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Introduccion

El estudio de los anillos finitos conmutativos, ademas de tener un cierto
intéres en el aspecto tedrico tiene bastantes aplicaciones, una de las cuales
es la teoria de la codificacion. En este trabajo nuestra intencién es dar una
introduccién sutil a los temas de la teoria de cddigos y de los anillos conmu-
tativos finitos.

Asi, por lo anteriormente dicho, estas notas hablaran sobre la teoria de codi-
gos. En el dia a dia convivimos con muchos cédigos aunque no nos demos
cuenta. Por ejemplo, los mas comunes son el cédigo de barras, el ISBN usado
en los libros y el c6digo ASCII usado en las computadoras. Quiza los primeros
codigos usados son el cédigo Morse, usado en la telegrafia desde el siglo XIX,
y el sistema Braile para no-videntes. Ademas cualquier artefacto tecnolégico,
que transmita o almacene mensajes, imagenes o sonidos, involucra al menos
un coédigo. Por mencionar a algunos, tenemos las computadoras, celulares,
satelites, C.D’s, D.V.D’s, etc.

La situacion en la que nos vamos a encontrar es la que muestra la Figura
1: Supongamos que queremos enviar un mensaje x. La idea es que, antes
de enviarlo, codifiquemos el mensaje x como c. Lo comun, es reescribir el
mensaje (en el caso no trivial) en forma diferente incluso usando un alfabeto
distinto, pero nosotros lo haremos bajo determinadas reglas. Una de ellas es
que cada mensaje (palabra) no puede tener més de una palabra cédigo en el
cédigo. Ademas debemos anadirle a x informacién redundante, de tal forma
que si en el canal de transmision se produce ruido r y el receptor en vez de ¢
recibe un mensaje alterado ¢’=c—r sea, a pesar de todo, capaz de recuperar
el mensaje original y si no al menos el més probable.

[Emisor | P [ Codificacién| . [Canal] [Decodificacién | - I Receptor
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Figura 1: Figura 1

Supongamos la siguiente situacién concreta: Imaginemos que somos los
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encargados en el cambio de vias de un tren, que manejamos a control remoto
desde nuestra cabina por medio de un canal que transmite impulsos eléctricos
de dos voltajes distintos, que denotaremos por 0 y 1 respectivamente. El
cambio de vias puede hacer que el tren siga su curso normal, gire a la derecha,
a la izquierda o incluso regresar por donde vino. Luego, nuestros mensajes
son N, R, D e I.Y los codificamos por ejemplo:

N —10, R—01, D — 00, I — 11

Ahora supongamos que necesitamos que el tren tome la via de la derecha.
Enviamos el mensaje 00. Si ocurre una interferencia en la transmision hace
que el cambio de vias reciba 01, es decir que regrese. El problema esta en
nuestro codigo

C = {00,01,10,11}

que no detecta errores. Ya que, si hay un error en la transmision, la palabra
recibida es otra palabra codigo. Para tratar de arreglar esto, podemos agregar
redundancia por ejemplo agregando un digito extra a cada palabra cédigo de
modo que la suma de los digitos de cada palabra cddigo sea 0 o par. Asi el
nuevo codigo sera el siguiente:

¢’ = {000,011,101,110} C Z3

Por lo tanto si enviamos el mensaje 000 y se recibe digamos 010. Como la
palabra cddigo no pertenece al codigo, se detecta un error, no se produce el
cambio de via, y por lo tanto podriamos volver a intentar mandar el mensaje.
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Capitulo 1

Algunos resultados basicos de
algebra

Primero vamos a recordar algunos conceptos basicos del algebra, en par-
ticular la teoria de los anillos conmutativos finitos que es la base para el
desarrollo de la teoria de codigos.

De ahora en adelante, consideraremos a R como un anillo conmutativo con
unidad.

Definicién 1.1. Un subconjunto S de un anillo R es un subanillo de R si
1.1€5.
2. Sia,be s, entoncesa—beS.
3. Sia,be S, entonces ab € S.

Ejemplo 1.2. El conjunto

S:{{Z (('j | a,b,c € Z}

es un subanillo del anillo Mays(Z).

Definicién 1.3. Un elemento a en un anillo R es llamado un divisor de
cero sia # 0 y si existe 0 #£ b € R tal que ab = 0.

Ejemplo 1.4. En el anillo Zg, los elementos 3 y 4 son distintos de la clase
0, pero (3)(4) =12 =0 en Zg, por lo tanto 3 y 4 son divisores de cero.

1



2 Algunos resultados basicos de algebra

Definicién 1.5. Sea R # {0} un anillo. Decimos que R es un dominio
entero si no contiene divisores de cero no triviales.

Ejemplo 1.6. (Z,+,")

Definiciéon 1.7. Un elemento 0 # x € R es nilpotente si ™ = 0 para algin
entero positivo n.

Ejemplo 1.8. 1. En el anillo Zg, el elemento 3 es nilpotente, ya que 3 =
32=9=0.

2. Un elemento nilpotente es un divisor de cero en R, siempre que R no sea
el anillo trivial, es decir, R = 0.

Definicién 1.9. Sea u € R, decimos que u es unidad si exite v € R tal que

wv = 1, denotamos v =u"".

Ejemplo 1.10. En el anillo de los enteros, 7, las unidades son precisamente
1y—1.

Definicién 1.11. El subconjunto de R
UR):={xr € R|3y€R tal que zy = yr = 1}

es un grupo multiplicativo con respecto al producto en R, y sus elementos son
llamados las unidades de R.

Ejemplo 1.12. En Z, U(Z) = {1,—1} = Z,. Donde el isomorfismo es de
grupos abelianos.

Definicién 1.13. Un anillo R # {0} es un campo si todo elemento no cero
es unidad. Es decir, U(R) = R* :== R\ {0}.

Para este trabajo denotaremos a los campos por . Diremos que F, es un
campo finito si tiene un nimero ¢ de elementos, donde g € N.

Ejemplo 1.14. Los ejemplos mds comunes de campos infinitos son Q,R y
C y el ejemplo mds comin de campo finito son los enteros Z mod p denotado
por L.

Definicién 1.15. Un subcampo de un campo F es un subanillo k de F que
es también un campo.



Proposicion 1.16. Todo campo es un dominio entero.

Demostracién. Ya que ab = 0y a # 0 implica que b = 1b = (a ta)b =

al(ab) = a0 =0. H
Proposicion 1.17. Todo dominio entero finito es un campo.

Demostracion. Asumamos que {aq, as, ..., a,} son los elementos de un domi-
nio entero finito R. Para un elemento 0 # a € R consideremos todos los
productos {aay, aas, ..., aa, }. Estos son distintos, porque si aa; = aa;, enton-
ces a(a; —a;) = 0, y ya que a # 0, tenemos que a; = a;. Se sigue que cada
elemento de R es de la forma aa;; en particular, existe h € {1,...,n} tal que
1gr = aap. Ya que R es conmutativo, tenemos también 1p = apa, entonces
ap = a~ . Por lo tanto, los elementos no cero de R forman un grupo abeliano
con respecto a la multiplicacién. ]

Ejemplo 1.18. Son equivalentes las siguientes condiciones:
1. Zy, es campo.

1. Z, es dominio entero.

III. p es primo.

Demostracion. i. =] ii. Por la Proposicién 1.16.

ii. =] i. Por la Proposicién 1.17.

ii. =] iii. Si p no es primo, entonces existen a,b € Z, con 1 < a,b < p, tales
que p = ab. Luego ab = en Z,, implica que ab =7p = 0, por lo tanto 7, no
es dominio entero, contradiccion.

iii. =] ii. Sean @,b en Z, y p primo. Supongamos que ab = 0, entonces p | ab,
por lo que p | a 6 p | b, pero esto significa que @ =06 b =0 en Zy,, por lo
que Z, es dominio entero. O

Lema 1.19. Sean a,b dos elementos de un campo F entonces,
I. (—1)a = —a.
1. ab= 0 implica a =0 ¢ b= 0.

Demostracion. 1. (—1)a+a = (—1)a+ la = ((—1) + 1)a = 0a = 0. Por lo
tanto (—1)a = —a, por la unicidad de los inversos.
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11. Sia#0, entonces 0 =a"'0=a""(ab) = (a"ta)b = 1b=1.
[

Nota: La condicién i. se cumple para cualquier anillo y la ii. se cumple
par cualquier dominio entero.

Definicién 1.20. Para un anillo R, un enteron > 1 y a € R denotamos
por na el elemento,

n
Z a = ata+a+...+a
k=1

Definicién 1.21. Sea F un campo, la caracteristica de F es el menor entero
positivo p tal que pl = 0, donde 1 es el neutro multiplicativo de F. Si tal p
no existe decimos que es de caracteristica 0.

Proposicion 1.22. La caracteristica de un campo es 0 o un nimero primo.

Demostracion. Es claro que 1 no puede ser la caracteristica, ya que 1(1) =
1 # 0. Supongamos que la caracteristica del campo F es p con p = nm con
1 <n,m < p, pero

n m

(n1)(m1)=(>_1)(>_ 1)=(mn)1=pl =0.

i=1 j=1

por el Lema 1.19, m1 = 0 6 n1=0. Contradiccion.
m

Proposicion 1.23. 5S¢ F es un campo de caracteristica p > 0, entonces
pa = 0 para todo a € F.

Demostracion. Ya que F tiene caracteristica p, tenemos que pl = 0, donde 1
es el uno de F. Asi

pa = p(la) = (pl)a = 0a = 0.
[

Proposiciéon 1.24. Sea F un campo y p primo, entonces p divide (ff) para
todo1 <r <p-—1.



Demostracion. Para p primo, (f) =2 - Ya que (‘;‘f) es un entero, r!(p — r)!

T!(p;r !
divide p! para 1 < r < p—1. Como (f ) = %(f j), seguidamente multiplicando
por r en ambos lados, tenemos r(f) = p(fj), asi p | 7“(]:), entonces p | r 6

p| (?). Por lo tanto p | (7). 0

Proposicion 1.25. SiF es un campo de caracteristica p y a,b € F, entonces
(a + b>p'n — apn + bpth

Demostracion. Por el Teorema Binomial

(a+b)P =a’ + <p>ap‘1b+ (p)ap‘2b2+...+ ( P )abp‘l + (n>b"
1 2 p—1 n

Usando las Proposiciones 1.24 y 1.23 concluimos (a+b)? = a” +b”. Haciendo
induccién sobre n.

1. Cuando n = 1, entonces (a + b)P = af + bP.
2. Supongamos que se cumple para n = k, es decir

(a+ b)plc =a" + v

3. Veamos que se cumple para n = k + 1.

k+1

(a+ b = (a+Db)P'?

O

Proposicion 1.26. Sea p € N primo. Un campo finito F de caracteristica p
contiene p" elementos para algun natural n >1.

Demostracion. Sea p la caracteristica de F. Como 1 € F, tenemos que pl = 0,
y dado que F es finito, entonces el orden de 1 es igual a p y es tal que p | |F|.
Supongamos que existe ¢ # p primo tal que ¢ | |F|. Por el Teorema de Cauchy
existe € IF tal que el orden de x es ¢, asi m.c.d(p, q) = 1, lo que implica que
existen s,t € Z tales que sp + tqg = 1, multiplicando por x en ambos lados
tenemos que x = s(pz) +t(qz) = 0, lo que es una contradiccién. Por lo tanto
|F| = p". O
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Capitulo 2

Anillo de Polinomios

En la teoria de anillos conmutativos, el anillo de polinomios sobre un anillo
R es quizas el anillo méas importante de esta teoria debido a su interdepen-
dencia con los demés conceptos. En particular en este trabajo su importancia
radicard en el estudio de los cddigos ciclicos y en algunos resultados sobre el
anillo de polinomios sobre los anillos de Galois.

Definicién 2.1. Sea R un anillo. Una sucesion en R es una funcion

c:N— R
1> S;

Notamos que o la podemos representar de la siguiente manera:
T = (80, 81y +eey Sy ove)-
A las entradas s; € R, para todo i € N, los llamamos los coeficientes de o.

Sea:N — Ryo :N — R donde7 = (to, ..., L5, ...) Y0 = (S0, -y Siy o)
Decimos que 7 = o si y sélo si s; = t; para toda ¢ € N.

Definicién 2.2. Una sucesion o = (Sg, 81, .., Si,...) en R es llamado un
polinomsio si hay algin natural m > 0 con s; = 0, para todo © > m, esto es,

g = (50, Sty ey 8m70707 )

Un polinomio tiene a lo mds un numero finito de coeficientes distintos de
cero. El polinomio cero, denotado por o = 0 es la sucesion o = (0,0, ...,0).

7



8 Anillo de Polinomios

Definicién 2.3. Si 0 # o = (sg, S1, -+, Sm, 0,0, ...) es un polinomio, entonces
existe s, # 0 con s; = 0 para todo i > n. Decimos que s, es el coeficiente
principal de o y que n es el grado de o, denotado por gr(c) = n.

El polinomio cero 0 no tiene un grado porque no tiene coeficientes dis-
tintos de cero. Sera conveniente decir que el grado del polinomio cero es el
simbolo —oo y adoptar las convenciones habituales que —oo < n para todo
n €N, —oo+ (—00) =00, —00 +n = 0.

Notacion Si R es un anillo, entonces el conjunto de todos los polinomios
con coeficientes en R es denotado por R[z].

Proposicién 2.4. Si R es un anillo, entonces R[x| es un anillo que contiene
a R como un subanillo.

Demostracion. Si o = (so, s1,...), T = (to,t1,...) y v = (vg, v1, ...) definimos
la suma y la multiplicacién respectivamente como,

o+17=(80 + to, 51 + t1, s, S + b, ...)

o= (co,C1,Ca,...),

donde ¢, esta dada por
k

Cr.— E Sitk—i: E Sz‘tj
=0 i+j=k

Veamos que R[z] es un anillo.

1. Inverso aditivo.
Si o = (80,81, S, -..) € R[z], definimos —o = (=89, —S1, ..., —Sp,...) €
Rz] tal que o+(—0)= (so+(—50), s1+(—51), ey Sn+(—5n), ...)= (0,0, ...,0, ...).

2. Neutro aditivo.
Sio = (Sg,81, . Sn,-..) € Rlz], y0=(0,0,0,...) € R[x], entonces 0 +0 =
(504 0,81+ 0, ..., 5 +0,...) = (S0, S1y vy Sy -0

3. Conmutatividad de la suma.
Sean 0,7 € R[z], entonces 0 + T = (Sg, 51, -y Sny---) + (tos 1y ooy by o) =
(So+to, S1HE1,y vy Spttn, ..) = (to+S0, L1+S1, ooy tntSn, o) = (Lo, t1y ey by o)+
(80, 1y vy Sy o) =T + 0.



. Asociatividad.
Sean o,7,7 € Rlx] entonces o + (7 + ) = (qo,q1,---,¢,) donde ¢; =
si+(t;+v;) = (s;+1;)+v; para cada i. Por lo tanto o+ (7+7)=(c+7)+7.

. Conmutatividad del producto.
Sea 0,7 € R[x], luego o7 = (cy, c1, ...) donde

Crp = E Sit; = E ;s
k itj=k 7 jri=k 77"

por lo tanto o7=70.

. Asociatividad del producto.
Sea o, T,y € R[z] cony = (9,71, ..., 7) entonces v(o7) = y(co, €1, vy Cny -

donde
C = E S;t;
k i+j=k v

luego ¥(co, €1y vy Cny o) = (do, da, ..., dy, ...) donde

di = Zn+k:l Ttk = ZT”(Zszk sitj) = Zh+i+j:z ralsit) =
. . — !t
Zz’—i—h—o—j:l(rnsl)tj Zk’—i—j il

Cp = Z(rnsi).

donde

Por lo tanto y(o7)= (yo)T.

. Distributividad del producto.
Sea o, 7,7 € R[z|. Entonces o(T + ) = (co, €1, ..., Ck, ...) donde

"= Ziﬂ':k silty +15) = ZiJrj:k sitj + Zi+j=k Sil'y

donde es la entrada k-ésima de o7+ 0+. Por lo tanto o(1+7v) = o7+ 07.

. Neutro respecto al producto.

Afirmamos que lgp = (1,0,0,...,0,...) tal que si 0 = (S0, 51, .-, S, -..) €

R[z] entonces o1gp) = (o, €1, -, Ck, -..) siidentificamos 1z = (1,0,0,...,0,...) =
(to, t1, ..., ...) S€ sigue que

c:E S;ti = Sptg = s
k i—&-j:kzj kto k

Por lo tanto o1gp) = (50, 51, -, Sn, ---)



10 Anillo de Polinomios

Observemos que el subconjunto {(r,0,0,...) | 7 € R} es un subanillo de R[z]

que identificamos con R.
m

Lema 2.5. Sea R un anillo y sea 0,7 € R[x] polinomios distintos de cero,
1. o1 =06 gr(or) < gr(o) + gr(T).
11. Si R es un dominio entero, entonces ot # 0 y gr(or) = gr(c) + gr(7).
1. Si R es un dominio entero, entonces R[] es un dominio entero.

Demostracion. 1. Sea 0 = (Sg, 81, ., Sny ) , T = (to,t1, -y b, -..) € R[]
con gr(c) = ny gr(7) = m respectivamente. Sea o7 # 0, y supongamos
que gr(o7) =k >n+m = gr(o) + gr(r). Consideremos

k
L= E Silk—i
i=1

donde ¢;, es la entrada k-ésima de o7, y asi tenemos dos casos:

1. Si i > n entonces s; = 0, por lo que s;t,_; = 0.

2. Observemos que si ¢ < n implica 0 < n — 4, luego considerando que
k > mn 4+ m, tenemos que k —i >n+m —1 > m. Por lo que t;,_; =0
y asi Sitk—i = 0.

Esto implica que ¢, = 0 para todo k > n + m, contradiccién. Por lo
tanto k < n + m.

11. Afirmamos que cada término en

n+m

Cn+m = E Sitn—i—m—i

i=1
es 0 ya que:

1. Si ¢ > n, entonces s; = 0. Por lo tanto s;t,ym_; = 0.

2. Si i < n, entonces 0 < n — i, luego m < n + m — 4, por lo que
tnim—i = 0. Por lo tanto s;t,+,,—; = 0.
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II1.

con la excepcion de i = n, que implica c,1m = Sptm, ya que R es
dominio entero, s, # 0y t, # 0 implica que ¢,.,,, # 0, donde ¢,
es el coeficiente principal de o7, de ahi que o7 # 0, ademéds gr(o7) =

gr(o) +gr(7).

Es consecuencia del inciso 2. Puesto que el producto de dos polinomios
distintos de cero, es distinto de cero.
]

Definicién 2.6. Si R es un anillo, entonces R|x] es llamado el anillo de
polinomios sobre R.

Definicién 2.7. Definimos el elemento x € R|x] por

Pr

2.

3.

De

z=(0,1,0,0,...).

oposicién 2.8. 1. Si T = (to,t1,...,tn,...) € R[z], entonces
T = (O, to,tl, )

Sin > 1, entonces " es el polinomio que tiene 0 en todos los lugares
excepto el 1 en el n-ésima coordenada.

Sir € R, entonces

(r,0,0,...)(S0, 81 -+, S5, -..) = (780,751, ..., TS, ..)

mostracion. 1. Sean x = (0,1,0,0,...),7 = (to,t1, ..., tn, ...) € R[], luego
xT = (€, -, Cg, -..). Si identificamos = = (0, 1,0,0,...) = (s, $1, -..), enton-
ces ¢y = Ziﬂ‘:o sit; = sotg = 0, y ademas para k > 0. ¢, = Ziﬂ.:k sit; =
S1tg—1 = tg—1. Por lo tanto x7 = (co, €1, ..., Cy -..) = (0, t0, t1, ooy tpe1, -on).

Por induccién, para n = 1 entonces = = (0, 1,0,0,...), se cumple. Supon-
gamos que se cumple para n = k, es decir 2% = (0, ...,0,1,0,...), donde hay
k ceros a la izquierda del 1. Veamos que se cumple para ¢! = 2Fz! =

(0,...,0,1,0,...)(0,1,0,0,...) = (0,...,0,0, 1,0, ...) donde hay k + 1 ceros a
la izquierda.

Sean r = (r,0,0,0,...),7 = (to,t1, ..., tn,...) € R[x]. Si identificamos a
r=(r,0,0,0,...) = (so, 51, -..), entonces ra = (cg, €1, ..., Cg, ...), donde ¢ =
Y izo Sitk—i = soti = rt). Por lo tanto ro = (co, ..., ¢k, ...)=(1t0, ..., rtn, ...).

O]



12 Anillo de Polinomios

Proposicién 2.9. Si o = (s, 51, ..., 8s,0,0,...), entonces
0 =59+ 1T + S92% + ... + 5,2"
donde cada término s € R esta identificado con el polinomio (s,0,0,...)
Demostracion. 0 = (80,51, -, Sn, 0,0, ...)
= (80,0,0,...) + (0, 51,0,...) + (0,0,0, ..., 5,,0...)
= 50(1,0,0,...) +51(0,1,0,...) + 5,(0,0,0, ..., 1,0...)

= S0+ S1 + S92% + ... + 5,2"
]

Notacién: Identificamos a o con f(x) = so+s12+ 5212 +...+5,2" donde g
el término constante, s,, el coeficiente principal. Si el coeficiente principal s,, =
1, entonces f(x) es llamado ménico y n = gr(f). Un polinomio constante
es el polinomio cero 6 un polinomio de grado 0.

Definicién 2.10. Si R es un anillo y f(z) = Y1, siz’ € Rlz] con gr(f(z)) =
n > 1, definimos su derivada f'(x) € R[x] por

f(z) = s1+ 289w + 3s32% + ... + ns, " !;

si f(x) es un polinomio constante, definimos su derivada como el polinomio
cero.

Ademas se cumple lo siguiente:
L (f+9)=f+4d;

(rf) =r(f)sireR;
- (f9) =19+ f'g;
(

Y =nfr1f para todon > 1.

