On the uniqueness of the n-fold pseudo-hyperspace suspension for locally connected continua

Antonio Libreros-López, Fernando Macías-Romero, David Herrera-Carrasco

Facultad de Ciencias Físico Matemáticas de la Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FMT-212, Ciudad Universitaria, C.P. 72570, Puebla, Mexico

A R T I C L E I N F O

Article history:
Received 30 April 2021
Received in revised form 12 February 2022
Accepted 15 February 2022
Available online 22 February 2022

MSC:
54B20
54F15

Keywords:
Continuum
Meshed
Hyperspace
n-fold pseudo-hyperspace suspension
Unique hyperspace

A B S T R A C T

Let X be a metric continuum. Let n be a positive integer, we consider the hyperspace $C_n(X)$ of all nonempty closed subsets of X with at most n components and $F_1(X) = \{\{x\}: x \in X\}$. The n-fold pseudo-hyperspace suspension of X is the quotient space $C_n(X)/F_1(X)$ and it is denoted by $PHS_n(X)$. In this paper we prove that: (1) if X is a meshed continuum and Y is a continuum such that $PHS_n(X)$ is homeomorphic to $PHS_n(Y)$, then X is homeomorphic to Y, for each $n > 1$. (2) There are locally connected continua without unique hyperspace $PHS_n(X)$.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A continuum is a nondegenerate compact connected metric space. The set of positive integers is denoted by \mathbb{N}. Given a continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X:

\begin{align*}
2^X &= \{A \subseteq X: A \text{ is a nonempty closed subset of } X\}, \\
C_n(X) &= \{A \in 2^X: A \text{ has at most } n \text{ components}\}, \\
F_n(X) &= \{A \in 2^X: A \text{ has at most } n \text{ points}\} \text{ and} \\
C(X) &= C_1(X).
\end{align*}

E-mail addresses: 218570567@alumnos.fcfm.buap.mx (A. Libreros-López), femacias@fcfm.buap.mx (F. Macías-Romero), dherrera@fcfm.buap.mx (D. Herrera-Carrasco).

https://doi.org/10.1016/j.topol.2022.108053
0166-8641/© 2022 Elsevier B.V. All rights reserved.
All the hyperspaces considered are metrized by the Hausdorff metric \(H \) [13, Theorem 2.2].

Related to a continuum \(X \), Sam B. Nadler, Jr. [20], introduced the hyperspace suspension of a continuum, \(HS(X) \), as the quotient space \(C(X)/F_1(X) \). Twenty five years later in [15], Sergio Macías gave a generalization of it, defining the \(n \)-fold hyperspace suspension of a continuum, \(H\text{S}_n(X) \), as the quotient space \(C_n(X)/F_n(X) \). In 2008, Juan C. Macías [16] introduced the \(n \)-fold pseudo-hyperspace suspension of a continuum, \(PHS\text{S}_n(X) \), as the quotient space \(C_n(X)/F_1(X) \). Given a continuum \(X \), let \(\mathcal{H}(X) \) be any of the hyperspaces \(2^X, C_n(X), F_n(X), HS\text{S}_n(X), \) or \(PHS\text{S}_n(X) \). The continuum \(X \) is said to have unique hyperspace \(\mathcal{H}(X) \) provided that the following implication holds: if \(Y \) is a continuum and \(\mathcal{H}(X) \) is homeomorphic to \(\mathcal{H}(Y) \), then \(X \) is homeomorphic to \(Y \).

One of the problems that has been widely studied lately on the theory of continua and their hyperspaces is to search for continua with unique hyperspace \(\mathcal{H}(X) \). The problem of finding conditions for \(X \) in order that \(X \) has unique \(\mathcal{H}(X) \) has been widely studied for several families of continua, especially for finite graphs, meshed continua and almost meshed locally connected continua. In [12], Alejandro Illanes proved that finite graphs have unique \(C_n(X) \) and later, in [6] Rodrigo Hernández-Gutiérrez, A. Illanes and Verónica Martínez-de-la-Vega studied the uniqueness of the hyperspace \(C_n(X) \) for locally connected continua and proved that meshed continua have unique \(C_n(X) \). Later, adopting some of the techniques presented in [12] it was proved that finite graphs have unique \(HS\text{S}_n(X) \), see [7]. Later, in [8] María de J. López jointly with the second and third authors proved that framed continua have unique \(HS\text{S}_n(X) \). In relation to this topic, Germán Montero-Rodriguez, M. de J. López jointly with the second and third authors proved that finite graphs have unique hyperspace \(F_n(X)/F_1(X) \), for each \(n \geq 4 \), see [19, Theorem 3.8]. Recently, in [18] it was proved that finite graphs have unique \(PHS\text{S}_n(X) \). Following the study of this property in the hyperspace \(PHS\text{S}_n(X) \), in the present work we prove that

1. Meshed continua have unique \(n \)-fold pseudo-hyperspace suspension, for \(n > 1 \), see Theorem 4.8.
2. There are almost meshed locally connected continua without unique \(n \)-fold pseudo-hyperspace suspension, see Theorem 5.3.
3. There exists an almost meshed locally connected continuum that is not meshed with unique 2-fold pseudo-hyperspace suspension, see Example 5.4.
4. There exist locally connected continua that are not almost meshed without unique \(n \)-fold pseudo-hyperspace suspension, see Theorem 5.5.

2. Definitions

Let \(X \) be a continuum. Given a subset \(A \) of \(X \), \(\text{int}_X(A) \), \(\text{cl}_X(A) \), and \(\text{bd}_X(A) \), denote the interior, the closure, and the boundary of \(A \) in \(X \), respectively, and when there is no possible confusion with the underlying continuum in which \(A \) lies, we simply will use \(A^o \) instead of \(\text{int}_X(A) \). Through this paper, we write \(d \) for the metric associated to the continuum \(X \). Let \(\varepsilon > 0 \) and \(p \in X \); the set \(\{ x \in X : d(p, x) < \varepsilon \} \) is denoted by \(B_X(p, \varepsilon) \), when there is no possible confusion with the underlying continuum in which \(d \) lies, we use \(B(p, \varepsilon) \) instead of \(B_X(p, \varepsilon) \). The Hausdorff metric \(H \) is defined as follows: for each \(A, B \in 2^X \),

\[
H(A, B) = \inf\{\varepsilon > 0 : A \subset N(\varepsilon, B) \text{ and } B \subset N(\varepsilon, A)\},
\]

where \(N(\varepsilon, A) = \{ x \in X : d(x, A) < \varepsilon \} \). The hyperspaces \(F_n(X) \) and \(C_n(X) \) are called the \(n \)-fold symmetric product of \(X \) and the \(n \)-fold hyperspace of \(X \), respectively. The cardinality of \(A \) is denoted by \(|A| \). Let \(p \in X \) and \(\beta \) be a cardinal number. We say that \(p \) has order less than or equal to \(\beta \) in \(X \), written \(\text{ord}(p, X) \leq \beta \), whenever \(p \) has a basis of neighborhoods \(\mathcal{B} \) in \(X \) such that the cardinality of \(\text{bd}_X(U) \) is less than or equal to \(\beta \), for each \(U \in \mathcal{B} \). We say that \(p \) has order equal to \(\beta \) in \(X \) (\(\text{ord}(p, X) = \beta \)) provided that \(\text{ord}(p, X) \leq \beta \) and \(\text{ord}(p, X) \neq \alpha \) for any cardinal number \(\alpha < \beta \). Let \(E(X) = \{ x \in X : \text{ord}(x, X) = 1 \} \), \(O(X) = \{ x \in \)}
X: \(\text{ord}(x, X) = 2 \), and \(R(X) = \{ x \in X : \text{ord}(x, X) \geq 3 \} \). The elements of \(E(X) \) (respectively, \(O(X) \) and \(R(X) \)) are called end points (respectively, ordinary points and ramification points) of \(X \). A map is a continuous function.

A finite graph is a continuum which is a finite union of arcs such that every two of them meet at a subset of their end points.

Given a continuum \(X \), a free arc in \(X \) is an arc \(J \) with end points \(p \) and \(q \) such that \(J - \{ p, q \} \) is an open subset of \(X \). A maximal free arc in \(X \) is a free arc in \(X \) that is maximal with respect to the inclusion. A cycle in \(X \) is a simple closed curve \(J \) in \(X \) such that \(J - \{ a \} \) is an open subset of \(X \), for some \(a \in J \). Notice that if \(X \) is not a simple closed curve and \(J \) is a cycle in \(X \), then \(J \cap R(X) = \{ a \} \). Let

\[
\mathcal{A}_R(X) = \{ J \subset X : J \text{ is a cycle in } X \},
\]

\[
\mathcal{A}_E(X) = \{ J \subset X : J \text{ is a maximal free arc in } X \text{ and } |J \cap R(X)| = 1 \},
\]

\[
\mathcal{A}_S(X) = \{ J \subset X : J \text{ is a maximal free arc in } X \} \cup \mathcal{A}_R(X),
\]

\[
\mathcal{G}(X) = \{ x \in X : x \text{ has a neighborhood in } X \text{ which is a finite graph} \} \text{ and }
\]

\[
\mathcal{P}(X) = X - \mathcal{G}(X).
\]

According to [6, p. 1584] a continuum \(X \) is said to be almost meshed whenever the set \(\mathcal{G}(X) \) is dense in \(X \). An almost meshed continuum \(X \) is meshed provided that \(X \) has a basis of neighborhoods \(\mathcal{B} \) such that \(U - \mathcal{P}(X) \) is connected, for each \(U \in \mathcal{B} \).

Given a continuum \(X \) and \(n \in \mathbb{N} \), the function \(q^n_X : C_n(X) \to \text{PHS}_n(X) \) is the natural projection, and \(F^n_X \) denotes the element \(q^n_X(F_1(X)) \). Notice that

\[
q^n_X|_{C_n(X)-F_1(X)} : C_n(X) - F_1(X) \to \text{PHS}_n(X) - \{ F^n_X \} \text{ is a homeomorphism.} \tag{2.1}
\]

Given \(m \in \mathbb{N} \) and \(U_1, \ldots, U_m \) subsets of \(X \), let

\[
\langle U_1, \ldots, U_m \rangle_n = \{ A \in C_n(X) : A \subset U_1 \cup \cdots \cup U_m \text{ and } A \cap U_i \neq \emptyset, \text{ for each } i \in \{1, \ldots, m\} \}.
\]

By [13, Theorem 1.2], it is known that the family of all sets \(\langle U_1, \ldots, U_m \rangle_n \), where each \(U_i \) is an open subset of \(X \), forms a basis for the topology in \(C_n(X) \).

A topological manifold \(M \) (possibly with boundary) of dimension \(n < \infty \) is a metrizable topological space \(M \) such that each point \(x \) in \(M \) admits an open neighborhood \(U \) and a homeomorphism \(\kappa : U \to \kappa(U) \) onto an open subset of the Euclidean half-space \(\mathbb{R}^+_n = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \geq 0 \} \). The points \(x \) in \(M \) that correspond to points \(\kappa(x) \) in the hyperplane \(\{(x_1, \ldots, x_n) \in \mathbb{R}^+_n : x_1 = 0 \} \) form the manifold boundary of \(M \). The manifold interior of \(M \) is defined as the complement of the manifold boundary on \(M \), as in [14, p. 7].

We use the following notations: \(\dim[X] \) stands for the dimension of \(X \), and \(\text{dim}_p[X] \) stands for the dimension of \(X \) at the point \(p \in X \), as in [22, p. 5].

Given a continuum \(X \) and \(n \in \mathbb{N} \), let

\[
\mathcal{L}_n(X) = \{ A \in C_n(X) : A \text{ has a neighborhood in } C_n(X) \text{ which is a } 2n\text{-cell} \},
\]

\[
\partial\mathcal{L}_n(X) = \{ A \in C_n(X) : A \text{ has a neighborhood } \mathcal{N} \text{ in } C_n(X) \text{ such that } \mathcal{N} \text{ is a } 2n\text{-cell and } A \text{ belongs to the manifold boundary of } \mathcal{N} \},
\]

\[
\mathcal{D}_n(X) = \{ A \in C_n(X) : A \notin \mathcal{L}_n(X) \text{ and } A \text{ has a basis of neighborhoods } \mathcal{A} \text{ in } C_n(X) \text{ such that for each } \mathcal{U} \in \mathcal{A}, \dim[\mathcal{U}] = 2n \text{ and } \mathcal{U} \cap \mathcal{L}_n(X) \text{ is arcwise connected} \}.
\]
\[\mathcal{PHL}_n(X) = \{ B \in PHS_n(X) : B \text{ has a neighborhood in } PHS_n(X) \text{ which is a } 2n\text{-cell} \}, \]
\[\partial \mathcal{PHL}_n(X) = \{ B \in PHS_n(X) : B \text{ has a neighborhood } N \text{ in } PHS_n(X) \text{ such that } N \text{ is a } 2n\text{-cell and } B \text{ belongs to the manifold boundary of } N \}, \]
\[\mathcal{PHD}_n(X) = \{ B \in PHS_n(X) : B \notin \mathcal{PHL}_n(X) \text{ and } B \text{ has a basis of neighborhoods } B \text{ in } PHS_n(X) \text{ such that for each } V \in B, \dim[V] = 2n \]
\[\text{and } V \cap \mathcal{PHL}_n(X) \text{ is arcwise connected} \}, \]
\[\mathcal{PHE}_n(X) = \{ B \in PHS_n(X) : \dim_B[PHS_n(X)] = 2n \}. \]

By (2.1), we have the following remark.

Remark 2.1. Let \(X \) be a continuum and \(n \in \mathbb{N} \). Then

(a) \(q^n_X(L_n(X) - F_1(X)) = \mathcal{PHL}_n(X) - \{ F^n_X \} \),
(b) \(q^n_X(\partial L_n(X) - F_1(X)) = \partial \mathcal{PHL}_n(X) - \{ F^n_X \} \) and
(c) \(q^n_X(D_n(X) - F_1(X)) = \mathcal{PHD}_n(X) - \{ F^n_X \} \).

3. Preliminary results

Lemma 3.1. Let \(X \) be a locally connected continuum and \(J, K \in \mathfrak{A}_S(X) \). Then

(a) \(J^o \cap R(X) = \emptyset \),
(b) \(\text{bd}_X(K) \subset R(X) \) and
(c) if \(J^o \cap K \neq \emptyset \), then \(J = K \).

