sy. Thus, Tx = TSy = STy, and from this
we see that T (R(S)) ⊂ R(S). Now suppose that T ∈ B(X) commutes with
P = P 2 ∈ B(X). Then T also commutes with I − P . If M = R(P ) and
N = N(P ) we have

T (M) ⊂ M,

T (N) = T (R(I − P )) ⊂ R(I − P ) = N.

Generally speaking, the present study is based on the idea of decomposing
an operator T in two “simpler” operators in a way we get some advantages
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in practical computations and in theoretical understanding of such operator.
In section 2 we will decompose an operator in two operators with prescribed
eigenvalues, or more generally spectral sets. For instance, decomposing an
operator in an invertible one and another which is not. In section 3 we will
decompose in a quasinilpotent operator and a Fredholm or, more generally,
semi-Regular one. In section 4 we will study the relationship between Fred-
holm theory and invertibility, which will enable us to see the decompositions
in the light of generalized notions of invertibility in the Calkin algebra. In
section 5 we will deal with the algebraic properties, without reference to the
topology of X, used in above sections, thus extending the results to general
Banach algebras.

6.2 The spectral decomposition
An operator T ∈ B(X) is invertible if there is some operator S ∈ B(X)

such that TS = ST = I, where I is the identity operator. For an invertible
operator T ∈ B(X), we will denote its inverse by T−1 (not to be confused with
the notation T−1(M) used in above section). For a bounded linear operator
acting on a Banach space, via open mapping theorem, to be invertible is
equivalent to be surjective and injective.

Let T ∈ B(X). If there exist λ ∈ IC such that

Tx = λx

for some x ∈ X, x 6= 0, we say that λ is an eigenvalue for T , and that x is
an eigenvector associated to the eigenvalue λ. Let us note that in this case

(T − λI)x = 0,

that is, x ∈ N(T−λI), x 6= 0, and hence the operator T−λI is not invertible.
More generally, let us consider the set of points λ in the complex plane

for which T − λI is not invertible. Such a set will be called the spectrum of
T :

σ(T ) = {λ ∈ IC : T − λI is not invertible}.
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The set of points λ in the complex plane for which T − λI is invertible will
be called the resolvent set of T :

ρ(T ) = IC \ σ(T ).

For λ ∈ ρ(T ) the resolvent function associated with T is

R(T, λ) = (T − λI)−1.

The spectrum of a bounded linear operator is a closed, bounded and non
void set of the complex plane (unless that X = {0}). The resolvent function
is holomorphic in the resolvent set of the operator.

A set Λ ⊂ σ(T ) is a spectral set for T if Λ is open and closed in the
relative topology. Note that a point λ ∈ σ(T ) is a spectral set if and only if
it is an isolated point of σ(T ).

Let C be a Jordan curve. The important thing about Jordan curves is
that they have defined the notion of interior and exterior (in a way we won’t
discuss here). Let us denote by int(C) the interior of C and by ext(C) the
exterior. If for some spectral set Λ we have that Λ ⊂ int(C) and σ(T ) \Λ ⊂
ext(C) holds we say that C separates Λ from σ(T ) \ Λ.

However, the Jordan curves are not enough:

Example 6.2.1 ([1, Example 1.20]) There is an operator for which there is
no Jordan curve separating a spectral set Λ from σ(T ) \ Λ.

Let X = `2 be the space of square summable sequences, and let
{θ1, θ2, θ3, . . .} = [0, 1] ∩Q. Define an operator T by

Tx = (0, 2x2, e
2πiθ1x3, e

2πiθ2x4, e
2πiθ3x5, . . .), x = (x1, x2, x3, . . .).

We have that 0, 2 and e2πiθk are all the eigenvalues of T . Since the spectrum
is a compact set, we see that

σ(T ) = {0} ∪ {2} ∪ {λ : |λ| = 1}.

Take Λ = {λ : |λ| = 1}, then, there is no Jordan curve separating Λ from
{0} ∪ {1}.
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To overcome this problem, we need the concept of “Cauchy contour”.
An elementary Cauchy domain is a bounded, open and connected subset

of IC whose boundary is the union of a finite number of non intersecting
Jordan curves. A finite union of elementary Cauchy domains with disjoint
closures will be called a Cauchy domain.

Let D be a Cauchy domain. If each Jordan curve involved in the boundary
of D is oriented in such a way that points in D lie to the left as the curve is
traced out, then this oriented boundary is called a Cauchy contour.

Let C be a Cauchy contour corresponding to a Cauchy domain D. The
interior of C, denoted int(C), is the Cauchy domain D and the exterior of
C, denoted ext(C), is the set IC \ (D ∪ C).

Let E, Ẽ ⊂ IC, we say that C separates E from Ẽ if E ⊂ int(C) and
Ẽ ⊂ ext(C). The set of all Cauchy contours separating a spectral set Λ from
the set σ(T ) \ Λ will be denoted by C(T, Λ).

Lemma 6.2.1 ([1, Corollary 1.22] ) Let E be a compact subset of IC and let
Ẽ be a closed subset of IC. If E ∩ Ẽ = ∅ then there exist a Cauchy contour
separating E from Ẽ.

For a spectral set Λ for T and C ∈ C(T, Λ), we define

P = P (T, Λ) = − 1

2πi

∫

C

R(T, z)dz.

This mapping P (T, Λ) is known as the spectral projection of T corresponding
to the spectral set Λ.

Theorem 6.2.1 ([1, Proposition 1.23]) P is a bounded projection.

Proof. Let C ∈ C(T, Λ). By Lemma 6.2.1 there is a Cauchy contour C̃
such that Λ∪C ⊂ intC̃ and σ(T ) \Λ ⊂ extC̃. Let us denote R(z) = R(T, z)
for z ∈ IC. We have

P 2 =

(
− 1

2πi

)2 ∫

C

[∫

C̃

R(z)R(z̃)dz̃

]
dz.
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Using the first resolvent identity we get

R(z)−R(z̃) = (z − z̃)R(z)R(z̃) for z ∈ C, z̃ ∈ C̃.

Thus,

P 2 =

(
− 1

2πi

)2 ∫

C

[∫

C̃

[R(z)−R(z̃)]
dz̃

z − z̃

]
dz

=

(
− 1

2πi

)2 ∫

C

[
R(z)

∫

C̃

dz̃

z − z̃

]
dz

−
(
− 1

2πi

)2 ∫

C̃

[
R(z̃)

∫

C

dz

z − z̃

]
dz̃

And since z ∈ C ⊂ intC̃ and z̃ ∈ C̃ we have, using Cauchy’s theorem,
∫

C̃

dz̃

z − z̃
= −2πi,

∫

C

dz

z − z̃
= 0.

Hence, P = P 2. Further, P ∈ B(X) since it is a contour integral of a
B(X)-valued function.¤

Having now a bounded projection, we know by the previous section how
to make a decomposition of X. Moreover, since

T (T − λI)−1 = (T − λI)−1(T − λI)T (T − λI)−1

= (T − λI)−1T (T − λI)(T − λI)−1

= (T − λI)−1T.

we have that (R(P ), N(P )) decomposes T . What is special about this de-
composition is that it is related with the spectral set corresponding to the
spectral projection P as follows.

Theorem 6.2.2 ([1, Theorem 1.26]) Let P = P (T, Λ) with T ∈ B(X) and
let Λ be a spectral set for T . Let M = R(P ), N = N(P ), then

T (M) ⊂ M, T (N) ⊂ N,

σ(T |M) = Λ, σ(T |N) = σ(T ) \ Λ.
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In particular, if 0 is an isolated point of the spectrum of T , then the
decomposition (R(P ), N(P )), where P = P (T, {0}), decomposes T in an
invertible operator and an operator whose spectrum consists of the point
0 alone. The isolated spectral points are interesting because we can say
something more about the range and kernel of the spectral projection corre-
sponding to such isolated point.

Let λ be an isolated point of σ(T ). The algebraic multiplicity of λ is
dim R(P (T, {λ})). The isolated eigenvalues of T with finite algebraic multi-
plicity are called Riesz points.

Theorem 6.2.3 ([1, Proposition 1.31]) Let λ be an isolated point of σ(T )
and let P be the corresponding spectral projection. Let M = R(P ) and N =
N(P ). If λ is a Riesz point of algebraic multiplicity m, then

M = N((T − λI)m), N = R((T − λI)m),

and
X = N((T − λI)m)⊕R((T − λI)m).

Proof. We will prove N((T − λI)m) ⊂ M . Let x ∈ N((T − λI)m). Since
T and P commute, we have

(T − λI)m(x− Px) = 0.

But x− Px ∈ N , and since (T − λI)m|N is injective (in fact invertible with
inverse − 1

2πi

∫
C
(T − zI)−1 dz

λ−z
), we have that x− Px = 0, that is, x ∈ M .

Now we prove M ⊂ N((T − λI)m). Since dim M = m, the operator
T |M : M → M can be written, with respect to some ordered basis, as an
upper triangular matrix m × m whose only eigenvalue is λ. Hence, ((T −
λI)M)m = O|M . Thus, M ⊂ ((T − λI)|M)m ⊂ ((T − λI))m.

We will show N ⊂ R((T − λI)m). Let x ∈ N . Since (T − λI)m|N is
invertible, there exists y ∈ N such that

x = (T − λI)m|Ny = (T − λI)my.

Hence, x ∈ R((T − λI)m).
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Now we prove R((T − λI)m) ⊂ N . Let x ∈ R((T − λI)m). Then there
exists y ∈ X such that x = (T − λI)my. Since P commutes with T and
Py ∈ M , we get

Px = P (T − λI)my = (T − λI)mPy = O.

Therefore x ∈ N(P ) = N .
Finally, since X = M⊕N , we have X = N((T −λI)m)⊕R((T −λI)m).¤

6.3 The Kato decomposition

We will begin by defining some operator classes which will be useful in
later discussion.

An operator T ∈ B(X) is nilpotent if there exists some n ∈ IN such that
T n = O, where O is the operator identically zero Ox = 0. If T is nilpotent,
then σ(T ) = {0}. However, it may happen that the spectrum of an operator
consists of the point zero alone but the operator is not nilpotent. Such an
operator is called quasinilpotent.

We say that T ∈ B(X) is semi-regular if R(T ) is closed and N(T ) ⊂
R(T n) for every n ∈ IN . It is clear that invertible operators are semi-regular.

Now we discuss a little about the range and kernel of the powers of an
operator. Let us define T 0 = I. It is not hard to see that

R(T 0) ⊇ R(T ) ⊇ R(T 2) ⊇ . . . y N(T 0) ⊆ N(T ) ⊆ N(T 2) ⊆ . . .

The hyperrange and the hyperkernel of an operator are defined in the follo-
wing way:

R∞(T ) =
⋂

R(T n), N∞(T ) =
⋃

N(T n), n ∈ IN.

Thus, an operator is semi-regular if N(T ) ⊂ R∞(T ).
It is interesting that, being T semi-regular or not, for λ 6= 0 we have

N(T + λI) ⊆ N∞(T + λI) ⊆ R∞(T ).
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In the previous section we saw how to decompose an operator into one
invertible and another quasinilpotent. In the Kato type decompositions we
are about to study in this section the idea is to decompose into quasinilpotent
and another operator which is not necessarily invertible but which has some
“good” properties.

We say that T admits a generalized Kato decomposition if there exist
T -invariant closed subspaces M,N ⊂ X such that

1. X = M ⊕N ,

2. T |M is semi-regular and

3. T |N is quasinilpotent.

If T |N is nilpotent, we say that T admits a Kato decomposition, and if d is
the degree of nilpotency of T |N we say that T is a Kato type operator of
degree d.

Trivially the semi-regular operators, invertible operators for instance, and
the quasinilpotent operators, nilpotent operators for instance, admit a gen-
eralized Kato decomposition. Now we turn to other classes of operators for
which the Kato decomposition is not so trivial.

We say that T ∈ B(X) is a Fredholm operator if

1. α(T ) = dim N(T ) < ∞,

2. β(T ) = dim X/R(T ) < ∞

It is easy to see that every invertible operator is a Fredholm operator.
Also, from (ii) follows that a Fredholm operator has closed range. Moreover,
R(T n) is closed for any positive integer n and consequently R∞(T ) is the
same. Let T∞ be the restriction T |R∞(T ), then T is Fredholm implies T∞ is
Fredholm.

The integer i(T ) = α(T ) − β(T ) is called the index of the Fredholm
operator T . An important result is the Punctured Neighborhood Theorem,
which states that if T ∈ B(X) is a Fredholm operator, then there exists
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ε > 0 such that T +λI is a Fredholm operator and α(T +λI) and β(T +λI)
are constant in the punctured neighborhood 0 < |λ| < ε. Furthermore,

α(T + λI) ≤ α(T ), β(T + λI) ≤ β(T ), i(T + λI) = i(T ), ∀|λ| < ε.

For the same ε, the jump j(T ) is defined as

j(T ) = α(T )− α(T + λI) = β(T )− β(T + λI), 0 < |λ| < ε.

Thus, j(T ) ≥ 0 and the continuity of the index function i assures the second
equality in the above equation. The jump of a Fredholm operator enables us
to know when such an operator is semi-regular.

Theorem 6.3.1 ([2, Theorem 1.58]) Let T ∈ B(X) be a Fredholm operator.
If j(T ) = 0 then T is semi-regular.

Proof. Since j(T ) = 0, there exists ε > 0 such that α(T + λI) is constant
for |λ| < ε. Then

α(T∞) ≤ α(T ) = α(T + λI) = α(T∞ + λI) for every 0 < |λ| < ε.

Since T∞ is Fredholm, using the Punctured Neighborhood Theorem we can
choose ε > 0 in such a way that α(T∞+λI) ≤ α(T∞) for every |λ| < ε. Thus,
α(Tα) = α(T ) so we have N(T ) ⊆ R∞(T ).¤

In fact, the converse also holds, that is, if T ∈ B(X) is Fredholm and
semi-regular, then j(T ) = 0. If T ∈ B(X) is Fredholm of jump 0, trivially
it admits a Kato decomposition. If it is not, the following lemma help us to
construct such decomposition.

Lemma 6.3.1 ([2, Lemma 1.61]) Let T ∈ B(X) and suppose that N∞(T ) *
R∞(T ). Let y ∈ X be such that

y ∈ N(T n) but y /∈ R(T ).

Then

P =
n−1∑
j=0

T ∗jf ⊗ T n−j−1y
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is a bounded projection commuting with T . Furthermore, the range of P is
the subspace Y generated by the elements y, Ty, . . . , T n−1y, the restriction
T |Y is nilpotent and j(T |Y ) = 1.

T. Kato proved the following result in [10], which may be the reason for
the name of the decomposition. Here we present the proof offered by P.
Aiena.

Theorem 6.3.2 ([2, Theorem 1.62]) Fredholm operators admit a Kato de-
composition with dim N < ∞.

Proof. Let T ∈ B(X) be a Fredholm operator. If T is semi-regular, taking
M = X and N = {0} we get a Kato decomposition with dim N < ∞.

Suppose now that T is not semi-regular. Hence j(T ) > 0, so N∞(T ) *
R∞(T ). Let P be the projection in the above lemma. P commutes with T .
The restriction T |N(P ) is Fredholm and j(T |N(P )) = j(T ) − 1. Continuing
with this process a finite number of times, the jump of the operator reduces
to zero.¤

We already know that if T ∈ B(X) is Fredholm, then T |R(T n) is Fredholm
for every n ∈ IN . Now, if for some n ∈ IN we have that R(T n) is closed and
the restriction T |R(T n) is Fredholm we say that T is a B-Fredholm operator.

If Tn = T |R(T n) is Fredholm, we have

N(Tn) = N(T ) ∩N(T n) = N(T n+1)/N(T n) and

X/R(Tn) = R(T n)/R(T n+1) = X/(R(T ) + N(T n))

(see[9], Lemma 3.2). Let us define the following quantities

αn = dim
N(T n+1)

N(T n)
,

βn = dim
R(T n)

R(T n+1)
,
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kn = dim
R(T n) ∩N(T )

R(T n+1) ∩N(T )
= dim

R(T ) + N(T n+1)

R(T ) + N(T n)

= αn(T )− αn+1(T ) = βn(T )− βn(T ).

Of course the differences in the last equation are valid whenever the involved
quantities are finite. The interested reader can find proofs for the above
equalities in the paper [9] and in chapter 3 of the book [16].

Note that kn(T ) = 0 if and only if N(T ) ∩ R(T n) ⊂ R(T n+1). Also
α0(T ) = α(T ) and β0(T ) = β(T ). Furthermore, if T is B-Fredholm, αn(T ) <
∞ and βn(T ) < ∞ for some n ∈ IN .

Now we will look for a decomposition into a Fredholm operator and a
nilpotent one. First a lemma with some results we will need in the construc-
tion of our subspaces.

Lemma 6.3.2 ([16]) Let T ∈ B(X) be a B-Fredholm operator and let n ∈ IN
be the least integer such that R(T n) is closed and T |R(T n) is Fredholm, then

1. R(T j) is closed for every j ≥ n.

2. N∞(T |R(T n)) = N∞(T ) ∩R(T n) ⊂ R∞(T ).

3. kj(T ) = 0 for every j ≥ n.

4. T ∗ ∈ B(X∗) is B-Fredholm.

Now we can construct a Kato type decomposition for B-Fredholm oper-
ators.