2.

w

4.
Proposicién 2.11. Sea R un anillo y sea f(z) € R[z].

1. Si(x —a)?*| f(z), entones x — a | f'(x) en R[z].

2. Siz—alf(x)yx—al f'(x), entonces (x — a)* | f(x).



2.1 Maximo Comun Divisor 13

Demostracion. 1. Sea f(z) € R[x] y supongamos (x—a)? | f(z) entonces,
existe g(z) € R[z] tal que f(z) = g(z)(z — a)?. Luego,

f'(z) = g'(x)(x — a)® + g(2)(2)(z — a)
= (¢ —a)lg'(z)(x — a) + 29(x)].
Asiz —a| f'(x).

2. Seanz—a | f(xr)yx—al| f'(x), entonces existen g(x), h(z) € R[x] tales
que f(z) =g(z)(x —a) y f'(x) = h(z)(x — a), de la primera igualdad
f'(x) = ¢ (z)(x — a) + g(z). Entonces

h(z)(z —a) = ¢'(x)(z —a) + g(x)
luego,

hz)(z = a) = ¢'(z)(x — a) = g(z).

Asi

f(x) = (z = a)[h(z) — ¢ (2)|(z — a).

De ahf que f(z) = (x — a)?[h(z) — ¢'(z)], por lo tanto (z — a)? | f(x)D

2.1. Maximo Comun Divisor

Proposicién 2.12. Sea F un campo y f(z),g9(x) € Flx] donde f(x) # 0.
Entonces existen inicos q(x),r(z) € Flz] tales que g(x) = q(z)f(x) + r(x)
conr(x) =06 gr(r(z)) < gr(f(z)).

Demostracion. Existencia . Si f(x) | g(z) en Flz|, entonces g(x) = q(x) f(x)
para algun ¢(z) € F[z] y con r(z) = 0. Si f(z) 1 g(z). Sea A = {g(z) —
q(z)f(x) # 0| q(x) € Flz]}. Notemos que A # ) ya que si A = () implica
que f(z) | g(x). Luego, por el Principio del Buen Orden existe r(x) € A de
menor grado tal que r(z) = g(x) — ¢(x) f(x) para algun ¢(x) € Flz], entonces
r(z) = g(x) — q(x) f(x) # 0. Solo resta demostrar que gr(r(z)) < gr(f(z)).
Supongamos que gr(f(z)) < gr(r(z)). Sean f(z) = a, 2"+ a, 12" ' +...+ag
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v r(z) = bpa™ + by 12™ !t + .. + by con gr(f(z)) = ny gr(r(z)) = m
respectivamente. Si n < m se sigue que 2" € F[z]. Definimos h(z) =
r(x) —a, byp,x™ " f(z) € Flz]. Notemos que h(z) = 0 6 gr(h(z)) < gr(r(z)).
Supongamos que h(x) = 0. Entonces r(z) = a, 'b,,z™ " f(z), ademés g(z) =
q(x)f(x) + r(z) = (¢(z) + a;bpa™ ") f(x) lo que contradice f(z) { g(z).
Si h(z) # 0, entonces gr(h(z)) < gr(r(z)) vy g(z) — q(x)f(z) = r(z) =
h(zx)+a, b,z " f(x) se sigue que h(z) = g(z)—(q(x)+a, bpa™ ") f(z) € A
contradiciendo el hecho de que 7(z) es un polinomio de menor grado en A.
Por lo tanto gr(r(z)) < gr(f(x)).
Unicidad. Supongamos que exiten ¢'(z),7'(x) € Flz| tal que g(x) = ¢/(x) f(x)+
r'(x), con 7 (x) = 0 6 gr(r'(x)) < gr(f(x)), entonces q(z)f(z) + r(x) =
q'(z)f(x) + r'(z), se sigue que (¢(z) — ¢'(x))f(z) = r'(x) — r(x). Suponga-
mos que r'(x) # r(x) entonces cada lado tiene un grado. Pero el gr((¢(z) —

¢ (2))f(x)) = gr(q(zr)—q'(z))+gr(f(z)) = gr(f(x)), mientras que gr(r'(z) -
r(z)) < max{gr(r'(z)),gr(r(z))} < gr(f(z)), contradiccién. Por lo tanto
r(x) = r(x) y (¢(x) — ¢(z))f(x) = 0. Como F[z] es un dominio entero y
f(z) # 0, se sigue que g(x) — ¢'(z) = 0 por lo tanto q(z) = ¢'(z).

[

Definicién 2.13. Sea f(x) = ag + a1z + ... + a,2” € Rlz]. Un polinomio
define una funcion polinomial f : R — R, tal que a — f(a) = ag + a1a +
asa® + ... + aa®

Definicién 2.14. Sea F un campo y f(z) € Flx]. Un elemento a € F es una

raiz de f(x) si f(a) =

Lema 2.15. Sea F un campo, f(x) € F[z] y a € F. Entonces existe un
polinomio q(x) € Flx] tal que f(x) = q(z)(x —a) + f(a).

Demostracion. Por la Proposicion 2.12; existen ¢(x),r(x) € F[z], tales que

f(z) = q(z)(x —a) +r(z) con r(z) =06 gr(r(x)) < gr(zr —a) = 1. Por lo
tanto r es una constante porque x — a tiene grado 1. Luego evaluando:

fla) = q(a)(a—a)+r
Asi r = f(a). Por lo tanto f(x) = q(z)(z — a) + f(a). O

Proposicién 2.16. Sea F un campo, f(x) € Flz] y a € F. Entonces a € F
es raiz de f(z) si y solo si (x —a) | f(z) en Fx].
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Demostracion. =] Por el Lema 2.15, f(x) = q(z)(z — a) + f(a) para algin
q(z) € Flz], ademds f(a) = 0. Por lo tanto f(z) = ¢q(z)(z — a), es decir,
(&= a) | f(a)

<«| Por hipétesis, existe h(x) € F[z] tal que f(z) = h(z)(x — a), evaluando
en a, f(a) = h(a)(a —a) = 0. Por lo tanto a es una raiz de f(z) en F. [

Proposicién 2.17. Sea F un campo y 0 # f(x) € Flz]| con gr(f(z)) = n.
Entonces f(x) tiene a lo mds n raices en F.

Demostracion. La demostracion se hard por induccién sobre n = gr(f(x)).
Para n = 0, tenemos 0 # f(x) = ¢ € F con ¢ una constante, entonces
el nimero de raices de f(x) es cero que es menor o igual al gr(f) = 0.
Ahora sea n > 1. Si f(z) no tiene raices en F, entonces el nimero de raices
de f(z) es cero, que es menor al gr(f(x)). Supongamos que f(z) tiene a
a € F como raiz. Entonces por la Proposicién 2.16, existe ¢(z) € F[z] tal que
f(z) = q(x)(z — a); mas ain, g(x) tiene grado n — 1. Ahora sea a # b € F
una raiz de f(z), entonces

0= £(b) = gB)(b — )

Ya que b # a, entonces ¢q(b) = 0, por lo tanto b es una raiz de q. Como el
gr(q(x)) = n —1 < n, asi que por la hipétesis de induccién que afirma que
q(z) tiene a lo méas n — 1 raices en F. Se concluye que f(z) tiene a lo més n
raices en . [

Definicién 2.18. Sea F un campo y f(z), g(x) € Flx]. Un polinomio c(z) €
Flz] es un divisor comin de f(x) y g(x), sic(x) | f(x) yc(x) | g(z) en Flz].
Si f(x) y g(x) no ambos cero, escribimos m.c.d(f(x),g(z)) para denotar el
mdzximo comin divisor de f(x) y g(x), y lo definimos como un divisor comin
de f(z) y g(x) tal que es un polinomio ménico de mayor grado.

Si f(z) = g(x) = 0, entonces m.c.d(f(x), g(x)) = 0.

Proposicién 2.19. Sea F un campo, f(z),g(x) € F[x]. Entonces d(z) =
m.c.d(f(z),g(x)) existe y es combinacion lineal de f(x) y g(x). Es decir,
existen s(x),t(x) € Flx] tales que d(x) = s(x) f(z) + t(z)g(x).

Una vez introduccido el concepto de dominio de ideales principales po-

dremos demostrar esta proposicion.

Definicién 2.20. Sean R un dominio entero y p € R. Decimos que p es un
elemento irreducible en R si p # 0, p no es unidad y p = ab con a,b € R,
implica que a € R es unidad o b € R es unidad.
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Lema 2.21. Un polinomio 0 # g(x) € Flz] es unidad si y solo si gr(g(z))
=0

Demostracion. =] Si g(x) es unidad, entonces existe h(x) € F[z] tal q
g(x)h(xz) = 1, de modo que gr(g(x))+gr(h(xz)) = 0 implica gr(g(x)) =
por lo tanto g(x) € F.

<] Si gr(g(z)) =0, entonces 0 # g(x) € F. Por lo tanto g(z) es unidad. O

Proposicién 2.22. Si F es un campo. Entonces un elemento p(x) € F[z] es
irreducible si y solo si gr(p(x)) =n > 1 y no existe una factorizacion en Fx|

de la forma p(x) = g(x)h(x) con 0 < gr(g(x)) <n y 0 < gr(h(z)) < n.

Demostracion. =] Sea p(x) € F[z] irreducible, asi p(z) # 0 y p(z) no es
unidad en F[z], implica gr(p(z)) > 1. Si p(x) = g(z)h(x), entonces g(x)
es unidad y asi gr(g(z)) = 0 y gr(h(z)) = n 6 h(z) es unidad implica

gr(g(z)) =ny gr(h(z)) = 0.

<] Notemos que gr(p(z)) = n > 1 implica que p(z) # 0 y p(z) no es unidad
en F[z]. Sea p(z) = a(x)b(x) en F|x] y supongamos que a(x) no es unidad
y que b(z) no es unidad, entonces gr(a(z)) > 0 y gr(b(x)) > 0 ademas
n = gr(p(x)) = gr(a(x)) + gr(b(z)) implica gr(a(z)) < n y gr(b(z)) < n,
contradiccién. Por lo tanto a(x) € Flz] es unidad o b(z) € F[z]. O

Lema 2.23. Sea F un campo y p(x), f(x) € F[z] con p(z) irreducible monico.
Entonces

d(xz) =m.cd.(p(x), f(x)) = {1 g ($)J|f (v)

Demostracion. Como d(x) | p(x), entonces existe ¢(x) € Fx], tal que p(z) =
d(x)q(x), asi d(z) es unidad o ¢(x) es unidad. Si d(x) es unidad, entonces
gr(d(z)) = 0, luego d(z) = ¢ € Flz] un polinomio constante, esto significa
que c es el coeficiente principal de d(z). Por lo tanto d(x) = 1 por ser ménico.
Si g(z) es unidad, q(z) = u € K, asi p(x) = d(x)u, el coeficiente principal de
p(z) es 1, el coeficiente principal de d(x)u = u ya que d(x) es ménico. Por lo
tanto u = 1 y asi d(x) = p(z). Por lo tanto

d(z) = { (1 )

f(x)y p(x) | p(x), entonces p(z) | d(z) y d(z) | p(x). Ast d(z) =
= d(z)v(z) con u(x),v(r) € Flz], ast d(x) = d(x)v(z)u(z)
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implica que u(z)v(z) = 1. Por lo tanto u(x) € F[z]| es unidad. Como d(z) =
p(z)u(x) tenemos que d(x) = p(z) ya que p(z),d(x) son ménicos.

Si p(x) 1 f(z), podemos suponer que d(z) = p(x) asi d(x) | f(x) por lo tanto
p(z) | f(z), lo que es una contradiccién. Por lo tanto d(z) = 1. O

Definicién 2.24. Dos polinomios f(x),g(x) € Flz], donde F es un campo,
son llamados primos relativos si m.c.d(f(x),g(z)) = 1.

Proposicién 2.25. Sea f(z) = (r — aq)...(x — a,) € Flx] con F un campo,
entonces f(x) no tiene raices repetidas si y solo si m.c.d(f, f') = 1.

Demostracion. =] Supongamos que f(z) no tiene raices repetidas y supon-
gamos que m.c.d(f, f’) = d(z) con d(z) # 1. Como F[x] es campo, entonces
gr(d(x)) > 0. Sea (z — a) un factor de d(zx), por la Proposicién 2.11 parte 2.
xr—a | f'(z) entonces (z —a)? | f(x). Luego a tiene multiplicidad 2, entonces
a es una raiz repetida. Por lo tanto f(z) tiene raices repetidas, contradiccion.
Asi d(z) = 1.

<] Supongamos que f(z) tiene una raiz repetida, digamos a, entones (z—a)
por la Proposicién 2.11 parte 1. (x —a) | f'(z), entonces (x —a) | m.c.d(f, )’
asi (x—a) | 1. Por lo que (z—a) es unidad, contradiccion, ya que gr(z—a) = 1.
Por lo tanto f(x) no tiene raices repetidas. O

2

Proposicién 2.26. Sea F y f(x) € Flz| tal que gr(f(x)) > 1. Entonces
eziste 0 # a € F y pi(z),...,p.(x) € F[z] mdnicos irreducibles tales que
f(x) = api(x)...p2(x), luego esta factorizacion es unica salvo por el orden de
los factores.

Demostracion. Existencia. Por induccién en el gr(f(z)) =n>1.Sin=1
entonces f(x) = ar+b= a(z+ba') y con a # 0, luego x+ba~! € F[z] es méni-
co irreducible con a € F. Sean > 1,si f(x) € F es irreducible, con a es el coefi-
ciente principal de f(z), entonces f(x) = a(a™! f(x)) donde a~! f(z) € F[z] es
irreducible monico, si f(z) € F[z] no es irreducible existen g(z), h(z) € F[z]
tales que f(z) = g(z)h(z) y 0 < gr(h(x)),gr(g(z)) < n. Por hipétesis induc-
tiva existen a,b € F no ceroy py(x), ..., pi(x), q1(2), ..., gs(x) € F[z] polinomios
monicos irreducibles tal que g(z) = ap;(x), ..., pi(x) y h(x) = bgy (), ..., ¢s(z),
por lo tanto f(x) = abpi(x)...pi(x)q1(x)...qs(x) con 0 # ab € F.

Unicidad. Sea f(z) = api(x)...p(2)=bqi(x)...q-(x) con a,b € F no ce-
ros y cada p;,q; € F[z] irreducibles ménicos, por lo tanto a = b. Luego
m(z)..p(x) = ¢1(x)...q-(x), sea M = max{l,r} > 1, se hard induccién sobre
M > 1,si M = 1, entonces ap(z) = bqy, y por lo tanto pi(x) = ¢1(z). Si



18 Anillo de Polinomios

M > 1 entonces p; | p1(z), ..., pi(x) = ¢1(2), ..., ¢ (x), asi existe j € {1,...;r}
tal que pi(z) | ¢;(z) entonces ¢; = h(x)p(z) lo cual implica h(x) € F, sin
perdida de generalidad ¢;(z) = ¢-(x) = pi(x), asi h(z) =1y ¢.(v) = pi(x),
por lo que p(z),...p-1(z) = ¢ (x),...,q-—1(x). Por la hipétesis de induc-
cion [ —1 =1r —1siy sélo sil = r, por lo tanto p;(z) = ¢;(z) para todo
ie {1,011} 0



Capitulo 3

Morfismos

En el estudio de cualquier teoria mateméatica formal hay dos conceptos
muy importantes, uno es el estudio de los objetos y el otro el estudio de
las relaciones entre los objetos. En la teoria de los anillos conmutativos fi-
nitos los objetos son los anillos y las relaciones entre ellos mas importantes
son los morfismos. En esta seccion daremos cuenta de las propiedades mas
importantes de estos morfismos necesarias para desarrollar la teorfa.

Definicién 3.1. Sean R y R’ anillos. Un morfismo de anillos es una funcion
f:R— R que cumple lo siguiente :

= f(ri+72) = f(r1) + f(r2)
= f(ri-r2) = f(r1) - f(r2)
» f(1g) = 1g

Lema 3.2. f(0) = 0g

Demostracion. Notemos que:

O+ f(0) = f(0) = f(0+0) = £(0) + £(0).

Cancelando en ambos lados f(0), se obtiene el resultado. O

Definiciéon 3.3. Un morfismo de anillos f : R — R’ es llamado mono-
morfismo si para cualesquiera g1, gs : R — R morfismos de anillos tal que

for = fgo, implica que g1 = go.

Definicién 3.4. Un morfismo de anillos f : R — R' es llamado epimor-
fismo si para cualesquiera gi,92 : R — R" morfismos de anillos tal que

gif = gof , implica que g1 = go.

19
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Proposicion 3.5. Sean R y R anillos y v : R — R’ un morfismo. Entonces
v es monomorfismo si y solo si 7y es inyectiva.

Demostracion. =] Supongamos que f(a) = f(b), para a,b € Ry a # b.
Consideremos el anillo de polinomios con coeficientes en Z, Z[z]|. Y tomemos
los morfismos h, g : Z[z] — R tal que h(x) =ay g(xz) = b. Asi

fh(zo + 212 + . + 2,2™) = f(h(20 + 212 + ... + 2,2™))
= f(20 + 210 + ... + 2,a™)
=2+ afla)+...+z.f(a)”
=2+ 2f0)+...+2f0)"
— F(z0 4 21b 4 o+ 20b"

= fg(zo + 212 + ... + z,2").

Por lo tanto fh = fg, entonces h = g, es decir, a = h(x) = g(x) = b.
<|Sea f =R — Ry g,h: R" — R morfismos, tales que fg = fh. Por
demostrar que g = h.

Sea r € R” tal que (fg)(r) = (fh)(r), entonces f(g(r)) = f(h(r)). Por lo
tanto g(r) = h(r) para todo r € R". O

Proposicién 3.6. Sea f : A — R un morfismo de anillos, sea 0 # a € A,
entonces

1. f(a™) = (f(a))™ para todo n € N.

2. Sia e U(A), entonces f(a™') = (f(a))™t. Ademds f(a™™) = (f(a))™
para todo n € N.

Demostracion. 1. Por induccién sobre n. Si n = 0, entonces a” = 1, luego
f(1) =1, ademsés (f(a))™ = 1. Por lo tanto f(a") = (f(a))" paran = 0.
Para el paso inductivo. f(a"*1) = f(aa™) = f(a)f(a") = f(a)(f(a))" =
(f(a))™+.

2. Si a € U(a), entonces existe a™' € A, tal que aa™! = 1, entonces
f(a)f(a™") = faa™") = f(1) = 1. Entonces f(a™") = ( ()
Notemos que f(U(A)) C U(R).

Sin > 0,a™ = (a!)" Luego f(a™) = f((a™})") = fla™H)" =
(f(a)7)" = (f(a))™
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Lema 3.7. El morfismo i : Z — Q es epimorfismo pero no es suprayectivo.

Demostracion. Sean «, § : Q — R morfismos de anillos tales que ai = (37. Sea
m € Z, entonces a(m) = ai(m) = Fi(m) = f(m). Es decir, a(m) = B(m),
para todo m € Z.

Sea 0 # ¢ € Q tal que ¢ = nm ™! paran,m € Z y m # 0, entonces

(
= a(n)a(m)™!
= B(n)B(m)~
= B(n)B(m™)
= B(nm™})
= B(q)-

Por lo tanto a(q) = 5(q) para todo ¢ € Q. Por lo tanto aw = 3. Asi que i es
epimorfismo y claramente no es suprayectiva. Por lo que en teoria de anillos
epimorfismo no coincide con morfismo suprayectivo. ]

Definicién 3.8. Sea f : R — R’ un morfismo, f es un isomorfismo si
existe un morfismo g : R' — R, tal que fog=1p ygo f = 1.

Proposicion 3.9. Son equivalentes los siguientes enunciados:
1. f: R— S es isomorfismo de anillos.
2. f: R— S es morfismo biyectivo.

Demostracion. 1. =] 2. Como f : R — S es isomorfismo en particular es
morfismo, ademés existe g : S — R tal que fog = 1g, go f = 1i entonces
f es suprayectiva y f es inyectiva, por lo tanto f es biyectica.

2. =] 1. Como f es biyectiva, existe f~!: S — R tal que fo f~! = 1dsy
f~to f =1dg. Por demostrar que f~!: S — R es un morfismo de anillos.
Para s1,s9 € S, existen ry, 75 € R tal que f(r1) = s1y f(r2) = sq asi,

L f(s1+s2) = fTHf(r1) + f(r2))
= [T (f(r1 +72))

:T1+T2
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= 7' (s1) + [ (52).

2. f(s182) = fH(f(r1) f(r2))
= fH(f(rira))
= [ (s1)f 7 (52)-
3. f(s) = f(f(1r) = 1&.
O

Ejemplo 3.10. Cuando un elemento en un anillo R fue identificado con un
polinomio constante. Esto es r fue identificado con (r,0,0,...), implicamos
que R es un subanillo de R[z|. El subconjunto R' = {(r,0,0,...) | r € R}
es un subanillo de R|x], ademds la funcion f : R — R’ definido por f(r) =
(r,0,0,...) es un isomorfismo.

Demostracion. Veamos que R’ = {(r,0,0,...) | € R} es un subanillo de
Rlz]

1. 1=(1,0,...) € R

2. Si (r1,0,...),(r2,0,...) € R, entonces (r1,0,...) — (r2,0,...) = (r; —
TQ,O,...) S RI.

3. Si(r1,0,...),(r9,0,...) € R/, entonces (r1,0,...)(r2,0,...) = (r172,0,...) €
R.
Veamos que f: R — R’ tal que f(a) = (a,0,...) es morfismos de anillos.
1. f(1) = (1,0,...).
2. fla+b)=(a+10,0,..)=(a,0,...) + (b,0,...) = f(a) + f(b).

3. f(ab) = (ab,0,...) = (a,0,..)(5,0,..) = f(a)f(b).