Proof. (a) Take \(p \in J^o \). Let \(U \) be an open subset of \(X \) such that \(p \in U \). Then, there exists an arc \(L \) in \(J \) such that \(p \in \text{int}_J(L) \subset L \subset U \cap J^o \). Then \(\text{int}_J(L) \) is an open connected subset of \(X \). Moreover, \(\text{bd}_X(\text{int}_J(L)) \subset L - \text{int}_J(L) \) and \(L - \text{int}_J(L) \) has at most 2 elements. Thus, \(p \notin R(X) \). Consequently, \(J^o \cap R(X) = \emptyset \).

(b) If \(R(X) = \emptyset \), by [21, 8.40], we have that \(X \) is an arc or a simple closed curve and the result follows. Suppose that \(R(X) \neq \emptyset \). Let \(p \in \text{bd}_X(K) \) and \(\mathfrak{B} \) be a basis of neighborhoods of \(p \) in \(X \).

Case 1. \(K \) is a cycle.

Let \(q \in X - K \) and \(L \) be an arc in \(X \) with end points \(p \) and \(q \). Since \(K - \{ p \} \) is an open subset of \(X \), we have that \(K \cap L = \{ p \} \). Let \(r = d(p, q) \) and \(U \in \mathfrak{B} \) be such that \(U \subset B(p, r) \) and \(K \not\subset U \). Notice that \(\text{bd}_X(U) \) has at least 3 elements. This implies that \(p \notin E(X) \cup O(X) \). Therefore, \(p \in R(X) \).

Case 2. \(K \) is an arc.

Notice that \(p \) is an end point of \(K \). Let \(a \) be the other end point of \(K \). Let \(s = \min\{ \frac{\text{diam}(K)}{2}, \frac{d(a, p)}{2} \} \) and let \(W \) be an open connected subset of \(X \) such that \(p \in W \subset B(p, s) \). By [21, 8.26], \(W \) is arcwise connected. Let \(q \in W - K \) and \(L \) be an arc in \(W \) with end points \(p \) and \(q \). Notice that \(K \not\subset L \) and \(a \notin L \). Since \(K - \{ a, p \} \) is an open subset of \(X \), we have that \(K \cap L \subset \{ a, p \} \). Hence, \(K \cap L = \{ p \} \). Suppose that there exists \(\delta > 0 \) such that \(B(p, \delta) \subset K \cup L \). Let \(C_p \) be the component of \(B(p, \delta) \) such that \(p \in C_p \) and \(L_p = \text{cl}_X(C_p) \). Hence, \(L_p \) is an arc. Since \(X \) is locally connected, \(C_p \) is an open subset of \(X \). Let \(l, k \) be the end points of \(L_p \), where \(l \in L \) and \(k \in K \). Notice that \(K \cup L_p - \{ a, l \} = C_p \cup (K - \{ a, p \}) \). Thus, \(K \cup L_p \) is a free arc. This contradicts the maximality of \(K \). Therefore, for any \(\varepsilon > 0 \), \(B(p, \varepsilon) \not\subset K \cup L \). This implies that there exists an arc \(M \) such that \((K \cup L) \cap M = \{ p \} \). Let \(z \) be the other end point of \(M \) and \(r = \min\{ d(p, a), d(p, q), d(p, z) \} \). Thus, there exists \(V \in \mathfrak{B} \) such that \(V \subset B(p, r) \). Notice that \(\text{bd}_X(V) \) has at least 3 elements. This implies that \(p \notin E(X) \cup O(X) \). Therefore, \(p \in R(X) \).
(c) Given \(p \in J^0 \cap K \), by (a), we know that \(p \notin R(X) \). Using (b), we have that \(p \in K^0 \). Hence, \(J^0 \cap K^0 = J^0 \cap K \). Consequently, \(J^0 \cap K \) is a nonempty open and closed subset of the connected set \(J^0 \).
Thus, \(J^0 = J^0 \cap K \) and \(J \subset K \). By the maximality of \(J \), we have that \(J = K \). \(\square \)

In [17], Verónica Martínez-de-la-Vega computed the dimension of the \(n \)-fold hyperspace for a finite graph \(G \) with the following formula

\[
\dim_A[C_n(G)] = 2n + \sum_{p \in A \cap R(G)} (\text{ord}(p, G) - 2), \text{ where } A \in C_n(G). \tag{3.1}
\]

Lemma 3.2. [6, Theorem 4] Let \(X \) be a locally connected continuum, \(n \in \mathbb{N} \) and \(A \in C_n(X) \). Then the following conditions are equivalent.

(a) \(\dim_A[C_n(X)] \) is finite,
(b) there exists a finite graph \(G \) contained in \(X \) such that \(A \subset \text{int}_X(G) \),
(c) \(A \cap \mathcal{P}(X) = \emptyset \).

Lemma 3.3. [6, Lemma 28] Let \(X \) be a locally connected continuum and \(n \geq 3 \). Then \(\mathcal{D}_n(X) = \{ A \in C_n(X) : A \text{ is connected and there exists } J \in \mathcal{A}_S(X) \text{ such that } A \subset \text{int}_X(J) \} \).

The proof of following result is a modification of [7, Lemma 2.3].

Lemma 3.4. Let \(X \) be a locally connected continuum and \(n \in \mathbb{N} \). If \(A \in C_n(X) - F_1(X) \) and \(A \cap R(X) \neq \emptyset \), then \(\dim_{q_X(A)}[PHS_n(X)] \geq 2n + 1 \).

Proof. From (2.1), we have that \(\dim_{q_X(A)}[PHS_n(X)] = \dim_A[C_n(X)] \). If \(\dim_A[C_n(X)] \) is not finite, the result follows. Suppose that \(\dim_A[C_n(X)] \) is finite. By Lemma 3.2, there exists a finite graph \(G \) such that \(A \subset \text{int}_X(G) \). Notice that \(\dim_A[C_n(X)] = \dim_A[C_n(G)] \). Since \(A \cap R(X) \neq \emptyset \) and \(A \subset \text{int}_X(G) \), we have that \(A \cap R(G) \neq \emptyset \). Thus, by (3.1), \(\dim_A[C_n(G)] \geq 2n + 1 \). Therefore, the result follows. \(\square \)

The proof of following result is a modification of [7, Lemma 2.4].

Lemma 3.5. Let \(X \) be a locally connected continuum such that \(R(X) \neq \emptyset \) and \(n \in \mathbb{N} \). Then for each neighborhood \(U \) of \(F^n_X \) in \(PHS_n(X) \), \(\dim[U] \geq 2n + 1 \).

Proof. Let \(U \) be an open neighborhood of \(F^n_X \) in \(PHS_n(X) \) and \(\mathcal{V} = (q_X)^{-1}(U) \). Then \(\mathcal{V} \) is an open subset of \(C_n(X) \). Fix a point \(p \in R(X) \). Since \(\{p\} \in \mathcal{V} \), there exists \(r > 0 \) such that \(B_{C_n(X)}(\{p\}, r) \subset \mathcal{V} \). Let \(C \) be the component of \(B(p, r) \) containing \(p \). Since \(C \) is an open connected subset of \(X \), by [21, 8.26], \(C \) is arcwise connected. Hence, there exists an arc \(A \) such that \(p \in A \subset B(p, r) \). Notice that \(A \in \mathcal{V} \). Thus, \(q_X(A) \in U \). Therefore, by Lemma 3.4, \(\dim_{q_X(A)}[U] \geq 2n + 1 \). \(\square \)

The proof of following result is a modification of [7, Lemma 2.9 (b)].

Lemma 3.6. Let \(X \) be a locally connected continuum such that \(R(X) \neq \emptyset \), \(n \in \mathbb{N} \) with \(n \geq 3 \). Then \(\mathcal{PD}_n(X) = \{ q^n_X(A) \in PHS_n(X) : A \in C(X) - F_1(X) \text{ and } A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset \} \).

Proof. Given \(B \in \mathcal{PD}_n(X) \), there exists \(A \in C_n(X) \) such that \(B = q^n_X(A) \). Since \(R(X) \neq \emptyset \), by Lemma 3.5, \(B \neq F^n_X \), thus, \(A \notin F_1(X) \). Moreover, by Remark 2.1 (c), \(A \in \mathcal{D}_n(X) \). By Lemma 3.3, \(A \in C(X) - F_1(X) \) and \(A \subset \text{int}_X(J) \), for some \(J \in \mathcal{A}_S(X) \). This implies that \(A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset \).
On the other hand, to prove the opposite inclusion, let \(A \in C(X) - F_1(X) \) be such that \(A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset \). In order to prove that \(q_X^R(A) \in \mathcal{PHD}_n(X) \), by Remark 2.1 (c), it will be enough to prove that \(A \in D_n(X) \). By Lemma 3.2, there exists a finite graph \(G \) contained in \(X \) such that \(A \subset \text{int}_X(G) \). Since \(A \cap R(X) = \emptyset \), we have that \(A \cap R(G) = \emptyset \). Thus, there exists a free arc \(L \) in \(G \) such that \(A \subset \text{int}_G(L) \).

Since \(A \subset \text{int}_X(G) \), \(A \subset \text{int}_X(L) \) so we may assume that \(L \subset \text{int}_X(G) \). This implies that \(L \) is a free arc in \(X \). By [6, Lemma 10], there exists \(J \in \mathfrak{A}_S(X) \) such that \(L \subset J \). Therefore, by Lemma 3.3, \(A \in D_n(X) \). \(\square \)

The proof of following result is a modification of [7, Lemma 2.10 (a) and (d)].

Lemma 3.7. Let \(X \) be a locally connected continuum such that \(R(X) \neq \emptyset \) and \(n \in \mathbb{N} \).

(a) For \(n \geq 3 \), the components of \(\mathcal{PHD}_n(X) \) are the sets \(q_X^R((J^o)_1) - \{F_X^n\} \), where \(J \in \mathfrak{A}_S(X) \).

(b) The components of \(\mathcal{PH}E_n(X) \) are the sets \(q_X^n((J^o)_1) - \{F_X^n\} \), where \(J_1, \ldots, J_m \in \mathfrak{A}_S(X) \) and \(m \leq n \).

Proof. (a) By Lemma 3.6, \(\mathcal{PHD}_n(X) = \bigcup \{q_X^R((J^o)_1) - \{F_X^n\} : J \in \mathfrak{A}_S(X) \} \). It is easy to see that the sets \(q_X^R((J^o)_1) - \{F_X^n\} \) are arcwise connected and, therefore, connected. Moreover, the sets \(q_X^R((J^o)_1) - \{F_X^n\} \) are open in \(\mathcal{PHD}_n(X) \) and pairwise disjoint. We conclude that they are the components of \(\mathcal{PHD}_n(X) \).

(b) By Lemma 3.5, \(F_X^n \notin \mathcal{PH}E_n(X) \). Given \(B \in \mathcal{PH}E_n(X) \), there exists \(A \in C_n(X) \) such that \(B = q_X^R(A) \). Notice that \(\dim_A[C_n(X)] = \dim_B[PHS_n(X)] = 2n \). By [6, Lemma 11], there exist \(J_1, \ldots, J_m \in \mathfrak{A}_S(X) \), with \(m \leq n \), such that \(A \subset \langle J_1, \ldots, J_m \rangle \). This implies that \(\mathcal{PH}E_n(X) = \bigcup \{q_X^R((J^o)_1) - \{F_X^n\} : J_1, \ldots, J_m \in \mathfrak{A}_S(X) \} \). To prove the other inclusion, let \(A \in \langle J_1, \ldots, J_m \rangle - F_1(X) \). Thus, \(A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset \). By Lemma 3.2, there exists a finite graph \(G \) contained in \(X \) such that \(A \subset \text{int}_X(G) \). Since \(A \cap R(X) = \emptyset \), we have that \(A \cap R(G) = \emptyset \). Hence, by (3.1), \(\dim_A[C_n(G)] = 2n \). Since \(\dim_{q_X^R(A)}[PHS_n(X)] = \dim_{q_X^R(A)}[C_n(G)] \), \(q_X^R(A) \in \mathcal{PH}E_n(X) \). Therefore, \(\mathcal{PH}E_n(X) = \bigcup \{q_X^R((J^o)_1) - \{F_X^n\} : J_1, \ldots, J_m \in \mathfrak{A}_S(X) \} \). The rest of the proof is similar to the proof of (a). \(\square \)

Let \(X \) be a locally connected continuum such that \(R(X) \neq \emptyset \). Given \(J \in \mathfrak{A}_S(X) \), let \(\mathcal{E}(J) = \text{cl}_{C(X)}((J^o)_1) \). Notice that

\[
\mathcal{E}(J) = \begin{cases}
C(J) - \{A \in C(J) : A \text{ is an arc and } \text{int}_J(A) \cap R(X) \neq \emptyset\}, & \text{if } J \text{ is a cycle}, \\
C(J), & \text{if } J \text{ is an arc}.
\end{cases}
\]

Let \(D_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\} \) and \(D_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + (y + \frac{1}{2})^2 \leq \frac{1}{4}\} \). Let \(L_0 = D_1 - \text{int}_{\mathbb{R}^2}(D_2) \).

Notice that if \(J \) is a cycle, then \(\mathcal{E}(J) \) is homeomorphic to the continuum \(L_0 \).

The proof of following result is a modification of [18, Lemma 3.4].

Lemma 3.8. Let \(X \) be a locally connected continuum such that \(R(X) \neq \emptyset \), \(p \in X \) and \(J \in \mathfrak{A}_S(X) \).

(1) If \(J \) is an arc, then \(\{q_X^p(p) \cup A : A \in \mathcal{E}(J)\} \) is a 2-cell in \(\text{PHS}_2(X) \).

(2) If \(J \) is a cycle, then \(\{q_X^p(p) \cup A : A \in \mathcal{E}(J)\} \) is homeomorphic to the continuum \(L_0 \).

Proof. Let \(g \) be the embedding of \(C(X) \) into \(C_2(X) \) given by \(g(A) = \{p\} \cup A \). Since the set \(g(\mathcal{E}(J)) \cap F_1(X) \) is either the set \(\emptyset \) or the set \(\{p\} \), we have that \(g(\mathcal{E}(J))/F_1(X) \) is homeomorphic to \(\mathcal{E}(J) \). Notice that in (1), the set \(\mathcal{E}(J) \) is a 2-cell, and in (2), it is homeomorphic to continuum \(L_0 \). Now, we finish the proof by mentioning that \(g(\mathcal{E}(J))/F_1(X) \) is clearly homeomorphic to \(\{q_X^p(p) \cup A : A \in \mathcal{E}(J)\} \). \(\square \)
Lemma 3.9. Let X be a locally connected continuum. If Y and Z are either arcs or simple closed curves of X such that $Y \cap Z = \emptyset$, then $\langle Y, Z \rangle_2$ is a 4-cell and $\{y, z\}$ belongs to its manifold boundary, for each $y \in Y, z \in Z$.