Theorem 6.3.3 ([16, Theorem 22.12]) Let T ∈ B(X). T is a B-Fredholm
operator if and only if there exist T -invariant subspaces M, N such that X =
M ⊕N , T |M is Fredholm and T |N is nilpotent.

Proof. Let n ∈ IN such that R(T n) is closed and T |R(T n) is Fredholm.
Then αj(T ) = αn(T ) < ∞ and βj(T ) = βn(T ) < ∞ for every j ≥ n.

If n = 0, then T is Fredholm and the decomposition is trivial. So, suppose
that n ≥ 1.
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Since dim R(T n) ∩N(T ) = αn(T ) < ∞, there exists a closed subspace L
such that X = L⊕ (R(T n) ∩N(T )).

Let us define inductively the closed subspaces Nj by N0 = {0} y Nj+1 =
T−1Nj ∩ L (j < n).

It is clear that TNj+1 ⊂ Nj ∩R(T ). Conversely, let x ∈ Nj ∩R(T ). Then
there exists u ∈ X such that x = Tu. Let us write u = l + v with l ∈ L and
v ∈ N(T ) ∩ R(T n). Then u − v = l ∈ L and T (u − v) = Tu = x. Thus,
u− v ∈ Nj+1 and x ∈ TNj+1.

Therefore
TNj+1 = Nj ∩R(T ) (j < n).

We will prove by induction on j that Nj ⊂ Nj+1. The claim is clearly
true for j = 0. Suppose that j ≥ 0, Nj ⊂ Nj+1 and let x ∈ Nj+1. Then
Tx ∈ Nj ⊂ Nj+1, so x ∈ T−1Nj+1. Since x ∈ Nj+1 ⊂ L, we conclude that
x ∈ Nj+2.

Thus,
Nj ⊂ Nj+1 (j = 0, 1, . . . , n− 1).

It is not hard to see that Nj ⊂ N(T j) for every j.
Now we will prove by induction on j that

N(T j) ⊂ Nj + (N(T j) ∩R(T n)). (6.1)

The inclusion is clearly true for j = 0. For j = 1 we have N(T ) = (N(T ) ∩
L) + (N(T ) ∩ R(T n)) = N1 + (N(T ) ∩ R(T n)). Let j ≥ 1, N(T j) ⊂ Nj +
(N(T j) ∩ R(T n)) and let x ∈ N(T j+1). Then Tx ∈ N(T j), and hence
Tx = v1 + v2 where v1 ∈ Nj and v2 ∈ N(T j) ∩R(T n) = N(T j) ∩R(T n+1) =
T (N(T j+1) ∩R(T n)). Thus v1 ∈ Nj ∩R(T ) = T (Nj+1) and

x ∈ Nj+1 + (N(T j+1) ∩R(T n)) + N(T )

= Nj+1 + (N(T j+1) ∩R(T n)) + (N(T ) ∩ L) + (N(T ) ∩R(T n))

= Nj+1 + (N(T j+1) ∩R(T n)) + N(T ).

Therefore, (6.1) holds.
Finally, we will prove by induction that Nj ∩ R(tn) = {0}. It is clearly

true for j = 0. Let j ≥ 0, Nj ∩R(T n) = {0} and let x ∈ Nj+1∩R(T n). Then
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Tx ∈ Nj ∩ R(T n) and hence, by the induction hypothesis, Tx = 0. Thus
x ∈ N(T ) ∩R(T n) and x ∈ Nj+1 ⊂ L, so x = 0. Therefore

Nj ∩R(T n) = {0}.

Let N = Nn. Then TN ⊂ N and N ⊂ N(T n). Furthermore, N +
R(T n) ⊃ N(T n) by (6.1), and N ∩ R(T n) = {0}. Also, we have that N +
R(T n) = N(T n)+R(T n) = T−nR(T 2n), which is closed since R(T 2n) is closed
by the above lemma.

Now we will consider the dual operator T ∗ ∈ B(X∗). We have that R(T ∗j)
is closed, αj(T

∗) = βj(T ) and βj(T
∗) = αj(T ) for every j ≥ n. So we can

use the same construction for T ∗.
Since dim(N(T ∗) ∩R(T ∗n)) = αn(T ∗) = βn(T ) < ∞, there exist a closed

subspace G ⊂ X of finite codimension such that ⊥(N(T ∗)∩R(T ∗n))⊕G = X.
Let L′ = G⊥. Then L′ is a closed subspace y the weak-* topology and
L′ ⊕ (N(T ∗) ∩R(T ∗n)) = X∗.

Let us define the subspaces M ′
0 ⊂ M ′

1 ⊂ . . . ⊂ M ′
n = X∗ by M ′

0 = {0} and
M ′

j+1 = T ∗−1Mj ∩ L′. Using induction, M ′
j is closed in the weak-* topology

for every j.
Let M ′ = M ′

n. As in the above construction, we have T ∗M ′ ⊂ M ′ ⊂
N(T ∗n), M ′ ∩ R(T ∗n) = {0} and N(T ∗n) ⊂ M ′ + R(T ∗n). Furthermore,
M + R(T ∗n) is a closed subspace.

Let M = ⊥M ′. Then T (M) ⊂ M and M = ⊥M ′ ⊃ ⊥N(T ∗n) = N(T n).
Furthermore,

R(T n) = ⊥N(T ∗n) ⊃ ⊥(M ′ + R(T ∗n)) = ⊥M ′ ∩ ⊥R(T ∗n) = M ∩N(T n)

and M + N(T n) = ⊥M ′ + ⊥R(T ∗n) = ⊥(M ′ ∩R(T ∗n)) = X.
Thus,

M + N ⊃ M + R(T n) + N ⊃ M + R(T n) + N(T n) = X

and
M ∩N ⊂ M ∩N(T n) ∩N ⊂ R(T n) ∩N = {0}.

So we have X = N ⊕M , T (N) ⊂ N , T (M) ⊂ M and (T |N)n = O.
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Let T2 = T |M . We have

N(T2) = N(T ) ∩M ⊂ N(T n) ∩M = ⊥(R(T ∗n + M ′))

= ⊥(R(T ∗n) + N(T ∗n)) = N(T n) ∩R(T n) ⊂ R∞(T ).

Thus kj(T2) = 0 for every j ≥ 0. Hence the sequences αj(T2) and βj(T2) are
constant. Since αn(T2) = αn(T ) < ∞ and βn(T2) = βn(T ) < ∞, we conclude
that α(T2) < ∞ y β(T2) < ∞, and we get that T2 is Fredholm.

Conversely, let X = M⊕N , M, N be T -invariant subspaces and T n|N = O
and T |M Fredholm. Then R(T n) = R(T n|M) is of finite codimesion in M .
Hence R(T n) is closed. It is not hard to very that T |R(T n) is Fredholm.¤

The class of operators admitting Kato decomposition can be characterized
in terms of the range and kernel of the powers of an operator.

An operator T ∈ B(X) is quasi-Fredholm if there exists d ∈ IN , called
the degree of the quasi-Fredholm operator, such that kn(T ) = 0 for every
n ≥ d and R(T d+1) is closed.

Using Lemma 6.3.2 we see that B-Fredholm operators are quasi-Fredholm.
If T ∈ B(X) is quasi-Fredholm, then R(T ) + N(T d) and N(T ) ∩ R(T d)

are closed. If they are also complemented, assumption that is automatically
fulfilled if X is a Hilbert space, following the same steps of the proof of the
above theorem we get the following.

Theorem 6.3.4 ([15, Theorem 5]) Let T ∈ B(X) be a quasi-Fredholm op-
erator of degree d and suppose that the subspaces R(T ) + N(T d) and N(T )∩
R(T d) are complemented. Then there exist T -invariant subspaces M,N such
that X = M ⊕N , T d|N = O and T |M is semi-regular.

It looks nicer in a Hilbert space setting.

Theorem 6.3.5 ([12, Theorem 3.2.1]) Let H be a Hilbert space and T ∈
B(H). Then T is quasi-Fredholm if and only if T admits a Kato decomposi-
tion.

In view of our success characterizing the Kato decomposition, now we
want to obtain something for the generalized Kato decomposition.



Fredholm theory and Kato decomposition 111

Let H be a Hilbert space. We say that an operator T ∈ B(H) is pseudo-
Fredholm if it admits a generalized Kato decomposition.

Unfortunately, for the pseudo-Fredholm operators only some technical
results have been achieved and until now there are no “beautiful” character-
izations in terms of subspaces of the range and kernel of an operator.

T. Kato proved his decomposition for Fredholm operators in the paper
[10]. After that, J.P. Labrousse defined the quasi-Fredholm operators in [12]
and proved that in a Hilbert space they were precisely those admitting a
Kato decomposition. Later M. Mbekhta studied those operators admitting
a generalized Kato decompositions, which he called pseudo-Fredholm in [14].
Then M. Berkani had the idea of investigating this theory paying attention
to the restriction of an operator to the range of its powers, which led him to
define in [4] the B-Fredholm operators. His work had a strong influence from
the ideas of Labrousse and the research of C. Schmoeger with the generalized
Fredholm operators (see [19]), which we have not discussed here because they
turn out to be a special case of B-Fredholm operators. Schmoeger, in turn,
based his work in a Caradus one ([6]). The proof of the Kato decomposition
for B-Fredholm operators presented in this section is due to V. Müller, since
Berkani proved it using a previous result of Labrousse whose proof was valid
only for Hilbert spaces.

6.4 Fredholm theory through invertibility

Fredholm theory has an interesting relationship with invertibility.
Recall K0(X) is the set of finite rank operators and K(X) is the set

of compact operators. Let π0 : B(X) → B(X)/K0(X) and π : B(X) →
B(X)/K(X) be the natural homomorphisms defined by π0(T ) = T +K0(X)
and π(T ) = T + K(X).

Theorem 6.4.1 (Atkinson, see [16, Theorem 16.13]) The following stateme-
nts are equivalent:

1. T ∈ B(X) is a Fredholm operator,



112 Kantun-Montiel et al

2. π0(T ) is invertible in B(X)/K0(X)

3. π(T ) is invertible in B(X)/K(X).

We should note that the quotient algebras B(X)/K0(X) and B(X)/K(X)
can be very different each other, for instance, the latter is Banach algebra
while the former only got a seminorm, and even then both “give rise” to the
same class of Fredholm operators.

Before proceeding to the discussion of the generalizations of Fredholm
operators we are going to see in this section, we shall recall some generalized
notions of invertibility.

We say that T ∈ B(X) is relatively regular if there exist an operator
S ∈ B(X), called generalized inverse, such that

TST = T.

This operator S is also called an inner inverse for T . If S = STS also holds
for S we say that S is an outer inverse for T . The main issue with the
relatively regular operators is that the generalized inverse is not unique: if
S is a generalized inverse for T , taking S ′ = STS we get that S ′ is an inner
and outer inverse for T . For having uniqueness we need something more
than inner and outer invertibility: T ∈ B(X) is group invertible if there
exists S ∈ B(X) such that

TS = ST, STS = S and TST = T.

The group inverse is unique if it exists. It is known that T is group invertible
if and only if N(T ) = N(T 2) and R(T ) = R(T 2). We should note that for
a group inverse S of T we have TST − T = T (I − ST ) = 0. Generalizing a
little we have: T ∈ B(X) is Drazin invertible if there exists S ∈ B(X) such
that

TS = ST, STS = S and T (I − ST ) is nilpotent.

The Drazin inverse is unique if it exists. It is known that T is Drazin invertible
if and only if N(T n) = N(T n+1) and R(T n) = R(T n+1) for some n ∈ IN . If
the conditions above hold for some n, then also hold for n + 1. The least
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n ∈ IN for which these conditions hold is called the Drazin index of T .
Generalizing even more we have: T ∈ B(X) is generalized Drazin invertible
if there exists S ∈ B(X) such that

TS = ST, STS = S and T (I − ST ) is quasinilpotent.

The generalized Drazin inverse is unique if it exists. It is known that T is
generalized Drazin invertible if and only if {0} is at worst an isolated point
of σ(T ).

M.P. Drazin originally defined the inverse named after him in a more
general context in a paper of 1958 ([7]). This inverse is a type of the so
called spectral inverses, this means that if S ∈ B(X) is Drazin inverse for
T ∈ B(X), then

σ(S) \ {0} = {λ ∈ IC : 1
λ
∈ σ(T ) \ {0}}.

For the generalizations we are going tu discuss here we will follow the
idea of changing the invertibility in the Atkinson’s theorem by generalized
notions of invertibility.

We say that T ∈ B(X) is a generalized Fredholm operator if π0(T ) is
group invertible in B(X)/K0(X).

The generalized Fredholm operators were originally defined, although in
a different but equivalent way, by S.R. Caradus [6] and later were studied in
a series of papers by C. Schmoeger [19]-[20]. Since the generalized Fredholm
operators are a particular case of the B-Fredholm operators, they admit a
Kato type decomposition.

Theorem 6.4.2 ([20, Theorem 1.1]) T ∈ B(X) is a generalized Fredholm
operator if and only if there exist T -invariant closed subspaces M,N ⊆
X such that X = M ⊕ N , T |M is Fredholm and T |N is nilpotent with
dim R(T |N) < ∞.

Example 6.4.1 A generalized Fredholm operator which is not Fredholm.
Let P ∈ B(X) be a projection such that N(P ) is not finite. We have that

P is not Fredholm. Let M = R(P ) and N = N(P ). Hence, P |M is invertible
and P |N = O|N , then, by the above theorem we have that P is a generalized
Fredholm operator.
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Generalizing a little more we get the B-Fredholm operators, that in this
context we can call Drazin-Fredholm.

Theorem 6.4.3 ([5, Theorem 3.4]) T ∈ B(X) is a B-Fredholm operator if
and only if π0(T ) is Drazin invertible in B(X)/K0(X).

Example 6.4.2 A B-Fredholm operator which is not generalized Fredholm.
Let Q ∈ B(X) a nilpotent operator such that R(Q) is not closed. Then,

using N = X in the above theorem we see that Q is B-Fredholm. Now, since
R(Q) is not closed, Q is not relatively regular. Then, using [19] (Proposition
2.1), for every S ∈ B(X) we have that QSQ − Q is not relatively regular.
Since every finite rank operator is relatively regular, QSQ−Q /∈ K0(X) for
every S ∈ B(X) and we get that π0(Q) is not relatively regular and therefore
is not group invertible in B(X)/K0(X).

Note that until now we have used the quotient B(X)/K0(X). By Atkin-
son’s theorem we can use B(X)/K0(X) or B(X)/K(X) for studying Fred-
holm operators. This is no longer true for these generalizations. For example,
if K is a compact operator with infinite dimensional range, then π(K) = π(0)
is group invertible in B(X)/K(X) but π0(K) is not in B(X)/K0(X). Indeed,
suppose π0(K) is group invertible, then by Theorem 6.4.2 it follows that if n
is nilpotency degree of K|N then R(Kn) is closed, which is a contradiction
since K is compact and R(K) is not finite dimensional implies R(Kn) is not
closed for every n ∈ IN .

We now turn to the generalized Drazin inverse case.

Definition 6.4.1 An operator T ∈ B(X) is generalized Drazin-Fredholm if
π(T ) is generalized Drazin invertible in B(X)/K(X).

Example 6.4.3 A generalized Drazin-Fredholm operator which is not B-
Fredholm.

Let T be the Volterra operator on the Banach space X = C[0, 1] defined
by

(Tf)(t) =

∫ t

0

f(s)ds for all f ∈ C[0, 1] y t ∈ [0, 1].
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Then T is a quasinilpotent operator (but not nilpotent). Hence, 0 is an
isolated point in σB(X)/K(X)(π(T )), so π(T ) is generalized Drazin invertible
in B(X)/K(X). Therefore, T is generalized Drazin-Fredholm.

Now note that if T ∈ B(X) is B-Fredholm and n is the nilpotency degree
of T |N of the Theorem 6.3.3 then R(T n) is closed. But it is known that, for
the Volterra operator, R(T n) is not closed for every n ∈ IN , and therefore T
is not B-Fredholm.

Note that we have defined the generalized Drazin-Fredholm operators
using the ideal of compact operators K(X). We will see later that this is
equivalent to the use of the ideal K0(X).

Now we proceed to toward a Kato type decomposition for generalized
Drazin-Fredholm operators. First we ask if these operators admit a general-
ized Kato decomposition.

Proposition 6.4.1 If a compact operator K admits a generalized Kato de-
composition, then σ(K) is finite.

Proof. Suppose that K ∈ K(X) admits a generalized Kato decomposi-
tion, then by [2] (Theorem 1.41) we have that the analytical core K(T ) is
closed. Since K is a Riesz operator, using [13] (Corollary 9) we get that σ(K)
is finite.¤

Example 6.4.4 There exist generalized Drazin-Fredholm operators which
does not admit a generalized Kato decomposition.

Suppose that K ∈ K(X) is such that σ(K) is not finite. From the
definition of generalized Drazin invertibility it is clear that π(K) = π(O) is
generalized Drazin invertible in B(X)/K(X). Hence, K is a Drazin-Fredholm
operator, but by the above proposition we have that K does not admit a
generalized Kato decomposition.