Supongamos que (a,0,...) = (a,0,...) pero esto significa que a = a’. Por lo
tanto f es inyectiva. Y claramente es sobreyectiva. Por lo tanto R = R’ C
R[x]. O

Proposiciéon 3.11. Sean A, R anillos. Si ¢ : A — R es un morfismo de
anillos, entonces p* : Alx] — R[x] dado por > a;x' — > ¢(a;)x’ es un
morfismo de anillos.
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Demostracion. Notemos que ¢ es un momorfismo entre A y R como grupos
aditivos. Por lo tanto ¢(04) = Og.

1. Probemos que ¢*((14,0,0,...)) = (1g,0,0,...). Asi ¢*((14,04,04,...)) =
(©(1a),(04),9(04) = (1, Or, Og, ...).

2. v*((ag,a,...,an,0,0,..)4+(bg, by, ..., by, 0,0, ...) = ©*((ag+bo, a1+by, ..., a,+
bna 07 )) = (90(0’0+b0)7 Sp(al—{_bl)? Y ¢(an+bn)? 90<O)a 90(0)7 ) = (Qp(ao)—i_
@(bo), ..., p(an)+¢(bn), Or, Or, ...) = (¢(ao), p(ar), ..., p(as), Or, Or, ...)+
((p(b(J)?(p(bl)v"’7¢(bn)70R70r7"‘)'

3. Sea 0 = (ag,a,...,) y 7 = (b, bo, ..., ). Entonces el coeficiente k-ésimo
de p*(07) es 9(3_; iy @ibi) = >,y p(ai)p(b;). Por otro lado

¢(ao), p(ar), ...)
Sp(b‘J)? Qo(bl)v )

AS)
*
—~
9
~—
I
—~~

Asf el coeficiente k—ésimo de ¢*(0)p*(7) es 3,5y w(ai)p(bi).

Definicién 3.12. Sea f: R — A un momorfismo de anillos,
1. El niicleo de f estd definido por ker f={r € R| f(r) =0}.

2. La imagen de f estd definida por tm f={a € A| f(r) = a para algin
r € R}.

Definicién 3.13. Un ideal en un anillo R es un subconjunto I de R tal que:
1. 0el.

2. Sia,bel, entoncesa+bel.

3. Siael yre R, entonces ra € 1.

Denotaremos a los ideales por I < R. El anillo R y el subconjunto que con-
siste unicamente del elemento 0, el cual denotaremos por {0} son siempre
ideales del anillo R. Un ideal I # R es llamado un ideal propio. A partir
de ahora denotaremos a los ideales propios por I < R.
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Ejemplo 3.14. Si by,b9,....b, € R, entonces el conjunto de todas las com-
binaciones lineales I = {riby + robs + ... + 1,0, | r; € R,Vi € {1,2,..n}}
es un ideal de R. Escribimos I = (by,...,b,) en este caso y decimos que I
es el tdeal generado por by, bs,....b,. En particular, st n = 1, entonces
I=(b)={rb|r € R} es un ideal de R que consiste de todos los mailtiplos
de b, y este es llamado el ideal principal generado por b. Notemos que R
y {0} son ideales principales.

Proposicién 3.15. Un ideal propio de R no contiene unidades.

Demostracion. Supongamos I < Ry u € I, unidad, luego existe v € R tal
que uv = 1, contradiccion, ya que 1 no esta en I. O

Proposicién 3.16. Sea f : R — A un morfismo de anillos, entonces ker f
es un ideal de R yimf es un subanillo de A.

Demostracion. Veamos que ker f es un ideal de R.
1. f(0) =0, asi 0 € ker(f).
2. Sean a,b € kerf, f(a+0b) = f(a)+ f(b) =0, asi a+b € kerf.
3.ackerfyreR, fira)= f(r)f(a) =0, asi ra € kerf.
Veamos que im f es un subanillo de A.
1. f(1)=1,asi 1 €imf.

2. Sia,b €imf, entonces existen ry,ry € R tales que f(r;) =ay f(rq) =
b, por lo que, a — b = f(r1) = f(r2) = f(r1 —r2) €imf.

3. Sean a,b € imf, ab= f(ry)f(r2) = f(rira) € imf.
[

Proposiciéon 3.17. Sea f : R — A un morfismo de anillos. Entonces f es
inyectivo si y solo si kerf = {0}.

Demostracion. =] Sea a € kerf entonces f(a) = 0y f(0) = 0 ya que
0+ f(0) = f(0+0) = f(0)+ f(0), asi f(0) = f(a) y como f es inyectiva,
a = 0. Por lo tanto kerf = {0}.

<] f(a) = f(b) siy sélosi f(a) — f(b) =0, luego f(a —b) =0asia—b €
kerf = {0}. Por lo tanto a — b = 0 implica a = b. O
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Proposicion 3.18. Sea f: R — S un morfismo de anillos suprayectivo. Si
I es un ideal de R, entonces f(I) es un ideal de S.

Demostracion. Basta demostrar que para todo s € S'y x € f(I) se cumple
que sx € f(I). Sea x € f(I) entones x = f(a) para algin a € [ y sea s € S,
entonces existe 7 € R tal que f(r) = s, asi st = f(r)f(a) = f(ra), con
ra € I. Por lo tanto sz = f(ra) € f(I). O

Proposicion 3.19. Sea f: R — S morfismo de anillos. Si J es un ideal de
S, entonces f~1(J) es un ideal de R.

Demostracién. Basta demostrar que paratodor € Ry paratodox € f~1(J),

re € f1(J).
Seanr € Ry x € f~1(J), asi f(z) € J. Entonces f(rz) = f(r)- f(z) € J.
Por lo tanto rz € f~1(J). H

Proposicion 3.20. Si f : R — S es un morfismo de anillos, tal que I C
J C R, entonces f(I) C f(J)

Demostracion. Six € f(I), entonces x = f(a) para algin a € I, como I C J
entonces = = f(a) € f(J). O

Proposicion 3.21. Si f : R — S es un morfismo de anillos, tal que si
I' CK' C S, entonces f~1(I') C f~HK').

Demostracién. Si x € f~(I"), entonces f(z) € I' C K'. Por lo tanto x €
fTHE). 0

Proposiciéon 3.22. Sea f: R — S es un morfismo de anillos y I un ideal
de R. Entonces f~'f(I) = Kerf + 1.

Demostracion. C| Sea y € f~f(I), entonces f(y) € f(I) asi f(y) = f(a),
para algin a € I, entonces f(y —a) = 0g, de modo que (y —a) € Ker(f) asi
y=a+(y—a)cona€ly(y—a)e Ker(f). Porlo tanto y € I + Ker(f).
D] Sabemos que 0g € f(I), entonces f~(05) C f~'f(I). Por lo tanto kerf C

7).
Sizel, f(z) € f(I), entonces x € f~1(f(I)), as{ I C f~1(f(I)). Entonces
ker(f)+1C f~1f(1). O

Mas adelante cuando contemos con la estructura de anillo cociente, podre-
mos seguir mostrando propiedades de los morfismos sobre dicha estructura.
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3.1. Dominio de Ideales Principales

Es comin en algebra abstraer. Debido a que el anillo de los enteros es
un dominio de ideales principales y que de este hecho surja una teoria de
divisibilidad no es ninguna casualidad. En esta corta seccién se trabaja con
este concepto solamente lo necesario.

Definicién 3.23. Sea R un Dominio Entero. R es un Dominio de Ideales
Principales (D.1.P) si para cada ideal I de R, existe un elemento a € R tal
que (a) = 1.

Proposicién 3.24. Sea F un campo entonces Flx] es un D.1.P. Ademds para
cada I C Flz], existe f(x) € F[z] mdnico tal que (f(x)) =1

Demostracion. Si F un campo entonces F[z] es un ejemplo de un dominio
euclidiano. En la Proposicién 3.29 probaremos que todo ideal en un anillo
euclidiano es un ideal princial. O

Definicién 3.25. Sea R un anillo. Sean a,b, 0,7 € R. ) es un mdzimo comun
divisor si:

1. 6|layd|b.
2. Si~y es otro comin divisor de a y b, entonces 7y | 0.
Proposicién 3.26. Sea R un D.I.P

1. Para todo a,b € R existe un m.c.d, 6, el cual es combinacion lineal de
ayb:

0 =o0a+Tbh,
para algunos o, 7 € R.

2. Sip es irreducible y p | ab, entonces p | a 6 p | b.

Demostracion. 1. Si a =b = 0, entonces (0,0) = 0 = 0a + 0b. Considere-
mos el conjunto J de todas las combinaciones lineales

J=A{oa+71b|o,T € R}
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Ahora a y b estdn en J, ya que podemos tomar ¢ = 1y 7 = 0 o
viceversa. Es necesario ver que J es un ideal:
a) 0 € I, ya que si tomamos 0 = 7 = 0, entonces oca + 7b = 0.
b) Six,y € J, entonces z = o’'a+ 7'b, y = 0"a + 7", luego
r+y=(d'a+7b)+ (0"a+7"0) = (¢' +0")a+ (7" +7")b € J.
c) Siz € J,r € R, entonces x = oga + 7b, luego rz = r(ca + 7b) =

(ro)a+ (rm)b € J.

Y asi existe § € J tal que J = (), ya que R es un D.I.P. Afirmamos
que d es un m.c.d de a y b. Como a € J = (§), tenemos que a = pd
para algin p € R, esto es, ¢ es un divisor de a, similarmente, ¢ es un
divisor de b, y asi § es un comun divisor de a y b.

Ya que 6 € I, es una combinacion lineal de a y b, entonces existen
0,7 € R con

0 =oa-+ T1bh.

Finalmente, si v es otro comtn divisor de a y b, entonces a = va' y
b=n~b,luego 6 = oa+71b = y(oa +7b'), asi v divide §. Y concluimos
que d es un m.c.d.

2. Sip | a se ha terminado. Si p 1 @ entonces (p,a) = 1, entonces existen
s,t € R tal que sp+ta = 1, luego multiplicando por b en ambos lados,
spb + tab = b. Como p | ab entonces existe h € R tal que ab = hp, asi
b= (sb+ th)p. Esto implica que p | b.

O]

Definicién 3.27. Un Dominio Fuclidiano es un Dominio Entero R, que
estda equipado con una funcion

0:R\{0} — N
llamado una funcion grado, tal que.

1. O(f) < O(f - g) para todo f,g € R con f,g # 0.
2. Para todo f,g € R con f # 0, existe ¢, € R con

g=qf +r,
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donde r =0 ¢ 0(r) < (f).

Ejemplo 3.28. Si K es un campo, el dominio K[z| es un anillo euclidiano
con funcién grado el grado usual de un polinomio distinto de cero. En K|z],
tenemos,

of-g9)=gr(f-g)=gr(f) +gr(g)
=d(f) +9(g)

Proposicién 3.29. Todo Dominio Euclidiano es un D.I.P.

Demostracion. Sea R un dominio euclidiano e I un ideal de R. Si I = {0},
entonces I = (0) es principal. Si I # {0}, por el Principio del Buen Orden,
en el conjunto de todos los grados de elementos distintos de cero en [ existe
un elemento de menor grado 0 # a € I con d(a) = n. Claramente (a) C 1.
Sea b € I, puesto que a # 0, existen ¢, € R tal que b =qga+r conr =0
6 d(r) < d(a). Supongamos que r # 0, entonces r = b — qa € I, lo que es
una contradiccion, ya que r tiene grado menor que a. Por lo tanto r = 0, asi
b=gqayasibe (a). Asi I C (a). Por lo tanto I = (a). O



Capitulo 4

Espacios Vectoriales

Un cédigo lineal de longitud n sobre el campo finito F, no es mas que
un subespacio del espacio vectorial Fy. Ya que los codigos lineales son espa-
cios vectoriales, sera importante recordar nuevamente las propiedades mas
importantes que poseen estos,

Definiciéon 4.1. Sea F, un campo finito. Un espacio vectorial es un grupo
aditivo abeliano (V,+) con un producto escalar

F,xV —V
(k,v) — kv

tal que:
L k(vy 4+ v2) = kvy + kvy para todo k € F, v1,v5 € V.
1. (k1 + ko)v = kv + kov para todo ki, ks € Fy yv € V.
L. (ki1ke)v = ki(kov) para todo ki, ko € Fy yv e V.
Iv. 1,v = v para todov € V.

A los elementos de V' los llamamos vectores y a los elementos de IF, los
llamamos escalares.

Ejemplo 4.2. Sea F un campo y X un conjunto. Entonces
FX¥={f:X —F| f es una funcion }.

Sea define la suma de funciones de la manera usual, y el producto de un
elemento de F por una funcion también de la manera usual.

29
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1. f+g: X = T es la funcién tal que (f+g)(x) = f(x) + g(x).
2. c-f: X = F esla funcion tal que (c- f)(z) = c(f(x)).
Entonces (FX, .0, : F x FX — F¥X) es un espacio vectorial.

Demostracién. Veamos que (FX, +, 0) es un grupo abeliano.

L. ((f+g)+h) (@) = (f + g)(x) + h(=)
= (f(z) + g(z)) + h(z)
= [(@) + (9(z) + h(z))
= f(z) + (g + h)(z)
= (f+(g+h))(z).

2. Definimos 0 : X — F como 0(z) = 0 y es tal que

(04+f)(x) = 0(2) + f(x) = 0+ f(x) = f(x) + 0= (f+0)(x).

3. Para toda f € F¥, existe —f € FX, definida por —f : X — FF tal que

= —f(x), por lo tanto f+(—f))(z) = f(x)+(=f(z)) = f(z)—f(x) =
0

4. (f+g)(@) = f(z) + g(z) = g(z) + f(z) = (¢+f)(2).
Veamos que se cumplen las propiedades del producto por escalares:
1. (1- f)(z)=1- f(x) = f(z), para toda = € X.
2. [(ed) - fl(x) = (cd) f(x) = c(df (x)) = c((df)(z)) = (c- (d- f))(x), para

toda z € X.

[(c+ d)(H)](x) = (c+ d)(f(z)) = cf(x) + df(z) = (cf)(z) + (df)(z) =
(cf +df)(z), para toda z € X.
[

¢ (fl(a) = d(fH9)@)] = clf(@) + 9(&)] = o(f @) + clgle)) =
(¢ f)(x)+ (¢ g)(x), para todo x € X.

Por lo tanto (FX, 4,0, : F x FX — FX) es un espacio vectorial. O
Ejemplo 4.3. Sea F; un campo, y Fy el conjunto
Fr={(z1,...,20) 1 7 € Fy}
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donde estdn definidas las siguientes operaciones

(al,aQ, ceey an)+(b1,bg, 7bn): (a1 + bl,ag + bg, ceey Ay + bn)
alay, ag, ...,a,) = (aay, aas, ..., aay,)

Estas operaciones hacen que [y sea un espacio vectorial sobre IFy.

Definicién 4.4. Sean F un campo y X = {1,2,...,n} x {1,2,...,m}, un ele-
mento A en FX se llama una matriz de n x m con coeficientes en F y la
denotamos como A € My« (F) y notemos que es un elemento de FX.
Por costumbre, uno escribe A;; en lugar de escribir A(i,j). También por
costumbre, uno suele escribir una matriz A en la forma de un arreglo rectan-
qular:

A A Az oo Aim

Agr Agp Asz .. Agm

An,l An,Q An,3 Anm

)

Definicién 4.5. Si A € M, (IF), su transpuesta es la matriz AT € M, (F)
tal que
T _
Al =A

j7i.

Definicién 4.6. Sea F, campo y V un espacio vectorial. Un subconjunto
U CV es un subespacio vectorial de V' si :

1. 0eU.
2. St uy,us € U entonces up + ug € U.
3. StuelUyreclF, entonces ru € U.

Ejemplo 4.7. Usando la notacion del Ejemplo 4.3 con ¢ = 3 yn = 3,
C ={(0,0,0),(0,1,2),(0,2,1)} es subespacio de F3.

Proposicion 4.8. Un subconjunto no vacio C de un espacio vectorial V
sobre F es un subespacio si y solo si la siguiente condicion se satistace:

Siz,ye C y\eF,, entonces \e +y € C.
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Demostracion. Supongamos que C' es un conjunto no vacio de V' tal que Ax+
y pertenece a C' para todos los vectores xz,y € C'y todos los escalares A € F.
Ya que C' es no vacio, existe un vector p en C'y por lo tanto (—1)p+p = 0 esta
en C. Entonces si z es cualquier vector en C'y A cualquier escalar, el vector
Az=Ax +0 estd en C. En particular, (—1)x = —z estd en C. Finalmente si
x e y estan en C, entonces x + y= lx + y estd en C'. Por lo tanto C es un
subespacio vectorial de V. Reciprocamente, si C' es un subespacio de V', x e
y en C'y A un escalar, entonces Az + y estd en C. O]

Definicion 4.9. Sea V' un espacio vectorial sobre F. Sea X = {vy,...,v,} un
subconjunto no vacio de V', una combinacion lineal de X es un vector de la
forma

Yo TV =T101 4 .. + v, €V odonde r; € By para toda i € {1,2,...,n}.

Denotamos al conjunto de todas las combinaciones lineales de vy, ..., v,
como

(U1, ey vn) = {D 0 mvs | i € B} = (X).

Note que (X) es el menor subespacio que contiene a X. Por lo tanto (X) es
el subespacio generado por X. Ademds si X = () es claro que {0} es el menor
subespacio que contiene al vacio. Por lo que (@) = {0}.

Ejemplo 4.10. Sea A € M,,»,n(F) el espacio columna de A es el con-
Junto de aquellos vectores de " que se pueden expresar como combinaciones
lineales de las m columnas de la matriz A. Asi el espacio columna consiste
de aquellos vectores de la forma

T1a1 + Tolo + ... + TGy

Donde los x; € F y los a; son las columnas de A.

Sea A € M, (IF), el espacio fila de A es el conjunto de aquellos vectores
de F™ que se pueden expresar como combinaciones lineales de los n renglones
de la matriz A. Asi el espacio fila consiste de aquellos vectores de la forma

Tr1aq + roag + ... + Tpay,.
Donde los x; € F y los a; son las filas de A.

Definicién 4.11. Un subconjunto no vacio X = {vy,...,v,} de vectores en
V', es linealmente dependiente si existen aq, ...,a, € K no todos ceros tal
que
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n
E a;V; = 0.
=1

X es linealmente independiente si la relacion

n

Z a;V; = 0.

i=1
sélo se satisface si a; =0 para cada i € {1,...n}.

Ejemplo 4.12. 1. Cualquier conjunto S que contenga al 0 es linealmente
dependiente.

2. Para cualquier F,, el conjunto {(0,0,0,1),(0,0,1,0),(0,1,0,1)} es li-
nealmente independiente.

Definicién 4.13. Una base de un espacio vectorial V' es un conjunto X
linealmente independiente tal que V = (X).

Proposicion 4.14. Todo espacio vectorial distinto del cero tiene una base.

Demostracion. Sea V un espacio vectorial distinto del cero, y sea S = {L C
V' | L es linealmente independiente} . Un vector 0 # v € V es linealmente
independiente, asi {v} € S, por lo tanto S # (). Para dos conjuntos lineal-
mente independientes, afirmamos L < L' si L C L'. Este es el orden parcial
sobre S dado por la inclusion. Ademads cualquier subconjunto de un con-
junto linealmente independiente es también linealmente independiente, asf si
L € S entonces cualquier subconjunto de L estd también en S. Asumamos
que C = {L;}ics es una cadena de S. Esto es, todo L; es un conjunto lineal-
mente independiente en V' y para todo L; y L; en C tenemos que L; C L; 6
L; C L;. Afirmamos que
L=r,

iel
es un cota superior en S. Necesitamos mostrar que L es un conjunto lineal-
mente independiente, es decir L € S. Escogemos un conjunto finito de vecto-
res vy, ...v, € L. Asi cada v, estd en algun L;, digamos vy € L;,,...,v, € L;, .
Ya que los L; estan totalmente ordenados, uno de los conjuntos L L
contiene a los demds. Esto significa que vy, ..., v, estan todos en algun L;, y
as estos son linealmente independientes. Por el Lema de Zorn, S contiene un

URRER
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elemento maximo, es decir, existe un conjunto B linealmente independiente
en V' que no estd contenido en ningin conjunto linealmente independiente
mas grande en V. Vamos a demostrar que B genera a V', es decir es una base.
Sea W el subespacio generado por B. Esto significa que W es el conjunto de
todas las combinaciones lineales finitas Zle cv,conk >1, ¢, €F yv € B.
Si B no genera V' entonces W # V', asi podemos escoger v € V' con v ¢ W.
Entonces B es un subconjunto propio de B U {v}. Vamos a demostrar que
B U {v} es linealmente independiente, lo que contradice el hecho que B es
maximo y por lo tanto W = V.

Para probar que BU{v} es linealmente independiente, asumamos lo contra-
rio, es decir, que existe una expresion

k
E CiU; = 0
=1

donde los coeficientes no son todos cero y los v; son tomados de B U {v}.
Ya que los elementos de B son linealmente independientes, uno de los v; con
un coeficiente distinto del cero tiene que ser v. Sin perdida de generalidad
supongamos que v, = v, asi ¢ # 0. Debemos tener que k > 2. ya que de otra
manera c¢;v = 0, lo cual es una contradiccién ya que v # 0 y el coeficiente de
v es distinto de cero. Entonces

k—1

CLU = — Z C;U;.
i=1

Multiplicando en ambos lados por 1/¢,

k—1
&
U= —— | Y,
C
i=1 k

lo que muestra que v € W. Pero v ¢ W. Por lo tanto BU {v} es un conjunto
linealmente independiente. O

Proposicion 4.15. Sean uq,...,u, elementos en un espacio vectorial V', y
S€q V1, .oy Uy € (U, ...y Uyp). Sim > n entonces {vi,...,v,} es un conjunto
linealmente dependiente.

Demostracion. La demostracion se hara por induccién sobre n > 1.