Proof. Let $f : \langle Y, Z \rangle_2 \rightarrow C(Y) \times C(Z)$ be defined as $f(A) = (A \cap Y, A \cap Z)$. Notice that f is a bijection. Moreover, given a sequence $\{A_n\}_{n=1}^\infty$ contained in $\langle Y, Z \rangle_2$ which converges to A, for some $A \in \langle Y, Z \rangle_2$, we have that $\{A_n \cap Y\}_{n=1}^\infty$ converges to $A \cap Y$ and $\{A_n \cap Z\}_{n=1}^\infty$ converges to $A \cap Z$. Thus, $\{(A_n \cap Y, A_n \cap Z)\}_{n=1}^\infty$ converges to $(A \cap Y, A \cap Z)$. Hence, f is a homeomorphism.

By [13, 5.1.1 and 5.2], we have that (Y, Z) and (Z, Y) are 2-cells such that $F_1(Y)$ is contained in the manifold boundary of (Y, Z) and $F_1(Z)$ is contained in the manifold boundary of (Z, Y). Hence, $(Y, Z)_2$ is a 4-cell. Let $y \in Y$ and $z \in Z$. Since $\{y\}$ belongs to the manifold boundary of (Y, Z), there exist an open neighborhood \mathcal{U} of $\{y\}$ in (Y, Z) and a homeomorphism $\kappa_1 : \mathcal{U} \rightarrow \kappa_1(\mathcal{U})$ onto an open subset of \mathbb{R}^2_+ such that $\kappa_1(\{y\}) = (0, r)$, for some $r \in \mathbb{R}$. Similarly, there exist an open neighborhood \mathcal{V} of $\{z\}$ in (Z, Y) and a homeomorphism $\kappa_2 : \mathcal{V} \rightarrow \kappa_2(\mathcal{V})$ onto an open subset of \mathbb{R}^2_+ such that $\kappa_2(\{z\}) = (0, s)$, for some $s \in \mathbb{R}$. Notice that $\mathcal{U} \times \mathcal{V}$ is an open neighborhood of $(\{y\}, \{z\})$ in $(Y, Z)_2$. Let $\kappa_+ : \mathcal{U} \times \mathcal{V} \rightarrow \kappa_+(\mathcal{U} \times \mathcal{V})$ be defined as $\kappa_+(A, B) = (\kappa_1(A), \kappa_2(B))$. Thus, κ_+ is a homeomorphism, moreover, $\kappa_+(\mathcal{U} \times \mathcal{V}) = \kappa_1(\mathcal{U}) \times \kappa_2(\mathcal{V})$ is an open subset of \mathbb{R}^2_+. Now, let $g : \mathbb{R}^2_+ \times \mathbb{R}^2_+ \rightarrow \mathbb{R}^4_+$ be defined as $g((a, b), (c, d)) = (2ac, b, a^2 - c^2, d)$ and let $h : \mathbb{R}^4_+ \rightarrow \mathbb{R}^2_+ \times \mathbb{R}^2_+$ be defined as

$$h(a, b, c, d) = \left(\left(\sqrt{\frac{1}{2}(\sqrt{a^2 + c^2} + c)}, b\right), \left(\sqrt{\frac{1}{2}(\sqrt{a^2 + c^2} - c)}, d\right)\right).$$

Notice that g and h are maps. Moreover, $h \circ g = \text{id}_{\mathbb{R}^2_+ \times \mathbb{R}^2_+}$ and $g \circ h = \text{id}_{\mathbb{R}^4_+}$. Hence, g is a homeomorphism. By definition of f, $f^{-1}(\mathcal{U} \times \mathcal{V})$ is an open neighborhood of $(\{y, z\})$ in $(Y, Z)_2$. Let $\kappa : f^{-1}(\mathcal{U} \times \mathcal{V}) \rightarrow \kappa(f^{-1}(\mathcal{U} \times \mathcal{V}))$ be defined as $\kappa(A) = g \circ \kappa_+ \circ f(A)$. Thus, κ is a homeomorphism, $\kappa(f^{-1}(\mathcal{U} \times \mathcal{V})) = g(\kappa_1(\mathcal{U}) \times \kappa_2(\mathcal{V}))$ is an open subset of \mathbb{R}^4_+ and $\kappa((\{y, z\}) = (0, r, 0, s)$. Therefore, $(\{y, z\}$ belongs to the manifold boundary of $(Y, Z)_2$. \hfill \square

Given $J, K \in \mathcal{A}_S(X)$, let

$$D(J, K) = \text{cl}_{C_2(X)}(\partial \mathcal{L}_2(X) \cap (J^o, K^o)_2) \cap \text{cl}_{C_2(X)}(\partial \mathcal{L}_2(X) - (J^o, K^o)_2)$$

and

$$\mathcal{PHD}(J, K) = \text{cl}_{\mathcal{PHL}_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2((J^o, K^o)_2)) \cap \text{cl}_{\mathcal{PHL}_2(X)}(\partial \mathcal{PHL}_2(X) - q_X^2((J^o, K^o)_2)).$$

Lemma 3.10. Let X be a locally connected continuum such that $R(X) \neq \emptyset$ and let $J, K \in \mathcal{A}_S(X)$. Then $F_X^2 \in \mathcal{PHD}(J, K)$ if and only if $J \cap K \neq \emptyset$.

Proof. Suppose that $F_X^2 \in \mathcal{PHD}(J, K)$. Then, there exists a sequence $\{A_n\}_{n=1}^\infty$ contained in $(J^o, K^o)_2$ such that $\lim q_X^2(A_n) = F_X^2$. Since q_X^2 is a map, $\lim A_n = \{a\}$, for some $a \in X$. Thus, $\{a\} \in (J, K)_2$. Therefore, $J \cap K \neq \emptyset$. Now suppose that $J \cap K \neq \emptyset$. We consider the following cases.

Case 1. $J \neq K$.

Let $p \in J \cap K \cap R(X)$. Then, there are two sequences $\{j_n\}_{n=1}^\infty$ and $\{k_n\}_{n=1}^\infty$ contained in J^o and K^o, respectively, such that $\lim j_n = p$ and $\lim k_n = p$. Thus, $\lim q_X^2(\{j_n, k_n\}) = F_X^2$. Let J_n and K_n be subarcs of J^o and K^o, respectively, such that $j_n \in J_n^o$ and $k_n \in K_n^o$, for each $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. Notice that $(J_n, K_n)_2$ is a neighborhood of $(\{j_n, k_n\})$ in $C_2(X)$. Since J_n and K_n are disjoint arcs, by Lemma 3.9, we have that $(J_n, K_n)_2$ is a 4-cell such that $\{j_n, k_n\}$ belongs to its manifold boundary. This implies that $\{j_n, k_n\} \in \partial C_2(X)$. By Remark 2.1 (b), $q_X^2(\{j_n, k_n\}) \in \partial \mathcal{PHL}_2(X)$. Therefore, $F_X^2 \in \text{cl}_{\mathcal{PHL}_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2((J^o, K^o)_2))$.

Now, let \(\{p_n\}_{n=1}^\infty \) and \(\{q_n\}_{n=1}^\infty \) be two sequences contained in \(K^o \) such that \(\lim p_n = p \), \(\lim q_n = q \) and \(p_n \neq q_n \), for each \(n \in \mathbb{N} \). Let \(P_n \) and \(Q_n \) be disjoint subarcs of \(K \) such that \(p_n \in P_n^o \) and \(q_n \in Q_n^o \), for each \(n \in \mathbb{N} \). By Lemma 3.9, we have that \((P_n, Q_n) \) is a 4-cell and \(\{p_n, q_n\} \) belongs to its manifold boundary. By Remark 2.1 (b), \(\{q^2_X((p_n, q_n))\}_{n=1}^\infty \) is a sequence contained in \(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o))^2 \). Therefore, \(F^2_X \in \mathcal{PD}(J, K) \).

Case 2. \(J = K \).

Let \(p \in J \cap R(X) \). Then, there exist two sequences \(\{j_n\}_{n=1}^\infty \) and \(\{k_n\}_{n=1}^\infty \) contained in \(J^o \) such that \(\lim j_n = p \), \(\lim k_n = p \) and \(j_n \neq k_n \), for each \(n \in \mathbb{N} \). Let \(J_n \) and \(K_n \) be disjoint subarcs of \(J^o \) such that \(j_n \in J_n^o \) and \(k_n \in K_n^o \), for each \(n \in \mathbb{N} \). By Lemma 3.9, we have that \((J_n, K_n) \) is a 4-cell such that \(\{j_n, k_n\} \) belongs to its manifold boundary. This implies that \(\{j_n, k_n\} \in \partial \mathcal{L}_2(X) \). By Remark 2.1 (b), \(q^2_X((j_n, k_n)) \in \partial \mathcal{PL}_2(X) \). Therefore, \(F^2_X \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o))^2) \).

Since \(p \in R(X) \), there exists \(L \in \mathfrak{A}_S(X) - \{J\} \) such that \(p \in L \). Thus, \(p \in J \cap L \cap R(X) \). In a similar way as Case 1, we can prove that \(F^2_X \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o))^2) \). Therefore, \(F^2_X \in \mathcal{PD}(J, K) \). \(\square \)

The proof of following result is a modification of [7, Lemma 2.15].

Lemma 3.11. Let \(X \) be a locally connected continuum with \(R(X) \neq \emptyset \). If \(J, K \in \mathfrak{A}_S(X) \), then \(\mathcal{PD}(J, K) = \{q^2_X(\{p\} \cup G) : p \in bd_X(J) \text{ and } G \in \mathcal{E}(K) \text{ or } p \in bd_X(K) \text{ and } G \in \mathcal{E}(J) \} \).

Proof. Let \(B \in \mathcal{PD}(J, K) \). By Lemma 3.10, we may assume that \(B \neq F^2_X \). Let \(A \in C_2(X) - F_1(X) \) be such that \(q^2_X(A) = B \). Since \(B \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) \cap q^2_X((J^o, K^o))^2) \), there exists a sequence \(\{A_n\}_{n=1}^\infty \) contained in \((J^o, K^o)^2 - F_1(X) \) such that \(\lim q^2_X(A_n) = B \) and \(q^2_X(A_n) \in \partial \mathcal{PL}_2(X) \), for each \(n \in \mathbb{N} \). By the continuity of \(q^2_X \), \(\lim A_n = A \). By Remark 2.1 (b), \(A_n \in \partial \mathcal{L}_2(X) \), for each \(n \in \mathbb{N} \). Hence, \(A \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{L}_2(X) \cap (J^o, K^o)^2) \). Moreover, since \(B \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o))^2) \), there exists a sequence \(\{B_n\}_{n=1}^\infty \) contained in \(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o))^2 \) such that \(\lim B_n = B \) and \(B_n \neq F^2_X \), for each \(n \in \mathbb{N} \). Given \(n \in \mathbb{N} \), let \(D_n \) be the unique element of \(C_2(X) - F_1(X) \) such that \(q^2_X(D_n) = B_n \). Then \(\lim D_n = A \). By Remark 2.1 (b), \(D_n \in \partial \mathcal{L}_2(X) - (J^o, K^o)^2 \), for each \(n \in \mathbb{N} \). Hence, \(A \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{L}_2(X) - (J^o, K^o)^2) \). We have shown that \(A \in \mathcal{PD}(J, K) \). By [6, Lemma 33], \(A = \{p\} \cup G \), where \(p \in bd_X(J) \) and \(G \in \mathcal{E}(K) \) or \(p \in bd_X(K) \) and \(G \in \mathcal{E}(J) \). This completes the proof of the first inclusion.

To prove the opposite inclusion, let \(B = q^2_X(\{p\} \cup G) \), where \(p \in bd_X(J) \) and \(G \in \mathcal{E}(K) \) or \(p \in bd_X(K) \) and \(G \in \mathcal{E}(J) \). By Lemma 3.10, we may assume that \(G \neq \{p\} \). Let \(A = \{p\} \cup G \). By [6, Lemma 33], \(A \in \mathcal{PD}(J, K) \). Then, there exists a sequence \(\{A_n\}_{n=1}^\infty \) contained in \(\partial \mathcal{L}_2(X) \cap (J^o, K^o)^2 \) such that \(\lim A_n = A \) and \(A_n \notin F_1(X) \), for each \(n \in \mathbb{N} \). Hence, \(q^2_X(A_n) \in \partial \mathcal{PL}_2(X) \cap q^2_X((J^o, K^o)^2) \). Thus, \(B \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) \cap q^2_X((J^o, K^o)^2)) \). Similarly, \(B \in \mathcal{CL}_{S_2}(X)(\partial \mathcal{PL}_2(X) - q^2_X((J^o, K^o)^2)) \). Therefore, \(B \in \mathcal{PD}(J, K) \). \(\square \)

Now, we are ready to describe models of \(\mathcal{PD}(J, K) \) for each possible case. Let \(J, K \in \mathfrak{A}_S(X) \), where \(X \) is a locally connected continuum such that \(R(X) \neq \emptyset \). We consider nine cases.

Case I. \(J = K \), \(J \) is an arc and \(J \notin \mathfrak{A}_E(X) \).

By Lemma 3.11, \(\mathcal{PD}(J, J) = \{q^2_X(\{p\} \cup G) : G \in \mathcal{E}(J)\} \cup \{q^2_X(\{q\} \cup G) : G \in \mathcal{E}(J)\} \), where \(p, q \in J \cap R(X) \). By Lemma 3.8, we have that \(\mathcal{PD}(J, J) \) is the union of two 2-cells whose intersection is the set \(\{F^2_X, q^2_X(\{p, q\}), q^2_X(J)\} \). It is easy to see that this set is contained in the manifold boundary of both 2-cells.

Case II. \(J = K \), \(J \) is an arc and \(J \in \mathfrak{A}_E(X) \).

Then \(J \cap R(X) = \{p\} \). Thus, \(\mathcal{PD}(J, J) = \{q^2_X(\{p\} \cup G) : G \in \mathcal{E}(J)\} \) which is a 2-cell.

Case III. \(J = K \) and \(J \in \mathfrak{A}_R(X) \).

Then \(J \cap R(X) = \{q\} \). Thus, \(\mathcal{PD}(J, J) = \{q^2_X(\{q\} \cup G) : G \in \mathcal{E}(J)\} \) which is homeomorphic to \(L_0 \). For the remaining cases we assume that \(J \neq K \).