However, we have another decomposition. We say that T admits a
Fredholm-Riesz decomposition if there exist two T -invariant closed subspaces
M,N ⊂ H such that H = M ⊕N and the restriction T |M is Fredholm and
T |N is Riesz.
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Lemma 6.4.1 If π(T ) is generalized Drazin invertible in B(X)/K(X) then
T admits a Fredholm-Riesz decomposition.

Proof. Suppose that π(T ) is generalized Drazin invertible in B(X)/K(X),
then 0 is an isolated point in σB(X)/K(X)(π(T )). Let P̃ be the spectral idem-
potent for π(T ) corresponding to the spectral set {0}. If T is Fredholm or
Riesz, then P̃ is π(0) or π(I) and the conclusion is trivial, so suppose that
T is neither Fredholm nor Riesz. By [3] (Corollary 3.4 and Proposition 4.1)
there exists a projection P ∈ B(X) such that π−1(P̃ ) = P . Let M = N(P )
and N = R(P ), it follows that T |M is Fredholm and T |N is Riesz.¤

A.F. Ruston proved that T ∈ B(X) is a Riesz operator if and only if π(T )
is quasinilpotent in the Banach algebra B(X)/K(X) (see [17]). We will now
prove that this is equivalent to be quasinilpotent in the ring B(X)/K0(X).
Since the quotient B(X)/K0(X) is not a Banach algebra, the first thing we
need is a suitable definition for quasinilpotent in rings.

As in [8], we say that an element q in a ring R is quasinilpotent if 1 + xq
is invertible for every x such that xq = qx. It is not hard to see that in a
Banach algebra this definition agrees with the usual definition.

In a ring R by R−1 we will denote the set of all invertible elements in R.

Lemma 6.4.2 Let T ∈ B(X). π0(T ) is quasinilpotent in B(X)/K0(X) if
and only if π(T ) is quasinilpotent in B(X)/K(X).

Proof. Suppose that π0(T ) is quasinilpotent B(X)/K0(X), then for every
π(U) ∈ B(X)/K0(X) such that π(TU) = π(UT ) we have that π(I + UT ) ∈
(B(X)/K0(X))−1. Then, π(I + λT ) ∈ (B(X)/K0(X))−1 and we get that T
is Riesz and therefore π(T ) is quasinilpotent in B(X)/K(X).

Conversely, suppose that π(T ) is quasinilpotent in B(X)/K(X). Let
U ∈ B(X) such that UT − TU ∈ K0(X) ⊂ K(X). We have that π(TU) =
π(UT ), hence σB(X)/K(X)π(TU) = {0} and we get that π(I − TU) is invert-
ible in B(X)/K(X). Using the Atkinson’s characterization (Theorem 6.4.1),
π0(I − TU) is invertible in B(X)/K0(X). Hence, π0(T ) is quasinilpotent in
B(X)/K0(X).¤

When considering the generalized Drazin inverse we can use both quo-
tients indistinctly again.
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Theorem 6.4.4 Let T ∈ B(X). The following statements are equivalent

1. π0(T ) is generalized Drazin invertible in B(X)/K0(X).

2. π(T ) is generalized Drazin invertible in B(X)/K(X).

Proof. Suppose that π0(T ) is generalized Drazin invertible in cociente
algebraB(X)/K0(X), then there exist operators S ∈ B(X), K1, K2 ∈ K0(X)
such that

TS = ST + K1, STS = S + K2 and π(T (I − ST )) is quasinilpotent.

Since K1, K2 ∈ K(X) and using Lemma 6.4.2, we get that π(T ) is Drazin
invertible in B(X)/K(X).

Now suppose that π(T ) is generalized Drazin invertible in B(X)/K(X).
From Lemma 6.4.1, H = M ⊕ N and T = T1 ⊕ T2, where T1 = T |M is
Fredholm and T2 = T |N is Riesz. Since T1 : M → M is Fredholm there
exists S1 : M → M such that S1T1 = I + F1 and T1S1 = I + F2 with
F1, F2 ∈ F0(M). Let S = S1 ⊕O. Then

ST = (T1S1 − F2 + F1)⊕O = TS + ((F1 − F2)⊕O),

STS = S1(I + F2)⊕O = S + (S1F2 ⊕O) y
T (I − ST ) = T1F1 ⊕ T2 is Riesz.

Therefore, π0(S) is the generalized Drazin inverse of π0(T ) in B(H)/F0(H).¤
Recall that for a Drazin-Fredholm (B-Fredholm) operator T we have that

R(T n) is closed for some n ∈ IN . In the case of the generalized Drazin-
Fredholm operators we loose this property.

Example 6.4.5 There exists an operator generalized Drazin-Fredholm K
such that R(Kn) is not closed for every n ∈ IN .

Let X = `2 th space of the square-summable sequences, and let K : `2 →
`2 the operator defined by

K(x) = (0, x1,
1
2
x2,

1
3
x3, . . .), x = (x1, x2, x3, x4, . . .) ∈ `2.

Then K is compact and hence is generalized Drazin-Fredholm. Since Kn

is compact and R(Kn) is finite dimensional for every n ∈ IN , we get that
R(Kn) is not closed for every n ∈ IN .
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6.5 Banach algebras
The set of all bounded linear operators B(X) is a Banach algebra with

the usual operations, taking the product as the composition of operators.
This give us the idea of investigate to what extent we can extend the above
results to general Banach algebras.

Let A be a complex Banach algebra with identity e. Most of the defini-
tions are similar to those for B(X). Of course that now the decompositions
will be in an algebraic way using analogue to the projections.

An element p ∈ A is idempotent if p = p2 holds.
Let P ∈ B(X) be a projection, then if M = R(P ) and N = N(P ) we

have X = M ⊕N . Thus,

T + P = (TP + P )|M ⊕ (T + P )|N = (T + I)|M ⊕ T |N .

Note that if P is the spectral projection corresponding to the spectral set
{0} discussed in section 2, then T |M = TP is quasinilpotent, so (T + I)|M is
invertible. Thus, T +P is invertible. Conversely, if for an arbitrary projection
P we have that T + P is invertible and TP = T |M is quasinilpotent, we see
that T |N is invertible.

In this section we will discuss the decomposition a = ap+a(e−p), where
ap and a + p satisfy certain assumptions.

An element a ∈ A is invertible if there exists b ∈ A such that ab = ba = e.
The spectrum of an element a ∈ A is defined by

σ(a) = {λ ∈ IC : a− λe is not invertible}.
An element q ∈ A is nilpotent if there exists n ∈ IN such that qn = 0.

We say that q ∈ A is quasinilpotent if for every x commuting with q we have
that e−xa is invertible. Every nilpotent element is also quasinilpotent. This
definition works in rings with identity and agrees with the definition usual
definition in Banach algebras ‖qn‖1/n → 0.

Before stating a result on isolated points of the spectrum recall that the
spectral mapping theorem assures us that if f is a holomorphic mapping in
a neighborhood of σ(a) then σ(f(a)) = f(σ(a)). By accσ(a) we will denote
the set of accumulation points of σ(a).
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Theorem 6.5.1 ([11, Theorem 3.1]) Let a ∈ A. Then 0 /∈ accσ(a) if and
only if there exists an idempotent p ∈ A commuting with a such that ap is
quasinilpotent and a + p is invertible.

Proof. If 0 /∈ σ(a) then we can take p = 0. Hence, suppose that 0 is an
isolated point of σ(a). Then there exist open sets U and V of IC, such that
0 ∈ U , σ(a) \ {0} ⊂ V , and U ∩ V = ∅.

Let us define the function f in U ∪V by f(λ) = 0 for λ ∈ V and f(λ) = 1
for λ ∈ U . Then f is holomorphic in σ(a) and f(a) = p is the spectral
idempotent of a corresponding to {0}. Moreover, p commutes with any b
commuting with a.

Let g(λ) = λ for λ ∈ U ∪ V . Then g(a) = a. If h(λ) = f(λ)g(λ), then
h(λ) = λ for λ ∈ U , and h(λ) = 0 for λ ∈ V . We get that ap = h(a). Using
the spectral mapping theorem we have σ(ap) = {0}, so ap is quasinilpotent.
If s(λ) = f(λ) + g(λ), then s(λ) = λ + 1 for λ ∈ U and s(λ) = λ for λ ∈ V .
We see that a + p = s(a). Again by the spectral mapping theorem we have
that 0 /∈ σ(a + p), so a + p is invertible.

Conversely, if p = 0, then a is invertible and 0 /∈ σ(a). Hence, suppose
that there exist some idempotent p 6= 0 such that ap = pa, ap is quasinilpo-
tent, and a + p is invertible. For arbitrary λ ∈ IC we have

λ− a = (λ− ap)p + (λ− (p + a))(1− p).

Since p+a is invertible, we have 0 /∈ σ(p+a), so there exists r > 0 such that
if |λ| < r then λ− (a+ p) is invertible. Moreover, ap is quasinilpotent, hence
λ− ap is invertible for every λ ∈ IC \ {0}. Thus, for 0 < |λ| < r we have

(λ− a)−1 = (λ− ap)−1p + (λ− (p + a))−1(1− p).

It follows that 0 /∈ accσ(a). Let us use the same function f as above. Then
f(a) is the spectral idempotent of a corresponding to the spectral set {0}.
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Let γ be a Cauchy contour separating {0} from the set σ(a) \ {0}. We have

f(a) =
1

2πi

∫

γ

(λ− a)−1dλ

=
1

2πi

∫

γ

(λ− ap)−1pdλ +
1

2πi

∫

γ

(λ− (p + a))−1(e− p)dλ

=
1

2πi

∫

γ

∞∑
n=0

λ−n−1anpdλ + 0 = p.¤

Now we discuss the case in which a + p is not invertible but some type
of generalized invertible. We will use similar ideas to those in the previous
section.

Let A be a Banach algebra. The radical of A is

rad(A) = {a ∈ A : 1− xa is invertible for every x ∈ A}.
If rad(A) = {0} then we say that A is semisimple.

If A is semisimple, the sum of all minimal right ideals coincides with the
sum of all minimal left ideals. This sum, which is also an ideal, will be called
the socle of A, denoted soc(A).

We will not go into details about the socle and semisimple algebras, we
will just recall that the algebra B(X) is semsimple and the socle of B(X) is
the ideal of finite rank operators K0(X).

Let us denote by â = a + soc(A) the coset of a in A/soc(A).
An element a ∈ A is Fredholm if â is invertible in A/soc(A).
An element a ∈ A is group invertible if there exists b ∈ A such that

aba = a, bab = b and ab = ba.

An element a ∈ A is generalized Fredholm if â is group invertible in
A/soc(A).

Now we can have a decomposition like we have for B-Fredholm operators.

Theorem 6.5.2 Let A be a semisimple Banach algebra. If a ∈ A is a gen-
eralized Fredholm element, then there exists an idempotent p ∈ A such that
ap is nilpotent and a + p is Fredholm.
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Proof. Suppose a ∈ A is generalized Fredholm. Then, there exists b ∈ A
such that

âb̂â = â, b̂âb̂ = b̂ y âb̂ = b̂â.

Since aba − a ∈ soc(A), and the elements of soc(A) are relatively regular,
aba− a has generalized inverse, say r. Hence,

b0 = b− r + bar + rab− barab

is a generalized inverse for a. Also

âb̂0 = âb̂− âr̂ + âb̂âr̂ + âr̂âb̂− âb̂âr̂âb̂

= âb̂− âr̂ + âr̂ + âr̂âb̂− âr̂âb̂

= âb̂.

In a similar way we see that b̂0â = b̂â. Now, since ab0a = a, we have that
p = e− b0a is idempotent. Hence

â + p̂ = â + ê− b̂0â = â + ê− b̂â,

and (â+ ê− âb̂)(̂bâb̂+ ê− âb̂) = ê, so â+ p̂ is invertible and a+p is Fredholm.
Also,

ap = a(e− b0a) = a− ab0a = a− a = 0,

so ap is nilpotent.¤
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approximation of continuous
functions from Haar spaces
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Abstract: Given a real valued function f and non-negative real valued
functions h1 and h2 on the same domain, we construct neighborhoods
centered at f and borders f −λh1 and f +λh2, with λ ≥ 0. We measure
the approximation to f from a given n−dimensional Haar space by mini-
mizing the amplitude λ of the neighborhoods while they contain elements
of the approximating functions. We discuss several recent results on this
subject, in particular uniqueness of the best approximation by means of
a generalized Chebyshev alternation theorem and Chebotarev criterion.
The characterization of the best generalized polynomial of approxima-
tion leads to an extended Remez algorithm. Thus using this algorithm
we present examples of approximation.
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7.1 Introduction

This manuscript is planned to introduce the ideas involved in the genera-
lized uniform weighted approximation. Several important results are given
and the proofs of them are included or outlined. References have been quoted.

As known, the simplest but most important problem in Approximation
Theory is to find an element from an approximating class C of func-

tions to a given function f. The most typical class C is a set of algebraic or
trigonometric polynomials, and the tools of measuring the approximation are
the uniform norm or the least squares technique. As in many mathematical
problems, firstly one needs to analyze the existence of a solution, i. e., to
know whether there exists p in C, called an element of best approximation
relative to the problem in hands, such that p is the nearest one in C to f . In
case of a positive answer, to search for the uniqueness of elements of best ap-
proximation. Finally a method is needed for calculating p and its distance to
f, this distance is called the best approximation to f from the approximating
class C.

The popularity of the least square method in this subject is not by hazard.
This way of measuring corresponds to a metric associated to a scalar product,
a concept which not only is used for modeling many physical and technical
problems, but whose theory is very rich and comfortable. In fact, in dealing
with any finite dimensional space C, we not only obtain positive answers to
the problem of existence and uniqueness, but a feasible way of calculus by
means of the standard techniques of optimization or by Fourier orthogonal
expansions.

In general the use of one or another approximating class of functions and
the way of measuring the approximation depend on the practical problem
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in hands, and uniform approximation is very often required. The theory of
approximation with uniform norm is large and a very extensive collection
of results on the subject can be easily found in text books and research
papers. However mathematical difficulties may appear if the elements in the
approximating class should satisfy constrains. This is exactly the case we
shall examine in this paper. In fact, different situations lead us to consider
the following setting:

Problem : "We consider a real-valued target function f on a certain
domain D, a class C of possible approximating functions, non-negative (called
errors) functions h1 and h2 to bound the errors of measurement, and the
problem of choosing an approximating element p ∈ C to f and a real λ ≥ 0
such that the inequalities

−λh1 ≤ p− f ≤ λh2

are uniformly satisfied on the domain D.

The infimum of these λ (if it has a sense), may be defined as the best
uniform approximation to f from the class C, relatively to the given error
functions. The case h1 = h2 = 1 coincides with the uniform (also call
Chebyshev) approximation mentioned above. While hi = 1 and hj = 0, i 6= j,
represents a one-sided uniform approximation problem. Thus a variety of
different cases are included in this general setting. Consequently, the answers
we could obtain to the possible mathematical questions strongly depend on
the choice of the data D, C, the error functions, etc."

This subject has been early treated and focused in different ways by math-
ematicians from Western and Eastern countries. However it is rather rare
to find crossed references between mathematicians from both geographical
areas. Thus several known but introductory results we need are presented in
next Section 2, wherein we shall also quote the main references. In Section
3, we study the uniqueness of best approximation for the problem developed
below. Finally in Section 4 we shall include examples of approximating poly-
nomials obtained by a generalized Rémez algorithm to show differences with
the traditional uniform polynomial approximation.
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7.2 Chebyshev asymmetric approximation by
generalized polynomials.

We begin by defining the approximating class C to be employed in this
paper. Let g1, g2, ...., gn ∈ C [a, b] be a Haar (also called Chebyshev) system.
This means that for any set of n different points

a ≤ x1 < x2 < ... < xn ≤ b

the determinant
|gi (xj)|1≤i,j≤n

is not zero. A Haar space is a subspace C of C [a, b], generated by any
Haar system. Its elements are named generalized polynomials. This name
surely comes from the fact the most usual Haar systems are the algebraic
polynomials generated by the Haar system 1, x, · · · , xm, with dimension n =
m + 1, or the trigonometric polynomials generated by the Haar system 1,
cos x, sin x, · · · , cos mx, sin mx, with dimension n = 2m + 1. Non trivial
Haar spaces are possible only on topological spaces homeomorphic to real
intervals or to the circle T of complex numbers z, |z| = 1, with the topology
associated to the Euclidean distance. In particular T with the boundedly
equivalent distance defined between any two points by the length of the
shortest arc joining these points, is isometrically isomorphic to [0, 2π) with
the distance

d(x, y) := min{|x− y|, 2π − |x− y|}.
Thus for simplification, we can consider only real intervals [a, b] , with the
identification of −π and π, if periodic functions are considered on T. The
standard reference here could be [14].