Sin = 1, entonces m > 1, entoces existen al menos dos vectores vy, vy € (uy).
Si uy = 0, entonces v; = 0y asi {vy,...,v,,} es un conjunto linealmente
dependiente. Supongamos que u; # 0. Podemos considerar v; # 0 # wvs.
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Ahora como vy,vs € (uq), entonces existen a,b € K tal que vy = auy y
vy = buy, entonces a # 0, implica u; = a vy, asf vy = ba~tv;, por lo tanto
lvy — ba~'v; = 0 es una combinacién lineal de elementos de {vi,...,v,,} no
trivial. Por lo tanto el conjunto {vy,...,v,,} es linealmente dependiente.
Para n > 1, existen ecuaciones, para ¢ = 1, ...m,

V; = QijUy + ...+ Qipply,.

Podemos asumir que algin a;; # 0, ya que si a;; = 0 para j € {1,...,m},
entonces vy, ..., Uy, € (Ug, ..., uy,), y por hipétesis inductiva {vy,...,v,,} es li-
nealmente dependiente. Supongamos sin pérdida de generalidad que aq; # 0.
Para cada ¢ > 2, definimos

/I —1
Ul = v; — ajnag; v € (Ug, .., Up)

Ya que m — 1 > n — 1, por hipétesis inductiva, existe escalares b, ..., b,, no
todos cero, con

bQ/Ué + ...+ me;n = 0.

Reescribiendo la ecuacién usando la igualdad de v;:

<_ Z bi@i1@1_11> v1 + bavo + ... + bypvy, =0

i>2

Notemos que no todos los coeficientes son 0, asi el conjunto {v,...,v,,} es
linealmente dependiente. O]

Proposicién 4.16. Sean X = {xy,....2,} v Y = {y1,...,ym} dos bases de
un espacio vectorial V- sobre F, entonces m = n.

Demostracion. Supongamos que m > n entonces yi, ..., Ym € (T1,...,T,) =
V. Por ser X una base, entonces {y1,...,ym} es linealmente dependiente,
contradiccion.

Si m < n, entonces x1, .., T, € (Y1, ..., Ym) = V. Por ser Y una base, entonces
{1, .., x,} es linealmente dependiente, contradiccién. Por lo tantom =n. O

Definicién 4.17. Un espacio vectorial V' es llamado de dimension finita
si tiene una base que consiste de un numero finito de wvectores. El tnico
numero de vectores en cada base para V' es llamada la dimension de V y
denotada por dim (V).

Definicién 4.18. La dimension del espacio fila de la matriz A es llamado el
rango de la matriz A
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Ejemplo 4.19. 1. El espacio vectorial {0} tiene dimension cero.
2. El espacio vectorial ¥y tiene dimension n.

Proposicién 4.20. Sea X = {vy,..v,} un conjunto de vectores de V. X
es base de V' si y solo si todo vector en V' tiene una unica expresion como
combinacion lineal de los elementos de X .

Demostracion. =] Sea X es base de V' 'y u € V, entonces existen r; € F, tal
que

n

u = E T:U;

=1

y supongamos que v también se puede escribir como

n
U = E s;v; y con s; € .
i=1
entonces
n n n

ZT’Z‘Ui — Z S;V; = Z(T’Z - Si)vi =0
- - 1

i=1 i=1 i

puesto que X es linealmente independiente, entonces r; — s; = 0, de modo
que r; = s; para todo 1 <1 < n.
<] Todo vector es combinacién lineal de los elementos de X, asi (X) = V.
Por otro lado si

n

vai =0= zn:OUi
i—1

=1

y dado que la expresion es tunica, tenemos que a; = 0 para todo 1 < i < n,
por lo tanto X es linealmente independiente y asi X es base de V.
O

Proposicion 4.21. Cualesquiera vectores linealmente independientes ay, ..., Gy,
conm < k, en un espacio vectorial de dimension k, forma parte de una base
A1y ooy Ay Ui, ..., b de ese espacio vectorial.

Demostracion. Se hara por induccién sobre m.



37

1. Para m = 1. Dado un vector a el cual es linealmente independiente,
es decir, distinto de cero, en un espacio lineal V', escojemos una base
arbitraria de k£ vectores en V', by, ..., by. Podemos expresar a como una
combinacion lineal a = Zle t;b; Alguno de los coeficientes t; es distinto
de cero, ya que a # 0. Supongamos por ejemplo, que t; # 0. Entonces
mostraremos que a, bs, ..., b, forma una base de V. En efecto:

a. Los vectores a, b, ..., b, generan el espacio V' porque cada uno de
los vectores b; que generan V', es una combinacion de esos vectores.
Esto es obvio para ¢ = 2, ...,k y para ¢ = 1, tenemos

k

bl = tl_la - Z(tl_ltz>bz

=2

b. Para probar la independencia lineal, consideremos una combinacion
lineal
s1a + 82b2 + ...+ Skbk =0.

Ya que a = Zle t;b;, tenemos
Sltlbl + (Sg + Sltg)bg + ...+ (Sk + Sltk)bk = 0.

De la independencia lineal de by, ..., by, concluimos que s;t; = 0 (asi,
s1 = 0 porque t; # 0 por hipédtesis) y como s; + s1t; = 0, implica
s; = 0 para ¢ = 2, ..., k. De ahi la combinacion lineal es trivial.

2. Paso inductivo: Supongamos que se cumple para ag,...,a,_1 es de-
cir, existe una base aq, ..., @y_1, by, ..., bp.. Tenemos que mostrar que la
proposicion se cumple para aq, ..., a,,. Podemos expresar a,, como una
combinacion lineal

Ay, = t1a1 + ... + t_1Qm-1 + Smbm + ... + Si.bg.

Alguno de los coeficientes s; es distinto de cero (ya que a,, no es una
combinacién lineal de ay, ..., a,,—1). Supongamos,por ejemplo que s, #
0. Entonces ay, ..., @pm_1, Gm, b1, ---, b €s una base de V. Esto se sigue,
de manera analoga al paso anterior m = 1, de el hecho que b,, es una
combinacion lineal de estos vectores:

—1 k
b= > (=8 t)as + st am+ Y (=s,'s)bi
1 i=m+1

3

i
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]

Proposicién 4.22. En un espacio vectorial V' de dimension k se tiene las
siguientes propiedades:

1. Cada k vectores linealmente independientes forma una base.

2. k es el numero mas grande de vectores linealmente independientes en

V.
3. Todo subespacio de V', excepto V', tiene dimension mas pequena que k.
Demostracion. 1. Es claro por la Proposicién 4.21.
2. Es claro por la Proposicion 4.21.

3. Sea K un subespacio lineal de V' y sea m el nimero mas grande de
vectores linealmente independentes en K. Por 2, sabemos que m < k.
Cualquier coleccion linealmente independiente ay, ..., a,, de vectores en
K es una base de K. (De hecho, para cada vector a # 0, la coleccién
a,a, ..., a, es linealmente dependiente, asi existe una combinacién li-
neal no trivial ta + > t;a; = 0. La independencia lineal de ay, ..., a;,
implica que ¢t # 0, y entonces a = Y _(—t"';)a;. De ahi, ay, ..., a,, ge-
nera K.) Si m = k, entonces, por 1. aq, ..., a,, forma una base de V', y
asi. V = K. En otras palabras, si K # V| entonces m < k.

m

Proposicién 4.23. Sea V' un espacio vectorial sobre F,. Si dim(V) = k,
entonces V tiene g~ elementos.

Demostracion. Si {vy, ..., v} es una base para V', entonces
V={avi + ... +apvg | a1, ...,a,, € F;}

Ya que |F,| = ¢, existen exactamente ¢ elecciones para cada de ay, ..., a; por
lo tanto, V tiene exactamente ¢* elementos. O

Veamos una tltima propiedad de las matrices.

Proposicion 4.24. Toda matriz de rango k tiene k columnas linealmente
independientes.
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Demostracion. Si una matriz A estd en forma escalonada, entonces esta tie-
ne k filas distintas de cero y seleccionamos las k columnas en las que se
encuentran los coeficientes principales de las filas. Estas columnas son lineal-
mente independientes porque si los escribimos como filas (de arriba hacia
abajo), claramente tenemos una matriz de k filas distintas de cero en forma
escalonada. Ya que toda matriz puede ser puesta en forma escalonada por
una sucesion de operaciones elementales en las filas. Es suficiente mostrar
que ninguna de las operaciones en las filas cambia la independencia lineal
de las columnas. Presentamos la demostracion para el caso del intercam-
bio de dos filas (los otros dos casos de operaciones elementales en filas son
analogos). Consideremos k columnas de la matriz A con nimero de colum-
nas ji, j2, ..., Jk- oi las escribimos como filas, obtenemos k vectores bj,, ..., b, .
Ahora intercambiamos la i-ésima y la i’-ésima filas de la matriz A. Las co-
rrespondientes columnas b;l, - b;k de la nueva matriz son obtenidos de los
vectores originales b;,, ..., b;, intercambiando las i-ésima y i’-ésima posicio-
nes. Por lo tanto demostraremos que los vectores b;,, ..., b;, son linealmente
independientes si y sélo si asi lo son los nuevos vectores b;l, e b;k. Pero ya
que, dado escalares tq, ..., t; claramente tenemos

tlbjl + ...+ tkbjk =0 sl Yy solo si tlb;1 +o Tt tkb;k =0.

Definicién 4.25. Sean v = (vy,vq, ..., v,) Yy w = (w1, wa, ..., w,) € F"

1. El producto escalar o el producto punto de v y w estd definido
como

v-w=vnw, + ... + vyw, € F.

2. Los dos vectores v y w se dicen ortogonales si v-w = 0.

3. Sea S un subconjunto no vacio de Fy. El complemento ortogonal
St de S estd definido por

St ={velF}|v-s=0 para todo s € S}.

Si S =0, entonces S+ =Fy.

Lema 4.26. St es un subespacio vectorial de [y, para cualquier subconjunto
de Ty, y que (S)yt =S5+,
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Demostracion. Sean x,y € Sty o, € F,. Asix-s =0y y-s =0 para toda
s € S. Ademds a(z-s) =0y B(y-s) =0, por lo tanto 0 = a(x-s)+[(y-s) =
(ax)-s+(By)-s = (ax+ PBy) - s. Por la Proposicién 4.8, S+ es un subespacio
vectorial de Fy. O

Proposicion 4.27. El complemento ortogonal de un subespacio L de dimen-
sion k del espacio vectorial F*, tiene dimension dim(L*) =n — dim(L).

Demostracion. Sea aq, ..., a; una base de un subespacio lineal L de F". Aque-
llos vectores, escritos como filas, forman una matriz A € My, (F). Un vector
b esta en el complemento ortogonal de L si y sélo si AbT = 07. Ya que A tie-
ne rango k, tiene k& columnas linealmente independientes por la Proposicion
4.24. La longitud de las columnas es k, y asi por la Proposicién 4.22 (3) las
columnas generan el espacio lineal F¥ siempre que escribamos los vectores
de F* como columnas. Asi , todo vector v € F¥ es una combinacién lineal
de las columnas de A, en otras palabras, v tiene la forma v = Aw? para
algiin vector w € F”. Sea r la dimensién de L. Escojemos una base by, ..., b,
de L+ y a acompletamos a una base by, ..., b,, ¢, 41, ..., ¢, del espacio F" (ver
Proposicién 4.21). Vamos a mostrar que los n — r vectores

T T
Ac, iy, ..., Acy

forman una base del espacio F¥. Probaremos que k = n —r. asi, r = n — k,
por lo cual la prueba estara terminada.

1. Los vectores de arriba generan F*. En efecto, todo vector v € F* tiene
la forma

v = Aw?
Podemos expresar el vector w como una combinacién lineal
T n
w = E tzbz + E SjCj
i=1 j=r+1
y entonces Ab! = 0. implica

v=A (itibij z": sjch> = Zn: sjACT],
i=1 j

j=r+1
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2. Los vectores de arriba son linealmente independientes. En efecto, con-
sideremos una combinacién lineal,

n

Z T _ T
j=r+1
_\n T _ T : i y
El vector ¢ = > 7 . t;c;, cample Ac® = 07, es decir, ¢ € L. Asi,
¢ es una combinacién lineal de los vetores by, ..., b, (forman una base
de Ll) asi como una combinacion lineal de los vectores ¢,y1, ..., Cp.
Ya que by, ..., b, Cr11, ..., ¢, forma una base de F", la Proposicién 4.20
implica que ¢ = 0. Ahora, por la independencia lineal de ¢, 1, ..., ¢y,

concluimos que t; = 0 para todo i, lo cual prueba la independencia

- T T
lineal de Ac, 4, ..., Ac,.

O



42

Espacios Vectoriales




Capitulo 5

Anillo Cociente

En algebra resulta de vital importancia la construccién del objeto cocien-
te. En esta seccién estudiaremos el anillo cociente, sus teoremas mas clasicos
y haremos énfasis en la reticula de ideales de los anillos cociente.

Proposicién 5.1. Sea R un anillo e I un ideal de R entonces R/I = {a+1 |
a € R} es un anillo con las siguientes operaciones:

1. (a+1)+(b+1)=(a+b)+ 1.
2. (a+1)(b+1)= (ab) +I.
Ademds

m:R— R/I
ar—a+1

es un momorfismo de anillos, llamado el momorfismo sobreyectivo natural.

Demostracion. Veamos que la suma y la multiplicacion estan bien definidas,
asumimos que a+1 =a'+ 1 yb+ I =0 +Isiysélosia—d € [ yb—0V €I,
asi ab—a'l = ab—ba' +ba' —a'tl = b(a—a')+a'(b—1') € I entonces tenemos
que ab—a'b' € I'siysolosiab+ 1 =a't/ +1,asi (a+1)(b+1)=ab+1=
a'V +1=(a"+ I)(t/ +I). Veamos que + es asociativa.

Sean (a+1),(b+1),(c+1)€ R/I, entonces (a+ 1)+ [(b+ 1)+ (c+ 1) =
(a+D)+((b+c)+1)=[a+ (b+c)]+I=[(a+b)+ ]+ 1= [(a+b)+ ]+ (c+ )=
(a+ 1)+ (O+1)]+(c+1).

Afirmamos que el elemento neutro es (0 + I). Ya que

43
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O+1)+(a+I)=(0+a)+1
=a+1
=(a+0)+1
=(a+1)+(0+1)

para toda a € R.
Ademés —(a + I) = —a+ I para cada a+ I € R/I. Puesto que

(a+ D)+ (—a+1)=(a+(—a))+1

=(a—a)+1
=0+1
Veamos la conmutatividad
(a+1)+0b+1)=(a+b)+1
=(b+a)+1
=0b+1)+(a+1)
Veamos la conmutatividad con el producto.
(a+ )b+ 1I)=(ab)+ I
= (ba) + I
=0+1)(a+1)
Veamos la asociatividad con el producto
(a+ )b+ I)|(c+1I)=(ab) + I](c+1)
= [(ab)c + 1]
= [a(bc) + I]
= (a+1)[(be) + 1]
=(a+D[b+I)(c+ )]

Afirmamos que el elemento neutro para el producto es 1 + 1 € R/I, pues
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(a+1)(1+1)=(al)+1
= (al)+1
=a+1
= (la) + 1
=1+1)(a+1)

Finalmente veamos la distribucion,

(a+ Db+ +(c+D)]=(a+1)[(b+c)+ ]
=alb+c)+1
= (ab+ac)+ 1
= (ab+ 1)+ (ac+1)
=(a+0D)b+I)+ (a+I)(c+1I).

Veamos que 7 : R — R/I es momorfismo de anillos.
. ma+b)=(a+b)+1=(a+1)+ (b+1I)=mn(a)+ n(b).
2. w(ab) = (ab) + I =(a+1)(b+ 1) =7(a)m(b).
3. m(1g) = 1g + I.
O

Definicién 5.2. El anillo R/I construido en la Proposicion 5.1 es llamado
el anillo cociente de R modulo I.

Definicién 5.3. Un conjunto parcialmente ordenado (Copo) es un par
(A, <) tal que

1. a < a para todo a € A.
2. Sia<byb<c, entonces a < ¢ para todo a,b,c € A.
3. Sia<byb<a, entonces a="> para todo a,b € A.
Si (A, <) es un conjunto parcialmente ordenado y B C A entonces:

1. a=1infB siy solo si para toda b€ B, a < by sic € A es tal que, para
toda b € B, ¢ <b, entonces c < a.
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2. a = supB siy solo si para todab € B, b<aysicé& A estal que, para
toda b€ B, b < ¢, entonces a < c.

Si (A, <) es un copo, (A, <) se llama reticula si y solo si para toda a,b € A
existen ag, by € A tales que ag = inf{a,b} y by = sup{a,b}.
Usaremos la siguiente notacion sup{a,b} =a Vb yinf{a,b} =aNb.

Definicién 5.4. Una funcion f : (A, <) — (B, <) entre dos copos es llamado
un morfismo de orden si para dos elementos en A, a < a' implica f(a) <
f(d") en B. Un morfismo de orden inyectivo se llamard morfismo de orden
estricto. Una biyeccion que es un morfismo de orden, tal que su inversa es
también un morfismo de orden, se llamara un tsomorfismo de orden.

Ejemplo 5.5. Sea

(N,[) = (N, <)

nlm—n<m

hay una correspondencia biyectiva de orden (—), pero no es isomorfismo de
ordenes parciales.

Definicién 5.6. Una funcion f : L — L' entre dos reticulas es llamado
morfismo de reticulas si:

1. f(aVvb) = f(a)V f(b) para todo a,b € L.
2. flanb) = f(a) A f(b) para todo a,b € L.

Un morfismo de reticulas biyectivo es llamado un tsomorfismo de reticu-
las. Para reticulas isomorfas L y L' usamos la notacion L = L'.

Notacion Sean R un anillo e I un ideal propio de R.
[I,R|={K CR|I<K <R}
0,R/I|={LC R/I|L<R/I}.

Proposicién 5.7. Sea R un anillo y I C R. Entonces [I, R], [0, R/I] son
reticulas isomorfas.
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Demostracién. Seay: R — R/I tal que f(r) = r+1. Definimos ' : [I, R] —
[0, R/I] por v'(J) = v(J) = J/I. Asi que tenemos el siguiente diagrama
conmutativo:

R— > R/I

T—2 500

Veamos que «' es inyectiva.

Sea +'(J) = +/(K), entonces v(J) = v(K), donde v(J),y(K) < R/I con
J,K € [I,R], entonces v '(y(J)) = v *(v(K)), luego J + ker(y) = K +
ker(v), es decir J + 1 = K + I, por lo tanto J = K.

Veamos que 7 es sobreyectiva.

Sea J € [0,R/I], asi 0 < J, luego ker(y) = I = v 10) < y71(J), asf
v () € [I,R] y (v 1(J)) = v(y1(J)) = J . Por lo tanto 4 es una
biyeccion.

Finalmente debido a que 7' es inyectiva tenemos que:

L. '7/(ﬂjeJ K;) = ﬂjeJ v'(K).
2. 7,<Zj€J K;) = ZjeJ v (K;).

Por lo tanto 4/ es un isomorfismo de reticulas.
O

Proposicion 5.8. Sea f: R — A un morfismo de anillos, entonces kerf es
un ideal de R, Imf es subanillo de A y

R/kerf = Imf.

Demostracion. Sea

¢: R/kerf — Imf
a+ K — f(a),

donde K = kerf. Veamos que ¢ esta bien definida.
Seaa+ K =b+ K siysolosia—0bée K, es decir existe k£ € K tal que
a—0b=Fksiysoélosia=0b+ k. Por lo tanto

pla+ K) = fla) = fb+k) = f(b) + f(k) = f(b) = (b + K).
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Asi ¢ esta bien definida. Claramente ¢ es sobreyectiva. Veamos que ¢ es
inyectiva.

Sea p(a+ K) = ¢(b+ K) implica que f(a) = f(b) siy sélosi f(a) — f(b) =
fla—b)=0,asi a—b e K. Por lo tanto a + K = b+ K. Ahora veamos que
¢ es momorfismo.

2. p((a+ K)+ 0+ K)) =9((a+b)+ K) = flat+b) = f(a) + f(b) =
ela+ K)+ @b+ K).

3. (0 K)(b+K)) = plab+K) = f(ab) = F(a)f(b) = plat K)p(b+F).
0

Proposicién 5.9. Si (0) # R un anillo, son equivalentes:

1. R es un campo

2. Sus unicos ideales son {0}, (1) = R

3. Todo morfismo distinto del morfismo cero de R — S es inyectivo.
Demostracion. 1. =]2. Sea I < R con I # {0} entonces existe a € I tal que
a # Og, con a es unidad y (a) = (1) = R.
2. =]3. Sea f: R — S, con Ker(f) un ideal propio de R, entonces kerf =
{0}, por la Proposicién 3.17, f es inyectivo.
3. =]1. Sea 0 # x € R, (x) un ideal propio de R tal que {0} # R/ (z), ¢ :
R — R/ (x) el morfismo sobreyectivo natural. Entonces {Og} = Ker(p) =

(x), luego (x) = {0g}, contradiccién. Por lo tanto (x) = R, luego = es unidad,
notemos que ¢ # 0, por lo tanto R es campo. O]

Proposiciéon 5.10. Sea F un campo, p(x) un polinomio sobre F[x] con
gr(p(z)) > 1 y (p(x)) = I <Fx]. Entonces son equivalentes:

1. p(x) € Flz] es irreducible.
2. Flz]/{f(x)) es un campo.

3. Flz]/{f(z)) es dominio entero.
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Demostracion. Sea I = (f(z)).

1 = 2] Si p(z) no es unidad, entonces 1 ¢ I siy sélosi 04+ 1 # 1+ 1.
Sea ahora 0 + I # f(z) + I € F[z]/I, entonces f(z) ¢ I implica que p(x) 1
f(z) entonces m.c.d(p(x), f(z)) = 1, es decir, existen s(z),t(z) € F[z] tal
que s(z)p(z) + t(x)f(z) = 1, luego [s(x)p(z) + t(z)f(x)] + 1 = 1+ I=
(s(x)+I)(p(x)+ 1)+ (t(x)+1)(f(x)+1I) = 1+1 en F[z]/I , pero p(z)+1 = 0,
asi (t(x)+1I)(f(x)+1) =1+1. Por lo tanto t(x)+ I es el inverso de f(z)+1.
2 = 3| Por la proposicién 1.16.