Case IV. \(J \) and \(K \) are arcs and \(J, K \notin \mathfrak{A}_E(X) \).
Let $p_1, p_2 \in J \cap R(X)$ and $q_1, q_2 \in K \cap R(X)$. Then $\mathcal{PD}(J,K) = P_1 \cup P_2 \cup Q_1 \cup Q_2$, where $P_1 = \{q_X^2 \{p_1\} : G \in \mathcal{E}(K)\}$, $P_2 = \{q_X^2 \{p_2\} : G \in \mathcal{E}(K)\}$, $Q_1 = \{q_X^2 \{q_1\} : G \in \mathcal{E}(J)\}$ and $Q_2 = \{q_X^2 \{q_2\} : G \in \mathcal{E}(J)\}$. By Lemma 3.8, $\mathcal{PD}(J,K)$ is the union of four 2-cells. Now let us consider three subcases.

$\text{IV}(a)$. Let $J \cap K = \emptyset$.

Then $P_1 \cap P_2 = \emptyset = Q_1 \cap Q_2$. Also, $P_i \cap Q_j = \{q_X^2 \{p_i, q_j\}\}$ with $i, j \in \{1, 2\}$.

$\text{IV}(b)$. Let $J \cap K$ is an one point set. Suppose that $p_1 = q_1$.

Similar to case $\text{IV}(a)$ with the exception that $P_1 \cap Q_1 = \{F_X^2\}$.

$\text{IV}(c)$. Let $J \cap K$ is a two point set. Suppose that $p_1 = q_1$ and $p_2 = q_2$.

Then $P_1 \cap P_2 = \{F_X^2, q_X^2 \{p_1, p_2\}\}$ and $Q_1 \cap Q_2 = \{F_X^2, q_X^2 \{p_1, p_2\}\}$. Moreover, $P_i \cap Q_j = \{q_X^2 \{p_i, p_j\}\}$ with $i, j \in \{1, 2\}$.

Case V. J and K are arcs, $J \notin \mathcal{E}(X)$ and $K \in \mathcal{A}(X)$.

Let $p_1, p_2 \in J \cap R(X)$ and $q \in K \cap R(X)$. Then $\mathcal{PD}(J,K) = P_1 \cup P_2 \cup Q$, where $P_1 = \{q_X^2 \{p_1\} : G \in \mathcal{E}(K)\}$, $P_2 = \{q_X^2 \{p_2\} : G \in \mathcal{E}(K)\}$ and $Q = \{q_X^2 \{q\} : G \in \mathcal{E}(J)\}$. Thus, $\mathcal{PD}(J,K)$ is the union of three 2-cells. Now let us consider two subcases.

$\text{V}(a)$. Let $J \cap K = \emptyset$.

Then $P_1 \cap P_2 = \emptyset$. Also, $P_i \cap Q = \{q_X^2 \{p_i, q\}\}$ with $i \in \{1, 2\}$.

$\text{V}(b)$. Let $J \cap K$ is an one point set. Suppose that $p_1 = q$.

Similar to case $\text{V}(a)$ with the slightly difference that $P_1 \cap Q = \{F_X^2\}$.

Case VI. J, K $\in \mathcal{A}(X)$.

Then $\mathcal{PD}(J,K) = \{q_X^2 \{p\} : G \in \mathcal{E}(K)\} \cup \{q_X^2 \{q\} : G \in \mathcal{E}(J)\}$, where $p \in J \cap R(X)$ and $q \in K \cap R(X)$. Thus, $\mathcal{PD}(J,K)$ is the union of two 2-cells whose intersection is the set $\{q_X^2 \{p, q\}\}$, or $\{F_X^2\}$ in the case that $p = q$.

Case VII. J is an arc, $J \notin \mathcal{A}(X)$ and $K \in \mathcal{A}(X)$.

Similar to case V with the slightly difference that $\mathcal{PD}(J,K)$ is the union of a 2-cell and two continua L_0.

Case VIII. J $\in \mathcal{A}(X)$ and $K \in \mathcal{A}(X)$.

Similar to case VI with the slightly difference that $\mathcal{PD}(J,K)$ is the union of a 2-cell and a continuum L_0.

Case IX. J, K $\in \mathcal{A}(X)$.

Similar to case VI with the difference that $\mathcal{PD}(J,K)$ is the union of two continua L_0.

Remark 3.12. Let X and Y be locally connected continua such that $R(X) \neq \emptyset$ and $R(Y) \neq \emptyset$, and let $J, K \in \mathcal{A}(X)$ and $J_h, K_h \in \mathcal{A}(Y)$. If $\mathcal{PD}(J,K)$ is homeomorphic to $\mathcal{PD}(J_h,K_h)$, then

(a) J and K are as in Case I if and only if J_h and K_h are as in Case I,

(b) J and K are as in Case II if and only if J_h and K_h are as in Case II and

(c) J and K are as in Case III if and only if J_h and K_h are as in Case III.

4. Main results

In this section we present the proof of our first main result. The first step is to mention that Ulises Morales-Fuentes has proven that the finite graphs have unique n-fold pseudo-hyperspace suspension, see [18, Theorem 5.7]. We prove that if X is a meshed continuum such that $|\bigcap \mathcal{A}(X)| = 2$, then X is a finite graph, and therefore it has unique n-fold pseudo-hyperspace suspension. Finally, we prove that for a meshed continuum X such that $R(X) \neq \emptyset$ and $|\bigcap \mathcal{A}(X)| \neq 2$ the uniqueness of the n-fold pseudo-hyperspace suspension holds, see Theorem 4.8.

Using [6, Lemma 2] and [5, Theorem 3.1] we have the following properties for meshed continua, which will be used without quoting them in the proof of Theorem 4.7.
Lemma 4.1. If X is a meshed continuum, then

(a) X is locally connected,
(b) $J \cap \mathcal{P}(X) = \emptyset$, for each $J \in \mathfrak{A}_S(X)$, and
(c) $\mathcal{G}(X) = \bigcup \mathfrak{A}_S(X)$.

The following result is proved in [4, Theorem 5.1] for case $n = 1$ and [16, Theorem 4.1 (a)] for case $n \geq 2$.

Lemma 4.2. Let X be a continuum and $n \in \mathbb{N}$. Then X is locally connected if and only if $\text{PHS}_n(X)$ is locally connected.

Given a continuum X and $n \in \mathbb{N}$, let

$$\mathfrak{F}_n(X) = \{A \in C_n(X) : \text{dim}_A(C_n(X)) \text{ is finite}\}.$$

Theorem 4.3. Let X be a meshed continuum and $n \in \mathbb{N}$. If Y is a continuum such that $\text{PHS}_n(X)$ is homeomorphic to $\text{PHS}_n(Y)$, then Y is a meshed continuum.

Proof. Let $h : \text{PHS}_n(X) \rightarrow \text{PHS}_n(Y)$ be a homeomorphism. Since X is a locally connected continuum, using Lemma 4.2, we have that Y is a locally connected continuum. Let $A \in C_n(X)$ and $B \in C_n(Y)$ be such that $h(q_X^n(A)) = F_Y^n$ and $h^{-1}(q_Y^n(B)) = F_Y^n$. Let $K = C_n(X) - (F_1(X) \cup \{A\})$ and $L = C_n(Y) - (F_1(Y) \cup \{B\})$. Then $g : K \rightarrow L$ defined by $g = (q_Y^n|_L)^{-1} \circ h \circ q_X^n|_K$ is a homeomorphism. Moreover, $g(\mathfrak{F}_n(X) \cap K) = \mathfrak{F}_n(Y) \cap L$. Since X is meshed, by [6, Theorem 5], we know that $\mathfrak{F}_n(X)$ is a dense subset of $C_n(X)$. This implies that $\mathfrak{F}_n(Y) \cap L$ is dense in L. Finally, by the density of L in $C_n(Y)$, we conclude that $\mathfrak{F}_n(Y)$ is a dense subset of $C_n(Y)$. Therefore, by [6, Theorem 5], Y is a meshed continuum.

The following result extends [18, Lemma 5.2].

Lemma 4.4. Let $n \geq 2$. If X is a locally connected continuum with $R(X) \neq \emptyset$ and $|\mathfrak{A}_S(X)| \geq 2$, then

$$\bigcap \{\text{cl}_{\text{PHS}_n(X)}(q_X^n(\langle J^o \rangle)_n) - F_X^n : J \in \mathfrak{A}_S(X)\} = \begin{cases} \{F_X^n\} & \text{if } |\bigcap \mathfrak{A}_S(X)| \neq 2, \\
\{F_X^n, q_X^n(p, q)\} & \text{if } |\bigcap \mathfrak{A}_S(X)\} = \{p, q\}. \end{cases}$$

Proof. Let $J \in \mathfrak{A}_S(X)$ and $a \in J^o$. Since $\{a\}$ can be approximated by elements in $\langle J^o \rangle_1 - F_1(X)$, we have that $\{a\} \in \text{cl}_{C_n(X)}(\langle J^o \rangle_n - F_1(X))$. Hence, $F_X^n \in \text{cl}_{\text{PHS}_n(X)}(q_X^n(\langle J^o \rangle)_n) - F_X^n)$. Moreover, if $|\bigcap \mathfrak{A}_S(X) = \{p, q\}$, then $p, q \in J$ and since $n \geq 2$, $\{p, q\}$ can be approximated by elements in $\langle J^o \rangle_n - F_1(X)$. Hence, $q_X^n(\{p, q\}) \in \text{cl}_{\text{PHS}_n(X)}(q_X^n(\langle J^o \rangle)_n) - F_X^n)$. This implies the second inclusion.

Now, let $B \in \{\text{cl}_{\text{PHS}_n(X)}(q_X^n(\langle J^o \rangle)_n) - F_X^n) : J \in \mathfrak{A}_S(X)\}$. Suppose that $B \neq F_X^n$. Let $A \in C_n(X) - F_1(X)$ be such that $q_X^n(A) = B$. Let $J \in \mathfrak{A}_S(X)$. Since $B \in \text{cl}_{\text{PHS}_n(X)}(q_X^n(\langle J^o \rangle)_n) - F_X^n)$, there exists a sequence $\{B_m\}_{m=1}^\infty$ contained in $q_X^n(\langle J^o \rangle)_n) - F_X^n)$ which converges to B. Let $A_m \in \langle J^o \rangle_n - F_1(X)$ be such that $q_X^n(A_m) = B_m$, for each $m \in \mathbb{N}$. Notice that $\{A_m\}_{m=1}^\infty$ converges to A. Hence, $A \subset J$, for each $J \in \mathfrak{A}_S(X)$. Therefore, $A \subset \bigcap \mathfrak{A}_S(X)$. Since $|\mathfrak{A}_S(X)| \geq 2$, we have that $|\bigcap \mathfrak{A}_S(X)| \leq 2$.

Consider the following cases.

Case 1. $|\bigcap \mathfrak{A}_S(X)| \neq 2$.

Then $|\bigcap \mathfrak{A}_S(X)| \leq 1$. Hence, $|A| \leq 1$. This is a contradiction since $A \subset C_n(X) - F_1(X)$. Therefore, $B = F_X^n$.

Case 2. $\bigcap \mathfrak{A}_S(X) = \{p, q\}$.

Since $A \subset C_n(X) - F_1(X)$, we have that $A = \{p, q\}$. Hence, $B \in \{F_X^n, q_X^n(\{p, q\})\}$, as desired.

From these cases, the result follows.
Theorem 4.5. Let X be a meshed continuum such that $R(X) \neq \emptyset$. If $|\bigcap \mathcal{A}_S(X)| = 2$, then X is a finite graph.

Proof. Let $p, q \in \bigcap \mathcal{A}_S(X)$. Thus, p and q are the end points of each maximal free arc. Suppose that there exists $a \in \mathcal{P}(X)$. By [5, Theorem 3.3], there is a sequence of pairwise distinct elements contained in $R(X) \cap \mathcal{G}(X)$ which converges to a. However, this is not possible since $R(X) \cap \mathcal{G}(X) \subset \{p, q\}$. Hence, $\mathcal{P}(X) = \emptyset$. Therefore, X is a finite graph. □

Using Theorem 4.5 and [18, Theorem 5.7] we obtain the following result.

Theorem 4.6. Let X be a meshed continuum such that $R(X) \neq \emptyset$. If $|\bigcap \mathcal{A}_S(X)| = 2$, then X has unique n-fold pseudo-hyperspace suspension.

The following result extends [18, Lemma 5.1 and Lemma 5.5].

Theorem 4.7. Let X and Y be meshed continua such that $R(X) \neq \emptyset, R(Y) \neq \emptyset$ and $|\bigcap \mathcal{A}_S(X)| \neq 2, |\bigcap \mathcal{A}_S(Y)| \neq 2$, $n \geq 2$ and let $h : \text{PHS}_n(X) \to \text{PHS}_n(Y)$ be a homeomorphism. Suppose that for each $J \in \mathcal{A}_S(X)$, there exists $J_h \in \mathcal{A}_S(Y)$ such that $h(q_X^n((J^n)_1) - \{F^n_Y\}) \subset q_Y^n((J_h^n)_n)$ and $\mathcal{A}_S(Y) = \{J_h : J \in \mathcal{A}_S(X)\}$. Then

(a) for each $J \in \mathcal{A}_S(X)$, $h(q_X^n((J^n)_1) - \{F^n_Y\}) = q_Y^n((J_h^n)_n) - \{F^n_Y\}$,

(b) for each $J \in \mathcal{A}_S(X)$, $h^{-1}(q_Y^n((J_h^n)_n \cap C(Y)) - \{F^n_Y\}) \subset q_X^n((J^n)_1) - \{F^n_Y\}$,

(c) the association $J \to J_h$ is a bijection between $\mathcal{A}_S(X)$ and $\mathcal{A}_S(Y)$.

(d) $h(F^n_X) = F^n_Y$.

If we also suppose that

(1) if $J \in \mathcal{A}_R(X)$, then $J_h \in \mathcal{A}_R(Y)$ and

(2) if $J \in \mathcal{A}_E(X)$, then $J_h \in \mathcal{A}_E(Y)$,

then X is homeomorphic to Y.

Proof. (a) Let $J \in \mathcal{A}_S(X)$ and A be a subarc of J^o such that $h(q_X^n(A)) \neq F^n_Y$. By Lemma 3.7 (b), we have that $h(q_X^n((J^o)_1) - \{F^n_Y\})$ and $q_Y^n((J_h^n)_n) - \{F^n_Y\}$ are components of $\mathcal{PH}(n)(X)$. Notice that $h(q_X^n(A)) \in h(q_X^n((J^o)_1) - \{F^n_Y\}) \cap (q_Y^n((J_h^n)_n) - \{F^n_Y\})$. Therefore, $h(q_X^n((J^o)_1) - \{F^n_Y\}) = q_Y^n((J_h^n)_n) - \{F^n_Y\}$.