Now we precise the problem to be analyzed in this paper. Following
(Problem) in Section 1, let D be a compact set of the real line with at least
n + 1 points (usually a whole interval [a, b] , but we shall accept this general
setting). The real-valued functions f , h1, h2 are considered to be continuous
on D, where h1, h2 are positive but one of them is strictly positive The case
in which h1, h2 have common zeros has been recently considered in [16] for
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treating interpolation problems, but this case exceeds the objectives of this
introductory monograph. Suppose [a, b] is the convex hull of the set D. Then
C will be any n-dimensional Haar space of continuos functions on [a, b] . For
each λ ≥ 0 we define the sets Bλ = Bλ (f, h1, h2) by

Bλ = {g ∈ C [D] : ∀x ∈ D, (f − λh1) (x) ≤ g (x) ≤ (f + λh2) (x)} , (7.1)

and
Mλ = Mλ (f, h1, h2) = C ∩Bλ. (7.2)

Using a non rigorous but suggestive language we may say that Bλ is
a band with amplitude λ, inferior and superior borders f − λh1 and f +
λh2 respectively, and that p is within the given band whenever belongs to
Mλ. Moreover, that p touches a border whenever p ∈ Mλ and one of the
inequalities in (7.1) becomes an equality for g = p at some x ∈ D. The set
Bλ grows when the parameter λ increases. Then, following a terminology
used in the theory of topological vector spaces, the main point is that the set
Mλ absorbs all approximating elements when the parameter λ increases. By
the way, this is not true if h1 and h2 have common zeros.

Definition 7.2.1 The best approximation E (f)=E (f, h1, h2) to f from the
class C, with respect to the error functions h1 and h2, is defined by

inf {λ ≥ 0 : Mλ (f, h1, h2) 6= φ} . (7.3)

Any generalized polynomial p ∈ C is of best approximation in this context
whenever p is within the band of amplitude E (f) .

Taking in consideration the geometrical meaning of this technique of mea-
suring the distance between p and f, it was denominated varying amplitude
method of approximation in [12], [13] and [16]. Now we are looking for answers
to the typical questions of existence of polynomials of best approximation,
uniqueness, and so on. In the particular case described above we claim:

Theorem 7.2.1 (Existence)
i) The best approximation E (f) is attained.
ii) There always exists a polynomial of best approximation.
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Proof. Since one of the error functions is strictly positive and we are
dealing with continuous functions on compact domains, the sets Mλ in (7.2)
are non-empty for large values of λ. Observe that Mλ in (7.2) is closed and
bounded. Since C is a finite dimensional the sets Mλ are compact. Then
by applying a compactness argument we deduce the existence of a minimum
value λ = E (f) such that Mλ (f, h1, h2) 6= φ. To prove the second part, take
any p in ME(f).¤

Of course the proof above may be extended to more general situations.
Now the new problem is to examine uniqueness of the generalized polynomial
of best approximation, a task that will be accomplished in the next section.
But first some comments will be convenient and also necessary for recognizing
the original works.

Define wi = 1/h (i) , i = 1, 2, with the agreement that 1/0 = ∞ but
0 ∗ ∞ = 0. For any real valued function g set g+ = (|g|+ g) /2 and g− =
(|g| − g) /2. Observe that

E (f) = inf
p∈C

sup
p∈D

{(
(p− f)− w1 + (p− f)+ w2

)
(x)

}
. (7.4)

Thus the varying amplitude method of approximation is a special kind
of uniform weighted approximation. Observe that here the weight is given
by the two functions w1 and w2, that in the general case may be different.
They act on the negative and positive part of f, respectively. Due to this
reason this pair of functions was called sign sensitive weight by Dolzhenko
and Sevastyanov in their survey paper (see [8]) and the long list of references
quoted there). Sign sensitive weight is an evolution of the ideas presented
by Krein and Nudelman in 1973 in their book [15], where strictly positive
continuous error functions are considered in (7.4). However to our knowledge,
the first and indeed more general weight of this kind is due to Moursund [20]
so early as in 1966 and continued in subsequence papers (see the survey [3]).

It is important to observe that generally speaking E (f) 6= E (−f) . We
may study approximation problems by substituting norms by asymmetric
norms or more general by positive homogeneous functionals. Such a func-
tional is a positive real or infinite valued function ρ defined on a cone C of a
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real vector space E, that satisfies the properties

(i) ∀f, g ∈ C, ρ (f + g) ≤ ρ (f) + ρ (g)

(ii) ∀f ∈ C∀α ≥ 0, ρ (αf) = αρ (f) .

But perhaps there exists f ∈ C, such that −f ∈ C and ρ (f) 6= ρ (−f) , or
such that f 6= 0 and ρ (f) = 0. An asymmetric norm is a positive valued
homogeneous functional ρ defined on the whole space E that must satisfy
together with (i) and (ii) the properties

(iii) (ρ (f) = 0) ⇔ (f = 0)

(iv) ∃M > 0∀f ∈ E, ρ (−f) ≤ Mρ (f) .

If we define on C [D] the functional

ρ (g) = sup
p∈D

{(
g−w1 + g+w2

)
(x)

}
(7.5)

and measure the approximation between two functions p and f by ρ (p− f)
with just this order, it follows that ρ in (7.5) is a positive homogeneous
functional that becomes an asymmetric norm if both of the error functions
are strictly positive. Measuring the best approximation to f from elements
p ∈ C by the traditional formula

E (f) = inf
p∈C

{ρ (p− f)} ,

we get the same number given by (7.4). Thus all reviewed methods here are
equivalent.

The theory of asymmetric normed space has found application not only on
approximation theory but also on computer science. To quote some references
see [1], [2], and [17].
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7.3 Uniqueness of the best approximation

In a relatively recent paper, Pokrovskii [22] studied the uniqueness prob-
lem of best approximation by positive homogeneous functionals in an exhaus-
tive collection of different examples. In the particular context with wich we
are dealing, Moursund in [20] and later Krein and Nudelman in [15] have es-
tablished the uniqueness of this approximation process by means of a general
Chebyshev Alternation Theorem.

Concerning Chebyshev theorem [6] some interesting commentaries and
general ideas behind the subject can be found in [25]. Moreover this theorem
may appear unexpectedly without any apparent connection to approxima-
tion problems. In fact, verifying the hypothesis of the Karush-Kuhn-Tucker
theorem for semi-infinite optimization [24] in a problem arising from the
petroleum industry, Guerra and Jimenez [9] found an extreme case in which
a certain constraint qualification is violated, but the theorem applies. This
situation corresponds to the case in which the feasible set is reduced to a
singleton. Then they were brought to announce and prove independently the
general Chebyshev alternation theorem in hands ([10] and [11]).

While Chebyshev theorem is stated in connection with a class of approxi-
mating functions in a linear space C, Pokrovskii came back to an old but not
well known criterion of characterization of the best uniform approximation
that was stated by Chebotarev in [4] and [5], and could be used in dealing
with approximating functions defined on a convex set C. The substitution of
linear spaces by only convex sets is not so important in connection with the
approximation from Haar linear spaces, but very important in dealing with
other classes C, such as rational functions. Probably the reason for which
Chebotarev criterion is not so well known is because it also promoted further
developments which finally conducted to the useful Kolmogorov criterion (see
the classical criterion in [7], for instance).

There is however an equivalence between Chebyshev and Chebotarev
criteria for linear spaces C. In fact, in the classical case both criteria are
equivalent to the condition that a certain convex set in the euclidean n + 1
dimensional space contains the zero vector as an interior point. But this last
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property is known to be true in the general Chebyshev Alternation Theorem
[10] and [11]. So, since the generalization of Chebotarev theorem to weighted
uniform approximation conserves this last property [18], we arrived at the
equivalence between both concepts in the general case we are dealing with.

Everything that we have explained here about both criteria is the content
of the next very general theorem for which we need several definitions.

For the moment, we suppose D = [a, b].

Let f, h1, h2 ∈ C[a, b] be such that h1, h2 > 0, g1, . . . , gn ∈ C[a, b] a Haar
system; E = E (f) the best approximation from the linear space C generated
by this Haar system to f relative to the errors h1 and h2.

(i) For each p ∈ C, define the sets:

R(p, h1) := {x ∈ [a, b]|(p− f + Eh1)(x) = 0},

R(p, h2) := {x ∈ [a, b]|(p− f − Eh2)(x) = 0},
R(p) := R(p, h1) ∪R(p, h2).

(ii) For h ∈ C[a, b] and x ∈ [a, b], also define the vectorial function

a(h, x) := sign(h(x))(g1(x), g2(x), . . . , gn(x)).

Theorem 7.3.1 (Characterization) Let g1, . . . , gn ∈ C[a, b] be a Haar
system that generate the approximating space C, and f, h1, h2 ∈ C[a, b],
h1, h2 > 0, f /∈ C, E (f) the best approximation from C to f . Then the
following statements are equivalent:

a) p ∈ ME(f), i.e. p is a polynomial of best approximation from C to f
with respect to h1 and h2.

b) There exist n + 1 different points z1 < · · · < zn+1 in [a, b], such that p
takes the alternation values f(zi) + λnh2(zi) and f(zi)−λnh1(zi) (or f(zi)−
λnh1(zi) and f(zi) + λnh2(zi)) for i = 1, 3, · · · , while possible.

c) R(p) has n + 1 elements

x1 < x2 < · · · < xn+1,
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such that the zero vector of Rn belongs to the interior of the convex hull of
the vectors

{a(p− f, x1), · · · , a(p− f, xn+1)}.
d) For every c ∈ Rn\{0}, there exist xc, yc ∈ R(p) such that

a(p− f, xc) · c > 0 and a(p− f, yc) · c < 0

e) For every q ∈ C, q 6= 0

max
p∈R(p)

(p(x)− f(x))(q(x)) > 0.

Remark 7.3.1 Chebyshev alternation theorem is given in (b) , Chebotarev
criterion in (d) , and Kolmorogov criterion in (e) .

Proof. The complete proof may be found in [18].¤

Theorem 7.3.2 (Uniqueness) The polynomial p of best approximation from
C to f with respect to h1 and h2 is unique.

Proof. In dealing with algebraic polynomials, for instance, we have at
hand many results about multiplicities of zeros. In general Haar spaces dif-
ferentiation cannot be assumed and the same theory does not apply. But a
case of double zero has been studied in [7] for functions in Haar spaces. With
that study in hands, suppose p, q ∈ ME(f). Using Chebyshev alternation the-
orem we prove p − q has n + 1 isolated zeros in [a, b] with only a possible
exception of one double zero. Then p− q = 0.¤

7.4 Extensions and applications
Now suppose D  [a, b] is not excluded.

Theorem 7.4.1 (Chebyshev alternation theorem generalized) Any polyno-
mial p ∈ C of best approximation related to the functions f , h1 and h2,
satisfies the following generalized alternation property:
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"There exist n + 1 points zi ∈ D, z1 < z2 < .. < zn+1, such that

p (zi) = f (zi) + E (f) h (zi) and p (zi+1) = f (zi+1)− E (f) h (zi+1)

or

p (zi) = f (zi)− E (f) h (zi) and p (zi+1) = f (zi+1) + E (f) h (zi+1) ,

for i = 1, 2, · · · , n.”

Proof. It may be found in [10] or [11].¤

Remark 7.4.1 Anyway we shall explain the main steps of the proof. If
D = [a, b] , we prove the theorem following the traditional cannons. If
D  [a, b] , a theorem of Cantor asserts the complement of D in [a, b] can
be represented as a countable union of disjoint relative open intervals (In) .
Since [a, b] is the convex hull of D, the extreme elements a, b belong to D.
Thus each In = (an, bn) is indeed an usual open interval. Further, we reduce
the proof for general compact domains with at least n + 1 elements to the
known case D = [a, b] by extending the functions f, h1 and h2 to the whole
interval. To doing it, we inductively define f on each In by joining (an, f (an))
and (bn, f (bn)) in an affine way. We also define affine extensions of h1 and
h2, by joining (an, hi (an)) with ((an + bn)/2, cn) and ((an + bn)/2, cn) with
(bn, hi (bn)) , where cn is chosen so large that the polynomial of best approx-
imation to the extended functions cannot touch the borders of the band in
any point within the intervals In.

Corollary 7.4.1 The polynomial of best approximation related to the func-
tions f , h1 and h2 on general compact domains is unique.

Proof. It follows the typical scheme of the previous section.¤
As an application of this generalized Chebyshev alternation theorem, a

version of the well known Remez algorithm [23] can be developed following
the traditional cannons (see [22] [16] for algebraic polynomials and [19] for
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trigonometric ones). To finish, using such an algorithm, we present the ex-
amples below where the differences between the traditional uniform approx-
imation and the general weighted uniform approximation may be clearly
observed. The figures that illustrate the examples are given at the end of
the paper as an annex.

Suppose the periodical case in which the circle group T of complex num-
bers z, |z| = 1, is taken to be the interval [−π, π] , with the identification
between -π and π. We shall approximate the W -function f defined by parts

f (x) =





− 2
π
x− 1, x ∈ [−π,−π

2

]
2
π
x + 1, x ∈ [−π

2
, 0

]
− 2

π
x + 1, x ∈ [

0, π
2

]
2
π
x− 1, x ∈ [

π
2
, π

]





,

by a trigonometric polynomial p (x) = a0 + a1 cos x + b1 sin x in the following
cases:

1. Error functions h1=h2 = 1, i. e. the traditional uniform approxima-
tion.

Applying Chebyshev theorem we find by simple inspection that the con-
stant function p1 (x) = 0.5 is the polynomial of best approximation, E (f) =
0.5, and contact points of the polynomial of best approximation with the
borders of the band are located at −π,−π/2, 0, and π/2.

2. Error functions h1 = 2 + cos x, h2 = 2 − cos 3x. Since all involved
functions are even, the polynomial of best approximation p2 must be an
even function too. Running an addapted version of Remez algorithm to this
general way of approximation, we obtain p2 ' 0.44− 0.28cosx, E (f) = 0.28,
and that contact points of the polynomial of best approximation with the
borders of the band are located at -π,−1.94, 0, and 1.94.

3. Error functions h1 = 2 + cos x, h2 = 2 − sin 3x. Although the target
function is even, one of the error function is not. The calculated polynomial
of best approximation is p3 ' 0.49− 0.26 cos x+0.23 sin x, E (f) = 0.26, and
that contact points of the polynomial of best approximation with the borders
of the band are located at −π,−π/2, 0, and 2.32.
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Figure 7.1:

Figure 7.2:
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Figure 7.3:
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Mejora del desempeño de una
lente triplete con el método de
relajación

Lidia A. Hernández Rebollar1, César A. García Vázquez2,
Francisco J. Renero Carrillo3

Abstract: Para obtener un mejor desempeño en un sistema óptico
denominado triplete, comúnmente usado en sistemas formadores
de imagen, se usa el algoritmo ALSIE (Automatic Lens design by
Solving InEqualities). En este trabajo se presenta una actualización
al método de relajación, empleado para la solución de sistemas de
desigualdades lineales, y que es parte fundamental de ALSIE. Los
resultados, evaluados mediante la función de mérito de residuos,
muestran que el desempeño es un 10% mejor con la actualización
presentada que con el algoritmo original.

1Facultad de Ciencias Físico Matemático, BUAP
2Facultad de Ciencias de la Computación, BUAP
3INAOE
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8.1 Introducción: Diseño Automático de lentes
mediante la solución de desigualdades.

Sean fi las funciones de rendimiento de un sistema de lentes, estas funciones
describen aberraciones ópticas, condiciones mecánicas u otras características
del sistema. Cada función de rendimiento es una función continua de x ∈ Rn,
donde x es el vector de parámetros del sistema de lentes, como son, radio
de curvatura, grosor, etc.. El concepto de diseño automático de lentes se
refiere a los métodos para obtener un sistema de lentes óptimo a partir de
un sistema de lentes dado. Este problema originalmente parte de la solución
del sistema de ecuaciones

fi (x) = µi i = 1, 2, ..., m

donde µi son los valores esperados de las funciones de rendimiento. Puesto
que las funciones fi son no lineales y el sistema es no consistente, no se tiene
solución exacta. Por esta razón, los métodos convencionales de diseño au-
tomático de lentes se proponen hallar el vector de parámetros x que minimice
la función de mérito

Φ =
∑m

i=1 w2
i (fi (x)− µi)

2

donde cada wi es un factor de peso que indica la importancia de la función
de rendimiento fi.

El programa ALSIE reportado en [1] establece un sistema de cotas para
los valores esperados de las funciones de rendimiento y transforma el sistema
de ecuaciones en el sistema de inecuaciones:

αi ≤ fi (x) ≤ βi, i = 1, 2, ..., m

donde µi ∈ [αi, βi]. Como las funciones de rendimiento son no lineales, para
un x0 dado, el cual representa el estado actual del sistema de lentes, ALSIE
utiliza el gradiente para linealizar y obtiene el siguiente sistema lineal de
inecuaciones:
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αi ≤ ∇fi (x
0) (x− x0) + fi (x

0) ≤ βi, i = 1, 2, ..., m

Definiendo:

C =




c1 . . 0
. . .
. . .
0 . . cn




y0 = C−1x0

ai =

{
[∇fi (x

0)] C, i = 1, 2, ..., m
− [∇fi (x

0)] C, i = m + 1, ..., 2m

bi =

{
fi (x

0)− [∇fi (x
0)] Cy0 − αi, i = 1, 2, ...,m

−fi (x
0) + [∇fi (x

0)] Cy0 − βi, i = m + 1, ..., 2m

Se obtiene el sistema:

aiy + bi ≥ 0, i = 1, 2, ..., 2m

el cual, ALSIE procede a resolver por el método de relajación propuesto
por [2] . Si el punto hallado satisface el sistema no lineal de desigualdades se
termina, y si no, se toma este como el nuevo punto inicial x0, y se realiza
otra iteración.