3 = 1 | Supongamos que p(z) € Flz]| es no irreducible, es decir, existen
g(x),h(x) € Fz] tales que p(x) = g(x)h(z) con gr(g),gr(h) < gr(p), asi
g(x),h(xz) ¢ I entonces g(z) + 1 # 0+ 1 # h(x) + I, ademds (g(z) +
I(h(x) + I)= g(x)h(x) + I=p(x) + I contradiccién. Ya que Flz]/(f(x)) es
dominio entero y por lo tanto p(z) € Flz] es irreducible. O

Proposicién 5.11. Sea k un campo, p(x) € klx] ménico irreducible con
gr(p(z) =d, sea I = (p(x)), K =kl[z]/I ysea f=x+1 € K.

1. Entonces K es campo y k' = {a+ 1 | a € k} es un subcampo de K
isomorfo a k.

2. B es una raiz de p(x) en K.

Demostracion. 1. El anillo cociente K = k[x|/I es un campo, por la Pro-
posicién 5.10. Ademaés tenemos el momorfismo sobreyectivo natural

7 k[x] = k[z]/I
f(@) = flz) +1

Sea

o="lp: k=K
ara+1.

Ast Imp = k’. Veamos que ¢ es inyectiva. Sea p(a) = ¢(b) con a,b € k,
entonces a+ I = b+ I siy sélosi a—b € I. Supongamos que a —b # 0
entonces I contiene una unidad, asi I = k[z], contradiccién, ya que
p(z) es ménico irreducible. Por lo tanto a = b. Por la Proposicién 5.8,
E=kK CK.



50 Anillo Cociente

2. Sea p(z) = ap + a1z + ... + agz®! + 2¢, donde a; € k para todo i. En
K = k[x]/I, tenemos

p(B)=(ao+ 1)+ (e + 1)+ ...+ (14 1)p
=(ao+ 1)+ (e + D)@ +1)+ ..+ L+ I)(z+ 1)
=(a+ 1)+ ..+ (mz+ 1)+ ..+ (a7 + 1)
=ay+aw+..+at+1
=ple) +1=1,

ya que p(x) € I = (p(x)). Pero I = 0+ I es el elemento cero de
K = k[z]/I,y asi § en k es una raiz de p(zx).
[

Definicién 5.12. Sea K un campo y k C K un subcampo. Entonces K es
una extension de campo sobre k y lo denotamos por K/k. Notemos que K/k
es un espacio vectorial sobre k. Decimos que K/k es una extension finita si
dika < OQ.

Notacién: [K : k] = dim(K/k) < oo es el grado de la extension.

Proposicién 5.13. Sea k un campo y f(x) € klx] con gr(f(x)) > 1, enton-
ces existe K/k una extension de campo tal que f(x) € K[z] es producto de
polinomios lineales.

Demostracion. La demostracion se hard por induccién sobre gr(f(z)) =n >
1. Sin =1, entonces K = k. Si n > 1, escribimos f(z) = p(x)g(z), donde
p(z) es ménico irreducible. Ahora por la Proposicién 5.11 proporciona un
campo F' que contiene a k tal que p(z) tiene una raiz a € I, entonces p(z) =
(x — a)h(z) € F[z]. Por lo tanto, en Flz|, tenemos p(z) = (x — a)h(z) y
f(z) = (x—a)h(z)g(x). Sea gr(h(z)g(x)) = n—1, por hipétesis de induccién
existe F' C K( y por lo tanto k C K) y asi h(z)g(z) € K es producto de
factores lineales. Por lo tanto f(z) = (z — a)h(x)g(x) € K[z] es producto de
factores lineales. O



Capitulo 6

Ideales Primos y Maximos

En esta secciéon trataremos con la generalizacion de niimero primo, dando
lugar a los conceptos de ideal primo e ideal maximo. Introducimos conceptos
muy importantes en la teoria de anillos tales como: el espectro, el radical y
el nilradical. Ademéas de mostrar la existencia de ideales maximos.

Definicién 6.1. Un ideal propio, P de R se dice que es ideal primo, si para
cualesquiera a,b € R tal que ab € P y a ¢ P, implica que b € P.

Ejemplo 6.2. Recordemos que un anillo R distinto de cero es un dominio
entero st y solo si ab =0 en R, implica que a =0 06 b = 0. Por lo tanto, el
ideal (0) = {0} es primo en R si y sdlo si R es un dominio entero.

Ejemplo 6.3. Un ideal (m) = mZ < Z es un ideal primo si y sdlo si m es
un primo o cero.

Demostracion. =] Dado que m y —m generan el mismo ideal principal, con-
sideremos solo los generadores positivos. Si m = 0 entonces el resultado se
sigue del ejemplo anterior. Ya que Z es un dominio entero. Si m > 0, veamos
que (m) es un ideal propio, de otra manera 1 € (m), asi, debe existir un
entero p tal que mp = 1, contradiccién. Luego, si ab € (m) entonces p | ab.
Por el Lema de Euclides, p | a 6 p | b, es decir, p € (a) 6 p € (b). Por lo tanto
(p) es un ideal primo.

<] Si m > 1y no es primo, entonces se tiene una factorizacién m = ab con
0 < a,b < m. Por lo tanto ni @ ni b es un multiplo de m, es decir a ¢ (m) y
b ¢ (m) pero ab=m € (m) y asi (m) no es un ideal primo. O

Definicién 6.4. Un ideal propio M en R es llamado un ideal mdzimo si no
existe un ideal propio de R, digamos J, tal que

o1
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M<J<R
Ejemplo 6.5. Si R =TF es campo, entonces su unico ideal mdzimo es (0).

Proposicién 6.6. Sea R un anillo. El ideal M < R es mdximo si y solo si
R/M es un campo.

Demostracion. =] Sea a + M # 0+ M, lo que significa que a ¢ M, ahora
consideremos el ideal Ra + M tal que M < Ra + M, por ser M maéximo,
entonces M + Ra = R, luego existen m € M, b € R tal que 1 = m + ab,
entonces ab—1 € M, as{ ab+ M = 1+ M, de manera que (a+M)™' = b+ M,
luego R/M es un campo.

<] Sea M < I con I un ideal de R, luego existe a € I tal que a ¢ M, por
ser R/M campo, entonces existe b € M talque (a + M)(b+ M) = 1+ M,
luego 1 —abe M < I y como ab € I entonces 1 € [ e I = R. O]

Ejemplo 6.7. Una aplicacion del teorema anterior es la siguiente:
pZ = (p) es mdzimo si y sélo si Z, es campo.

Proposicion 6.8. Sea R un anillo. Un ideal propio P es un ideal primo si
y solo si R/ P es un dominio entero.

Demostracion. =. Supongamos que (a + P)(b+ P) =0+ P, luego ab € P,
por ser P primo. a € P6bée P,esdecir,a+ P=0+P6é6b+P =0+ P.

<. Supongamos que ab € P, entonces (a + P)(b+ P) = 0+ P. Por ser R/P
dominio entero, a+ P=04+P 6 b+ P =0+ P, esdecir,a€c P6be P. [

Proposicién 6.9. Sea R un anillo. Si M es un ideal mdximo, entonces es
un ideal primo.

Demostracion. Por la Proposicién 1.16. O

Ejemplo 6.10. En general no es cierto el reciproco del teorema anterior.
Por ejemplo, en Z, {0} es ideal primo pero no es ideal mdximo.

Proposicion 6.11. Si 0 # R es un anillo. Entonces R tiene un ideal mdxi-
mo. Mas ain, todo ideal propio I en R estd contenido en un ideal mdzimo.

Demostracion. Noétese que la segunda afirmacion implica la primera. Sea
I < Ry X la familia de todos los ideales propios que contienen a I. Notemos
que X # () ya que I € X. Es claro que X estd ordenado parcialmente y el
orden parcial en X esta dado por la inclusion. Sea C una cadena en X. Es
decir, dados I, J € C, entonces I C J 6 J C I. Afirmamos que
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I* = U[
IeC

es una cota superior de C. Claramente, I C [*, asi que resta demostrar que
I* € X, es decir, que [* es un ideal propio.

1. I* es un ideal. Supongamos que r € R y a € I*, entonces, a € [ para
algun I € C. Por lo tanto, ra € I, y asi ra € I*.
Ahora supongamos que a,b € I, entonces existen I,, I, € C, con a € I,
y b € I, pero ya que C es totalmente ordenado, I, C I, 6 I, C I,. Sin
perdida de generalidad, supongamos que I, C I,, entonces a,b € I,. Por
lotantoa+be€ I,,asia+be I*.
Claramente 0 € I para todo I € C. Por lo tanto 0 € I*.

2. I* es propio, es decir, I* # R. Ya que 1 ¢ J, para cada J € C, tenemos
que 1 ¢ I*, de ahi que I* # R.
Ya que X satisface las hipétesis del Lema de Zorn, concluimos que tiene
elemento maximo, el cual es un ideal propio maximo que contiene a I.

]

Definicién 6.12. El conjunto de todos los ideales primos en un anillo R es
llamado el espectro de R y lo denotaremos por Spec(R) mientras el con-
gunto de sus ideales maximos es el espectro mdximo de R, denotado por
Speem(R). Ademds se puede observar que Specm(R) C Spec(R).

Ejemplo 6.13. 1. Si R =7. Entonces Spec(Z) = {(p) | p € Z primo} U

{(0)}

Definicién 6.14. Un anillo R con un unico ideal mdzimo M es llamado
antllo local. Por la Proposicion 6.6

K:=R/M

es un campo. A este campo se le conoce como el campo residual. Se veri-
ficarda mds adelante que M = {r € R | r no es una unidad}.

Un momorfismo de anillos locales f : R — S es llamado un morfismo local si
f(Mg) C Mg, donde Mg y Mg son los ideales mdximos de los anillos locales
de R y S respectivamente.

Ejemplo 6.15. Un morfismo local es el siguiente:
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WLy — 2o
0—0
1—1
2—0
3—=1

Este morfismo estd determinado por la estructura de Z4, es decir, Z4 es
un anillo finito, conmutativo, local con ideal mdximo 274 = {0,2} y campo
residual Zy /274 = Zs. Por lo tanto, u es el morfismo sobreyectivo natural y
el ideal mdximo 274 asigna el elemento cero del campo.

Proposicién 6.16. Sea R un anillo.

1. St M # (0) un ideal tal que cada x € R\ M es una unidad. Entonces R
es un anillo local y M es su unico ideal mdximo.

2. 5t M es un ideal mdzimo tal que cada elemento del conjunto 1 + M =
{1+z |z € M} es una unidad en R. Entonces R es un anillo local.

Demostracion. 1. Sea I un ideal propio. Supongamos que existe x € [ y
x ¢ M, luego x € R\ M, entonces x es unidad. Asi que I = R, contra-
diccion. Por lo tanto z € I implica x € M. Asi I C M. De esta manera
demostramos que M es el tnico ideal maximo.

2. Seaxz € R\ M. Como M es méximo, el ideal J = (z, M) coincide con R,
esto implica que existe y € Ryte M talquezy+t=1,asizy=1—t €
1+ M es una unidad en R, luego existe s € R tal que (zy)s = s(xy) = 1.
Asi 1 = z(ys) = (ys)x. Por lo tanto x € U(R). Por 1. R es un anillo local.

O

Definicién 6.17. Un anillo que contiene solo un nimero finito de ideales
mdximos es llamado semilocal.

Ejemplo 6.18. 1. Cada anillo finito es un anillo semilocal.

2. 7 tiene infinitos ideales mdximos y por lo tanto no es un anillo semi-
local.

3. Q es infinito y es semilocal.
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Definicion 6.19. Dado un ideal I de R, el conjunto
VI:={reR|r* el para algin s € N }

es un ideal de R, llamado el radical de I. Claramete I C VI. Unideal J es
llamado un ideal radical si v/ J = J.

Ejemplo 6.20. El ideal radical del ideal 47, es 27..

Proposicién 6.21. Sea M un ideal maximo de R. Entonces M es un ideal
radical.

Demostracion. Por definicion, M C /M. Por ser M maéaximo se tiene que
M = /M en este caso M es el ideal radical 6 vV M = R, contradiccion. [J

Proposicion 6.22. Si P es un ideal primo de R, entonces P es un ideal
radical.

Demostracion. Por definiciéon P C +/P. Sea a un elemento de v P y n un
entero positivo tal que a” € P. Demostraremos que si a” € P, entonces
a € P, se hara por induccion.

1. Paran =1,z = z' € P implica que x € P.

2. Supongamos que se cumple para n = k, es decir, que a* € P implica que
a € P.

3. Veamos que se cumple para n = k+1, a**! = aa® estdn en el ideal primo,
entonces a € P 6 a* € P, si a € P, se termina la demostracién. Si a* € P,
entonces por hipétesis de induccion, tenemos a € P.

O

Definicién 6.23. Si R es un anillo conmutativo, entonces su nilradical
nil(R) es definido como la interseccion de todos los ideales primos en R, es
decir

Nil(R):== (] P
PeSpec(R)

Definicién 6.24. Si R es un anillo, entonces el radical de Jacobson J(R)
estd definido como la interseccion de todos los ideales mdaximos de R.
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Ejemplo 6.25. 1. En cualquier dominio entero el nilradical es el ideal

(0).
2. En cualquier anillo local el radical de Jacobson es el unico ideal mdzximo.
Proposicién 6.26. Sea R un anillo, entonces
Nil(R)={f € R|3neN, f*=0}.

Demostracion. Supongamos que S es el conjunto de los elementos nilpoten-
tes. Veamos S C Nil(R). Sea f € Sy p € spec(R), entonces existe n € N
tal que f* = 0. Pero 0 € P asi que f* € P por la Proposicién 6.22. Asi
que f € P para todo p € Spec(R), entonces [ € () cgpeem) P = Nil(R).
Asi S C Nil(R). Ahora veamos Nil(R) C S. Es decir, debemos demostrar
que f € Nil(R) implica que existe n € N tal que f™ = 0. Pero notemos que
esto es equivalente a demostrar que si f" # 0, para n € N entonces existe
p € spec(R) tal que f ¢ P.

Supongamos que f" # 0 para todon € N. Sea I' = {I < R | f" ¢ I,
para algin n € N}. Note que I' # (), ya que si {0} C Ry n € N, entonces
fm ¢ {0}, asi {0} € I". Ademas (I', C) es un copo. Consideremos una cadena
® CT, P C R launién de una cadena de ideales es un ideal, pero la unién
de ideales no necesariamos es ideal. Supongamos que existe n € N tal que
f™ e U, entonces f* € I para algin I € ®. Contradiccién. Asi |JP € T
y es una cota superior para ®. Por el Lema de Zorn, I' tiene un elemento
maximo P. Veamos que P es ideal primo.

Supongamos que x,y ¢ P. Veamos que xy ¢ P. Como = ¢ P entonces
P < P + (z) es ideal mayor propio. De manera andloga y ¢ P, entonces
P < P+ (y). Como P es maximo, entonces P+ (z) ¢ T'y P+ (y) ¢ T,
entonces, existen n,m € N tales que f" € P+ (x) y f™ € P+ (y), asi
f"=pr+rxy f™ =py+ray, con ry,ry € R. Asi

fU ™ = (p1+ mz)(p2 + r2y) = pip2 + piray + pari® + 11272y

Entonces f"f™ = f"*™ € P+ (xy). Asi P+ (zy) ¢ I'y P+ (zy) > P. Asi
P + (zy) > P entonces zy ¢ P. Por lo tanto P es un ideal primo, P € T’
y f* ¢ P para todo n € N. En particular, para n = 1, f ¢ P entonces
f ¢ Nil(R). Por lo tanto Nil(R) C S. Asi Nil(R) = S.

[

Proposicién 6.27. Sea R un anillo, x € J(R) si y sdlo si 1 —xy es una
unidad de R para cada y € R.
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Demostracion. =] Si 1 — xy no es una unidad, entonces por la Proposicién
6.11, (1—xy) pertenece a algtin ideal méximo M de R; yaque x € J(R) C M,
xy € M, lo que implica 1 € M, contradiccion.

«<| Si x ¢ M, para algin ideal méximo M, entonces (M,z) = R por ser
M maximo. Por lo tanto, existe v € M y y € R tal que v + zy = 1. Asi
1 —a2y € M, lo que implica que 1 — xy no es una unidad, contradiccién. [
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Capitulo 7

Estructura de los campos
finitos

Dado que la teoria de cddigos se desarrolla sobre los campos finitos, en
esta seccion se estudiaran algunas de sus caracteristicas pero todavia mas
importante se demostrara la abundante existencia de dichos campos.

Proposicion 7.1. Para todo elemento 3 de un campo finito F con q elemen-

tos, B1=0.

Demostracion. En el caso en que f = 0 se tiene 09 = 0. Supongamos ahora
que 5 # 0. Sea F*={f, ..., f;-1} el conjunto de todos los elementos no cero
de F. Dado que § # 0, tenemos que {851, 552, ..., B8,-1} = F* son también
elementos no cero, luego 51 5s...6,-1 = B (b1 5a...04-1). Por lo tanto g4 =
1.

O

Proposicién 7.2. Sea F un subcampo de E con |F| = q. Entonces un ele-
mento B de E estd en F si y solo si p9 = (3.

Demostracion. =] Por la Proposicién 7.1 se cumple.

<] Consideremos el polinomio z? — x € Elz|. El cual tiene a lo més ¢ raices
distintas en E. Como todos los elementos de F son raices de 27—z y |F| = g,
obtenemos F' = {a | o es raiz de 29— x en E'}. Por lo tanto, para todo f € E
que satisface ¢ = f3, es una raiz de x? — x, es decir, § € F. ]

Proposicion 7.3. Sea p € Z primo, y n € N. Entonces existen campos con
p" elementos.

29
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Demostracion. Sea q = p", y consideremos f(x) = 27 — x € F,[z]. Por
la Proposicién 5.13 existe K campo tal que F, C K en el cual f(x) se
descompone totalmente.

Este polinomio tiene ¢ raices distintas en K ya que su derivada es gz% ' —1 =
—1 en F,[z] y asi no puede tener una raiz comun con z?—x por la Proposicién
2.25. Sea S = {a € K | a?—a = 0}. Entonces S es un subanillo de K ya que

1. f(1)=19—1=0, as{ 1 € 5.

2. Sia,b € S entonces por la Proposicién 1.25 que (a—b)? = a?—b? = a—b
yasia—beS.

3. Paraa,b € Syb+#0,tenemos (ab™ )4 = a?(b~')? = a7 = a?(b?)~! =
ab~'yasiab !t € S.

Pero, por otro lado z9 — x se puede factorizar en S, ya que S contiene toda
sus raices. Por lo tanto K = S, y ya que S tiene ¢ elementos, K es campo
finito con ¢ = p™ elementos. [

Definicién 7.4. Un elemento o en un campo finito F, es llamado elemento
generador o primitivo de F, si F, = {0,a,a?, ...,a7'}.

Ejemplo 7.5. En Z; el elemento 3 es un elemento primitivo.

Definiciéon 7.6. El orden de un elemento distinto de cero o € F,; denotado
por ord(a) es el entero positivo mds pequeno k tal que o = 1.

Ejemplo 7.7. Siguiendo con el Ejemplo 7.5, el orden de 3 es 6.
Proposicién 7.8. El orden ord(a) divide a q — 1 para todo o € F}.

Demostracion. Sea m un entero positivo que tenga como propiedad o™ =1,
usando el algoritmo de la divisién escribimos m = aord(«) + b para algunos
enteros a y b tales que 0 < ay 0 < b < ord(«) entonces

b

aord(a)+b o = 1ab = o,

aord(a) b

al = (a/ord)a

l=0"=« =«

Por lo tanto b = 0, esto es, aord(«) = m, es decir, ord(a) | m. Ademas
sabemos que para cada a € F; tenemos que ™! = 1, es decir, ord(a) |
q— 1. O

Proposicién 7.9. Para dos elementos a, 3 € F} si m.c.d(ord(a),ord(3)) =
1, entonces ord(af )=ord(a)ord(f).
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Demostracion. Sea r = ord(a)ord(f). Es claro que o = 1 = " ya que el
ord(a) y ord(3) son divisores de r. Por lo tanto

(af) =a"p" = 1.

Asi ord(af8) < ord(a)ord(p).
Por otro lado, sea t = ord(af3), tenemos

1= (Oéﬂ)t'm"d(a) — (Oéord(a))tﬁt-ord(a) _ ﬂtord(a).

Esto implica que ord(f) divide t-ord(«) por la Proposicién de 7.8, asi el
ord () divide a t ya que ord(«) es primo relativo con ord(f).

En la misma forma se muestra que ord(«) divide a ¢. Esto implica que ord(«)
y ord(f) dividen a t. Por lo tanto, ord(a5) = t > ord(«a)ord(f). O

Proposicién 7.10. Un elemento distinto de cero de F, es un elemento pri-
mitivo si y solo si su orden es q — 1.

Demostracion. Por la Proposicion 7.1 tenemos que para todo a € F} se tiene
que el orden es g—1 si y sélo si a, o2, ..., a?~! son distintos. Esto es equivalente
a decir que F, = {0,a,0?, ..., }. O

Proposicion 7.11. Todo campo finito tiene al menos un elemento primitivo.

Demostracion. Sea m el minimo comin multiplo de los ordenes de todos
los elementos de F;. Si r* es una potencia de un primo en la factorizacién
canénica de m, entonces ¥ | ord(a) para algin a € F;. El orden de a4/ r
es r*. Por lo tanto, si

_ .k k
m =t

es la factorizacion candnica de m para distintos primos ry, ..., 7,, entonces,
para cada i = 1,...,n, existen f; € F; con ord(8;) = ¥ La Proposicién
7.9 implica que existe § € F; con ord($) = m. Ademds m | (¢ — 1) por la
Proposicién 7.8 y por otra parte todos los (¢ — 1) elementos de [} son raices
del polinomio ™ —1, de modo que m > g—1. Por lo tanto, ord(5) = m = ¢—1
y el resultado se termina por la Proposicion 7.10. O]
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Capitulo 8

Codificacion

En esta seccién, empezaremos a definir desde el punto matemaético con-
ceptos tales como codigo, mensaje, codificacion y decodificacion que son de
vital importancia para la teoria de codigos. Para esto, usamos como punto
de partida las definiciones dadas por J. Adamek ([1]) que sirvierén como
inspiracién para que nosotros pudieramos dar desde nuestro punto de vista
nuestras propias definiciones.