Clearly, (b) follows from (a).

To prove (c), it is enough to prove that the correspondence is one to one. Let $J, L \in \mathcal{A}_S(X)$ and suppose that $J_h = L_h$. Using (a) we conclude that $q_X^n((J^o)_1) - \{F^n_Y\} = q_X^n((L^o)_1) - \{F^n_Y\}$. Let A be a subarc of J^o. Then $q_X^n(A) \in q_X^n((L^o)_1)$ and $A \subset L^o$. Therefore, by Lemma 3.1 (c), $J = L$.

(d) By Lemma 4.4 and using (a) we have that

$$h(\{F^n_Y\}) = \bigcap\{\text{cl}_{\text{PHS}_n(Y)}(h(q_X^n((J^o)_1) - \{F^n_Y\})) : J \in \mathcal{A}_S(X)\}$$

$$= \bigcap\{\text{cl}_{\text{PHS}_n(Y)}(q_Y^n((J_h^n)_n) - \{F^n_Y\}) : J \in \mathcal{A}_S(X)\}$$

$$= \bigcap\{\text{cl}_{\text{PHS}_n(Y)}(q_Y^n((J_h^n)_n) - \{F^n_Y\}) : J_h \in \mathcal{A}_S(Y)\} = \{F^n_Y\}.$$

Therefore, $h(F^n_X) = F^n_Y$.

Let $g : C_n(X) - F_1(X) \to C_n(Y) - F_1(Y)$ be defined as $g = (q_Y^n)^{-1} \circ h \circ q_X^n$. Notice that g is a homeomorphism. Given $J \in \mathcal{A}_S(X)$, let $K_n(J, X) = \text{cl}_{\text{C}_{\text{ph}}(X)}((J^n)_1) - F_1(X)$.

The proofs of Claim 1 and Claim 2 are similar to the proofs of Claim 1 and Claim 2 from [7, Theorem 3.1], respectively. The proof of Claim 3 is similar to arguments given in [7, Theorem 3.1, p. 88–89].

Claim 1. If $J \in \mathfrak{A}_S(X)$, then

(e) $K_n(J_h, Y) = g(K_n(J, X))$,
(f) $\{ \dim_A[C_n(X)] : A \in K_n(J, X) \} = \{ \dim_B[C_n(Y)] : B \in K_n(J_h, Y) \}$,
(g) $|J \cap R(X)| = |J_h \cap R(Y)|$,
(h) if $A \in K_n(J, X)$, then $|A \cap R(X)| = |g(A) \cap R(Y)|$.

Proof of Claim 1. Let $J \in \mathfrak{A}_S(X)$. Notice that $\text{cl}_{C_n(X)}((J^0)_A) - F_1(X) = \text{cl}_{C_n(X)} - F_1(X)((J^0)_A)$. From this, clearly (e) is true and (f) follows from (e). Now, since X is a meshed continuum, $J \cap \mathcal{P}(X) = \emptyset$. Thus, by Lemma 3.2, there exists a finite graph G contained in X such that $J \subset \text{int}_X(G)$. Using (3.1), we have that $\{ \dim_A[C_n(X)] : A \in K_n(J, X) \} \geq 3$ and only if $|J \cap R(X)| = 2$ and $\{ \dim_A[C_n(X)] : A \in K_n(J, X) \} = 2$ if and only if $|J \cap R(X)| = 3$. Notice that J_h also satisfies the same conditions as J, such as $J_h \cap \mathcal{P}(Y) = \emptyset$. This proves (g). Moreover, given $A \in K_n(J, X)$. If $|A \cap R(X)| = 2$, then $|J \cap R(Y)| = 2$. Thus, $|J_h \cap R(Y)| = 2$ and $\dim_A[C_n(X)] = \max\{ \dim_E[C_n(X)] : E \in K_n(J, X) \}$. Hence, $\dim_{g(A)}[C_n(Y)] = \max\{ \dim_B[C_n(Y)] : B \in K_n(J_h, Y) \}$. This implies that $|g(A) \cap R(Y)| = 2$. Similarly, if $|g(A) \cap R(Y)| = 2$, then $|A \cap R(X)| = 2$. Similarly, if $|g(A) \cap R(Y)| = 0$, then $|A \cap R(X)| = 0$. Finally, if $|A \cap R(X)| = 1$, then $|g(A) \cap R(Y)| \notin \{ 0, 2 \}$. Thus, $|g(A) \cap R(Y)| = 1$. This completes the proof of Claim 1. \square

Claim 2. If $J \in \mathfrak{A}_S(X)$ and $v \in J \cap R(X)$, then $K(v, J) = \{ A \in K_n(J, X) : A \cap R(X) = \{ v \} \}$ is arcwise connected.

Now, given $v \in R(X) \cap \mathcal{G}(X)$, there is $J \in \mathfrak{A}_S(X)$ such that $v \in J$. Let $A \in K(v, J)$. By Claim 1, $g(A) \in K_n(J_h, Y)$ and there exists a unique point $v_h(A) \in R(Y) \cap g(A)$. Notice that $v_h(A) \in J_h$ and $v_h(A) \in g(A) \cap \mathcal{G}(Y)$.

Claim 3. Let $v \in R(X) \cap \mathcal{G}(X)$ and $J, L \in \mathfrak{A}_S(X)$ with $v \in J \cap L$. If $A \in K(v, J)$ and $E \in K(v, L)$, then $v_h(A) = v_h(E)$ (in other words, $v_h(A)$ depends neither on the choice of J nor on the choice of A).

Proof of Claim 3. In order to prove this, take A_1 and E_1 arcs in J and L, respectively, such that v is an end point of A_1 and E_1, $A_1 \neq J$ and $E_1 \neq L$. Notice that $A_1 \in K(v, J)$ and $E_1 \in K(v, L)$. By Claim 2, there exist maps $\alpha_1 : [0, 1] \to K(v, J)$ and $\alpha_E : [0, 1] \to K(v, L)$ such that $\alpha_1(0) = A_1$, $\alpha_1(1) = A_1$, $\alpha_E(0) = E_1$ and $\alpha_E(1) = E$. Moreover, since $A_1 \cup E_1$ is an arc, we may define a map $\alpha_0 : [0, 1] \to C(A_1 \cup E_1)$ with the following properties: $\alpha_0(0) = A_1$, $\alpha_0(1) = E_1$ and for each $t \in [0, 1]$, $\alpha_0(t) \cap R(X) = \{ v \}$ and $\alpha_0(t) \notin F_1(X)$. Let $\alpha : [0, 1] \to K(v, J) \cup C(A_1 \cup E_1) \cup K(v, L)$ be defined as

$$\alpha(t) = \begin{cases}
\alpha_1(3t) & \text{if } t \in [0, \frac{1}{3}], \\
\alpha_0(3t - 1) & \text{if } t \in \left[\frac{1}{3}, \frac{2}{3} \right], \\
\alpha_E(3t - 2) & \text{if } t \in \left[\frac{2}{3}, 1 \right].
\end{cases}$$

Notice that $\alpha(t) \subset J \cup L$. Thus, $g(\alpha(t)) \subset J_h \cup L_h$, for each $t \in [0, 1]$. Let $i_0 = \text{ord}(v, X)$. Since $\alpha(t) \cap \mathcal{P}(X) = \emptyset$, by Lemma 3.2 and (3.1), we have that for each $t \in [0, 1],$

$$2n + (i_0 - 2) = \dim_{\alpha(t)}[C_n(X)] = \dim_{g(\alpha(t))}[C_n(Y)].$$
Since $v_h(A)$ is the only ramification point of Y in the set $g(A) = g(\alpha(0))$, this implies that $\text{ord}(v_h(A), Y) = i_0$. Let $T = \{t \in [0, 1] : v_h(A) \in g(\alpha(t))\}$. Notice that T is a closed subset of $[0, 1]$ and $0 \in T$. Suppose that $T \neq [0, 1]$ and let R be a component of $[0, 1] - T$. Then $t_0 = \inf R \in T$ and there exists a sequence $\{r_m\}_{m=1}^{\infty}$ of elements of R which converges to t_0. Since $(J_h \cup L_h) \cap R(Y)$ is finite, we may assume that there exists $w \in (J_h \cup L_h) \cap R(Y)$ such that $w \in g(\alpha(r_m))$. Hence, $w, v_h(A) \in g(\alpha(t_0))$. Notice that $w \neq v_h(A)$. Hence, $\dim g(\alpha(t_0))[C_n(Y)] > 2n + (i_0 - 2)$, a contradiction. Therefore, $T = [0, 1]$. On the other hand, we know that $v_h(E)$ is the only ramification point of Y in the set $g(E) = g(\alpha(1))$. Consequently, $v_h(A) = v_h(E)$. This proves Claim 3. □

From now on, we simply write v_h instead of $v_h(A)$. Thus, we have a function

$$\varphi : R(X) \cap G(X) \longrightarrow R(Y) \cap G(Y)$$

$$v \longmapsto v_h$$

Since Y satisfies similar conditions to those of X, we have that φ is a bijection.

Claim 4. There exists a homeomorphism $\phi : G(X) \longrightarrow G(Y)$ such that $\phi|_{R(X) \cap G(X)} = \varphi$.

Proof of Claim 4. Let $J \in \mathfrak{A}_S(X)$.

Case 1. $|J \cap R(X)| = 2$.

Suppose that $J \cap R(X) = \{p, q\}$. Thus, $p_h, q_h \in J_h$. Since J and J_h are arcs, we may consider a homeomorphism $\varphi_J : J \longrightarrow J_h$ such that $\varphi_J(p) = p_h$ and $\varphi_J(q) = q_h$.

Case 2. $|J \cap R(X)| = 1$, assuming that $J \cap R(X) = \{a\}$.

Notice that $J_h \cap R(Y) = \{a_h\}$. By (1) and (2), we may take a homeomorphism $\varphi_J : J \longrightarrow J_h$ such that $\varphi_J(a) = a_h$. Hence, we define $\phi : G(X) \longrightarrow G(Y)$ given by $\phi(x) = \varphi_J(x)$, where $x \in J$. Therefore, ϕ is a homeomorphism. □

If X is a finite graph, then $G(X) = X$. Thus, $\phi(X) = G(Y)$ is a nonempty open and closed subset of Y. Therefore, $G(Y) = Y$ and X is homeomorphic to Y. Now, suppose that X and Y are not finite graphs.

Claim 5. If $a \in \mathcal{P}(X)$ and $\{a_m\}_{m=1}^{\infty}$ is a sequence contained in $G(X) \cap R(X)$ which converges to a, then $\{\phi(a_m)\}_{m=1}^{\infty}$ converges.

Proof of Claim 5. Let $\{\phi(b_i)\}_{i=1}^{\infty}$ be a convergent subsequence which converges to some $z \in Y$. By [5, Theorem 3.3], $z \in \mathcal{P}(Y)$. We are going to prove that $\lim \phi(a_m) = z$. Suppose to the contrary that

$$\text{there is } \varepsilon_1 > 0 \text{ such that for each } N \in \mathbb{N}, \text{ there exists } k > N \text{ such that } \phi(a_k) \notin B(z, \varepsilon_1). \tag{4.1}$$

Since $\lim \phi(b_i) = z$, there exists $N_1 \in \mathbb{N}$ such that if $l > N_1$, then $\phi(b_l) \in B(z, \frac{\varepsilon_1}{2})$. By [6, Lemma 3], there exists a basis \mathcal{B} of open connected subsets of X such that, for each $U \in \mathcal{B}$, $U - \mathcal{P}(X)$ is connected. Let $V_1 \in \mathcal{B}$ be such that $a \in V_1$ and $\text{diam}(V_1) < 1$. Thus, there is $N_2 > N_1$ such that if $m > N_2$, then $a_m \in V_1 - \mathcal{P}(X)$. Let $l_1 > N_2$. Hence, $b_{l_1} \in \phi^{-1}(B(z, \frac{\varepsilon_1}{2})) \cap (V_1 - \mathcal{P}(X))$. By (4.1), there exists $k_1 > N_2$ such that $\phi(a_{k_1}) \notin B(z, \varepsilon_1)$. Notice that $a_{k_1}, b_{l_1} \in V_1 - \mathcal{P}(X)$. Since $V_1 - \mathcal{P}(X)$ is an open connected subset of X, by [21, 8.26], $V_1 - \mathcal{P}(X)$ is arcwise connected. Then, there exists an arc α_1 in $V_1 - \mathcal{P}(X)$ with end points a_{k_1} and b_{l_1}. Hence, $\gamma_1 = \phi(\alpha_1)$ is an arc with end points $\phi(a_{k_1})$ and $\phi(b_{l_1})$. Notice that $\text{diam}(\gamma_1) \geq \frac{\varepsilon_1}{2}$. Now, let $V_2 \in \mathcal{B}$ be such that $a \in V_2$, $\text{diam}(V_2) < \frac{1}{2}$ and $\alpha_1 \cap V_2 = \emptyset$. Thus, there is $N_3 > N_2$ such that if $m > N_3$, then $a_m \in V_2 - \mathcal{P}(X)$. Let $l_2 > N_3$. Hence, $b_{l_2} \in \phi^{-1}(B(z, \frac{\varepsilon_1}{2})) \cap (V_2 - \mathcal{P}(X))$. By (4.1), there exists $k_2 > N_3$ such that $\phi(a_{k_2}) \notin B(z, \varepsilon_1)$. Notice that $a_{k_2}, b_{l_2} \in V_2 - \mathcal{P}(X)$. Then, there exists an arc α_2
in $V_2 - \mathcal{P}(X)$ with end points a_{k_2} and b_{i_2}. Therefore, $\gamma_2 = \phi(\alpha_2)$ is an arc with end points $\phi(a_{k_2})$ and $\phi(b_{i_2})$ and $\text{diam}(\gamma_2) \geq \frac{\varepsilon}{2}$. Proceeding in a recursive way, we obtain

- a sequence $\{V_i - \mathcal{P}(X)\}_{i=1}^{\infty}$ such that each $V_i - \mathcal{P}(X)$ is an open connected subset of X, $a \in V_i$ and $\text{diam}(V_i) < \frac{1}{i}$,
- a sequence $\{\phi(a_{k_i})\}_{i=1}^{\infty}$ such that $\phi(a_{k_i}) \notin B(z, \varepsilon_1)$ and $a_{k_i} \in V_i - \mathcal{P}(X)$,
- a subsequence $\{\phi(b_{i_i})\}_{i=1}^{\infty}$ of the sequence $\{\phi(b_{i_i})\}_{i=1}^{\infty}$ such that $\lim \phi(b_{i_i}) = z$ and $b_{i_i} \in \phi^{-1}(B(z, \frac{\varepsilon}{2})) \cap (V_i - \mathcal{P}(X))$,
- a sequence $\{\alpha_i\}_{i=1}^{\infty}$ of pairwise disjoint arcs such that $\alpha_i \subset V_i - \mathcal{P}(X)$ whose end points are a_{k_i} and b_{i_i}, and $\alpha_i \cap V_{i+1} = \emptyset$,
- a sequence $\{\gamma_i\}_{i=1}^{\infty}$ of pairwise disjoint arcs such that $\gamma_i \subset \mathcal{G}(Y)$, where $\gamma_i = \phi(\alpha_i)$, $\text{diam}(\gamma_i) \geq \frac{\varepsilon}{4}$, and $\phi(a_{k_i}), \phi(b_{i_i})$ are the end points of γ_i.