En este trabajo, presentamos el método de relajación descrito por Gob-
erna en [3] , el cual es más simple que el usado en ALSIE por ser este un caso
particular, lo hemos programado en Sage, el cual es un software de acceso
libre, y hemos obtenido mejores resultados. Para comparar los resultados, se
han evaluado los puntos hallados en la función de mérito Φ. El punto hallado
con Sage satisface estrictamente el sistema lineal de desigualdades y el no
lineal también, además, proporciona un valor menor para Φ que el obtenido
con ALSIE.



144 Lidia A. Hernández Rebollar y César A. García Vázquez

8.2 El método de relajación

Sea {aT
i x ≥ bi, i ∈ I} el sistema dado, en el que se puede suponer ai 6= 0,

para todo i ∈ I, de modo que cada inecuación representa un semiespacio.
Sea F su conjunto solución. La idea geométrica del método es muy simple:
supóngase que el punto actual, x̄, no es solución del sistema (es decir, x̄ /∈ F );
de entre los hiperplanos asociados con inecuaciones violadas por x̄ se toma
uno de los más alejados de x̄, llamándolo H; el punto siguiente se obtiene
desplazando x̄ perpendicularmente hacia H una distancia igual a λd(x̄, H),
donde λ > 0 es un parámetro prefijado. Como la distancia euclidea desde
x̄ al hiperplano H = {x ∈ Rn|aT = b} tal que aT x̄ < b viene dada por el
escalar µ = d(x̄, H) = b−aT x̄

‖a‖ > 0, el punto siguiente será x̄ + λµ a
‖a‖ .

En particular, si se toma λ = 2 (λ = 1), el punto siguiente a x̄ es el simétrico
de x̄ respecto de H (la proyección ortogonal de x̄ sobre H, respectivamente).

8.2.1 Algoritmo de Relajación

Fije el parámetro de relajación λ > 0. Tome el índice de iteración r = 0 y
x0 ∈ Rn arbitrario.

Etapa 1: Sea Ir = {i ∈ I|aT
i xr < bi} (índices de las restricciones vio-

ladas). Si Ir = ∅, fin (xr es la solución buscada). Si Ir 6= ∅, continúe.
Etapa 2: Sea

µr =
bjr − aT

jr
xr

‖ajr‖
= max

{
bi − aT

i xr

‖ai‖ , i ∈ Ir

}
(8.1)

Tome xr+1 = xr + λµr
ajr

‖ajr‖ . Sustituya r por r + 1 y vuelva a la Etapa 1.4

¤
4Goberna, Jornet y Puente, Optimización Lineal: Teoría, Métodos y Modelos, McGraw-

Hill, 2004.
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8.3 ¿Qué es Sage?

SAGE es un sistema algebraico computacional (en inglés CAS) escrito en
Python y en una versión modificada de Pyrex (llamada inicialmente SageX
y posteriormente Cython). Reune y unifica bajo un solo entorno, lenguaje y
jerarquía de objetos toda una colección de software matemático y trata de
rellenar los huecos de funcionalidad dejados por unos y otros. Proporciona un
interfaz Python al siguiente software libre: GAP, Pari, Maxima, SINGULAR
(todos distribuidos con SAGE). También proporciona un interfaz a software
no libre: Magma, Maple, Mathematica (no distribuidos con SAGE). Puede
usarse en modo texto o en modo gráfico, accediendo a través de un navegador
al servidor web que incluye.5

Figure 8.1: Comparación de las soluciones aproximada y exacta

5http://es.wikipedia.org/wiki/SAGE
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8.4 Codificación del método de relajación en
Sage

En el código 8.1 se presenta el método de relajación programado para su
utilización en Sage. En general, el método está programado en Python salvo
las funciones utilizadas por Sage para poder realizar los cálculos de manera
más rápida y reducir las líneas de código.

Código 8.1: Método de relajación en Sage
1 def relajacion(aij, bi, LAMBDA):
2
3 #Se comienza obteniendo el n\’umero de variables
4 #del problema asi como el numero de inecuaciones
5 #(restricciones) del mismo
6
7 inecuaciones = aij.nrows()
8 variables = aij.ncols()
9

10 #Para mejorar el desempenio del tiempo de ejecucion
11 #del codigo, se asigna desde el comienzo la memoria
12 #que se va a utilizar asi como la declaracion de
13 #ciertas variables que son importantes dentro de
14 #la ejecucion
15
16 #En este caso se declara el arreglo que guardara
17 #las normas de cada inecuacion dada
18
19 norma = aij[:,0] - aij[:,0]
20 norma = norma.transpose()
21
22 #Xi es la solucion inicial que se utiliza
23 #para evaluar la solucion actual
24
25 Xi = zero_matrix(1, variables)
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26
27 #El arreglo Mu se utiliza para guardar el valor de
28 #mu de acuerdo al algoritmo, en este caso Mu(1,1)
29 #ya guarda el maximo valor de mu, en Mu(1,2) se
30 #guarda la evaluacion actual para ser compara mas
31 #adelante y finalmente Mu(1,3) guarda el indice del
32 #valor maximo de mu (r)
33
34 Mu = aij[0,0:2] - aij[0,0:2]
35
36 #Se da un valor inicial que no afecta al algoritmo
37 #pero es necesario si la solucion inicial propuesta
38 #es una solucion del sistema
39
40 #En el siguiente ciclo for se obtienen las normas de
41 #todas las inecuaciones para evitar realizar el
42 #recalculo cada vez que son llamadas
43
44 for indice1 in range(0, inecuaciones):
45 for indice2 in range(0,variables):
46 num = aij[indice1, indice2]
47 num = float(num)
48 num = num**2.0
49 sum = float(norma[0,indice1])
50 sum = sum + num
51 norma[0,indice1] = sum
52 norma[0,indice1] = sqrt( norma[0,indice1] )
53
54 #A continuacion se determina una solucion inicial
55 #del problema de forma aleatoria.
56
57 for indice1 in range(0,variables):
58 Xi[0, indice1] = 1
59
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60 #La variable indiceIndices determina el
61 #indice que se tiene en el arreglo de los
62 #indices que no cumplen con las condiciones
63
64 indiceIndices = 1
65 superIndice = 0
66
67 #Aqui comienza el algoritmo, este ciclo se
68 #ejecutar\’a mientras el conjunto de indices
69 #no se encuentre vacio
70
71 Mu[0,0] = 0.0
72 while indiceIndices >= 1:
73
74 #En esta parte se determina la siguiente solucion
75 #del sistema
76
77 denNor = norma[0, superIndice]
78 vectorAsumar = LAMBDA*Mu[0,0]*aij[ superIndice, :] denNor
79 Xi = Xi + vectorAsumar
80
81 #Se comienza asumiendo que todas las restricciones
82 #son cumplidas
83
84 indiceIndices = 0
85
86 #Se inicializa Mu(1,1) para evitar comparar el valor
87 #maximo de mu de otros ciclos
88
89 Mu[0,0] = 0.0
90 for indice1 in range(0,inecuaciones):
91 evaluacion = aij[indice1, :]*Xi.transpose()
92 evaluacion = evaluacion[0,0]
93 biActual = bi[ indice1]
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94 if evaluacion <= biActual:
95 indiceIndices = indiceIndices + 1
96 denNor = norma[ 0,indice1 ]
97 Mu[0,1] = ( biActual - evaluacion )/ denNor
98 if Mu[0, 1] > Mu[0,0]:
99 Mu[0,0] = Mu[0,1]

100 superIndice = indice1
101 return Xi

8.5 Resultados

En la figura 8.1 se muestra la esquematización de un triplete clásico para
cámara fotográfica. La búsqueda de los parámetros del triplete, es para
obtener distancias focales compactas (con respecto al triplete de inicio), de
entre 40 – 50 y 41 – 45 mm., para la efectiva y posterior, respectivamente.

La Figura 8.2 es una fotografía de la pantalla que muestra los resultados
obtenidos con ALSIE para el triplete clásico. En el lado izquierdo se enlistan
las 33 funciones de rendimiento, enseguida el valor de estas funciones en el
punto solución y en las dos columnas de la derecha los valores de α y β para
cada una de las funciones. Abajo de estas columnas fai1= 2.18209 es el valor
de la función de mérito en el punto hallado por ALSIE.

Al ejecutar el método de relajación programado en Sage se obtiene:

sage: time relajacion(aij, bi, 1.875)
CPU times: user 66.29 s, sys: 0.72 s, total: 67.02 s
Wall time: 67.14 s
[ 10000000.015 100000.03 9999999.97442

100000.05 9999999.93589 100000.007203
10000000.0119 100000.015 100000.03
9999999.97518 100000.026124 9999999.90935]
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Figure 8.2: Comparación de las soluciones aproximada y exacta
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También se ejecuta un programa para verificar que esta solución es la
correcta. En la tabla 8.2 se aprecia que el resultado obtenido por Sage es
válido.

-662916948.960342 > -662916953.420960
-2238372022.128376 > -2238372026.128374
-146259206.626580 > -146259206.626580
60000015.832655 > 60000011.999999
10000003.000000 > 10000002.000000
10000004.999999 > 10000003.999999
10000000.720256 > 10000000.699999
10000001.500000 > 10000000.700000
10000002.999985 > 10000002.500000
10000002.612417 > 10000002.500001
-352816092.370869 > -352816093.080647
-756456648.948313 > -756456649.948312
55802004.956334 > 55802004.118924
197558608.888775 > 197558608.214170
152028713.942227 > 152028711.942227
22485505.827176 > 22485505.004545
95029680.045839 > 95029679.729879
178015214.220085 > 178015214.220085
-10905092.382257 > -10905093.513717
-27362634.672168 > -27362635.986423
-3454624.313215 > -3454625.355034
-8096013.417458 > -8096014.512048
-17132997.702712 > -17132998.972357
-43563144.184187 > -43563145.841334
-5467013.551473 > -5467014.636997
-13262561.338852 > -13262562.534239
-19647619.398322 > -19647620.786075
-45769256.932371 > -45769258.899787
-2132915.825079 > -2132916.933808
-6817962.971514 > -6817964.225459
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-37101259.632715 > -37101260.605271
-228044893.484360 > -228044894.476381
-732142761.248398 > -732142762.791388
662916948.960342 > 662916943.420960
2238372022.128376 > 2238372022.128374
146259206.626580 > 146259205.626580
-60000015.832655 > -60000017.999999
-10000003.000000 > -10000003.000000
-10000004.999999 > -10000004.999999
-10000000.720256 > -10000001.499999
-10000001.500000 > -10000001.500000
-10000002.999985 > -10000003.000000
-10000002.612417 > -10000003.500001
352816092.370869 > 352816092.080647
756456648.948313 > 756456648.948312
-55802004.956334 > -55802006.118924
-197558608.888775 > -197558610.214170
-152028713.942227 > -152028713.942227
-22485505.827176 > -22485507.004545
-95029680.045839 > -95029681.729879
-178015214.220085 > -178015216.220085
10905092.382257 > 10905091.513717
27362634.672168 > 27362633.986423
3454624.313215 > 3454623.355034
8096013.417458 > 8096012.512048
17132997.702712 > 17132996.972357
43563144.184187 > 43563143.841334
5467013.551473 > 5467012.636997
13262561.338852 > 13262560.534239
19647619.398322 > 19647618.786075

45769256.932371 > 45769256.899787
2132915.825079 > 2132914.933808
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6817962.971514 > 6817962.225459
37101259.632715 > 37101258.605271
228044893.484360 > 228044892.476381
732142761.248398 > 732142760.791388
Tabla 8.2: Verificación de la solución

La Figura 8.3 muestra una foto de la pantalla de la evaluación con ALSIE
del punto hallado con el programa en Sage. Al final de esta imagen se tiene
la evaluación de la función de mérito fai=1.95, la cual es 10% menor que la
obtenida con ALSIE.

8.6 Conclusiones
Utilizando el método de relajación presentado en [3] se han hallado mejores
parámetros para el sistema de lentes triplete usado en una cámara fotográfica.
Afirmamos que estos parámetros son mejores porque proporcionan un valor
10% menor para la función de mérito. Esto se ha logrado porque el método de
relajación nos ha proporcionado un punto en el interior del conjunto solución
del sistema, y porque el método se ha programado en Sage, un software libre
que ha resultado muy eficiente. Por ahora, se ha trabajado por separado
con dos algoritmos, uno es ALSIE, el cual lleva a cabo los cálculos para el
diseño automático de lentes, y el otro que se ha elaborado en Sage para
resolver únicamente el sistema lineal de desigualdades. De ahora en adelante
se trabajará en la incorporación del nuevo algoritmo de relajación en ALSIE
y se realizarán las pruebas.
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Figure 8.3: Evaluación del punto hallado con Sage



Mejora del desempeño de una lente triplete 155

[2] Yu I. Merzlyakov, On a Relaxation Method of Solving Systems of Linear
Inequalities, Zh. Vych. Mat. 2, No. 3, 482-487, 1962

[3] M.A. Goberna, V. Jornet, R. Puente, Optimización Lineal. Teoría
Métodos y Modelos, Mc Graw Hill, 2004

[4] Schrijver, A., Theory of Linear and Integer Programming, J. Wiley,
Chichester, 1986



156 Lidia A. Hernández Rebollar y César A. García Vázquez



9

Stability of Closed-Convex-Valued
Mappings: Survey

Maxim Ivanov Todorov 1

1UDLAP, Puebla, MX and IMI-BAS, Sofia, BG, maxim.todorov@udlap.mx

157



158 Maxim Ivanov Todorov

Abstract: In general, the stability in optimization, approxima-
tion, etc., is closely related to the continuity properties (closedness,
lower and upper semicontinuity, metric regularity, etc.) of several
multivalued mappings, like the feasible and optimal set mappings,
the mappings which put into correspondence to each parameter
(system or problem) the set of the boundary, relative boundary or
the extreme points, respectively. Because of this, we have presented
some results devoted to the stability of general closed-convex-valued
mappings. The first part considers how the continuity properties of
the original general closed-convex-valued mapping have been trans-
mitted to the associated boundary mapping, which is not convex
valued, and vice versa. The second chapter presents similar ques-
tions concerning the boundary, relative boundary or the extreme
points set mappings, respectively. The mappings do not always
inherit the continuity properties from each others, sometimes ad-
ditional assumptions are required. We would like to mention the
continuity properties, established in the first part, of the truncated
mappings which are of a special use in many areas not only in
optimization.

Keywords: stability, multivalued mappings

Classification: Primary 49K40; Secondary 28B20.

9.1 Introduction
The main objective of this article is to analyze the relationship between
important pairs of mappings, one of them being the convex hull of the other,
which frequently arise in convex optimization (convex systems), where, as
a consequence of measurement or roundoff errors, the nominal problem y0

(system y0) is usually replaced in practice by perturbed problems (systems,
respectively) having the same structure. Let us denote by Y the set of all
possible perturbed problems (systems) equipped with a certain pseudometric
measuring the size of the perturbations and let F : Y ⇒ Rn be the set-valued
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mapping associating with each y ∈ Y its feasible set or its optimal set (its
solution set, respectively). Under mild conditions, F(y) is the convex hull
of its boundary set bdF(y), its relative boundary set rbdF(y) and/or its
extreme points set extF(y), for all y ∈ Y . We denote these mappings from Y
to Rn as bdF, rbdF and extF, which are called boundary mapping, relative
boundary mapping and extreme points set mapping of F, respectively. The
connections between the stability properties of F, bdF and extF have been
already analyzed in the particular context of linear semi-infinite systems ([3]
and [4], respectively), where Y is equipped with the pseudometric of the
uniform convergence.

More generally, we consider given a convex-valued mapping F : Y ⇒ Rn,
where the domain Y is a locally metrizable space (i.e., Y is equipped with
the topology induced by an extended distance on Y , δ, taking values on
R+ ∪ {+∞}), and its boundary mapping, relative boundary mapping and
extreme points set mapping, bdF, rbdF and extF. The relationships between
F and bdF, assuming that

F(y) = convbdF(y), for all y ∈ Y ; (9.1)

have been studied in ([7]).

We denote by B : Y ⇒ Rn the associated boundary mapping of F; i.e.,

B(y) := bdF(y), for all y ∈ Y.

(If F is a single-valued mapping from Y to Rn, then F ≡ B). So (9.1) can
be reformulated as F(y) = convB(y) for all y ∈ Y . Obviously, B is also a
closed-valued mapping.

In the same vein, this part considers the relationships between the sta-
bility properties of F, rbdF and extF, studied in ([8]), assuming that F =
convrbdF and F = convextF, respectively. The finite dimension of the image
space plays a crucial role in those arguments based on the compactness of
the unit sphere or on Carathéodory’s Theorem.

Some of these relationships are direct consequences of basic results about
arbitrary mappings A : Y ⇒ Rn and their corresponding convex hull map-
pings, convA : Y ⇒ Rn, which associates to each y ∈ Y the convex hull of
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A (y), i.e., (convA) (y) = convA (y) for all y ∈ Y . Although some results on
the transmission of stability properties between A and convA are already
known (see, e.g., [11] and [1]), we provide proofs of other results which will
be used in the sequel. Thus, for each stability property, we start analyzing
the relationships between A and convA, and then we exploit the properties
of the images of F, rbdF and extF in order to obtain the relationships be-
tween these mappings. We deal with the lsc property and also with the usc
property and closedness.