Definicién 8.1. Dados conjuntos finitos A (alfabeto de origen) y B (alfabeto
codigo) una palabra origen es un elemento de | J, .y A", una palabra cédigo
es un elemento de |,y B".

Al conjunto de las palabras origen lo denotamos por P, y al conjunto de
palabras codigos P..

Definicién 8.2. Si p € P, es una palabra origen, entonces p € A™ para
algin m € N. Es decir, p = (a1, ...,ay), con a; € A, en este caso decimos
que p tiene longitud m.

Una codificacion es una funcion inyectiva f : A — P. la cual asigna a
cada elemento de A exactamente una palabra cédigo. Si f : A — P, es
una codificacion, decimos que f(A) es un cddigo.

Definicién 8.3. Sea f una codificacion. Sea a € P,, entonces a = (aq, ..., ay)
para algin n € N, un mensaje de la codificacion f enviado por a es un

elemento m de P, definido por m = f'(a) = (f(a1),..., f(an)), donde f’ :
P, — P,.

Definicién 8.4. La decodificacion del mensaje m es

63
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dm = (f_1f<a1)7 tey f_lf(an))'

Ejemplo 8.5. Sea A ={1,2,3,4,5,6,7,8,9,10} y B = Fy, y sea P, de las
palabras codigo de longitud 5 que tengan solo dos 1’s, de tal manera que la
columna de la izquierda representa a los elementos de A y la columna de la
derecha representa a su imagen bajo la codificacion f representada por esta
asignacion.

1+ (1,1,0,0,0)
2 (1,0,1,0,0)
3 (0,1,1,0,0)
4 (1,0,0,1,0)
5 (0,1,0,1,0)
6 — (0,0,1,1,0)
7 (1,0,0,0,1)
8 (0,1,0,0,1)
9 (0,0,1,0,1)
10 — (0,0,0,1,1)

ast, la palabra a = (1,7,3) al ser enviada mediante f', obtenemos el mensaje
m = f'(a) = ((1,1,0,0,0),(1,0,0,0,1),(0,1,1,0,0)). Usualmente se abusa
de la notacion y el mensaje m se denonta m = (11000, 10001,01100). Esto
se hace para evitar una notacion engorrosa.

A veces en la teoria de codigos se omite la codificacion y se escribe siem-
plemente el cédigo C' = {cy,...,¢,} donde ¢; € B". Por ejemplo, podemos
escribir el cddigo del ejemplo anterior como C' = {¢; = (1,1,0,0,0),¢c5 =
(1,0,1,0,0),....,c10 = (0,0,0,1,1)}. No se escribe la codificacién debido a
que es bastante claro que podemos definir cualquier funcién codificadora. En
el ejemplo, escribimos A = {1,...,10}, donde f es tal que f(i) = ¢; pero
podriamos haber codificado también asi: A = {a,b,c,d, e, f,qg,h,1,j} donde
festal que f(a) = ¢1, f(b) = ca,....f(j) = c10. Notemos que las dos funciones
nos propocionan exactamente el mismo codigo.

Definicién 8.6. Si B es un alfabeto codigo definimos al conjunto de palabras
codigo de longitud n como B". Si f : A — B" es una codificacion, decimos
que f(A) es un cddigo bloque de longitud n.

Ademas, st B=Ty y f: A— F} es una codificacion, entonces diremos que
f(A) es un cédigo binario de longitud n.
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Deteccion de errores

Asi, para decodificar serd 1util poner una medida de que tan cerca dos
palabras cédigo estdan una de la otra. Una manera de hacerlo es con la dis-
tancia de Hamming que a continuacién definimos. Ademas definiremos otro
concepto desde el punto matematico, el concepto de transmision y veremos
cuando un codigo se puede corregir y cuando no.

Definicién 9.1. Sean x ey dos palabras de longitud n sobre el mismo alfabeto
B. La distancia de Hamming entre x ey, denotada por d(x,y), se define
como el nimero de coordenadas en que x ey difieren, es decir, d : B"xB" —»
[0,n] C N. Donde si x = (x1, 22, ..., Tn) €y = (Y1,Y2, .-, Yn), entonces

d('r’y) = d(xlvyl) + d(any2) + ..+ d(wnvyn)

con

1 si ZT; i
d(zi,y;) = { 7y

A partir de aqui, si C' es un codigo de longitud n. Escribiremos x =
T1Zy...x, € C en lugar de x = (x1, 29, ..., T,).

Ejemplo 9.2. Sea Zy = {0,1} y sea x = 01010, y = 01101, z = 11101 € Z3.
Entonces

1. d(z,y) =3
2. d(y,z) =1
3. d(z,x) =4
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Ahora veamos que (B",d) es un espacio métrico.

Proposicion 9.3. Sean x,y, z, palabras de longitud n sobre B. Entonces
tenemos que:

. 0<d(z,y)<n
1. d(z,y) =0 siy sdlo six=y.

ut. d(z,y) = d(y, x)
. d(z,z) <d(z,y)+d(y, 2).

Demostracion. Consideremos © = (1, T2, ... Tn) , Y = (Y1,Y2, -, Yn) Y 2 =
(21, 225 vy Zn)-

I. De la definicién de distancia de Hamming tenemos que d(z,y) = d(z1,y1)+
d(x2,y2) + ... + d(zp,y,), supongamos que en todos los casos z; = y;
por lo que d(z,y) = 0 y ahora suponiendo que x; # ¥;, para todo
i € {1,2,...,n}, tendriamos que d(z1,y1) + d(x2,y2) + ... + d(xp, yn) =
1+1+..4+1=1(n)=n porlo que 0 < d(z,y) <n.

1. d(z,y) = d(x1, 1) +d(x2,y2) + ... +d(xp, yn) = 0 siy sélo si d(x;,y;) =0
para todo i € {1,...,n} si y sélo si x; = y; para todoi € {1,....,n}siy
solo si z = y.

L. d(z,y) = d(x1,y1) + d(xe, y2) + ... + d(zp, yn) = d(y1, 1) + d(y2, x2) +
e + d(Yp, ) = d(y, x).

Iv. Si z = z entonces d(z,z) = 0. Observemos que si z y z difieren en un
lugar, es decir, x; # z; para algin ¢ € {i,...n} entonces z y y difieren en
ese mismo lugar x; # y; 6 z e y difieren en ese mismo lugar z; # y; 6
en ambos, de ahi el nimero de lugares donde x y z que difiere es menor
o igual a el nimero de lugares donde z e y difieren mas el niimero de
lugares donde z e y difieren.

]

Apartir de aqui, cuando mencionemos distancia nos estaremos refiriendo
a la distancia de Hamming.
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Definicion 9.4. Sea C' C B"™ un cddigo bloque de tamano n, definimos una
transmision como una funcion T : C — B", ademds decimos que T no
tiene ruido si T'(c) = ¢ para todo ¢ € C, es decir, si T es la funcion inclusion,
de otra manera decimos que T tiene ruido. Decimos que ¢ € C' tiene k errores
en la transmision T si d(c,T(c)) = k.

La idea bésica de deteccion de errores, es simple, si recibimos una palabra
que no es una palabra cédigo entonces sabremos que se ha cometido un error.

Definicién 9.5. Dado un cédigo bloque C de tamano n definimos la distan-
cita minima de C denotada d(C), como la menor distancia no nula entre
cualesquiera dos palabras codigo, es decir,

d(C) = min{d(z,y) : x # y,z,y € C}.

Definicién 9.6. Dado x € B", con | B |=q yr > 0, se define la esfera de
radio r y centrada en x como

Sy(z,r) ={y € B" : d(z,y) =r}.

y la bola de radio r centrada en x como

By(x,r)={yeB":d(z,y) <r} = 9,(x,i)

-

=0

Veamos que las bolas de radio t = L%J centradas en palabras cédigo

son disjuntas. Donde |u] es el mayor entero menor que o igual a w.

z

Proposicién 9.7. Si C' es un cddigo con distancia minima d(C) =2t+1 ¢
d(C) = 2t + 2, entonces

By(c,t) N By(d,t) =10
Para todo ¢, € C' con c # (.

Demostracion. Sea x € By(c,t) con ¢ € C. Entonces z ¢ B,(c,t) para todo
¢ € C con ¢ # c¢. Ya que si no fuera asi, por la desigualdad del tridngulo
tendriamos

d(e,d) <d(c,x) +d(z,d) <t+t=2t<2t+1=d(C).

Lo que es una contradiccion. O
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Definicién 9.8. Un cddigo bloque C' se dice que detecta t errores siempre
que para cada palabra cédigo a y cada palabra o' obtenida de a por diferir en
1,2,...,t simbolos, a’ no es una palabra cédigo.

Proposicién 9.9. Un cddigo C detecta t errores si y sélo si d(C) >t + 1.

Demostracion. =] Supongamos que C detecta t errores y que d(C') < t+1, es
decir, d(C') < t, entonces existen z,y € C tales que 1 < d(z,y) = d(C) < t.
Por lo tanto es posible que comencemos con la palabra cédigo x y d(C') errores
de tal manera que la palabra codigo resultante es y una palabra codigo en
C. Por lo tanto C', no detecta t errores.

<] Supongamos que d(C) >t + 1. Sice€ Cy x son tales que 1 < d(c,z) <
t < d(C). Se sigue que x ¢ C. Por lo tanto C' detecta t errores. O

Definiciéon 9.10. Un cddigo de bloque C' se dice que corrige t errores
siempre que para cada palabra cédigo a y cada palabra a' obtenido por diferir
en 1,2, ....t simbolos, la distancia de Hamming d(a,a’) es estrictamente mds
pequena que la distancia de Hamming de @' a cualquier otra palabra codigo.
En simbolos, para cada palabra cédigo a € C y cada palabra o' tal que 1 <
d(a,a") < t, se tiene que d(a,a’) < d(b,a’) para todas las palabras cddigo
beC, b+#a.

Proposicién 9.11. Un cddigo C' corrige t errores si y sdlo si d(C) > 2t + 1.

Demostracion. =|Sea d(C) < 2t. Entonces mostraremos que C' no puede
corregir ¢ errores distribuidos arbitrariamente. En otras palabras, encontra-
remos una palabra cédigo a y una palabra a’ que tiene distancia de Hamming
t o menor de a y sin embargo, su distancia de Hamming de una palabra codi-
go diferente es ain mds pequena. Sean a,b € C con d(a,b) = d(C). Sean
1,1%2...,1, todos los indices en los cuales a difiere de b. Entonces r < 2t.
Supongamos que enviamos a y el ruido cambia todos los simbolos a; con
i € {ig, 14,1, ...} (es decir, todos los indices pares en los cuales a y b difieren)
a los valores en b. Esto es, recibimos la palabra a, donde

a; :bz Si i#il,ig,..‘,ir,
a; = a; S i:il,ig,...,
bi St i:iQ,i4,....

Asi d(a,a’) < § <ty sin embargo d(a’,b) < d(d',a). Esto puede llevar a la
decodificacién de o’ incorrectamente como b.
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<] Sea d(C) > 2t. Entonces C' corrige t errores. En efecto, supongamos
que enviamos una palabra a y recibimos una palabra o’ con distancia de
Hamming d(a,a’) < t. Tenemos la siguiente situacién con cualquier palabra
codigo b # a : d(a,b) > d(C) > 2t y por la desigualdad del tridngulo

d(a,a") +d(d',b) > d(a,b) > 2t. (9.1)
Por lo tanto d(a’,b) > 2t — d(a,a’) > 2t —t =t > d(a,d’). O

Ejemplo 9.12. El cédigo C; = {00,01,10,11} no detecta ningin error,
mientras que Co = {001,010, 100} detecta 1 error,

Notacién Un céddigo de longitud n, con M palabras codigos, y con dis-
tancia minima d = d(C'), es llamado un (n,M,d) cédigo.

Proposicién 9.13. Sea C' un cddigo. Una bola B,(z,c) de radio r centrada
en una palabra codigo ¢ tiene:

6+ M-+ G-+ + (-1
elementos.

Demostracion. Primero calculemos el nimero de vectores que tienen una
distancia 1 de la palabra cédigo c. Estos vectores son los que difieren en
C en exactamente una coordenada, ademas hay n posibles coordenadas y
q — 1 formas para hacer una entrada diferente. Por lo tanto el nimero de
vectores que tienen una distancia de 1 a ¢ es n(q — 1). Ahora calculemos el
nimero de vectores que tienen distancia m de ¢ , hay (:1) formas en las cuales
podemos elegir m coordenadas para diferir de los valores de ¢, ademas para
cada una de esas coordenadas, hay g — 1 elecciones para simbolos diferentes
de el correspondiente simbolo de la palabra cédigo c. Por lo tanto, hay

(m) (@ —1)"
elementos que tienen distancia m de la palabra codigo c. Incluyendo la misma
palabra cédigo ¢ y usando la identidad (3) = 1. Obtenemos:

M+ M@=+ -1+ + ()g—1".

Proposicién 9.14. Sea C' un [n,M,d]-cédigo con d > 2t + 1 Entonces

n

q
S () (a—1p

M <



70 Deteccion de errores

Demostracion. Alrededor de cada palabra cédigo colocamos una bola de ra-
dio t. Ya que la minima distancia de el cddigo es d > 2t 4+ 1 las bolas no
se superponen. El niimero total de vectores de cada bola no puede ser mas
grande que ¢". Por lo tanto obtenemos

(nimero de palabras cédigos) x (nimero de elementos por bola)

t
n .
a3 (M- <o
— \J
J
Por lo tanto se cumple la desigualdad deseada. O

A este resultado se le llama la Cota de Hamming o a veces también
llamado empaquetamiento de esferas.



Capitulo 10

Cddigos Lineales

En esta seccion hablaremos sobre qué son los codigos lineales y discutire-
mos sus propiedades elementales.

Definicién 10.1. Un cédigo lineal de longitud n sobre un campo [, es
un subespacio C C Fy de dimension k. En este caso decimos que C' es un
[n,k]-codigo sobre F,, . Si C tiene distancia minima d entonces decimos que
C es un [n,k,d]-codigo sobre F,,.

Observaciéon 10.2. Por lo tanto un codigo lineal de longitud n es un con-
Junto de palabras de longitud n tal que:

1. Sia yb son palabras cédigos, entonces a + b es una palabra codigo.

2. Si a es una palabra codigo, entonces para cada maultiplo escalart, ta es
una palabra codigo.

3. 51 C es un subespacio de dimension k de Fy y sean ey, ..., ex una base
de C'. Entonces para cada palabra codigo v se sigue que,

k
v = E U; €4 .
n=1

4. Si el alfabeto codigo F tiene r simbolos, entonces existen r* palabras
codigos en C'.

Ejemplo 10.3. Sea Z3. C' = {000, 001,010,011} es un cddigo lineal.

71
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Definicién 10.4. Sea C un cddigo lineal en Fy .

1. FEl eédigo dual de C, denotado por C*, es el complemento ortogonal
del subespacio C' de Fy.

2. La dimension del codigo lineal C' es la dimension de C' como un
espacio vectorial sobre F,,, denotada por dim(C).

Proposicién 10.5. Sea C un cddigo lineal de longitud n sobre F,. Entonces,
1. |C| = ¢ es decir, dim(C)=log,|C).

2. Ct es un cédigo lineal y dim(C)+dim(Ct) = n.

3. (CHt=C.

Demostracion. 1. Por el Lema 4.26 se cumple.

2. Usando la igualdad del Lema 4.26 y la Proposicién 4.27 con C' = S.

3. Veamos que C' C (C+)*. Sea ¢ € C, debemos demostrar que ¢ € (C1+)+,
es decir ¢-z = 0 para todo z € C. Asf tomando c € C'y x € C* se tiene
que x - = 0 Para todo ¢ € C, en particular para c. Por lo tanto x-¢ = 0.
Luego usando la igualdad de la parte 2. y reemplazando C' por C*. te-
nemos que la dim(C+H)t = n — (n — k) = k = dim(C). Por lo tanto
C = (CH)*.

O

Ejemplo 10.6. Sea Z3. Consideremos el cédigo C' = {0000, 1010, 0101, 1111},
ast, dim(C)=log, |C| = log,4 = 2. Es claro que C*+ = {0000, 0101, 1010, 1111} =
C, es decir, dim(C+) = 2. Ademds se cumplen las propiedades 2. y 3. de la
Proposicion 10.5.

Definicién 10.7. Sea x € F} una palabra. El peso de Hamming de z,
denotado por w(x), estd definido como el nimero de coordenadas no nulas
de x, es decir,

w(z) = d(z, 0),
donde 0 es la palabra cero.

Lema 10.8. Para todo elemento x de F,, podemos definir el peso de Ham-
ming como Sigue:

) =dw0) = { g 3570



73

es decir el peso de x es la distancia de x al 0 = (0,0, ...,0). Si C es un
codigo se define el peso de C' como,

w(C) = min{w(x) : x# 0,z € C}.
El peso Hamming de © = (x4, xa, ..., x,) puede reescribirse como,

w(x) = w(z) +w(r) + ... + w(z,)

n

u, entonces d(z,y) = w(r —y)

Proposicion 10.9. Siz,y € F

Demostracion. Para x, y € Fy, d(x,y) = 0 si y s6lo si x = y, pero esto es
equivalente a x —y = 0 por otro lado w(z —y) = d(x —y,0) = 0. Por lo tanto
d(z,y) = w(z —y).

]

n
q’

Proposicién 10.10. Sea q par. Si x,y € F?, entonces d(x,y) = w(z + y).

Demostracion. Ya que a = —a para toda a € F, cuando q es par, el resultado
es una inmediata consecuencia de la Proposicién 10.9. ]

Definicién 10.11. Si z = (21,22, ..., %), ¥ = (Y1, Y2, ---,y3) € Fy palabras
binarias se define la interseccion de x e y como

T NYy= (T1Y1, T2Y2, s TnYn)
Lema 10.12. Si z,y € F} entonces w(x +y) = w(z) + w(y) — 2w(x Ny).

Demostracion. Es suficiente ver los siguientes 4 casos, para las coordenadas
de z y y.

w(z) +w(y) —2w(zNy) | wz+y)

== olols
e Rl K N
Ol — O
Ol — O

Lema 10.13. Para cualquier potencia prima q y x,y € Fy tenemos que
w(z) +w(y) = w(z+y) > wx) —wy)

Demostracion. Sea x = (x1, 22, ..., Tpn), y = (Y1, Y2, ..., Yn) donde
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entonces
w(x)4+w(y) = d(z1,0)+d(x2,0)+...4d(x,, 0)+d(y1,0)+d(y2,0)+....4d(yn, 0)
pero d(z;,y;) < d(z;,0) 4+ d(0,y;). Asi
w(z+y) =d(x,y) =3 dzi, y:) < 3001 d(@,0) +d(0,y:) = w(x) +w(y).
Anélogamente
w(z) —w(y) = d(xq1,0) + ... + d(z,,0) — d(y1,0) — ... — d(yn, 0)
= (d(x1,0) —d(0,91)) + ... + (d(xp, 0) — d(yn,0))

Recordando que w(x +y) = d(z,y) = d(x1,y1) + ... + d(Tn, yn), debemos
demostrar que d(x;,y;) > d(x;,0) — d(y;,0) para toda i € {1,...,n}.
Supongamos que d(z;,y;) < d(z;,0) — d(y;,0), luego d(x, ;) + d(y:,0) <
d(x;,0), pero d(z;,0) < d(z;,y;) +d(yi, 0) < d(z;,0), lo que es una contradic-
cién. Ast d(x;,y;) > d(z;,0) — d(y;, 0). Por lo tanto

w(z+y) = Zd(:vi,yi) > Zd(azi, 0) = d(y:,0) = w(z) — w(y)

Proposiciéon 10.14. Si C es un cddigo lineal entonces d(C) = w(C).

Demostracion. Usando la definicion de distancia minima existen z,y,z € C'
con x #yy z#0 tales que,

d(C) = d(z,y) = w(z —y) = w(C)
puesto que x — y es un elemento de C, por otro lado
w(C) =w(z) =d(z,0) = d(C)
m
Ejemplo 10.15. Sea Z3 y el cédigo lineal binario C' = {0000, 1000, 0100, 1100}.

w(1000) = 1.
w(0100) = 1.
w(1100) = 2.
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Por lo tanto, d(C) = 1.

En teoria de cédigos una base para un cédigo lineal es a menudo re-
presentado en la forma de una matriz, llamada una matriz generadora,
mientras una matriz que representa una base para el codigo dual es llamada
una matriz checadora de paridad.

Definicién 10.16. Sea C un [n,k,d]-cédigo con ci,ca, ..., c; una base. Una
matriz generadora de C es una matriz G € My, (F,) definida por

C1
Co

Ck
cuyas filas forman una base para C.

Observaciéon 10.17. Notemos que G siempre existe y tiene rango k. Obser-
vemos que G genera a C', es decir,

C ={uG:ueFt}
n
Sea {ci,...,cr} una base de C' y ¢; = Zcijej para ciertos c;; € F,, con
j=1
e1,...en la base candnica de Fy. Siu € IF’;, entonces uG € C', pues

C1
C2

uG = (ul,u2,...,uk) ' =

Ck

k k n k k n k
= (Z UiCi1y v-vy Zuzczn): Z(Z uicij)ej: Zuz(z cijej):z U;C; .
i=1 i=1 i=1 7=1 i=1

j=1 i=1
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k
Reciprocamente, si c € C', existen inicos uy, ..., uy tal que ¢ = Z u;c;. Luego,
i=1
tomando u = (uy, ..., uy) € IF’; se cumple que ¢ = uG.
Por lo tanto, el proceso de representacion de los elementos u € IF’; como
palabras codigo ¢ = uG en C' es llamado codificacion.