We may assume that the sequence $\{\phi(a_{k_i})\}_{i=1}^{\infty}$ converges to some point $w \in Y$. Notice that the sequence $\{\gamma_i\}_{i=1}^{\infty}$ is contained in $C(Y)$. By [21, 4.17], we may suppose that $\{\gamma_i\}_{i=1}^{\infty}$ converges to some $\gamma \in C(Y)$. Since $\phi(a_{k_i}) \notin B(z, \frac{\varepsilon}{2})$, for each $i \in \mathbb{N}$, we have that $w \neq z$. Notice that $w, z \in \gamma$. Thus, $\gamma \in C(Y) - F_1(Y)$. Since g^{-1} is a homeomorphism, we have that $\lim g^{-1}(\gamma_i) = g^{-1}(\gamma)$, where $g^{-1}(\gamma) \in C_n(X) - F_1(X)$.

On the other hand, since $\lim a_{k_i} = a$, $\lim b_{i_i} = a$ and $\lim \text{diam}(\alpha_i) = 0$, we have that $\lim \alpha_i = \{a\}$.

Fix $i \in \mathbb{N}$. Since $a_{k_i}, b_{i_i} \in \mathcal{G}(X) \cap R(X)$ and $\alpha_i \cap \mathcal{P}(X) = \emptyset$, we have that $\alpha_i = J_1 \cup \cdots \cup J_{s_i}$, where $J_1, \ldots, J_{s_i} \in \mathcal{A}_S(X)$. Thus, $\gamma_i = \phi(J_1) \cup \cdots \cup \phi(J_{s_i})$. By definition of ϕ, $\gamma_i = (J_1)^h \cup \cdots \cup (J_{s_i})^h$.

Hence, $q_X^n((J_1)^n_1 \cup \cdots \cup (J_{s_i})^n_1) \setminus \{F_1^n\} = q_Y^n((J_1)^h_1 \cup \cdots \cup (J_{s_i})^h_1) \setminus \{F_Y^n\}$.

By (b), we have that

$$h^{-1}(q_X^n((J_1)^n_1 \cup \cdots \cup (J_{s_i})^n_1) \setminus \{F_1^n\}) \subset q_X^n((J_1)^h_1 \cup \cdots \cup (J_{s_i})^h_1) \setminus \{F_X^n\}.$$

Consequently, $g^{-1}((J_1)^n_1 \cup \cdots \cup (J_{s_i})^n_1) \setminus F_1(Y) \subset (J_1)^h_1 \cup \cdots \cup (J_{s_i})^h_1 - F_1(X)$. This implies that $g^{-1}(\gamma_i) \subset (\alpha_i) - F_1(X)$ and $g^{-1}(\gamma_i) \subset \alpha_i$. Therefore, $g^{-1}(\gamma) \subset \{a\}$, a contradiction. This proves Claim 5.

Claim 6. If $a \in \mathcal{P}(X)$ and $\{a_m\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(X)$ such that $\lim a_m = a$, then $\{\phi(a_m)\}_{m=1}^{\infty}$ converges.

We may assume that there exists a sequence $\{J_m\}_{m=1}^{\infty}$ of pairwise distinct elements of $\mathcal{A}_S(X)$ such that $a_m \in J_m$, for each $m \in \mathbb{N}$. By [6, Lemma 8], we obtain that $\{J_m\}_{m=1}^{\infty}$ converges to $\{a\}$. Let $r_m \in J_m \cap R(X)$, for each $m \in \mathbb{N}$. Thus, $\{r_m\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(X) \cap R(X)$ which converges to a. By Claim 5, there exists $z \in Y$ such that $\lim \phi(r_m) = z$. Notice that $\phi(r_m) \in (J_m)^h_a$, for each $m \in \mathbb{N}$. By [6, Lemma 8], we obtain that $\{(J_m)^h\}_{m=1}^{\infty}$ converges to $\{z\}$. Since $\phi(a_m) \in (J_m)^h_a$, $\lim \phi(a_m) = z$, for each $m \in \mathbb{N}$. This proves Claim 6.

Moreover, let $a \in \mathcal{P}(X)$, $\{a_m\}_{m=1}^{\infty}$ and $\{a'_m\}_{m=1}^{\infty}$ be sequences in $\mathcal{G}(X)$ which converge to a. By Claim 6, $\{\phi(a_m)\}_{m=1}^{\infty}$ and $\{\phi(a'_m)\}_{m=1}^{\infty}$ are convergent sequences. Now, let $b_{2k-1} = a_k$ and $b_{2k} = a'_k$, for $k \in \mathbb{N}$. Hence, $\{b_m\}_{m=1}^{\infty}$ is a sequence in $\mathcal{G}(X)$ which converges to a. By Claim 6, there exists $z \in Y$ such that $\lim \phi(b_m) = z$. Since $\{\phi(a_m)\}_{m=1}^{\infty}$ and $\{\phi(a'_m)\}_{m=1}^{\infty}$ are convergent subsequences of $\phi(\{b_m\}_{m=1}^{\infty})$, we have that $\lim \phi(a_m) = z$ and $\lim \phi(a'_m) = z$. From this, we may associate to each $a \in \mathcal{P}(X)$ a unique element of $\mathcal{P}(Y)$ which will denote by a_ϕ. Consequently, we define a map $\Phi: X \rightarrow Y$ given by
\[\Phi(x) = \begin{cases} \phi(x) & \text{if } x \in \mathcal{G}(X), \\ x_\phi & \text{if } x \in \mathcal{P}(X). \end{cases} \]

Since \(Y \) satisfies similar conditions as \(X \), the following claim is true.

Claim 7. If \(b \in \mathcal{P}(Y) \) and \(\{ b_m \}_{m=1}^\infty \) is a sequence contained in \(\mathcal{G}(Y) \) which converges to \(b \), then \(\{ \phi^{-1}(b_m) \}_{m=1}^\infty \) converges to an unique element \(b_{\phi^{-1}} \in \mathcal{P}(X) \), which does not depend on the sequence \(\{ b_m \}_{m=1}^\infty \).

From Claim 7, we have that \(\Phi \) is one to one. Now, let \(b \in \mathcal{P}(Y) \). By [5, Theorem 3.3], there exists a sequence \(\{ b_m \}_{m=1}^\infty \) contained in \(\mathcal{G}(Y) \cap R(Y) \) which converges to \(b \). Thus, by Claim 7, the sequence \(\{ \phi^{-1}(b_m) \}_{m=1}^\infty \) converges to an unique element \(b_{\phi^{-1}} \in \mathcal{P}(X) \). Notice that \(\Phi(b_{\phi^{-1}}) = b \). Hence, \(\Phi \) is surjective. Therefore, \(\Phi \) is a homeomorphism and \(X \) is homeomorphic to \(Y \).

The proof of following result, except Case 2, is a modification of [7, Theorem 3.2].

Theorem 4.8. Let \(X \) be a meshed continuum such that \(R(X) \neq \emptyset \) and \(n \geq 2 \). If \(| \cap \mathfrak{A}_S(X) | \neq 2 \), then \(X \) has unique \(n \)-fold pseudo-hyperspace suspension.

Proof. Let \(Y \) be a continuum and let \(h : \text{PHS}_n(X) \longrightarrow \text{PHS}_n(Y) \) be a homeomorphism. By Theorem 4.3, we know that \(Y \) is a meshed continuum. Moreover, if \(Y \) is an arc or a simple closed curve, by [18, Theorem 5.7] it follows that \(X \) is homeomorphic to \(Y \). This is a contradiction since \(R(X) \neq \emptyset \). Hence, \(R(Y) \neq \emptyset \). Moreover, by Theorem 4.6, we have that \(| \cap \mathfrak{A}_S(Y) | \neq 2 \). We consider two cases:

Case 1. \(n \geq 3 \).

Since the definition of \(\mathcal{PLC}_n(X) \) is given in terms of topological properties, we have that \(h(\mathcal{PLC}_n(X)) = \mathcal{PLC}_n(Y) \). This implies that \(h(\mathcal{PD}_n(X)) = \mathcal{PD}_n(Y) \). Given \(J \in \mathfrak{A}_S(X) \), by Lemma 3.7 (a), we know that \(h(q_X \langle \langle J^0 \rangle_1 \rangle - \{ F_X \}) \) is a component of \(\mathcal{PD}_n(X) \). Hence, there exists \(J_h \in \mathfrak{A}_S(Y) \) such that \(h(q_X \langle \langle J^0 \rangle_1 \rangle - \{ F_X \}) = q_Y \langle \langle J_h^0 \rangle_1 \rangle - \{ F_Y \} \). Moreover, with similar arguments for \(Y \), we have that \(\mathfrak{A}_S(Y) = \{ J_h : J \in \mathfrak{A}_S(X) \} \). Thus, (a), (b), (c), and (d) from Theorem 4.7 are satisfied.

Now we verify conditions (1) and (2) from Theorem 4.7. Let \(J \in \mathfrak{A}_S(X) \) be such that \(| J \cap R(X) | = 1 \).

We will show that if \(J \) is an arc, then \(J_h \) is an arc (and, by symmetry, the converse implication also holds). Suppose that \(J \) is an arc with end points \(p \) and \(q \), where \(q \notin R(X) \). Suppose that \(J_h \) is a cycle. Let \(A \) be a subarc of \(J \) such that \(p \in A \) and \(q \notin A \). We know that \(h(q_X \langle \langle J^0 \rangle_1 \rangle - \{ F_X \}) = q_Y \langle \langle J_h^0 \rangle_1 \rangle - \{ F_Y \} \). Let \(D = q_X \langle A \rangle \) and \(E = h(D) \). Then \(E = q_Y \langle \langle J_h^0 \rangle_1 \rangle - \{ F_Y \} \). Then there exists \(B \in \langle J_h^0 \rangle_1 - F_1(Y) \) such that \(q_Y \langle B \rangle = E \). Notice that \(B \) is a subarc of \(J_h \). Since \(X \) and \(Y \) are meshed continua, we have that \(J \cap P(X) = \emptyset = J_h \cap P(Y) \). By Lemma 3.2, there exist finite graphs \(M \) in \(X \) and \(M_h \) in \(Y \) such that \(J \subset M \) and \(J_h \subset M_h \). By (3.1), \(2n = \dim_A[M \cap \mathcal{C}_n(M)] = \dim_A[C_n(X)] = \dim_D[P\text{HS}_n(X)] = \dim_E[P\text{HS}_n(Y)] = \dim_B[C_n(Y)] \). Thus, \(B \cap R(Y) = \emptyset \). Since \(C(J_h) \) is a 2-cell such that its manifold boundary is \(F_1(J_h) \), we have that \(B \) has a neighborhood \(M \) in \(\langle J_h^0 \rangle_1 - F_1(Y) \) which is a 2-cell and \(B \) belongs to its manifold interior. Hence, \(q_Y \langle M \rangle \) is a neighborhood of \(E \) in \(q_Y \langle \langle J_h^0 \rangle_1 \rangle - \{ F_Y \} \) such that \(q_Y \langle M \rangle \) is a 2-cell and \(B \) belongs to its manifold interior. Since \(h(F_X) \neq F_Y \), it implies that \(q_X^{-1} \circ h \circ q_Y \langle \langle J^0 \rangle_1 \rangle - \{ F_X \} \) is a 2-cell and \(A \) belongs to its manifold interior. This is a contradiction since \(A \) belongs to the manifold boundary of \(C(J) \). Therefore, \(J_h \) is an arc. Moreover, by Claim 1 (g) of Theorem 4.7, we have that \(| J_h \cap R(Y) | = 1 \) and \(J_h \in \mathfrak{A}_E(Y) \). Consequently, \(J \in \mathfrak{A}_E(X) \) if and only if \(J_h \in \mathfrak{A}_E(Y) \). Thus, conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, \(X \) is homeomorphic to \(Y \).

Case 2. \(n = 2 \).

Notice that \(h(\mathcal{PLC}_2(X)) = \mathcal{PLC}_2(Y) \). Given \(J \in \mathfrak{A}_S(X) \), by Lemma 3.7 (b), there exist \(J_h, K_h \in \mathfrak{A}_S(Y) \) such that \(h(q_X \langle \langle J^0 \rangle_2 \rangle - \{ F_2^X \}) = q_Y \langle \langle J_h^0, K_h^0 \rangle_2 \rangle - \{ F_2^Y \} \). By Lemma 3.5, we have that \(F_2^X \notin \partial \mathcal{PLC}_2(X) \), \(F_2^Y \notin \partial \mathcal{PLC}_2(Y) \) and \(h(\partial \mathcal{PLC}_2(X)) = \partial \mathcal{PLC}_2(Y) \). Thus,
Lemma 1.6.

\[
h(\partial \mathcal{PH}_2(X) \cap q_X^{-1}(J^0)_{2}) = \partial \mathcal{PH}_2(Y) \cap q_Y^{-1}(J_k^0, K_k^0)_{2},\]
\[
h(\partial \mathcal{PH}_2(X) - q_X^{-1}(J^0)_{2}) = \partial \mathcal{PH}_2(Y) - q_Y^{-1}(J_k^0, K_k^0)_{2}.
\]

Hence, \(h(\mathcal{PD}(J, J)) = \mathcal{PD}(J_h, K_h) \). By Remark 3.12, we have that \(J_h = K_h \). Consequently, \(h(q_X^{-1}(J^0)_{2}) = q_Y^{-1}(J_k^0)_{2} - \{F_X^0\} \) and \(h(q_X^{-1}(J^0)_{1}) = q_Y^{-1}(J_k^0)_{2} \). Moreover, under similar arguments for \(Y \), we have that \(\mathfrak{A}_S(Y) = \{ J_h : J \in \mathfrak{A}_S(X) \} \). Finally, by Remark 3.12 (b) and (c), conditions (1) and (2) from Theorem 4.8 are satisfied. Therefore, \(X \) is homeomorphic to \(Y \). \(\square \)

The notions of framed and almost framed continua appear in [11, p. 48]. Given a continuum \(X \), notice that \(\bigcup \{ J : J \text{ is a free arc in } X \} \) is dense in \(X \) if and only if \(\bigcup \{ J^0 : J \text{ is a free arc in } X \} \) is dense in \(X \). By [6, Lemma 1], we have that \(\bigcup \{ J : J \text{ is a free arc in } X \} \) is dense in \(X \) if and only if \(G(X) \) is dense in \(X \). From this the following remark holds.