Let us introduce some additional notation. Given a nonempty set X of
a certain Euclidean space, by aff X, span X, conv X, cone X, and dim X
we denote the affine hull, the linear hull, the convex hull, the convex conical
hull, and the dimension of aff X, respectively. Moreover, we define cone∅ =
{0n} . The positive polar of a given convex cone X is denoted by X0 and its
lineality space by linX. We denote by X⊥ the orthogonal subspace to a given
linear subspace X. From the topological side, rintX, intX , clX, bd X and
rbdX represent the relative interior, the interior, the closure, the boundary
and the relative boundary of X, respectively. The Euclidean norm in Rn will
be denoted by ‖.‖ and the open ball centered at x and radius ε > 0 by
B (x; ε). The null-vector, the open unit ball, and the canonical basis in Rn

will be denoted by 0n, Bn or simply B, and {e1, . . . , en}, respectively. The
standard simplex in Rn+1 is

S :=

{
(λ1, ..., λn+1) ∈ Rn+1

+ |
n+1∑
i=1

λi = 1

}
.

For the sake of completeness, we recall the stability concepts and some
basic results for set-valued mappings that we shall consider in this paper.
Let M : Y ⇒ Rn be a set-valued mapping. Its domain is domM := {y ∈ Y |
M(y) 6= ∅}. The following semicontinuity concepts are due to Bouligand and
Kuratowski (see [1], Section 1.4, [2]).

We say that M is lower semicontinuous at y0 ∈ Y in the Berge sense
(lsc, in brief) if, for each open set W ⊂ Rn such that W ∩M(y0) 6= ∅, there
exists an open set V ⊂ Y , containing y0, such that W ∩M(y) 6= ∅ for each
y ∈ V . Obviously, M is lsc at y0 /∈ domM and y0 ∈ intdomM if M is lsc at
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y0 ∈ domM.

M is upper semicontinuous at y0 ∈ Y in the Berge sense (usc, in brief)
if, for each open set W ⊂ Rn such that M(y0) ⊂ W , there exists an open set
V ⊂ Y , containing y0, such that M(y) ⊂ W for each y ∈ V . If M is usc at
y0 /∈ domM, then y0 ∈ int(Y�domM).

If M is simultaneously lsc and usc at y0 we say that M is continuous at
this point.

M is closed at y0 ∈ domM if for all sequences {yr}∞r=1 ⊂ Y and {xr}∞r=1 ⊂
Rn satisfying xr ∈ M(yr) for all r ∈ N, limr→∞ yr = y0 and limr→∞ xr = x0

(in brief, yr → y0 and xr → x0) one has x0 ∈ M(y0). If M is usc at
y0 ∈ domM and M(y0) is closed, then M is closed at y0. Conversely, if M is
closed and locally bounded at y0 ∈ domM (i.e., if there are a neighborhood
of y0, say V , and a bounded set A ⊂ Rn containing M(y) for every y ∈ V ),
then M is usc at y0.

Finally, M is lsc (usc, closed, locally bounded) if it is lsc (usc, closed,
locally bounded) at y for all y ∈ Y .

9.2 Closed-convex-valued mappings and the as-
sociated boundaries

This chapter is organized as follows. Section 1 contains the auxiliary concepts
and results. Section 2 presents some selected examples, including the case in
which Y is formed by the linear inequality systems obtained by perturbing
arbitrarily the coefficients of a given (nominal) system. In this particular
context, it is known that the solution set mapping F is closed everywhere
and inherits the lsc property from B (see [3], where it was conjectured that
the last statement could be true replacing lsc with usc). Sections 3 and 6
show that F always inherits the lsc property and the continuity from B,
respectively, whereas Section 4 and 5 show similar results for the closedness
and the usc property, respectively, under additional assumptions. The lsc
property and the continuity of F also entail the corresponding properties of
B under suitable conditions.
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9.2.1 Preliminaries

Following [12] we may have defined M as being continuous at y0 in the
Bouligand sense if

lim inf
y→y0

M(y) = lim sup
y→y0

M(y) = M(y0), (9.2)

where the sets lim infy→y0 M(y) and lim supy→y0
M(y) are the so-called inner

limit and outer limit respectively. These sets are defined as follows:

lim inf
y→y0

M(y) = {x | ∀yr → y0 ∃xr → x with xr ∈ M(yr)}

=
⋂

yr→y0

lim inf
r→∞

M(yr),

and
lim sup

y→y0

M(y) = {x | ∃yr → y0 ∃xr → x with xr ∈ M(yr)}

=
⋃

yr→y0

lim sup
r→∞

M(yr).

Obviously lim infy→y0 M(y) ⊂ lim supy→y0
M(y).

When lim supy→y0
M(y) = M(y0), it is said that M is outer semicontinu-

ous at y0 and, similarly, M is inner semicontinuous (isc) at y0 if
lim infy→y0 M(y) = M(y0). Thus, the continuity in the Bouligand sense is
equivalent to simultaneous inner and outer semicontinuity, and also to the
fact that M(yr) converges in the sense of Painlevè-Kuratowski to M(y0) for
all possible sequence {yr}∞r=1 converging to y0.

In [12] it is stated that, for closed-valued mappings, inner semicontinuity
at y0 is equivalent to lower semicontinuity at y0, whereas outer semicontinuity
at y0 is equivalent to closedness at y0.

If C, D ⊂ Rn are nonempty compact sets, the Hausdorff distance between
C and D is

dH(C, D) := max{max
x∈C

d(x,D), max
y∈D

d(y, C)},
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where d(x,A) := infz∈A ‖x− z‖ . The Hausdorff distance provides a metric
in the space of the nonempty compact sets in the Euclidean space Rn, and
it can easily be verified that

dH(C,D) = dH(bdC, bdD). (9.3)

A sequence {Cr}∞r=1 is said to converge with respect to the Hausdorff distance
to C when dH(Cr, C) → 0 (all these sets being nonempty and compact in Rn).
This property entails the convergence of Cr to C in the sense of Painlevè-
Kuratoski, and it is equivalent to it if there exist a bounded set A ⊂ Rn

containing all Cr, r = 1, 2, ..., and C.
The following result is quite standard in multivalued functions analysis:

Lemma 9.2.1 Consider a closed-valued mapping M : Y ⇒ Rn and a point
y0 ∈ domM. If M is continuous at y0 in the sense of Berge then M will be
also continuous at y0 in the sense of Bouligand, and the converse holds if M

is locally bounded at y0.
Moreover, under the last assumption and assuming y0 ∈ intdomM, any conti-
nuity at y0 is equivalent to the following property: for every sequence {yk}∞k=1

converging to y0, there exists k0 such that M(yk) is a nonempty bounded set
for all k ≥ k0 and {M(yk)}∞k=k0

converges with respect to the Hausdorff dis-
tance to M(y0).

Given M : Y ⇒ Rn and ρ > 0, the truncated mapping of M is Mρ : Y ⇒
Rn such that

Mρ (y) := M (y) ∩ clB (0n; ρ) .

The next result summarizes the relationships between both mappings in the
stability context.

Lemma 9.2.2 Let M : Y ⇒ Rn and let y0 ∈ domM. Then the following
statements hold:
(i) M is closed at y0 if and only if Mρ is closed at y0 for all ρ > 0 such that
Mρ (y0) 6= ∅.
(ii) If M is usc at y0 and M(y0) is closed, then Mρ is usc at y0 for all ρ > 0
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such that Mρ (y0) 6= ∅.
(iii) If M is usc at y0, then there exist a positive scalar ρ and an open
neighborhood of y0, V, such that

M(y)�Mρ(y) ⊂ M(y0)�Mρ(y0), for all y ∈ V. (9.4)

The converse statement holds when M is closed at y0.
(iv) If Mρ is lsc at y0 for every ρ such that M(y0)∩B (0n; ρ) 6= ∅, then M is
lsc at y0. The converse statement holds if M(y0) is convex.

Remark 9.2.1 Among proof of Part (iii), we have given, there exists another
proof based upon the so-called Dolecki condition (see, for instance, [2] Lemma
2.2.2) can be found in Theorem 3.1 of [6]. Concerning the direct statement
of (iv), it can also be derived from a result about intersection mappings in
[9].

Example 9.2.1 Consider the mapping F : Y ⇒ R2, where Y = [0, 1],
F(y) = convB(y), and

B(y) := {λ(−y, 1) | λ ≥ 0} ∪ {λ(1,−y) | λ ≥ 0}.
Obviously Fρ is usc at 0 for all ρ > 0, but F is not usc at 0, so that the
converse statement of (ii) is not valid in general, even for mappings satisfying
(9.1).

The next example shows that the assumption F (Y ) ⊂ Rn is essential, so
that the results in this part involving the usc property could fail for infinite
dimensional spaces.

Example 9.2.2 Let Λ = [0, 1] and X be the space of finitely nonzero
sequences (i.e., X = {x = (ζ1, ζ2, ..., ζi, ...) | ζi ∈ R, i = 1, 2, ..., and only
a finite number of ζi are nonzero}), with the supremum norm (i.e., ‖x‖ =
max |ζi|), The mapping F : Λ Ã X such that F (λ) := {x ∈ X | ‖x‖ = λ}
satisfies trivially our condition in Lemma 9.2.2(iii) but fails to be usc at
λ = 1 (if we take λk = (k − 1)�k, k = 1, 2, ..., it evident that the element
uk ∈ X, which has, as the unique nonzero component ζk = (k − 1)�k,
satisfies uk ∈ F (ζk)�F (1) , but the sequence {uk}∞k=1 has no accumulation
point and so, the standard Dolecki’s condition [2], [Lemma 2.2.2] fails).
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9.2.2 Some exploratory examples

The next examples lead us to infer the conjectures on the stability of F and
B which are checked in the following sections. The academic Examples 2-
4 are intended to separate the stability properties of F and B, which are
globally (and so locally) bounded everywhere. Examples 5-6 deal with a
mapping connected with the Gauss-Lucas Theorem relating the zeros of a
complex polynomial and those of its derivative: the convex hull of all zeros.
In Example 7, F represents the solution set of a linear inequality system sub-
ject to arbitrary perturbations of the coefficients (to the authors knowledge
this is the unique set-valued mapping whose stability properties have been
compared with the stability properties of its boundary mapping). It can be
realized that all the mappings represented with F in Examples 2-7 satisfy
condition (9.1). Finally, Example 8 shows that this condition is necessary in
order to guarantee the transfer of stability properties from B to F.

Example 9.2.3 Consider the mapping F : R ⇒ R such that

F(y) :=

{
[−2, 2], if y ∈ Q,
[−1, 1], otherwise,

where Q represents the set of rational numbers in R. Here F is usc (closed)
at y0 if and only if y0 ∈ Q, and F is lsc at y0 if and only if y0 ∈ R�Q (so that
it is nowhere continuous in the sense of Berge). Nevertheless, B is unstable
everywhere in all senses.

Example 9.2.4 Consider the mapping F : R ⇒ R such that

F(y) :=

{
[− |y|−1 , |y|−1], if y 6= 0,
[−1, 1], if y = 0,

so that F(0) is a convex body. Concerning the three basic properties (lsc,
usc, closedness) at 0, it is easy to see that B is only closed and F is only lsc
at that point.
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Example 9.2.5 Consider the mapping F : R ⇒ R such that

F(y) :=

{
[0, sin2 |y|−1], if y 6= 0,
{0} , if y = 0.

It can be observed that F and B are lsc but neither closed nor usc at 0.

Example 9.2.6 Let Y be the set of nonzero polynomials with real coeffi-
cients and degree at most 2. Y can be identified with R3 \{03} , R3 equipped
with any norm. Given y ∈ Y , we denote by Z (y) its set of real zeros and by
F (y) its convex hull, i.e., F (y)=convZ (y). In this case B (y)=Z (y).
B is closed everywhere: Assume that xr ∈ B(yr), r = 1, 2, ..., xr → x0 and
yr → y0. Since yr (xr) = 0 for all r, taking limits as r → +∞ we get
y0 (x0) = 0, i.e., x0 ∈ Z (y0) = B(y0).
F and B are usc (but not lsc) at y0 := x2 (consider yr = x2+r−1, r = 1, 2, ...).
So F is also closed at y0.
Now, let y0 := −x+1. It is easy to see that F and B are lsc at y0. Neverthe-
less, taking yr = r−1x2 − x + 1, r = 1, 2, ..., since B (yr)=

{
r±√r2−4r

2

}
, with

limr
r+
√

r2−4r
2

= +∞ and limr
r−√r2−4r

2
= 1, none of the mappings is usc at

y0 and F is not closed at y0 (take xr = 2, r = 1, 2, ...). So B is continuous in
the sense of Bouligand at y0 but F does not.

Example 9.2.7 Let Y be the set of polynomials of degree q ∈ N (fixed) with
complex coefficients. Since the field of complex numbers can be identified
with R2, Y can be identified with R2q × (R2 \ {02}), R2q+2 equipped with
the Euclidean norm. Given y ∈ Y , we denote by Z (y) its set of complex
zeros and by F (y) its convex hull, i.e., F (y) = convZ (y) (a polytope in R2).
By the fundamental theorem of algebra, Z (y) 6= ∅ for all y ∈ Y , so that
domF = Y . We shall prove that F is stable everywhere in all senses (we
shall prove in Section 7 that the same is true for B). To do this we shall
use the following well-known consequence of Rolle’s Theorem for complex
polynomials (see, e.g., [10]): Let y ∈ Y , let Z (y) = {w1, ..., wk}, and let nj

be the order of wj, j = 1, ..., k. Let

0 < η < ε :=
1

2
min {|wj − wi| , 1 ≤ i < j ≤ k } .
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Then there exists δ > 0 such that y′ ∈ Y has exactly nj zeros (counted with
multiplicity) in B (wj; η) , j = 1, ..., k, provided that d (y′, y) ≤ δ.
F is lsc everywhere: Let y ∈ Y as above and let W be an open set such
that W ∩ F (y) 6= ∅. Let z ∈ W ∩ F (y) = W ∩ convZ (y). Let η be such

that 0 < η < ε and clB (z; η) ⊂ W , and let z =
k∑

j=1

λjwj, with
k∑

j=1

λj = 1

and λj ≥ 0, j = 1, ..., k. Let y′ ∈ Y such that d (y′, y) ≤ δ and let w′
1, ..., w

′
q

be the zeros of y′ (possibly repeated). Consider the following partition of
{1, ..., q}:

Ij := {i ∈ {1, ..., q} | w′
i ∈ B (wj; η)} , j = 1, ..., k,

with |Ij| = nj according to the mentioned result. Let z′ :=
k∑

j=1

∑
i∈Ij

λj

nj
w′

i.

Since
k∑

j=1

∑
i∈Ij

λj

nj
= 1, z′ ∈ conv

{
w′

1, ..., w
′
q

}
= F (y′). On the other hand,

|z − z′| =
∣∣∣∣∣

k∑
j=1

λj

(
wj −

∑
i∈Ij

1
nj

w′
i

)∣∣∣∣∣

≤
k∑

j=1

λj

∣∣∣∣∣
∑
i∈Ij

1
nj

(wj − w′
i)

∣∣∣∣∣ ≤
k∑

j=1

λj

∑
i∈Ij

η
nj

= η.

Hence z′ ∈ clB (z; η) ⊂ W and, so, W ∩ F (y′) 6= ∅.
F is usc everywhere: Let y ∈ Y as above and let W be an open set such that
F (y) ⊂ W . Let η be such that 0 < η < ε and F (y) + B (02; η) ⊂ W . Then,
if y′ ∈ Y satisfies d (y′, y) ≤ δ, maintaining the notation of the previous
paragraph, we have w′

i ∈ B (wj; η) for all i ∈ Ij, j = 1, ..., k. Thus

F (y′) ⊂ conv

[
k⋃

j=1

B (wj; η)

]
= F (y) + B (02; η) ⊂ W .

Now, we can assert that F is continuous in the sense of Berge (and Bouligand)
everywhere.
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Example 9.2.8 Let n ≥ 2 and let T be an arbitrary set such that |T | ≥ 2.
We associate with y = (a, b), where a : T → Rn and b : T → R, the linear
system {a′tx ≥ bt, t ∈ T}, in Rn, whose solution set we denote by F̃ (y). There
exists a wide literature on the stability of F̃ : (Rn+1)

T ⇒ Rn when (Rn+1)
T

is equipped with the pseudometric of the uniform convergence (see [5] and
references therein). By Lemma 2 in [3], given y ∈ domF̃, F̃ (y) = convbdF̃ (y)
if and only if there exist indexes s, u ∈ T and a point x ∈ Rn such that

(a′sx) (a′ux) < 0. (9.5)

The set
Y :=

{
y ∈ (

Rn+1
)T | F̃ (y) = convbdF̃ (y)

}

contains almost all the elements of (Rn+1)
T in a topological sense (Proposition

2 in[3]). Obviously, the restriction of F̃ to Y , say F, satisfies (9.1). From
(9.5) we get domF ⊂ intY and so the stability properties of F and F̃ coincide
for every y0 ∈ domF, and the same is true for their respective boundary
mappings. In particular, from the results on the stability of F̃ and B̃ at
y0 ∈ domF in [3] and [5], we can establish the following facts on the stability
of F and B at y0 ∈ domF = domB:
♦ F is closed everywhere and the lsc and usc properties are independent of
each other. Any of the previous examples show that condition (9.1) does not
guarantee that F is closed everywhere.
♦ If B is lsc at y0, then B is closed at y0, and the converse holds provided
dim F (y0) = n. The direct statement fails in Example 9.2.5 and the converse
in Example 9.2.4 (although dim F (y0) = n).
♦ If B is usc at y0, then B is closed at y0, and the converse holds if F (y0)
is bounded. The direct statement is consequence of the closedness of B (y0),
whereas the converse statement fails in Example 9.2.4 (although F (y0) is
bounded).
♦ If B is lsc at y0, then F is lsc at y0, and the converse holds. The direct
statement holds in the previous examples but the converse fails in Example
9.2.3.
♦ If B is usc at y0, then F is usc at y0 (just conjectured in [3]). The converse
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statement fails in Example 9.2.3.
♦ If B is closed at y0, then F is closed at y0 (trivial consequence of the
closedness of F everywhere). The direct statement fails in Example 9.2.4
and the converse in Example 9.2.3.