Ejemplo 10.18. Sea C' un [5,3]-cddigo lineal binario con matriz generadora

1
G=1|0
0

o = O

110
011
1 01
Como las filas son linealmente independientes, C' tiene rango 3. Ademds

($1 T 353) :($17 Ta, T1+ T3, T1+ T, $2+$3)-

oo
)
—_ O
O~ =
— = O

Entonces el mensaje u = 101 es codificado como 10011.

Definicién 10.19. Sea C un [n,k[-cddigo. Una matriz H sobre F, se dice
matriz checadora de paridad de C' siempre que se cumpla lo siguiente:
Para palabras codigo v = vivy...v, en F"*, v es una palabra cédigo de C' si y
sélo si Hv" = 0T, es decir,

1 0
V2 0
Vs 0
ve C&s H| .| =
_Un_ _O_
Definicién 10.20. 1. Una matriz generadora estda en forma estandar

si es de la forma G = (Iy|A) donde I} es la matriz identidad k X k y
Aeskx(n—k).

2. Una matriz checadora de paridad estd en forma estdndar si es de la
forma (Y|I,,_x) donde I,,_y, es la matriz identidad (n — k) X (n — k).
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Lema 10.21. Sea C' un [n,k]-cddigo lineal sobre F, con matriz generadora
G. Entonces v € Fy pertence a C* si y sélo si v es ortogonal para toda
fila de G. Es decir v € C+ si y sélo si vGT = 0. En particular, dado una
(n—k) xn matriz H, entonces H es una matriz checadora de paridad para C
si y sélo si las filas de H son linealmente independientes y HGT = 0. Donde
GT representa la transpuesta de G.

Demostracion. Sea r; la i-ésima fila de G. En particular r; € C' para todo
1 <i <k, ytodo c e C puede ser escrito como

Cc = )\17’1 +—|—)\k7’k

donde Ay, ..., A\ € Fy.

=] Si v € C*, entonces v - ¢ = 0 para todo ¢ € C. En particular, v es
ortogonal a r; para todo 1 < i < k, es decir vGT = 0.

<] Siv-r; =0 para todo 1 < i < k, entonces para cualquier ¢ = A\jry+ ...+
ATy € C,

vee=Mw- 1)+ ..+ X(v-1rp) =0

Para la ultima afirmacién, si H es la matriz checadora de paridad para C,
entonces las filas de H son linealmentes independientes por definicién. Ya que
las filas de H son palabras cédigo en C+, se deduce de la afirmacién anterior
que HGT = 0.

Reciprocamente, si HGT = 0, entonces la afirmacién anterior muestra que
las filas de H, y por lo tanto el espacio fila de H, estdn contenidos en C*.
Ya que las filas de H son linealmente independientes, el espacio fila de H
tiene dimensién n — &, entonces el espacio fila de H es de hecho C*. En otras
palabras, H es una matriz checadora de paridad para C' [

Observacién 10.22. Una formulacion alternativa pero equivalente para el
Lema 10.21 es la siguiente:

Sea C' un [n,k]-cddigo lineal sobre F,, con matriz checadora de paridad H.
Entonces v € Fy pertenece a C si y sélo si v es ortogonal a toda fila de H;
es decir, v € C si y sélo si vHT = 0. En particular, dado una k X n matriz
G, entonces G es una matriz generadora para C' si y solo si las filas de G
son linealmente independientes y GHT = 0.

Proposicién 10.23. Si G = (I | B) es la matriz generadora en forma

estindar de un [n,k[-cédigo C, entonces una matriz checadora de paridad
para C es H= (—B" | I,_4)
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Demostracion. Sea C' un (n, k)-cédigo con matriz generadora G = (I, | B).
Si L denota el espacio fila de la matriz H de arriba, entonces vamos a mostrar
que C' es el complemento ortogonal de L. Primero observemos que el rango de
la matriz H es n — k, ya que I,_j es una matriz identidad. Por consiguiente,
la dimensién de LT es n — (n — k) = k es igual que la dimensién de C. Por lo
tanto es suficiente mostrar que toda fila g de la matriz G cumple Hg? = 07,
luego se sigue que toda palabra cédigo v de C' también cumple Hv? = 07, es
decir, que C es un subespacio de L. Entonces la igualdad de las dimensiones
implica que C' = L*. Ahora, queremos probar que HG' es la matriz 0. Asi

I
GH" =[-BT"|I'| - | =-B'1T+IB"=-B"+ B =0,
BT

donde I' = I,,_. O

10.1. Equivalencia de cdédigos lineales

A continuacién vamos a dar la definicion tradicional de equivalencia de
codigos.

Definicién 10.24. Dos [n,M]-cédigos Cy y Cy sobre F, son equivalen-
tes, y se denotan por Cy ~ Csy, si existe una permutacion o € S,, de las n
coordenadas y permutaciones my, ..., 7, € Biy(B) del alfabeto, tales que

C1,C2, ..., € C1 81y 5610 51 T1(Co(1))T2(Co2)).Tn(Com)) € Ca.
Una definicién alternativa es la siguiente.

Definicién 10.25. Dos [n,M]-cédigos sobre F, son equivalentes si un
codigo puede ser obtenido de otro por una serie de las siguientes operaciones:

1. Permutaciones en las coordenadas de los codigos.

2. Multiplicacion por algun escalar distinto de cero en alguna coordenada del
codigo.

Ejemplo 10.26. Sea Z3 y consideremos el cédigo C = {000,011, 022}. Per-
mutando la primera y la sequnda coordenada, y sequida por la multiplicacion
por 2 en la tercera coodenada, obtenemos el codigo
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C" = {000, 102,201}

Proposicion 10.27. Todo cidigo lineal es equivalente a un codigo en forma
estandar.

Demostracion. La matriz generadora G de un (n, k)-cédigo lineal C' tiene
rango k, por lo tanto tiene k columnas que son linealmente independientes.
Supongamos que las primera k columnas de G son linealmente independien-
tes, esto es G = [A | B, donde A es una matriz cuadrada de k x k. Luego
aplicando operaciones elementales sobre las filas, las cuales transforman a A
en la matriz identidad. Luego si aplicamos las misma operaciones elementa-

les sobre las filas de GG, obtenemos una matriz G’ = [I | B’]. Ya que G’ es
también una matriz generadora de el codigo C se sigue que C' esta en forma
estandar. ]

10.2. Decodificacién de cdédigos lineales.

A partir de ahora veremos dos formas de tratar de recuperar la palabra
codigo, una vez que ya ha sido enviado por el canar de transmicién. Estamos
hablando de la decodificacion del vecino mas cercano y la decodificacion por
Sindrome.

Definicion 10.28. Sea C' un cddigo lineal de longitud n sobre ¥y y sea u € Fy
cualquier vector de longitud n, definimos la clase de C' determinada por u
como el conjunto

C+u={v+u:vel}.
Ejemplo 10.29. Sea Z3 y C = {000, 101,010, 111}. Entonces

C + 000 = {000,101, 010,111},
C + 001 = {001, 100,011,110},
C + 010 = {010, 111,000, 101},
C + 011 = {011,110, 001, 100},
C + 100 = {100,001, 110,011},
C + 101 = {101,000, 111, 010},
C + 110 = {110,011, 100, 001},
C + 111 = {111,010, 101, 000}.

Notemos que
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C+000=C+010=C+101=C+111=C;
C4001=C+011=C+100=C +110 = Z3/C.

Proposicién 10.30. Sea C' un [n,k,d]-cddigo lineal sobre un campo finito

Fq
1.
2.
3.
4.
5.

. Entonces

Todo vector de ¥y estd contenido en alguna clase de C'.

Si |C| =r, entonces |C +v| =r.

Para todo u,v € ¥y, uw € C'+ v implica que C +u=C +v.
Dos clases son la misma o su interseccion es vacia.

Para todo u,v € Fy, u—v € C si y sdlo siu yv estdn en la misma clase.

Demostracion. 1. Cada elemento x € Fy estd en la clase C' + . En efecto,

2.

C contiene al 0, y z = 0 + x.

Sea C' = {cy,¢2,...,¢,} con ¢; # ¢; para i # j. Toda clase tiene la forma:
CH+zx={ca+z,c0+z, ... ¢ +z}

y ¢i+x # cj+x, parai # j. En efecto, si ¢; +x = ¢+, entonces restando
x obtenemos ¢; = ¢;. Por lo tanto, C' + x tiene r elementos.

Sea x € C'+ u entonces © = ¢ + u para ¢ € C, como u € C' + v entonces
u=c +vparacd € C. Luego x = (c+ ) + v estd en C + v, ya que
c+ ¢ € C. Entonces por 2. C'+u=C +wv.

Si las clases C'+ x y C + y tienen un elemento en comun digamos z,
entonces escribimos z en dos formas

z2=cd+x= +yparad,d €C.

Ahora, demostraremos que todo elemento ¢ de la clase C'+x estd en C'+y;
por simetria llegamos a la conclusiéon de que C + x = C' + y. Expresamos
t como t = ¢+ z para algun c € C. Entonces

t=ct+x=c+ ("= +y)=(c+d =) +y.
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Como C' es un cddigo lineal (¢ + ¢’ — ') € C. Por lo tanto t € C' + y.

5. =] Siu—v € C, entonces existe ¢ € C' tal que ¢ = u—wv, en otras palabras
u=c+v € C+v. Concluimos que u y v estdn en la misma clase v + C.
<] Si u y v estdn en la misma clase, digamos C' + w, entonces u = ¢ + w
para algin ¢ € C y v = ¢ + w para algin ¢ € C. Entonces C contiene
¢ — ¢, y tenemos que

v—v=ct+w—(+w)=c—c eC.
[

Definicién 10.31. Una palabra de minimo peso de Hamming en una clase
es llamado lider de clase.

Definicién 10.32. Sea F?. Una matriz estandar para un [n,k]-cédigo es
una matriz de (¢"* x ¢*) donde,

1. La primera fila contiene todas las palabras codigo.
2. Cada fila tiene una clase con el lider de clase en la primera columna.

3. La entrada en la i-ésima fila y la j-ésima columna es la suma del i-
ésimo lider de clase y la j-éstma palabra cédigo.

Ejemplo 10.33. Las clases para el cddigo C = {0000, 1011,0101, 1110} son
los siguientes:

0000+ C': 0000 1011 0101 1110

0001+ C': 0001 1010 0100 1111

0010+ C': 0010 1001 0111 1100

1000+ C': 1000 0011 1101 0110

La cual forma una matriz estandar.

10.3. Decodificacion del vecino mas cercano
para codigos lineales.

Sea C' un codigo lineal. Asumamos que la palabra codigo v es transmitida
y la palabra w es recibida, resultando en el patron de error.

e=w—-vew+C.



82 Cédigos Lineales

Entonces w—e = v € C, asi por la parte 5. de la Proposicién 10.30, el patron
de error e y la palabra recibida w estan en la misma clase. La decodifica-
cion del vecino mas cernano trabaja de la siguiente manera: Al recibir
la palabra w, escogemos una palabra e de menor peso en la clase w + C'y
concluimos que v = w — e fue la palabra transmitida.

Observacién 10.34. Interpretamos e+C = {e+v | v € C} como el conjunto
de todas las posibles palabras recibidas w = e + v, cuando una palabra codigo
v es enviada y el canal rutdoso agrega el patron de error e.

Ejemplo 10.35. Sea Z3 y C = {0000, 1011,0101,1110}. Decodificamos la
siguiente palabra recibida: w=1101.

Primero, escribimos la matriz estdndar de C, que es exactamente la misma
que en el Ejemplo 10.33:

0000+ C': 0000 1011 0101 1110
0001 +C: 0001 1010 0100 1111
0010+ C': 0010 1001 0111 1100
1000+ C': 1000 0011 1101 0110

w=1101: w + C esta en la cuarta clase. La palabra de menor peso en esta
clase es 1000. Por lo tanto 1101 — 1000 = 1101 + 1000 = 0101 fue la palabra
codigo que mds probabilidad tuvo de ser enviada.

10.4. Decodificaciéon por Sindrome

Definicién 10.36. Sea C' un [n,k,d]-cddigo lineal sobre F, y sea H una
matriz checadora de paridad para C'. Para cualquier w € Fy, el sindrome
de w es la palabra S(w) = wH”.

Proposiciéon 10.37. Sea C' un [n,k,d]-cédigo lineal y sea H una matriz
checadora de paridad para C'. Para u,v € Fy tenemos:

L S(u+v)=S(u)+ S(v)
1. S(u) = 0 si y sdlo si u es una palabra codigo en C.
1r. S(u) = S(v) si y sdlo si uwy v estan en la misma clase se C.

Demostracion. 1. S(u+v) = (u+v)H' =uH" +vH" = S(u) + S(v).



10.5 Cédigos Ciclicos 83

1. Por definicién de sindrome, S(u) = 0 si y sélo si uH? = 0, por la
Observacién 10.22, tenemos que u € C.

1. S(u) = S(v)siysélosi S(u)—S(v) =S(u—v)=0,asiu—v e C. Por
la propiedad 5. de la Proposicién 10.30 u y v estan en la misma clase.
]

Proposicion 10.38. El patron de error tiene el mismo sindrome como la
palabra recibida. Esto es, para cada palabra codigo v y cada patron de error
e la palabra w = v+ e cumple

eH” = wH” (10.1)
Demostracién. Ya que la palabra cédigo cumple v’ = 0 tenemos,
wH? = (v+e)H =vH" +eH" =0+ eH' =eH".
O

Esto ultimo significa que todas las palabras en la clase tienen el mismo
sindrome.

10.5. Cbdigos Ciclicos

En estd seccion vamos estudiar de manera resumida algunas de las pro-
piedades de los codigos ciclicos que son un caso particular de los codigos
lineales. El cual tienen mucho intéres ya que se pueden estudiar con ayuda
de los anillos de polinomios.

Recordemos que si X es un conjunto con n elementos entonces S, = {o :
X — X | o es funcién biyectiva} es el grupo simétrico de orden n!. Recorde-
mos 0 = (1 23 ... n) es ciclo de longitud n.

Definicién 10.39. Sea C' un cddigo lineal, ¢ = (ay,as,...a,) € C y o =
(12...n)€S,, luego definimos

U(C) = (aa(l)a Ag(2)5 -+ aa(n))
= (a2>a37"'7an7a1>-

Decimos que C' es un cddigo ciclico si o(c) € C, para toda ¢ € C.
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Supongamos el cédigo C' sobre un campo [F,. Sea el correspondiente ele-
mento vy, vy, ..., U1 en C' con el elemento v(z) = vy +vix+ ... + v, 12" ' en
el anillo cociente R,, = F,[z]/A donde A es algin ideal de F,[z]. Y recorde-
mos que F,[z] es un anillo de ideales principales lo que significa que podemos
representar A como A = (f(x)).

Si usamos las operaciones de los polinomios para encontrar el primer cambio
ciclico, esto significaria que queremos mover el coeficiente ay a el coeficien-
te de z, a; a el coeficiente de 22 y asi sucesivamente, es decir claramente

debemos multiplicar por x:

a(z)r = (ag + a1z + asx® + ... + 4y 22" 2 + ap_12" )z
= aox + a12% + asx® + ...+ ap_ox™ + a,_ 12"
= ap_ 12" + agr + 12 + asx® + ... + ap_ox™ !

Este resultado corresponde a a,_iaq, ..., a,_o solo si £ = 1. Se sigue que
x™ —1 = 0, por lo que todos los polinomios se ven moédulo 2™ — 1, Por lo
tanto f(z) =a2" — 1y R, =F,[z]/(2" — 1)

Proposiciéon 10.40. Un conjunto de elementos S en R, corresponde a un
codigo ciclico C si y solo si S es un ideal de R,,.

Demostracion. Supongamos que S es un conjunto de elementos de R, que
corresponde a un cédigo ciclico. Entonces si a;(x) y ag(z) estan en S, por la
definicién de un cédigo aq(x) £ as(x) esta en S. Recordemos que el cambio
ciclico corresponde a la multiplicaciéon por x entonces si a(x) esta en S,
entonces a(z)z esta en S. Consideremos a(x) en Sy

n—1
b(x) = Z bix'
i=0
donde b(x) es algin polinomio en R, luego
n—1
a(x)b(z) = Z bia(z)z"
i=0

Pero cada elemento de la suma es un elemento de S, por lo tanto a(z)b(x)
esta en S. Por lo tanto S es un ideal. Si S es un ideal en R, entonces los
polinomios en S corresponde a los vectores en un cédigo ciclico. O
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R,, es un anillo de ideales principales, por lo que un cédigo ciclico C' le
correspondera el ideal (g(z)) para algin g(x) € R,.
En los préximos teoremas daremos informacién acerca de g(x).

Proposicién 10.41. Si C es un ideal de R, = F,[x]/(z" — 1), el cual por
el Teorema 10.40 lo convierte en un cédigo ciclico. Sea g(x) un polinomio
mdnico con el grado mdas pequeno en C. Entonces g(x) es el inico polinomio
manico con el grado mds pequerio y C = (g(z)).

Demostracion. Veamos que R, es un anillo de ideales principales y que el
generador moénico de grado mas pequeno de un ideal es tinico aunque un
ideal puede tener otros generadores.

Primero vamos a mostrar que R, es un anillo de ideales principales. Sea g(z)
el polinomio ménico de grado mdas pequeno en C' # (0), y sea a(z) otro
polinomio en C. Por el algoritmo de la divisién en F [z], a(x) = g(x)b(z) +
r(z) donde gr(r(x)) < gr(g(x)). Por la definicién de un ideal r(z) esta en C
pero esto contradice el hecho de que tomamos a g(z) como el polinomio de
grado mas pequeno, asi r(z) = 0 y entonces a(z) = g(x)b(x). Por lo tanto
R,, es anillo de ideales principales.

Si g(z) y h(x) son polinomios ménicos de el mismo grado y ambos estén en
C, entonces g(x) — h(z) € C es de menor grado. Esto no puede pasar si g(x)
tiene el menor grado. Por lo tanto g(z) es el inico polinomio ménico de grado
méas pequenio en C'y C = (g(z)) O

El siguiente teorema explica como encontrar este generador de un coédigo
ciclico.

Proposicion 10.42. Si C es un ideal en R,,, entonces su unico generador
monico g(x) divide x™—1. Inversamente, si g(x) € C' y divide x™—1. Entonces
g(x) tiene el grado mds pequeno en (g(x)).

Demostracion. Supongamos primero que g(x) es el polinomio ménico de gra-
do mas pequeno en C. Por el algoritmo de la divisién en F,[z], 2" — 1 =
a(z)g(x) + r(x) donde el gr(r(x)) < gr(g(x)) . Ahora r(z) = —a(z)g(x)
modulo (2" — 1), y entonces 7(z) estd en (g(z)). Estd es una contradicciéon a
no ser que r(x) = 0. Por lo tanto g(z) divide 2™ — 1.

Inversamente, supongamos que g(x) divide ™ — 1 y que b(x) esta en (g(x))
pero tiene menor grado que g(x). Entonces b(x) = ¢(z)g(x) + (" — 1)d(z)
en IF,[z] porque b(z) estd en C. Sin embargo ya que g(z) divide 2" — 1, g(z)
divide b(x), el cual es una contradiccion. O
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Juntos, estos teoremas determinan todos los cédigos ciclicos.
Del Teorema 10.40 sabemos que todos los cédigos ciclicos son ideales de
R,. El teorema 10.41 dice que podemos corresponder un ideal (y por lo
tanto un c6digo) con un polinomio en R, finalmente el Teorema 10.42 dice
exactamente cuales polinomios ménicos generan ideales, que son aquellos que
dividen 2™ — 1.

Observacion 10.43. El polinomio ménico de grado mds pequeno g(x) en C
es llamado el polinomio generador de C

Proposicién 10.44. Si C' corresponde a (g(z)) donde g(x) = go+ g1z + ...+
Gz % € R, y el gr(g(z)) es n — k, entonces la dimension de C es k y
una matriz generadora es:

d% g G2 - O 0 - 0
0 g 91 Gnk-1 Gn-k - 0
0O 0 0 - Gn—k

Demostracion. Esto es equivalente a mostrar que los vectores

9(x), g(x)z, g(x)a?, ..., g(x)a"!

en R, son linealmente independientes y generan C'. Supongamos que ellos
no son linealmente independientes. Entonces hay una combinacion lineal de
esos vectores con algunos coeficientes distintos de cero el cual es igual a cero:

ao(g(z))+ar(g(z)x)+...Far_1(g(x)z" ) = (ap+arz+...+ar_ 12" Hg(z) = 0

Pero el gr(g(z)) = n — k, entonces el producto es un polinomio de grado
k—14n—k=mn—1, entonces el polinomio no puede ser 0 modulo 2z — 1 a
menos que todos los a; sean 0. Para ver que los vectores generan, recordemos
que el c6digo es un ideal generado por g(x), entonces todo polinomio puede
ser escrito c(x)g(x) = cog(x) + crwg(x) + ... + et 1g(x). O

Lema 10.45. Sea R un anillo con ideal I y un elemento idempotente a € I.
El elemento a es un generador de I si y solo si actua como la unidad en I.

Demostracion. Supongamos que a es un generador de I. Sea ¢ = ba para
algiin b en R. Ahora ca = (ba)a = b(a?) = ba = c. Entonces para elementos
de I, a actua como la unidad.
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Supongamos a actua como la unidad de I y ¢ € I. Para mostrar que I = (a)
debemos mostrar que ¢ = ba para algin b. Pero esto es tan simple como
¢ = ca porque a es la unidad en I. Por lo tanto a genera I. [

Finalmente, hablemos del c6digo dual de un cédigo ciclico. Notemos que si
g(x) es el polinomio generador de algin cédigo C' entonces z™ —1 = g(x)h(x)
para algtin h(x) porque g(x) divide ™ —1. Ahora h(z) es llamado el polinomio
checador de ', aunque no necesariamente genera el cdédigo dual.