Remark 4.9. Let \(X \) be a locally connected continuum. Then \(X \) is almost framed if and only if \(X \) is almost meshed. Moreover, \(X \) is framed if and only if \(X \) is meshed distinct to a simple closed curve.

Theorem 4.10. If \(X \) is a meshed continuum and \(n \in \mathbb{N} \), then \(X \) has unique \(n \)-fold pseudo-hyperspace suspension.

Proof. Suppose that \(X \) is a meshed continuum and let \(n \in \mathbb{N} \). By [18, Theorem 5.7], we may assume that \(X \) is not a finite graph. So that we consider the following two cases:

Case 1. \(R(X) \neq \emptyset \) and \(n = 1 \).

Since \(PHS_1(X) = HS_1(X) \), by [8, Theorem 3.4] the result follows.

Case 2. \(R(X) \neq \emptyset \) and \(n \geq 2 \).

As a consequence of Theorem 4.5 and Theorem 4.8, we have that \(X \) has unique \(n \)-fold pseudo-hyperspace suspension. \(\square \)

5. Locally connected continua without unique hyperspace

Given a continuum \(X \), a nonempty closed subset \(K \) of \(X \), and \(n \in \mathbb{N} \), let

\[
F_n(X, K) = \{ A \in F_n(X) : A \cap K \neq \emptyset \}
\]

and

\[
C_n(X, K) = \{ A \in C_n(X) : A \cap K \neq \emptyset \}.
\]

For two disjoint continua \(X \) and \(Y \), and given points \(p \in X \) and \(q \in Y \), let \(X \cup_p Y \) be the continuum obtained by attaching \(X \) to \(Y \), identifying \(p \) to \(q \).

Given a continuum \(X \) with metric \(d \), a closed subset \(A \) of \(X \) is said to be a \(Z \)-set in \(X \) provided that, for each \(\varepsilon > 0 \), there is a map \(f_\varepsilon : X \to X - A \) such that \(d(f_\varepsilon(x), x) < \varepsilon \) for all \(x \in X \). A map between compacta \(f : X \to Y \) is called a \(Z \)-map provided that \(f(X) \) is a \(Z \)-set in \(Y \). Let \(\varepsilon > 0 \) and \(A \in 2^X \), the generalized closed \(d \)-ball in \(X \) of radius \(\varepsilon \) about \(A \), denoted by \(C_d(\varepsilon, A) \), is defined as follows: \(C_d(\varepsilon, A) = \{ x \in X : d(x, A) \leq \varepsilon \} \). Whenever \(A = \{ p \} \), we write \(C(\varepsilon, p) \) instead of \(C(\varepsilon, \{ p \}) \).

A metric \(d \) for \(X \) is said to be convex provided that, for any \(p, q \in X \), there exists \(m \in X \) such that \(d(p, m) = \frac{1}{2} d(p, q) = d(m, q) \). By [2, 22], if \(X \) is a locally connected continuum, then \(X \) admits a metric convex.

Given a locally connected continuum \(X \) with convex metric \(d \) and \(\varepsilon > 0 \), define \(\Phi_\varepsilon : 2^X \to 2^X \) by \(\Phi_\varepsilon(A) = C_d(A, \varepsilon) \). By [13, Proposition 10.5], \(\Phi_\varepsilon \) is a map.

Lemma 5.1. Let \(n \in \mathbb{N} \) and \(K, L \) be closed subsets of a locally connected continuum \(X \). Then \(F_m(X, L) \) is a \(Z \)-set in \(C_n(X, K) \), for each \(m \in \{1, \ldots, n\} \).
Proof. Let $\varepsilon > 0$ and $m \in \{1, \ldots, n\}$. We assume that the metric for X is convex. Given $A \in C_n(X, K)$, by [13, Proposition 10.6], we have that $C_d(\frac{1}{2}, A) \in C_n(X, K)$. Moreover, $C_d(\varepsilon, A) \notin F_m(X)$. Let $f_\varepsilon = \Phi_{\frac{1}{2}}|_{C_n(X, K)}$. Hence, f_ε is a map from $C_n(X, K)$ to $C_n(X, K) - F_m(X, L)$. Notice that $C_d(\frac{1}{2}, A) \subset N(\varepsilon, A)$ and, clearly, $A \subset N(\varepsilon, C_d(\frac{1}{2}, A))$. Thus, $H(C_d(\frac{1}{2}, A), A) < \varepsilon$, which is equivalent to $H(f_\varepsilon(A), A) < \varepsilon$. Therefore, $F_m(X, L)$ is a Z-set in $C_n(X, K)$. \qed

Theorem 5.2. [1, Corollary 10.3] (Anderson’s homogeneity theorem). If $h : A \to B$ is a homeomorphism between Z-sets in a Hilbert cube Q, then h extends to a homeomorphism of Q onto Q.

Theorem 5.3. Let X be an almost meshed locally connected continuum and $n \in \mathbb{N}$. Suppose that there exist a contractible closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open subsets U_1, \ldots, U_{n+1} of X such that

(a) $X - R = U_1 \cup \cdots \cup U_{n+1}$ and
(b) $R \subset \text{cl}_X(U_i)$, for each $i \in \{1, \ldots, n+1\}$.

Then X does not have unique hyperspace $\text{PHS}_m(X)$, for each $m \leq n$.

Proof. Let $m \leq n$ and fix $p \in R$. By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that $Y = X \cup_p D$ is a locally connected continuum not homeomorphic to X.

By the proof of [6, Theorem 22], we have that $C_m(Y)$ is homeomorphic to $C_m(X)$. In fact, the homeomorphism $h : C_m(X) \to C_m(Y)$ constructed in such proof satisfies $h(A) = A$, for each $A \in C_m(X) - C_m(X, R)$. In particular, $h(F_1(G(X))) = F_1(G(X))$ and since X is almost meshed, we obtain that

$$h(F_1(X)) = h(\text{cl}_{C_m(X)} F_1(G(X))) = \text{cl}_{C_m(Y)} F_1(G(X)) = F_1(X).$$

Let $q_{X,Y}^m : C_m(Y) \to C_m(Y)/F_1(X)$ be the quotient function and $q_{X,Y}^m(F_1(X)) = \{F_{X,Y}^m\}$. Since $q_{X,Y}^m|_{C_m(X)/F_1(X)}$, $h|_{C_m(X)/F_1(X)}$ and $q_{X,Y}^m|_{C_m(Y)/F_1(X)}$ are homeomorphisms, $\text{PHS}_m(X) - \{F_{X,Y}^m\}$ is homeomorphic to $\text{PHS}_m(Y)/F_1(Y)$. Thus, $\text{PHS}_m(X)$ is homeomorphic to $\text{PHS}_m(Y)/F_1(Y)$.

In order to conclude, we only need to show $C_m(Y)/F_1(Y)$ is homeomorphic to $\text{PHS}_m(Y)$. First, we are going to prove that $q_{Y}^m(C_m(Y, R \cup D))$ and $q_{X,Y}^m(C_m(Y, R \cup D))$ are Hilbert cubes. By [6, Theorem 16], we know that $C_m(Y, R \cup D)$ is a Hilbert cube. Notice that $q_{Y}^m(C_m(Y, R \cup D))$ is homeomorphic to $C_m(Y, R \cup D)/F_1(Y, R \cup D)$ and $q_{X,Y}^m(C_m(Y, R \cup D))$ is homeomorphic to $C_m(Y, R \cup D)/F_1(Y, R \cup D)$ by [3, Theorem 1.2 (21)], we know that D is contractible. Thus, $R \cup_p D$ is contractible. Hence, $F_1(Y, R \cup D)$ and $F_1(Y, R)$ are contractible. Since Y is locally connected, by Lemma 5.1, we have that $F_1(Y, R \cup D)$ and $F_1(Y, R)$ are Z-sets of $C_m(Y, R \cup D)$. By [10, Corollary 2.7], we have that $C_m(Y, R \cup D)/F_1(Y, R \cup D)$ and $C_m(Y, R \cup D)/F_1(Y, R)$ are Hilbert cubes. Therefore, $q_{Y}^m(C_m(Y, R \cup D))$ and $q_{X,Y}^m(C_m(Y, R \cup D))$ are Hilbert cubes.

Claim. The space $\text{bd}_{\text{PHS}_m(Y)}(q_{Y}^m(C_m(Y, R \cup D)))$ is a Z-set of $q_{Y}^m(C_m(Y, R \cup D))$.

Proof of Claim. We denote the metric of $\text{PHS}_m(Y)$ by \overline{H}. Let $\varepsilon > 0$. Since $C_m(Y)$ is compact, we have that q_{Y}^m is uniformly continuous. Thus, there exists $\delta > 0$ such that if $A, B \in C_m(Y)$ with $H(A, B) < \delta$, then $\overline{H}(q_{Y}^m(A), q_{Y}^m(B)) < \frac{\varepsilon}{2}$. By [6, Theorem 22, Claim 2], there exists a map

$$g_\delta : C_m(Y, R \cup D) \to C_m(Y, R \cup D) - \text{bd}_{C_m(Y)}(C_m(Y, R \cup D))$$

such that $H(g_\delta(A), A) < \delta$, for each $A \in C_m(Y, R \cup D)$.

On the other hand, by [10, Remark 2.6], the one point sets of the Hilbert cube are Z-sets. Thus, there is a map
\[
\gamma : q^m_Y(C_m(Y, R ∪ D)) \rightarrow q^m_Y(C_m(Y, R ∪ D)) - \{F^m_Y\}
\]
such that $\overline{H}(\gamma(B), B) < \frac{\delta}{2}$, for each $B ∈ q^m_Y(C_m(Y, R ∪ D))$. Let $f = q^m_Y|_{C_m(Y) - F_1(Y)}$. By [10, Lemma 2.8], we know that $\text{bd}_{PHS_m(Y)}(q^m_Y(C_m(Y, R ∪ D))) = q^m_Y(\text{bd}_{C_m(Y)}(C_m(Y, R ∪ D)))$. Hence, we define the map
\[
f_\varepsilon : q^m_Y(C_m(Y, R ∪ D)) \rightarrow q^m_Y(C_m(Y, R ∪ D)) - \text{bd}_{PHS_m(Y)}(q^m_Y(C_m(Y, R ∪ D)))
\]
by $f_\varepsilon(B) = q^m_Y \circ g_\delta \circ f^{-1} \circ \gamma(B)$, for each $B ∈ q^m_Y(C_m(Y, R ∪ D))$. Given $B ∈ q^m_Y(C_m(Y, R ∪ D))$, we have that $H(g_\delta(f^{-1}(\gamma(B))), f^{-1}(\gamma(B))) < \delta$. Thus, $\overline{H}(q^m_Y(g_\delta(f^{-1}(\gamma(B))))), q^m_Y(f^{-1}(\gamma(B))) < \frac{\delta}{2}$. Therefore, $\overline{H}(f_\varepsilon(B), \gamma(B)) < \frac{\delta}{2}$. Since $\overline{H}(\gamma(B), B) < \varepsilon$, we have that $\overline{H}(f_\varepsilon(B), B) < \varepsilon$. This proves the claim. \(\square\)

Using arguments that are analogous to those of the previous claim, we obtain that $\text{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R ∪ D)))$ is a Z-set of $q^m_{X,Y}(C_m(Y, R ∪ D))$.

By [10, Lemma 2.9 (b)], there exists a homeomorphism $h_1 : q^m_{X,Y}(C_m(X)) \rightarrow q^m_Y(C_m(X))$ such that $h_1(q^m_{X,Y}(A)) = q^m_Y(A)$, for each $A ∈ C_m(X)$. Thus,
\[
h_1(q^m_{X,Y}(\text{bd}_{C_m(Y)}(C_m(Y, R ∪ D)))) = q^m_Y(\text{bd}_{C_m(Y)}(C_m(Y, R ∪ D)))
\]
and therefore,
\[
h_1(\text{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R ∪ D)))) = \text{bd}_{PHS_m(Y)}(q^m_Y(C_m(Y, R ∪ D))).
\]

Hence, $h_1|_{\text{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R ∪ D)))}$ is a homeomorphism between the Z-sets $\text{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R ∪ D)))$ and $\text{bd}_{PHS_m(Y)}(q^m_Y(C_m(Y, R ∪ D)))$, by Anderson’s homogeneity theorem (Theorem 5.2) there exists a homeomorphism
\[
h_2 : q^m_{X,Y}(C_m(Y, R ∪ D)) \rightarrow q^m_Y(C_m(Y, R ∪ D))
\]
such that $h_2(A) = h_1(A)$, for each $A ∈ \text{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R ∪ D)))$.

Let $h : C_m(Y)/F_1(X) \rightarrow PHS_m(Y)$ be given by
\[
h(A) = \begin{cases} h_1(A) & \text{if } A ∈ C_m(Y)/F_1(X) - q^m_{X,Y}(C_m(Y, R ∪ D)), \\ h_2(A) & \text{if } A ∈ q^m_{X,Y}(C_m(Y, R ∪ D)). \end{cases}
\]

Then, h is a homeomorphism, and the theorem is proved. \(\square\)

Let $m ∈ \mathbb{N}$ and
\[
Z_3 = ([{-1, 1}] × \{0\}) ∪ \bigcup \{\{-\frac{1}{m}\} × [0, \frac{1}{m}] : m ≥ 2\} ∪ \bigcup \{\frac{1}{m} × [0, \frac{1}{m}] : m ≥ 2\}.
\]

The continuum Z_3 has unique hyperspace $C_2(Z_3)$ [6, Example 39].

Example 5.4. The continuum Z_3 has unique hyperspace $PHS_2(Z_3)$ but it does not have unique hyperspace $PHS_1(Z_3) = HS_1(Z_3)$.
Notice that Z_3 is an almost meshed locally connected continuum such that $\mathcal{P}(Z_3) = \{(0,0)\}$ and Z_3 is not meshed continuum. Using Theorem 5.3, we have that Z_3 does not have unique hyperspace $PHS_1(Z_3)$.