Example 9.2.9 Let Y be a locally metrizable space such that |Y | ≥ 2 and
let us consider y0 ∈ Y , a hyperplane H ⊂ Rn and the associated halfspaces
H− and H+. Consider the mapping F : Y ⇒ Rn defined in the following
terms

F(y) :=

{
H−, if y = y0,
H+, if y 6= y0.

It is evident that F is unstable in all senses at y0 and it does not satisfy
(9.1) whereas B is constant.

The consequence of the previous examples are:
1. The stability properties of F are independent of each other, with a

unique (trivial) exception: if F is usc at y0, then F is closed at y0. The same
statement is valid for B.

2. F could inherit all the stability properties of B except closedness and
continuity in the sense of Bouligand, provided condition (9.1) holds, but
this condition does not guarantee the fulfillment of the converse statements
which could require additional assumptions. These are the open problems to
be solved in the next sections.

9.2.3 Lower semicontinuity

Proposition 9.2.1 Let F : Y ⇒ Rn be a mapping satisfying (9.1) and let
y0 ∈ domF. If B is lsc at y0, then F is also lsc at y0, and the converse
statement holds if F is closed at y0.

Remark 9.2.2 Proposition 9.2.1 is still valid if the images of F are closed
convex sets in a general normed space. Moreover, the first assertion certainly
requires (9.1), but in the proof of the converse statement only the closedness
and convexity of the images, and the closedness of F at y0 are used.
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9.2.4 Closedness

We know that the closedness of B is not sufficient to guarantee the closedness
of F (Example 9.2.4). For this reason we require a closedness condition
involving a family of closed-valued (but not convex-valued) mappings, Aρ : Y
⇒ Rn, with ρ > 0, such that

Aρ (y) := {x ∈ B (y) | ‖x‖ ≤ ρ} ∪ {x ∈ F (y) | ‖x‖ = ρ} .

We shall prove that, if B is usc at y0 then Aρ is closed at y0, Aρ being the
boundary mapping of the truncated mapping of F, Fρ.

Proposition 9.2.2 Let F : Y ⇒ Rn be a mapping satisfying (9.1). Then
the following statements hold:

(i) Aρ (y) = bdFρ (y) and Fρ (y) = convAρ (y) for all ρ > 0.
(ii) If B is usc at y0 ∈ Y and Aρ (y0) 6= ∅, then Aρ is closed at y0.

Remark 9.2.3 As a consequence of Proposition 9.2.2(ii), if B is usc at
y0 ∈ domF, then {ρ > 0 | Aρ is closed at y0} is unbounded (this set con-
tains the interval [d (0n,B (y0)) , +∞[) whereas the converse statement fails
(see Example 9.2.1). Actually, the unboundedness of the set

{ρ > 0 | Aρ is closed at y0}

is an intermediate property between the upper semicontinuity and the closed-
ness of B. In fact, if xr → x0, yr → y0, and xr ∈ B(yr), r = 1, 2, ..., but
x0 /∈ B(y0), then taking ρ > ‖xr‖, r = 0, 1, ...., we have xr ∈ Aρ(yr) for
r = 1, 2, ..., but x0 /∈ Aρ(y0).

Proposition 9.2.3 Let F : Y ⇒ Rn be a mapping satisfying (9.1) and let
y0 ∈ domF. If the set {ρ > 0 | Aρ is closed at y0} is unbounded, then F is
closed at y0.

Example 9.2.3 shows that the converse statement is not true.
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9.2.5 Upper semicontinuity

We state in this section that F always inherits the usc property from B.

Proposition 9.2.4 Let F : Y ⇒ Rn be a mapping satisfying (9.1), and
suppose that B is usc at y0 ∈ Y. Then F is also usc at y0.

Now, we give a positive answer to an open question in [3]. As in Example
9.2.8, we denote with F̃ the mapping which assigns to each linear inequality
system in Rn with index set T , with n ≥ 2 and |T | ≥ 2, its corresponding
solution set. We denote by B̃ the boundary mapping of F̃ (recall that F̃ does
not satisfy condition (9.1)).

Corollary 9.2.1 If B̃ is usc at y0 ∈ domF̃, then F̃ is usc at y0.

9.2.6 Continuity

Whereas F inherits the continuity property from B, the converse statement
requires a boundedness assumption, which cannot easily be relaxed, as the
final examples in the section show.

Proposition 9.2.5 Let F : Y ⇒ Rn be a mapping satisfying (9.1) and con-
sider y0 ∈ domF. If B is continuous in the sense of Berge at y0, then F is
also continuous in the sense of Berge at y0, and the converse statement holds
if F(y0) is bounded.

Let us consider again Example 9.2.7. Since F(y) is a polytope for all
y ∈ Y , B is continuous (from now on in the sense of Berge) everywhere and
so it is stable everywhere in all senses. The following example shows that
the condition about the boundedness of the set F(y0) cannot be suppressed
in the last proposition.

Example 9.2.10 Consider the mapping F : [0, 1] ⇒ R2

F(y) := {x = (x1, x2) | x1 ≥ yx2and x2 ≥ yx1}.
It is evident that F satisfies (9.1), and the sets F(y), y ∈ Y, are all unbounded.
It can easily be checked that F is continuous at 0, but B is not usc at 0.
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The last example also shows that the boundedness of F(y0) cannot be re-
laxed by replacing the condition “F is continuous at y0 and F(y0) is bounded”
by the condition “Fρ is continuous at y0 for all ρ such that F(y0)∩B (0n; ρ) 6=
∅”. The following example even shows that the converse statement in Propo-
sition 9.2.5 is still false when we add, to the latter condition, the requirement
that “O+F(y) ⊂ O+F(y0) for every y in a certain neighborhood of y0”, with
O+C denoting the recession cone of a closed convex set C.

Example 9.2.11 Consider the mapping F : [0, 1] ⇒ R2

F(y) := R2
+ ∩ {x = (x1, x2) | x1 + y2x2 ≥ 2y}.

It is evident that F satisfies (9.1), the images F(y), y ∈ [0, 1], are all un-
bounded, and O+F(y) = R2

+, for every y ∈ [0, 1].
Let us check that F is continuous at 0, which entails, by Lemma 9.2.2,

Parts (ii) and (iv), that Fρ is continuous at y0 for all ρ > 0.

In fact, F is trivially usc at 0 because F(y) ⊂ F(0) ≡ R2
+, for every y.

Now, we prove that F is inner semicontinuous at 0, which is equivalent
to the lower semicontinuity of F at this point. Hence, we have to verify that
F(0) ⊂ lim infr→∞ F(yr), for every sequence {yr}∞r=1 ⊂ Y converging to 0.
To this aim, take an arbitrary, but fixed, x0 = (x01, x02) ∈ F(0) ≡ R2

+. If we
define xr = (xr1, xr2), with xr2 = x02, r = 1, 2, .., and

xr1 =

{ −(yr)
2x02 + 2yr, if x01 < −(yr)

2x02 + 2yr,
x01, otherwise,

then it is clear that xr ∈ F(yr), r = 1, 2, ..., and x0 = limr→∞ xr.

Let us see, finally, that B is not usc at 0. It is evident that the open set

W := R2�{x = (x1, x2) | x1x2 ≥ 1and x1 ≥ 0},

contains B(0) = {x = (x1, x2) ∈ R2
+ | x1x2 = 0}, but B(y)�W 6= ∅ for all

y ∈]0, 1] since, for these values of y, one observes (y, 1/y) ∈ B(y)�W.
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9.3 The relative boundary and extreme point
set

9.3.1 Preliminaries

We say that M : Y ⇒ Rn is locally convex at y0 ∈ Y if there exists an open
set V ⊂ Y , containing y0, such that M(y) is convex for all y ∈ V . We shall
use the following sufficient condition for M to be locally bounded.

Proposition 9.3.1 Let M : Y ⇒ Rn and let y0 ∈ domM such that M(y0)
is bounded and M is lsc, closed and locally convex at y0. Then M is locally
bounded and continuous at y0.

The condition of M being locally convex above is not superfluous as the
following example shows.

Example 9.3.1 If Y = [0, 1] and M : Y ⇒ R is defined by M(y) = {0, 1/y}
for y 6= 0 and M(0) = {0}, then M is neither locally bounded nor continuous
at y0 = 0, in spite of M(y0) being bounded and that M is lsc and closed at
y0.

In order to characterize geometrically the conditions under which a given
mapping with convex images is the convex hull of its associated mappings, let
us recall that a halfflat is the intersection of a flat (also called affine manifold)
with a closed halfspace which meets it, but does not contain it.

Proposition 9.3.2 Given F : Y ⇒ Rn, the following statements hold:
(i) F = convbdF if and only if for every y ∈ Y , F(y) is a closed set which
does not contain halfspaces.
(ii) F = convrbdF if and only if for every y ∈ Y , F(y) is a closed set which
does not contain halfflats of the same dimension.
(iii) If F has closed images, then F = convextF if and only if for every
y ∈ Y the set F(y) contains neither lines nor unbounded edges.
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9.3.2 Lower semicontinuity

The following classical result ([11], Proposition 2.6) is an extension to arbi-
trary mappings of the direct statement of Proposition 9.2.1 (where A =bdF).

Theorem 9.3.1 If A : Y ⇒ Rn is lsc at y0 ∈ domA, then convA is also lsc
at y0.

The converse statement of Proposition 1 9.2.1 establishes that, if F =conv
bd F is lsc and closed at y0 ∈ domF, then bd F is lsc at y0. The next two
results are counterparts of this statement for rbdF and extF (instead of bd
F). Example 9.2.4, where bd F =rbdF = extF, shows that the closedness
of F is not superfluous in these results. The following example shows that,
in general, if convA is lsc and closed at y0, then A is not necessarily lsc at
y0. Accordingly, the proofs must appeal to the specific properties of the sets
rbdF(y) and extF(y).

Example 9.3.2 Let A : R ⇒ R such that

A (y) =

{ {−1, 0, 1} , y = 0,
{−1, 1} , y 6= 0.

It is easy to see that convA is constant (so that it is continuous and closed)
whereas A is not lsc at y0 = 0.

Theorem 9.3.2 Let F : Y ⇒ Rn such that F =convrbd F and F is lsc and
closed at y0 ∈ domF. Then rbdF is lsc at y0.

Theorem 9.3.3 Let F : Y ⇒ Rn such that F =convextr F and F is lsc and
closed at y0 ∈ domF. Then extrF is lsc at y0.

9.3.3 Upper semicontinuity and closedness

In contrast with lower semicontinuity, the closedness of a set-valued mapping
A is not inherited by convA (even though A =bdF, rbdF, extF, as Example
9.2.4 shows). On the other hand, Proposition 9.2.4 establishes that, if bdF
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is usc at y0, then F is usc at y0. In this section we shall prove that a similar
statement holds for rbdF, but not for extF even though extF is either locally
bounded or closed (nevertheless according to the next Theorem 9.3.4, these
two properties together entail the upper semicontinuity and the closedness
of F).

Example 9.3.3 Let E : Y ⇒ R2, where Y = [2, +∞[ and

E (y) =
{
x ∈ R2 | ‖x‖ = 1, x1 < y−1

} ∪ {(y, 0)} for all y ∈ Y.

It is easy to see that E is locally bounded and continuous but not closed at
y0 = 2, and that it is the extreme points set mapping of F = convE. We
shall prove that F is not usc at y0. Let

W :=
{

x ∈ R2 |
√

3 |x2| < 2− x1, x1 < 2
}
∪B

(
(2, 0) ;

1

2

)
,

F (y0) ⊂ W. If y > 2, then x =
(
1, 1√

3

)
∈ F (y) \W . Observe also that F

cannot be closed at y0 (because F (y0) is not closed).

Example 9.3.4 Let E : R ⇒ R3 such that

E (y) =
{
(x1, x2, 0) ∈ R3 | x2 = x2

1

} ∪ {(0, 0, y)} for all y ∈ R.

As in the previous example, E = extF for F = convE and E is continuous
at y0 = 0, but now E is also closed and E (y0) is unbounded. In order to
prove that F is not usc at y0, let us consider the convex plane set C :=
{x ∈ R2 | x2 ≥ x2

1} and the open set

W := R3 \ {
x ∈ R3 | x3 ≥ x−1

2 , x2 > 0
}

.

Obviously, F (y0) = C × {0} ⊂ W . Moreover, if y > 0 and y > 4/r2 for
0 6= r ∈ R, we have

(
0,

r2

2
,
y

2

)
=

1

2
(0, 0, y) +

1

4

[(−r, r2, 0
)

+
(
r, r2, 0

)] ∈ F (y) \W,
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so that F (y) * W . Hence F is not usc at y0.
Finally, we show that F is closed at y0. Let yr → y0 and xr → x0 such that
xr ∈ F (yr), r = 1, 2, ... Since F (yr) = conv [(C × {0}) ∪ {(0, 0, yr)}], for any
r ∈ N, we can write

xr = λr (cr, 0) + (1− λr) (0, 0, yr) = (λrc
r, (1− λr) yr) , cr ∈ C, 0 ≤ λr ≤ 1.

Observe that cr ∈ C and (0, 0) ∈ C entail λrc
r ∈ C. On the other hand,

xr
3 = (1− λr) yr ∈ conv {0, yr}. Taking limits we get x0 = limr xr ∈ C ×
{0} = F (y0).

The next result is a reformulation of a well-known result ([1], Lemma
1.1.9), taking into account the mentioned equivalence between closedness
and outer semicontinuity. It can be seen as an extension of the first part of
Proposition 9.2.3, which was also based on Carathéodory’s theorem.

Theorem 9.3.4 If A : Y ⇒ Rn is closed and locally bounded at y0 ∈ domA,
then convA is closed and usc at y0.

Observe that it is not possible to replace in the Theorem 9.3.4 above the
condition “A is closed and locally bounded at y0” by just “A is closed and
usc at y0” (recall Example 9.3.4).

Given two set-valued mappings M,N : Y ⇒ Rn, we say that M is con-
tained in N (in brief, M ⊂ N) locally at y0 if there exists an open set V ⊂ Y ,
containing y0, such that M(y) ⊂ N(y) for all y ∈ V . We also define the
closure of M as the mapping clM : Y ⇒ Rn such that (clM) (y) = clM(y)
for all y ∈ Y .

Corollary 9.3.1 Let A : Y ⇒ Rn and let y0 ∈ domA such that A (y0) is
bounded and A is usc at y0. Then each of the following conditions guarantees
that convA is closed and usc at y0:
(i) A (y0) is closed.
(ii) clA ⊂convA locally at y0.
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The boundedness assumption in Corollary 9.3.1 is not superfluous even
for the extreme points set mapping (recall again Example 9.3.4, where (i)
holds).

Now, we give a condition that assures that if A is usc at y0, then convA

is usc at y0 as well.

Proposition 9.3.3 Let A : Y ⇒ Rn and let y0 ∈ domA such that

rbdconvA ⊂ A ⊂convrbdconvA

locally at y0 and convA is closed at y0. If A is usc at y0, then convA is usc
at y0.

Given A : Y ⇒ Rn and ρ > 0, we denote by Aρ and by (convA)ρ the
truncated mappings of A and convA, respectively, with radius ρ. We also
define the mapping Aρ : Y ⇒ Rn such that

Aρ (y) = Aρ (y) ∪ {x ∈ convA (y) | ‖x‖ = ρ} .

It is easy to prove that, if F = convrbdF (F = convbdF), and A = rbdF

(A = bdF, respectively), then (convA)ρ = convAρ.

Lemma 9.3.1 Let A : Y ⇒ Rn and let y0 ∈ domA such that A (y0) and
conv
A (y0) are closed and A is usc at y0. Then {ρ > 0 | Aρ is closed at y0} is
unbounded.

Lemma 9.3.2 Let A : Y ⇒ Rn such that (convA)ρ = convAρ for all ρ > 0
sufficiently large and let y0 ∈ domA such that {ρ > 0 | Aρ is closed at y0} is
unbounded. Then convA is closed at y0.

Proposition 9.3.4 Let A : Y ⇒ Rn such that (convA)ρ = convAρ for all
ρ > 0 sufficiently large and let y0 ∈ domA such that A (y0) is closed,

rbdconvA ⊂ A ⊂convrbdconvA

locally at y0 and A is usc at y0. Then convA is usc at y0.
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Theorem 9.3.5 Let F : Y ⇒ Rn be such that F =convrbd F and rbdF is
usc at y0 ∈ domF. Then F is usc at y0.

The last four results are also valid replacing everywhere “rbd” with “bd”.
The final example illustrates the results in Sections 3 and 4 and shows that
there is no usc counterpart for Theorems 9.3.2 and 9.3.3.

Example 9.3.5 Let us identify the complex field C with R2 and let us take
as Y the set of polynomials of degree q ∈ N (fixed) with complex coefficients
equipped with the Euclidean distance on R2q+2. Given y ∈ Y , we denote by
A (y) its set of complex zeros and by F (y) its convex hull, i.e., the polytope
F (y) = convA (y). By the fundamental theorem of algebra, A (y) 6= ∅ for
all y ∈ Y , so that domA = Y . Let us denote by B, R and E the boundary
mapping, the relative boundary mapping and the extreme points set mapping
of F, respectively. By Proposition 9.3.2, we have

F = convB = convR = convE.

A is lsc and usc as a consequence of a well-known consequence of Rolle’s
Theorem for complex polynomials (see, e.g., [10]) and, since it has closed
images, it is also closed. By Theorem 9.3.1 and Corollary 9.3.1, F is also
lsc, usc and closed. Consequently, B, R and E are lsc by Propositions 1
in [4] and Theorems 9.3.2 and 9.3.3 in this paper (the direct proofs of these
statements are rather involved). Now, we show that R and E are neither
usc nor closed if q = 3.
Let y0 = x3 + x, with A (y0) = {0,±i}, and let yr = x3 − 2

r
x2 +

(
1 + 1

r2

)
x,

with A (yr) =
{
0, 1

r
± i

}
, r = 1, 2, .. Obviously, yr → y0. Taking the constant

sequence xr = 0, r = 1, 2, .. we have xr ∈ E (yr) ⊂ F (yr) for all r, whereas
0 /∈ E (y0) = R (y0) = {±i}. Thus neither R nor E is closed (usc) at y0.
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Some estimates for one-sided
trigonometric approximation

Jorge Bustamante 1

Abstract: We present some estimates for one-sided trigonometric
approximation in Lp spaces. We pay attention to the constants
related with the Jackson type inequalities. The proof are obtained
by constructing some special Steklov type functions.
Keywords: One-sided approximation, Rate of convergence, Ste-
klov type functions and Estimates of constants
Classification: MSC 41A29, 41A17, 41A25 and 41A44

10.1 Introduction
In this paper we use the following notations. Let Lp (1 ≤ p < ∞) be the
space of all 2π-periodic real-valued functions such that

‖f‖p =

(∫ π

−π

| f(t) |p dt

)1/p

< ∞.

1Faculta de Ciencias Físico Matemáticas,Benemérita Universidad Autónoma de Puebla,
jbusta@fcfm.buap.mx

181



182 J. Bustamante

Moreover, let C be the family of all 2π-periodic continuous function f : R→
R with the sup norm ‖f‖∞ = sup{| f(t) |: x ∈ [0, 2π]}.

We denote by Tn be the family of all trigonometric polynomials of degree
not greater than n.

The notation f ≥ g (f ≤ g) will mean that f(x) ≥ g(x) (f(x) ≤ g(x))
for all x ∈ [0, 2π].

As usual, for f ∈ Lp (C), the best trigonometric approximation of degree
n is defined by

En(f)p = inf{ ‖f − Tn‖p : Tn ∈ Tn }.
Let R[0, 2π] be the set of all 2π-periodic Riemann integrable functions

(for approximation in C we assume that R[0, 2π] = C). The best one-sided
approximation, in the Lp-metric, of a function f ∈ R[0, 2π] by trigonometric
polynomials of order n is defined by

E∗
n(f)p = inf{ ‖tn − Tn‖p : tn, Tn ∈ Tn, tn ≤ f ≤ Tn }.

For continuous functions the best one-sided approximation E∗
n(f)∞ is defined

analogously.
It is easy to see that, for f ∈ C and n ∈ N,

En(f)∞ ≤ E∗
n(f)∞ ≤ 2En(f)∞.

Thus, the orders of the best approximation and the best one-sided approx-
imation coincide. In Lp spaces the situation is different. Ivanov [6] showed
that, for 1 ≤ p < ∞ and any r ∈ N0, there exists an r-times continuously
differentiable function f ∈ R[0, 2π] for which

lim
n→∞

sup
E∗

n(f)p

En(f)p

= ∞ .

Jianli and Songping obtained a stronger result [7]. For 1 < p < ∞, there
exists f ∈ C for which

lim
n→∞

sup
E∗

n(f)p

ω(f, 1/n)p

= ∞ , (10.1)
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where ω(f, t)p is the usual modulus of continuity. Recall that, for f ∈ Lp,
r ∈ N and t > 0, the usual modulus of smoothness of order r is defined by

ω r(f, t)p = sup { ‖∆r
hf ‖p : | h |≤ t} (10.2)

where

∆r
hf(x) =

r∑

k=0

(−1)r

(
r

k

)
f(x + kh).

For f ∈ C we change the Lp norm by the uniform one.
From (10.1) we know that the usual moduli of smoothness are not the

adequate one for direct results in one-sided approximation. That is the reason
why the Bulgarian school of approximation proposed another modulus. Let
us present the definition.

The local modulus of continuity of order r of a function f ∈ R[0, 2π] at a
point x is defined by

ωr(f, x, t) = sup
{∣∣∆k

hf(s)
∣∣ : h > 0, s, s + rh ∈ [x− rt, x + rt]

}
. (10.3)

Now define

τr(f, t)p = ‖ωr(f, ·, t)‖p ( τk(f, t)∞ = ‖ωr(f, ·, t)‖∞).

When r = 1 we simply write τ(f, t)p. These moduli are well defined whenever
f is a bounded measurable function. But here we only work with the class
R[0, 2π], because it is known that limt→0+ τ(f, t)p = 0 if and only if f ∈
R[0, 2π] (see [4]).

Moduli τr turn out to be very useful in order to characterize the orders of
one-sided approximations of functions in Lp-metric. For instance Popov and
Andreev [9] verified that, for 1 ≤ p ≤ ∞ and r ∈ N, there exists a constant
Cr such that, for all f ∈ M and n ∈ N

E∗
n(f)p ≤ Cr τr

(
f,

π

n

)
p
. (10.4)

In [8] Popov presented the converse result: for 1 ≤ p ≤ ∞ and r ∈ N,
there exists a constant Cr such that, for all f ∈ M and n ∈ N

τr

(
f,

π

n

)
p
≤ Cr

nr

n∑

k=0

(k + 1)r−1 E∗
k(f)p.



184 J. Bustamante

In this paper we will present another proof of (10.4) in the case r =
1. We remark that in this case a proof of (10.4) was given in [1] using
splines. Here we follow a different approach. We construct some Steklov
type functions that, in our opinion, are the appropriated one to analyze one-
sided approximation. These functions are studied in Section 2. In Section 3
we present upper estimates for the best one-sided approximation. The ideas
used here can be generalized to obtain estimates in terms of the modulus τr,
with r > 1. But we do not know if these extensions will give place to good
constants.

10.2 Steklov type functions

In [10] we find the following assertion, If f ∈ R[0, 2π], u, t ∈ [0, π] and r ∈ N,
then

| f(x± t)− f(x) | ≤ ωr(f, x± u, t) + ωr(f, x± t, u).

We will use a simpler (easy to prove) inequality.

Proposition 10.2.1 If f ∈ R[0, 2π] and x, s ∈ R, then

| f(x± s)− f(x) | ≤ ω(f, x + s/2, s).

Proof. It follows for the definition of the local modulus of continuity that

| f(x+s)−f(x) |=
∣∣∣f

(
x +

s

2
+

s

2

)
− f

(
x +

s

2
− s

2

)∣∣∣ ≤ ω(f, x+s/2, s). ¤

For a function f ∈ R[0, 2π] and h > 0 define the Steklov type functions

f±(x) =
1

h2

∫ h

0

∫ 2h

h

[f(x + s)± ω(f, x + s/2, t)]dtds. (10.5)

Proposition 10.2.2 If f ∈ R[0, 2π], h > 0 and the functions f± are defined
by (10.5), then
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(i) f± ∈ R[0, 2π] and f± are derivable. Moreover,

f ′±(x) =
1

h
[f(x+h)−f(x)] ± 1

h2

∫ 2h

h

[w(f, x+h/2, t)−w(f, x, t)]dt. (10.6)

(ii) For each x ∈ [0, 2π]

f−(x) ≤ f(x) ≤ f+(x).

(iii) For 1 ≤ p < ∞ one has

‖f − f±‖p ≤ τ (f, 2h)p (10.7)

f ′± ∈ Lp and

‖f ′±‖p ≤ 3

h
τ (f, 2h)p. (10.8)

Proof. (i) Notice that, for any f ∈ R[0, 2π], the local modulus of con-
tinuity (10.3) is a bounded function 2π-periodic with respect to x. Thus
f± ∈ R[0, 2π]. It follows from the known results related with Steklov type
functions, that, if g ∈ L1, u > 0 and

Gu(x) =
1

u

∫ u

0

g(x + s)ds,

then g is derivable and

G′
u(x) =

1

u
[g(x + u)− g(x)].

In particular, if we consider the function

g(x) =
1

h

∫ 2h

h

ω(f, x, t)dt,

the Gh/2 is derivable and

G′
h/2(x) =

2

h
[g(x + h/2)− g(x)] =

2

h2

∫ 2h

h

[ω(f, x + h/2, t)− ω(f, x, t)]dt.
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But

Gh/2(x) =
2

h2

∫ h/2

0

∫ 2h

h

ω(f, x+s, t)dtds =
1

h2

∫ h/2

0

∫ 2h

h

ω(f, x+s/2, t)dtds.

Thus, assertion (i) is proved.
(ii) From Prop. 10.2.1 one has

f(x)− f+(x) =
1

h2

∫ h

0

∫ 2h

h

[f(x)− f(x + s)− ω(f, x + s/2, t)]dtds

≤ 1

h2

∫ h

0

∫ 2h

h

[ω(f, x + s/2, s)− ω(f, x + s/2, t)]dtds ≤ 0.

With similar arguments the inequality f−(x) ≤ f(x) is proved.
(iii) For the assetion of (iii) we present a proof for a fixed 1 < p < ∞ (the

case p = 1 follows analogously). As usual, take q such that 1/p + 1/q = 1.
Using twice Hölder inequality and considering that the local modulus of
continuity (10.3) is a 2π-periodic function, we obtain

(h2‖f+−f‖p)
p ≤

∫ 2π

0

(∫ h

0

∫ 2h

h

[ω(f, x + s/2, t)− ω(f, x + s/2, s)]dtds

)p

dx

≤ hp/q

∫ 2π

0

(∫ h

0

(∫ 2h

h

ωp(f, x + s/2, t)dt

)1/p

ds

)p

dx

≤ h2p/q

∫ 2π

0

∫ h

0

∫ 2h

h

ωp(f, x + s/2, t)dtdsdx

= h2p/q

∫ h

0

∫ 2h

h

∫ 2π

0

ωp(f, x + s/2, t)dxdtds

= h2p/q

∫ h

0

∫ 2h

h

∫ 2π

0

ωp(f, x, t)p dxdtds

= h2(p−1)

∫ h

0

∫ 2h

h

τ p(f, t)p dtds ≤ h2p τ p(f, 2h)p.



Some estimates for one-sided trigonometric approximation 187

For ‖f − f−‖p the proof follows analogously,
Finally, in order to estimate f ′±, we use the representation of the derivative

given in (i). It is known that (see [1], Lemma 4), for any f ∈ R[0, 2π]

ω (f, h)p ≤ τ (f, h)p.

Therefore
‖f(·+ h)− f(·)‖p ≤ ω(f, h)p ≤ τ (f, h)p. (10.9)

On the other hand
(∫ 2π

0

∣∣∣∣
∫ 2h

h

[ω(f, x + h/2, t)− ω(f, x, t)]dt

∣∣∣∣
p

dx

)1/p

≤
(∫ 2π

0

∣∣∣∣
∫ 2h

h

ω(f, x + h/2, t)dt

∣∣∣∣
p

dx

)1/p

+

(∫ 2π

0

∣∣∣∣
∫ 2h

h

ω(f, x, t)dt

∣∣∣∣
p

dx

)1/p

≤ h1/q

(∫ 2π

0

∫ 2h

h

ωp(f, x + h/2, t)dt dx

)1/p

+ h1/q

(∫ 2π

0

∫ 2h

h

ωp(f, x, t)dt dx

)1/p

= h1/q

(∫ 2h

h

∫ 2π

0

ωp(f, x + h/2, t)dx dt

)1/p

+ h1/q

(∫ 2h

h

∫ 2π

0

ωp(f, x, t)dx dt

)1/p

= 2h1/q

(∫ 2h

h

∫ 2π

0

ωp(f, x, t)dx dt

)1/p

= 2h1/q

(∫ 2h

h

τ p(f, t)p dt

)1/p

≤ 2h τ (f, 2h)p. (10.10)

From (10.6), (10.9) and (10.10), we obtain (10.8). ¤

10.3 Estimates for one-sided approximation
In this section we present improved versions of some of the results given

by Andreev, Popov and Sendov in [1]. We will consider the quantities

E+
n (f)p = inf{ ‖Tn − f‖p : Tn ∈ Tn, f ≤ Tn }
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and
E−

n (f)p = inf{ ‖f − tn‖p : tn, ∈ Tn, tn ≤ f }
instead of E∗

n(f)p. Of course

E∗
n(f)p ≤ E+

n (f)p + E−
n (f)p,

E+
n (f)p ≤ E∗

n(f)p and E−
n (f)p ≤ E∗

n(f)p.

For the proof we need some results of Ganelius, Babenko and Ligun.
For r ∈ N, let W rLp be the class of all 2π-periodic functions f such that

f (r−1) (f (0) = f) is absolutely continuous and ‖f (r)‖p ≤ 1.

Theorem 10.3.1 [2] If p > 1, f ∈ W rLp and n ≥ r,

E±
n (f)p ≤ 2π

3 nr
‖f (r)‖p. (10.11)

The original statement of Th. 10.3.1 asserts that

sup
{
E−

n (f)p : f ∈ W rLp and ‖f (r)‖p ≤ 1
}

= O(n−r),

as n → ∞. But a carefully reading of the proof shows that the result can
written as we did above.

For the case p = 1 the corresponding estimate was previously published
by Ganelius. In fact, the proof Th.10.3.1 us the Ganelius result. We denote
by V b

a (f) the total variation of f on the interval [a, b].

Theorem 10.3.2 [5] For each r ∈ N0, there exists a constant C(r) ≤ 1/2
such that, if V 2π

0 (f (r)) < ∞ and n ≥ r, there exists Un−1 ∈ Tn−1 such that
Un−1(x) ≥ f(x) and

‖Un−1 − f‖1 ≤ 2πC(r)

nr+1
V 2π

0 (f (r)).

In our next result we provide a estimate for the constant C in Th. 3 of [1].
In this case our proof is different from the one given in [1], where piecewise
linear function were used as an intermediate approximation. Here we use the
Steklov type functions presented above instead of piecewise linear function.
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Theorem 10.3.3 If 1 ≤ p < ∞, f ∈ R[0, 2π] and n ∈ N, then

E±
n (f)p ≤ 3 τ

(
f,

2π

n

)

p

.

Proof. Let f± be given as in Prop. 10.2.2 with h = π/n. It is easy to see
that

E+
n (f)p ≤ E+

n (f+)p + ‖f+ − f‖p

and
E−

n (f)p ≤ E−
n (f−)p + ‖f − f−‖p.

From (10.11), (10.7) and (10.8) one has

E±
n (f)p ≤ 2π

3n
‖f±‖p + τ

(
f,

2π

n

)

p

≤ 3 τ

(
f,

2π

n

)

p

. ¤

We need the following proposition taken from [3].

Proposition 10.3.1 Assume 1 ≤ p < ∞ and r ∈ N. If f ∈ W r
p [0, 2π] and

there exists T ∈ Tn such that T ≥ f (r) for x ∈ [0, 2π], then there exists
R ∈ Tn such that R ≥ f and

(∫ 2π

0

|R(x)− f(x)|p dx

)1/p

≤
(π

n

)r

‖f (r) − T‖p . (10.12)

If there exists T ∈ Tn such that T ≤ f (r), an analogous result holds with
a polynomial R satisfying R ≤ f .

Theorem 10.3.4 Fix 1 ≤ p < ∞. If f ∈ R[0, 2π] has a derivative f ′ ∈
R[0, 2π], then for each n ∈ N, one has

E∗
n(f)p ≤ 6π

n
τ

(
f ′,

2π

n

)

p

.
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Proof. From Th. 10.3.3, for each n ∈ N, there exist tn, Tn ∈ Tn such that
tn ≤ f ′ ≤ Tn and ‖Tn− f ′‖ ≤ 3τ (f ′, 2π/n)p and ‖f ′− tn‖ ≤ 3τ (f ′, 2π/n)p.
From Prop. 10.3.1 there exists polynomials rn, Rn ∈ Tn such that

rn(x) ≤ f(x) ≤ Rn(x)

‖Rn − f‖p ≤
(π

n

)
‖f ′ − Tn‖p ≤

(π

n

)
3τ (f ′, 2π/n)p

and
‖rn − f‖p ≤

(π

n

)
‖f ′ − tn‖p ≤

(π

n

)
3τ (f ′, 2π/n)p .¤
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