Let $\theta = (0,0)$. Suppose that Y is a continuum such that $PHS_2(Z_3)$ and $PHS_2(Y)$ are homeomorphic. Let $h : PHS_2(Z_3) \to PHS_2(Y)$ be a homeomorphism. By Lemma 4.2, we have that Y is locally connected. Moreover, by [18, Theorem 5.7], Y is not a finite graph. Hence, $R(Y) \neq \emptyset$. Since $|\mathfrak{A}_S(Z_3)| \geq 2$, using Lemma 3.7 (b), we have that $|\mathfrak{A}_S(Y)| \geq 2$. Also, given $J \in \mathfrak{A}_S(Z_3)$, by Lemma 3.7 (b), there exist $J_h, K_h \in \mathfrak{A}_S(Y)$ such that $h(q_2^Z(J_h^0) - \{F_2^Z\}) = q_2^Y(J_h^0) - \{F_2^Y\}$ and $h(q_2^Z(J_h^0) - \{F_2^Z\}) \subset q_2^Y(J_h^0) - \{F_2^Y\}$. Moreover, under similar arguments for Y, we have that $\mathfrak{A}_S(Y) = \{J_h : J \in \mathfrak{A}_S(Z_3)\}$. In the same way as in the proof of Theorem 4.7, we conclude the association $J \to J_h$ is a bijection between $\mathfrak{A}_S(Z_3)$ and $\mathfrak{A}_S(Y)$, and $h(F_2^Z) = F_2^Y$. Thus, $g : C_2(Z_3) - F_1(Z_3) \to C_2(Y) - F_1(Y)$ defined as $g = (q_2^Y)^{-1} \circ h \circ q_2^Z$ is a homeomorphism. Hence, (e) and (f) of Claim 1 from Theorem 4.7 hold. Notice that $J \cap \mathcal{P}(Z_3) = \emptyset$, for each $J \in \mathfrak{A}_S(Z_3)$. Using (f) and Lemma 3.2, we conclude $J_h \cap \mathcal{P}(Y) = \emptyset$, for each $J_h \in \mathfrak{A}_S(Y)$.

By Remark 3.12 (b) and (c), we have that

1. Y does not have cycles and
2. $J \in \mathfrak{A}_E(Z_3)$ if and only if $J_h \in \mathfrak{A}_E(Y)$.

Since, $J \cap \mathcal{P}(Z_3) = \emptyset$ and $J_h \cap \mathcal{P}(Y) = \emptyset$, for each $J \in \mathfrak{A}_S(Z_3)$, proceeding as in Claims 1 to 4 from Theorem 4.7, we define a homeomorphism $\phi : \mathcal{G}(Z_3) \to \mathcal{G}(Y)$. Let

$$\mathcal{G}_I(Z_3) = \{[-1, 0) \times \{0\}) \cup \bigcup \{\{- \frac{1}{m}\} \times [0, \frac{1}{m}] : m \geq 2\}$$

and

$$\mathcal{G}_D(Z_3) = \{(0, 1] \times \{0\}) \cup \bigcup \{\{\frac{1}{m}\} \times [0, \frac{1}{m}] : m \geq 2\}.$$
\{N_m\}_{m=1}^{\infty} are two sequences of pairwise different elements of \(A(Z_3)\). Let \(a_m \in L_m\), for each \(m \in \mathbb{N}\). Since \(Z_3\) is compact, we may suppose that \(\{a_m\}_{m=1}^{\infty}\) converges to \(a\), for some \(a \in Z_3\). By [6, Lemma 8], we have that \(\{L_m\}_{m=1}^{\infty}\) converges to \(\{a\}\). Hence, by [9, Theorem 4.1], \(a \in \mathcal{P}(Z_3)\). Thus, \(a = \theta\). Analogously, we can prove that \(\{N_m\}_{m=1}^{\infty}\) converges to \(\{\theta\}\). Thus, \(\{L_m \cup N_m\}_{m=1}^{\infty}\) converges to \(\{\theta\}\).

Given \(m \in \mathbb{N}\), notice that \(g^{-1}(\text{cl}_{C_2(Y)}(\langle(C_m)_{h}, (D_m)_{h}\rangle_{2}\rangle) \subset \{L_m\}_{m=1}^{\infty}\), and therefore, \(g^{-1}(\langle(C_m)_{h}, (D_m)_{h}\rangle_{2}\rangle) \subset L_m \cup N_m\). Suppose that \(\theta_1 \neq \theta_D\). Thus, \(\{g^{-1}(\langle(C_m)_{h}, (D_m)_{h}\rangle_{2}\rangle)\}_{m=1}^{\infty}\) converges to \(g^{-1}(\{\theta_1, \theta_D\})\). Hence, \(g^{-1}(\{\theta_1, \theta_D\}) \subset \{\theta\}\), a contradiction. Therefore, \(\theta_1 = \theta_D\). Since \(\text{cl}_{Y}(G(Y)) = \text{cl}_{Y}(\Gamma(Y)) \cup \text{cl}_{Y}(G_{D}(Y))\), we have that \(|\text{cl}_{Y}(G(Y)) - G(Y)| = 1\). Let \(\theta_h \in \text{cl}_{Y}(G(Y)) - G(Y)\) and \(\Phi : Z_3 \rightarrow Y\) be defined as

\[
\Phi(z) = \begin{cases}
\phi(z) & \text{if } z \in G(Z_3), \\
\theta_h & \text{if } z = \theta.
\end{cases}
\]

Hence, \(\Phi\) is an embedding from \(Z_3\) into \(Y\). By definition of \(\Phi\), we know that \(\Phi(Z_3) = \text{cl}_{Y}(G(Y))\). Notice that, \(\Phi(Z_3) \cap \mathcal{P}(Y) = \{\theta_h\}\). This implies that \(\mathcal{P}(Y)\) is a subcontinuum of \(Y\). Let

\[
\Xi_{Z_3} = \text{int}_{C_2(Z_3) - F_1(Z_3)}((C_2(Z_3) - F_1(Z_3)) - \bar{S}_2(Z_3))
\]

and

\[
\Xi_Y = \text{int}_{C_2(Y) - F_1(Y)}((C_2(Y) - F_1(Y)) - \bar{S}_2(Y)).
\]

Notice that \(g(\Xi_{Z_3}) = \Xi_Y\). Using the same arguments as in [6, Example 39], we have that \(\Xi_{Z_3}\) is disconnected and, if \(Y \neq \text{cl}_{Y}(G(Y))\), then \(\Xi_Y\) is pathwise connected. Hence, \(Y = \text{cl}_{Y}(G(Y))\). Therefore, \(Z_3\) has unique hyperspace \(\text{PHS}_2(Z_3)\).

Theorem 5.5. Let \(X\) be a locally connected continuum that is not almost meshed. Suppose that there exist \(p \in \mathcal{P}(X)\) and \(\varepsilon > 0\) such that \(B(p, 2\varepsilon) \subset \mathcal{P}(X)\) and \(C_d(\varepsilon, p)\) is contractible. Then, for every \(n \in \mathbb{N}\), \(X\) does not have unique hyperspace \(\text{PHS}_n(X)\).

Proof. By [6, Theorem 18], there exists a dendrite \(D\) without free arcs and disjoint to \(X\) such that \(Y = X \cup_p D\) is a locally connected continuum not homeomorphic to \(X\).

Let \(E = C_d(\varepsilon, p)\). By Lemma 5.1, we have that \(F_1(E)\) is a \(Z\)-set of \(C_n(X, E)\) and \(C_n(Y, E \cup D)\). Using [6, Theorem 22, Claim 2], we have that \(\text{bd}_{C_n(X)}(C_n(X, E)) \cup F_1(E)\) is a \(Z\)-set of \(C_n(X, E)\) and \(\text{bd}_{C_n(Y)}(C_n(Y, E \cup D)) \cup F_1(E)\) is a \(Z\)-set of \(C_n(Y, E \cup D)\). Moreover, by [6, Lemma 19], we have that \(\text{bd}_{C_n(X)}(C_n(X, E)) \cup F_1(E) = \text{bd}_{C_n(Y)}(C_n(Y, E \cup D)) \cup F_1(E)\). Hence, the identity map

\[
id : \text{bd}_{C_n(X)}(C_n(X, E)) \cup F_1(E) \rightarrow \text{bd}_{C_n(Y)}(C_n(Y, E \cup D)) \cup F_1(E)
\]

is a well-defined homeomorphism. By [6, Theorem 16], we know that \(C_n(X, E)\) and \(C_n(Y, E \cup D)\) are Hilbert cubes. Thus, by Anderson’s homogeneity theorem (Theorem 5.2), the identity map can be extended to a homeomorphism \(h_1 : C_n(X, E) \rightarrow C_n(Y, E \cup D)\).

We define \(h : C_n(X) \rightarrow C_n(Y)\) by

\[
h(A) = \begin{cases}
h_1(A) & \text{if } A \in C_n(X, E), \\
A & \text{if } A \in C_n(X) - C_n(X, E).
\end{cases}
\]

Notice \(h\) is a homeomorphism such that \(h(F_1(X)) = F_1(X)\).
Let \(q^n_{X,Y} : C_n(Y) \to C_n(Y)/F_1(X) \) be the quotient function and \(q^n_{X,Y}(F_1(X)) = \{ F^n_{X,Y} \} \). Since \(q^n_{X,Y} \big|_{C_n(X) - F_1(X)} \), \(h \big|_{C_n(X) - F_1(X)} \) and \(q^n_{X,Y} \big|_{C_n(Y) - F_1(X)} \) are homeomorphisms, then \(PHS_n(X) - \{ F^n_{X,Y} \} \) is homeomorphic to \(C_n(Y)/F_1(X) - \{ F^n_{X,Y} \} \). Thus, \(PHS_n(X) \) is homeomorphic to \(C_n(Y)/F_1(X) \).

We will prove that \(C_n(Y)/F_1(X) \) is homeomorphic to \(PHS_n(Y) \). First, we are going to prove that \(q^n_Y((C_n(Y,E \cup D))\) and \(q^n_{X,Y}((C_n(Y,E \cup D)) \) are Hilbert cubes. Notice that \(q^n_Y(C_n(Y,E \cup D)) \) is homeomorphic to \(C_n(Y,D)/F_1(Y,E \cup D) \) and \(q^n_{X,Y}(C_n(Y,E \cup D)) \) is homeomorphic to \(C_n(Y,E \cup D)/F_1(Y,E) \). By [3, Theorem 1.2 (21)], we know that \(D \) is contractible. Thus, \(E \cup_n D \) is contractible. Hence, \(F_1(Y,E \cup D) \) and \(F_1(Y,E) \) are contractible. Since \(Y \) is locally connected, by Lemma 5.1, we have that \(F_1(Y,E \cup D) \) and \(F_1(Y,E) \) are \(Z \)-sets of \(C_n(Y,E \cup D) \). By [10, Corollary 2.7], we have that \(C_n(Y,E \cup D)/F_1(Y,E \cup D) \) and \(C_n(Y,E \cup D)/F_1(Y,E) \) are Hilbert cubes. Therefore, \(q^n_{X,Y}(C_n(Y,E \cup D)) \) and \(q^n_{X,Y}(C_n(Y,E \cup D)) \) are Hilbert cubes.

Similar to the Claim from Theorem 5.3 was proved, the following Claim can be shown.

Claim. The space \(\text{bd}_{PHS_n(Y)}(q^n_Y(C_n(Y,E \cup D))) \) is a \(Z \)-set of \(q^n_Y(C_n(Y,E \cup D)) \) and the set \(\text{bd}_{C_n(Y)/F_1(X)}(q^n_{X,Y}(C_n(Y,E \cup D))) \) is a \(Z \)-set of \(q^n_{X,Y}(C_n(Y,E \cup D)) \).

Using [10, Lemma 2.9(b)], the function \(f : q^n_{X,Y}(C_n(X)) \to q^n_Y(C_n(X)) \) defined by \(f(q^n_{X,Y}(A)) = q^n_Y(A) \), for each \(A \in C_n(X) \), is a homeomorphism. Thus,

\[
f(q^n_{X,Y}(\text{bd}_{C_n(Y)}(C_n(Y,E \cup D)))) = q^n_Y(\text{bd}_{C_n(Y)}(C_n(Y,E \cup D)))
\]

and therefore,

\[
f(\text{bd}_{C_n(Y)/F_1(X)}(q^n_{X,Y}(C_n(Y,E \cup D)))) = \text{bd}_{PHS_n(Y)}(q^n_Y(C_n(Y,E \cup D))).
\]

Hence, \(f(\text{bd}_{C_n(Y)/F_1(X)}(q^n_{X,Y}(C_n(Y,E \cup D)))) \) is a homeomorphism between \(Z \)-sets \(\text{bd}_{C_n(Y)/F_1(X)}(q^n_{X,Y}(C_n(Y,E \cup D))) \) and \(\text{bd}_{PHS_n(Y)}(q^n_Y(C_n(Y,E \cup D))) \), by Anderson’s homogeneity theorem (Theorem 5.2) there exists a homeomorphism \(g : q^n_{X,Y}(C_n(Y,E \cup D)) \to q^n_Y(C_n(Y,E \cup D)) \) such that \(g(A) = f(A) \), for each \(A \in \text{bd}_{C_n(Y)/F_1(X)}(q^n_{X,Y}(C_n(Y,E \cup D))) \).

Let \(\overline{h} : C_n(Y)/F_1(X) \to PHS_n(Y) \) be given by

\[
\overline{h}(A) = \begin{cases}
 f(A) & \text{if } A \in C_n(Y)/F_1(X) - q^n_{X,Y}(C_n(Y,E \cup D)), \\
 g(A) & \text{if } A \in q^n_{X,Y}(C_n(Y,E \cup D)).
\end{cases}
\]

Then, \(\overline{h} \) is a homeomorphism. Therefore, \(X \) does not have unique hyperspace \(PHS_n(X) \). □

Question 5.6. Is Theorem 5.3 still true if we remove the assumption that \(R \) is contractible?

Regarding to Theorem 5.5, we ask:

Question 5.7. Let \(X \) be a locally connected continuum such that \(X \) is not almost meshed and let \(n \in \mathbb{N} \). Does \(X \) have unique hyperspace \(PHS_n(X) \)?

Acknowledgement

The authors wish to thank M. de J. López for her useful discussions on the topic of this paper. Additionally, the authors thank the referee for his/her careful reading of the manuscript and for giving such constructive comments which substantially helped improve the quality of the paper.
References