Definicién 10.46. Consideremos un nimero s tal que 0 < s < p™—1. Sea r
el nimero mds pequeno tal que p" s = s(mod p™ — 1). La clase ciclotémica
de s es {s,ps,p’s,...,p"s} donde los elementos son vistos mdodulos p™ — 1.

Proposicion 10.47. Las clases ciclotéomicas particionan el conjunto
{0,1,2,....,p™ — 1}.

Demostracion. Definamos la relaciéon ~ sobre el conjunto tal que z ~ y si
x = p*y(mod p™ — 1) para algtin entero k donde 0 < k < m — 1. Veamos que
esto es una relacion de equivalencia, el cual implica que particiona el conjunto
en clases de equivalencias. Es reflexiva porque = = pz. Es simétrica porque
si x ~ y, entonces © = p*y, lo que implica p™*zx = pmFply = pmy = y,
lo que implica que y = p™ ¥z, es decir y ~ z. Finalmente es transitiva. Si
T ~yyy~ z, entonces v = p*y y y = p'z. Entonces x = pF(p'z) = pFtlz. Y
observemos que k + [, puede ser mas grande que m — 1 pero no es tan grande
como 2m — 2. Si k+1 > m — 1, simplemente factorizamos p™, y notemos que
p™ = 1(mod p™ — 1). Entonces x = p*lz = pmp*tip=™mz = p=m2 lo que
significa que x ~ z lo que prueba la transitividad. O
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Capitulo 11

Anillos Conmutativos Finitos

En esta seccion estudiaremos algunos resultados interesantes de los anillos
finitos y los Anillos de Galois entre los cuales esta que un anillo finito se puede
expresar como la suma directa de anillos locales y el Lema de Hensel que tiene
bastantes aplicaciones en la Teoria de cédigos sobre anillos de Galois.

11.1. Estructura de Anillos finitos conmuta-
tivos

Sean Iy, Iy, I3, ..., I, ideales propios de un anillo R; I; y I, con 1 < j #
k < n se dice que son ideales primos relativos o coprimos si I; + I, = R
donde

Ij—l—lk::{a+b|aeljyb€[k}

Definicién 11.1. Sean {R;}ica anillos conmutativos, consideremos el pro-
ducto infinito de anillos como sigue:

HRi:{f:A%URi|f(i)€Ripamca,dai€A}

i€A icA
Proposicién 11.2. (J],., Ri, +, 0,-,1) es un anillo conmutativo.

Demostracion. Sean f,g € [];c4 Ri, definimos (f + g) : A — (J,c4 Ri como
(f +9)(@) = [(@) + g(i).

1. La funcién cero, 0 € [[,., R; v es tal que 0(i) = Op,.

7
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2. (f+0)(@) = f(i) +0(:) = f(i) + Or, = f(3).

3. Para f € [[,c4 Ri , definimos (—f) : A — [J;c4 Ri como (—f)(i) =
—f(i) y es tal que f + (—f) = 0.

4. Sean f,g,h € [[;c4 Ri

[(f +9) +h](0) = (f + 9)(@) + h(2)
= f(i) + g(i) + h()
= f(i) + (9(i) + h(2))
= [(0) + g+ R]()

Por lo tanto ([, Ri, 0, +) es un grupo abelino.
Para f,g € [[,c4 Ri definimos (f - g)(i) = f(i) - g(2).

L. 1:A— Ujea Ri v es tal que 1(i) = 1p,
Por lo tanto ([, Ri,+, 1) es un monoide abeliano.
(f - (g +h)(@) = f(i) (g + h)(D)
F(@)(g(7) + h())
= [(i)g(@) + F(i)h(i).
Asi que ([[;cq Ris +, 0,-,1) es un anillo conmutativo. ]
Definicién 11.3. Si f € [[,c4 Ri, el sop(f) = {i € A| f(i) # 0}. Definimos

la suma directa como

P R = {f € [[ R | Isop(f)| < oo}

€A €A

Observacién 11.4. Para A finito, es decir |A| =n

i=1

icA
Observacién 11.5. [, R, ={f : {1,..n} = U, Ri | f(i) € R;}.

1. 1 e[, Ri, 1(4) = 1, para todo i € {1,..n}.
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2. Si fell-, Ri, f(i) € Ry, para cadai € A. (f(i))ica = f.
3. Si f(i) = i, [ = (f(i))iea = (i)ica.

Definicién 11.6. Sean I, ..., I, ideales de R, entonces R/I; es un anillo
para j € {1,...,n} definimos

112/
j=1
como el anillo producto.

Observacién 11.7. Podemos definir un morfismo de anillos de R a [[}_, R/1;
de la siguiente forma

f:R— ﬁR/Jj
i=1

T — f(x) = (x -+ [j)jeA
con A={1,...,n}.

Veamos que f es un morfismo de anillos.

1. Sean x,y € R

fla+y) =[x +y)+ Lljea

[(z+ 1) + (v + L)l jea
= (2 + Lj)jea + (Y + Ij)jea
= f(z) + f(y).

2. Sean x,y € R

f(zy) = [(zy) + Lj]jea
= [(z + I;)(y + Ij)ljea
= (z+ Ij)jealy + Ij)jea
= f(x)f(y)-
3. f(lr) = 1+ L);5 € A= 1, rys,

Por lo tanto f es un morfismo de anillos.
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Proposicién 11.8. f es inyectivo si y sélo si (1;_, 1; = {0}.

Demostracion. Recordando la Proposicion 3.17. Basta demostrar que ker f =

ﬂ?:l [J :

1. Claramente (;_, I; C ker f.

2. Seax € kerf, entones f(z) = (A)m;l r/1; = (Ij)jea, por otro lado f(z) =
(x 4+ 1;)jea. Asi que (x + I;)jea = (Ij)jea, es decir, x + I; = I; para
toda j € A, entonces x € I; para toda j € A, por lo tanto z € ﬂ?zl I;

]
Proposicion 11.9. f es sobreyectiva si y solo si I; + I, = R, con | # k.

Demostracion. =] Supongamos que f es sobreyectiva. Sean [;, I, < R con
l#kylkeA Sead €[], R/ tal que & = (7;)ica donde z; = 0+ I;
sii#lyx; =141 st =1 Como ¢ € H?Zl R/I; y f es sobreyectiva,
entonces existe z € R tal que f(x) = §;, pero f(x) = (v + [;)ica = (2;)ica.
Entonces x + I, =1+ 1,y x+ I, =04 I con k # [. De modo que 1 —z € [,
y x € Iy, paratodo k # 1. Asi 1 = (1 —x)+x € I, + I}, con | # k. Por lo
tanto R = I, + I;, es decir, I}, I, k son coprimos.

<] Supongamos que R = I + I, para todo k # [. Sea &; = (x;);ca donde
x; =0+ sii#1lyx; =14 1; sii=1[ Veamos que existe x € R tal que
f(z) = 9;. Entonces uy + vy = 1, para todo k # I, uy, € I, vy € I, entonces

[Toe =110 - wo), (11.1)
kAl k£l
luego 1 — u, = 1 mod I; entonces [[(1 — ug) = 1 mod 1. Por lo tanto

Hvk =1 mod I},
kel

luego [] vx € R, implica f([ 1, ve) = (T[T v + Ij)jea.
Slj:l, Hk,#lvkjL]l: 1+[l
Sij#1, v; € {vg}ru, con v € .

Por lo tanto
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Hk;élvk—i_ljzjj:o—i_lj‘
Es decir f([[,4 vr) = a1

Proposiciéon 11.10. Sea R un anillo finito.

1. 8il; y I, 1 < j # k < n son ideales primos relativos de R entonces:

2. 81 Ij y Iy son primos relativos, entonces asi lo son I7* y I;" para todo
m e N
(Notemos que, si I es un ideal de R, I"™ es la m-ésima potencia, es decir
el ideal generado por los elementos xy - - -, donde x, € I, 1 < k < m).

Demostracion. 1. La demostracion se hara por induccién sobre n.

Para n = 2. Sean I;,I, < R tales que I + I, = R. Es claro que
LI, C NI Seay € I N1y, como Iy + I, = R, entonces 1 € R,
entonces 1 = ay + ag, con a; € I; y as € Iy, multiplicando por y en
ambos lados y = a1y + asy con a;y € 115 para ¢ = 1,2. Por lo tanto
(VRS 11]2.

Fijemos ahora a un ideal de R. Sea I,, < R, y para todo j € {1,...,n},
I; + 1, = R con j # n. Asi para toda j #n, a; +bj =1cona; € I; y
b; € I, por lo tanto

Haj = H(l —b;) =1mod I,
J#n J#n

Yaquel—bj=a;y —b; =(1—-0b;)—1¢€ I, entonces 1 — b; = 1 mod
I,, para todo j # n, asi

[[a-v)=]]) =1
j#n
Sea

n

n—1
115=11
j=1 j=1

n—1
L1, = () LI, = KI,
j=1
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Por demostrar que K + I,, = R.

Para todo j #n, [[;,,a; € I; y [1,4, a5 € ﬂ;:ll L, ast 1 =[], a; €
I,,, entonces 1 — H#n a; = b, para b € I,,, entonces 1 = H#n aj+b, es
decir, K + I, = R. Por lo tanto K1, = K N I, = (;2} I, = (', I;.

=1
2. Por hipoétesis, I; y I}, son primos relativos, asi existen x; € I; y x € I,
tal que z; + z;, = 1. Esto significa que 1 = (1)(1) = (x; + =) (x; +
x) = 5 + i + 2x;25; Hay dos posibilidades: Si x;24 = 0, entonces
inmediatamente se sigue que R = I]2 + I?. De otra manera 2z;x), =
(2 + 23y ) w2 =252 4 22527 € I7 + I7. Por lo tanto, por lo anterior
le I+ I}.
O

Definicién 11.11. Un elemento e de un anillo R es llamado idempotente

si e = e. Dos elementos idempotentes de R, e y f, se dicen ortogonales si
ef =0.

Ejemplo 11.12. Veamos Zg¢ = {0,1,2,3,4,5}
Los elementos idempotentes de Zg son 0,1,3,4, mientras que los elementos
ortogonales son 3y 4.

Proposicién 11.13. Sea R un anillo finito. Las siguientes proposiciones son
equivalentes:

1. R es isomorfo a una suma directa de subanillos R; , 1 < j <n.

2. Emisten elementos idempotentes ortogonales e; tales que

1:Z€j ijgR€j

i=1
3. R es una suma directa de ideales propios I; = R;, 1 < j<mn

Demostracion. 1. =]2. Por hipdtesis existen e; € R;, paratodo j € {1,...,n},
tal que 1 = 2?21 e;. Si consideramos e como un elemento del anillo R, en-
tonces e, = Z;'L:1 ere; lo cual significa egye; = dijex, donde dy; es la delta de
Kronecher, lo que significa que las e}s donde 1 < 57 < n son elementos idem-
potentes ortogonales de R. Més ain, RR; es el ideal principal de R generado
por e;

2. = 3.

Por el paso anterior, todo R; es un ideal de R.

3. = 1. Es claro. O
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Proposicion 11.14. Un anillo finito R puede ser expresado como una suma
directa de anillos locales.

Demostracion. Sean Py, Py, ..., P, ideales primos de R, es decir Spec(R) =
{Py, ..., P,}. Por las Proposiciones 6.8 y 1.17, R/P; es un campo, luego por
la Proposicién 6.6 cada P; con i = {1,...,n} es ideal méximo de R, es decir
spec(R) = specm(R). De modo que, el radical de Jacobson coincide con el
nilradical de R. Por ser maximos los Py's, 1 < ¢ < n, se tiene que todo par
de ideales (P}, P;), 1 < j # k < n, es un par de ideales coprimos de R, asi
Nj=1 &5 = [[;=, P;- Ya que J(R) es un ideal nilpotente existe mo € N tal
que J(R)™ = {0}. Definimos el morfismo de anillos.

¢o: R— R/P™ & ..& R/PM™ (11.2)

de forma natural. Lo que probamos en las Proposiciones 11.10, 11.8 y 11.9,
nos asegura que ¢ sea un isomorfimo, ya que cualquiera dos ideales ijo,
1 < j < n, son coprimos y ker(¢o) = (V;_, P;* = [[[_, P = J(R)™ =
{0}. Este isomorfimos determina una biyeccién entre los ideales propios del
anillo R/ ijo, 1 < j < ny los ideales propios de R. Ya que P; es el tnico
ideal maximo de R tal que P;" < P; < R, entonces por el Teorema de la
correspondencia 12/ P es un anillo local con ideal maximo P;/P;™. Asuma-
mos que existen dos descomposiciones distintas de R como una suma directa

de anillos locales. . .
=@ -Gs.
j=1 k=1

Entonces existen elementos idempotentes ortogonales e; € R; v fi € Sk,
1<5<n,1<k<m,tal que

n m
1= Zej = ka
j=1 k=1

Cada sumando propio R; es isomorfo a un anillo local Re;, analogamente,
cada S es isomorfo a un anillo local Rf. De ahi, ningtino de los elementos
e; v fir es una suma de dos o mas elementos idempotentes propios, de hecho,
en general, un anillo local no contiene elementos idempotentes diferentes
de 0 y 1, ya que su radical de Jacobson es el ideal maximo. Por lo tanto
ej = Y pe, € fr, asi existe un entero k; tal que e; = e;fr; v, analogamente,
existe un entero ji tal que fr = fre;,, 1 < j <n,1 <k < m. Esto significa
que
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¢j = ¢jfr; = ejfkjejkj7
asi j = ji, como los elementos {e;}1<j<, son mutuamente ortogonales. [

Proposicién 11.15. Sea R un anillo y A = {r € R : r no es unidad }
Entonces son equivalentes las siguientes condiciones.

1. Para todo ri,mo € A, 11 + 19 € A.
1. A es un ideal.
11. A es el ideal mayor propio de R.
1v. Emiste un ideal mayor propio de R.
V. Para todo r € R, r es unidad o (1 — ) es unidad.

Demostracion. i) = ii) Basta con que veamos que, es cerrado bajo el pro-
ducto con elementos del anillo, es decir. Para todo a € A y r € R entonces
ra € A. Supongamos ra ¢ A, eso significa que ra es unidad, entonces existe
u € R tal que 1 = (ar)u = a(ru) lo que implica a es unidad, pero esto es una
contradiccion. Por lo tanto ra € A.

ii) = iii) Tomemos B ideal de R. Por demostrar que B C A, supongamos
que no se cumple B C A. entonces existe b € B tal que b ¢ A. como b ¢ A
implica que b es unidad entonces existe u € R tal que bu = 1 luego como B
es ideal y b € B se sigue que 1 € B.

iii)= iv) Es evidente.

iv)=- v) Sea C el ideal mayor propio de R. Sea r € Ry supongamos ry 1 —r
no son unidad, entonces r € Ay 1 —r € A/ luegor e Cy1—r e C. Asi
1 € C, lo que es una contradiccién.

v) = i) Sean 11,79 € Ay supongamos r; + 1y ¢ A, entonces existe u € R tal
que (11 + ro)u = ru + rou = 1 asi que mu = 1 — ryu, ademés por la prueba
de i) = ii) mu € A, entonces 1 — ru € A, pero si 1 — ryu € A implica que
1 — rou no es unidad, entonces rou es unidad, pero rou € A es decir rou no
es unidad. Lo que es una contradiccion. O

Definicién 11.16. Un anillo R es llamado de Galois si es finito, local y su
ideal mdzimo esta dado por (p) donde p es primo.

Proposicién 11.17. El anillo Z,» es un anillo de Galois.
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Demostracion. Mostraremos que (p) es el inico ideal maximo. Consideremos
el morfismo

¢ Ln — Ly,
a mod p" — a mod p

el cual se puede ver que es sobreyectiva. Observemos que ker(¢) = (p).
Usando el primer teorema para isomorfismos para anillos tenemos que

L [ (p) = Zy.
Por la Proposicién 6.6, vemos que (p) es maximo. Para mostrar la unicidad,
supongamos M fuera otro ideal méximo distinto de (p). Notemos que p ¢ M.
Supongamos que p € M. Entonces (p) C M con (p) # M significa que M
contiene propiamente a (p). Ya que (p) es maximo, esto implica M = Z,». Un
ideal maximo es un ideal propio por definicion, pero esto es una contradiccion
que muestra que p ¢ M. Nuevamente por la Proposicién 6.6, Z, /M debe
ser un campo. Ya que M es un ideal propio, 1 ¢ M y entonces 1 + M # 0.
Ya que todos los campos tienen caracteristica un primo, en este caso p, esto
implica pl + M = M de modo que p € M. Esta contradiccién prueba la

unicidad de (p). Por lo que Z,» es un anillo de Galois.
O]

11.2. Propiedades importantes de anillos de
Galois

Lema 11.18. Sea R un anillo finito, local con un unico ideal mdximo M. Si
I es un ideal propio de R, entonces I C M.

Demostracion. Supongamos que I no es un subconjunto de M. Entonces
hay algin a € I tal que a ¢ M. Por lo tanto (a) € M. Si (a) es méximo,
entonces contradice la unicidad de M . Entonces debe haber algin ideal Ay,
tal que (a) C Ay, si A; es maximo, nuevamente contradice la unicidad de
M. Continuando inductivamente debe haber siempre un ideal mas grande.
Pero R es finito, entonces esta cadena de ideales debe ser finita, es decir hay
algtin ideal A, final, el cual otra vez contradice la unicidad de M. Por lo
tanto I C M ]

Proposicion 11.19. Sea R un anillo de Galois cuyos divisores de cero junto
con 0 forma un ideal principal (pl) para un nimero primo p. Entonces (pl)
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es el unico ideal mazimo de R, R/(pl) es un campo de caracteristica p. La
caracteristica de R es una potencia de p.

Demostracion. En un anillo finito todo elemento distinto de cero el cual no es
un divisor de cero es una unidad. Por lo tanto (pl) es el tnico ideal maximo
de R. Denotamos el morfismo sobreyectivo natural f : R — R/(pl) tal que
f(r) =7+ (pl). Entonces p(1 + (p1)) = p+ (p1) = 0+ (p1). De ahi R/(p1)
es un campo finito de caracteristica p. Sea k la caracteristica de R, es decir,
k1 =0, luego

0+ (pl) = f(k1)
=k+(p1)
= (k+ (p1))(1 + (p1)).

De ahi p | k. Asumamos que k = p°l, donde s,[ son enteros positivos y su
m.c.d(p,l) = 1. Sil > 1, entonces a = p°l y b = [1 elementos distintos de
ceroen Ry ab=0. Asi l1 € (p1) y I(1+ (p1)) =1+ (pl) = 0+ (pl). Pero
R/(pl) es de caracteristica p, asi p | [, lo que es una contradiccién, ya que
m.c.d(p,l) = 1. Por lo tanto | = 1y k = p°.

m

Proposiciéon 11.20. Sea R un anillo finito, local con un unico ideal mdaximo
M. Un elemento x € R es una unidad si y sélo si v ¢ M.

Demostracion. La demostracién se hard por contrareciproca. Supongamos
que x € M, deseamos mostrar que z no es unidad. Observemos que (z) C M.
Por lo tanto para todo r € R tenemos que rz € M. Ahora 1 ¢ M porque de
otra forma M no seria un ideal propio. De ahi no podemos tener un elemento
y € M tal que xy = 1. Reciprocamente, supongamos que = ¢ M. Entonces
el ideal (x) € M. Por el Lema 11.18, sin embargo, M contiene todos los
ideales propios de R. Por lo tanto, debemos tener (z) = R, lo que implica
que 1 € (x), asi hay un y € R tal que xy = 1. O]

La proposicién 11.20 nos dice como deben ser las unidades de un anillo
de Galois.

Lema 11.21. El conjunto de los elementos nilpotentes forman un ideal.
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Demostracion. Notemos que N es distinto del vacio ya que 0 € N. Sea
N = {a € R| d* = 0, para algiin k € N}. Entonces sir € Ry a € N,
tenemos (ra)® = r*a* = r*0 = 0. Ahora supongamos que a,b € N, entonces
existen enteros n y m tal que a® = b™ = 0. Consideremos a’b"t™J si j >n
entonces @/ = 0 asf a/b"*™ =7 = 0, mientras si 0 < j < n entonces "+t =
asi a’b"™™J = 0. Por lo tanto por el Teorema del Binomio se tiene que
(a+b)"*™ =0,asia+be N. O

Como se vio en el Lema 11.18, N C M. Veamos que M C N, mostrando
que N =M.

Proposicion 11.22. FEl conjunto de elementos nilpotentes en R es exacta-
mente el ideal maximal M.

Demostracion. Sea N es el ideal de elementos nilpotentes. Ya sabemos que
N C M. Por demostrar que M C N. Ya que M = (p), esto es equivalente a
mostrar que si un elemento de R es divisible por p , entonces este también
es nilpotente. Recordemos que la caracteristica de R es p* para algin k € N,
asi p¥ = 0, mostrando que p es nilpotente. Entonces si a es divisible por p,
tenemos a = bp. Esto implica que a es nilpotente, ya que

a® = (bp)* = b*p*F =0 =0

Otro hecho 1til es

Proposicion 11.23. Para todo anillo R, siu es una unidad y a es nilpotente,
entonces u + a es una unidad.

Demostracion. El inverso de u + a esta dado por (u*~! — uf72a + ... +
(—=1)*ta* 1) (u~1)* donde k es tal que a* = 0.

(u+a)(u "t —uf a4 4 (1)) (R

— (uk+uk_1a—uk_1a+...+(—l)k_2uak_1+(—1)k_1uak_1+(—1)k_1ak)(u_1)k
— (uk + (_1)kz—1akz)(u—1)k
— (W) =1
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Con frecuencia consideraremos anillos de polinomios sobre anillos de Ga-
lois, por lo que debemos estudiar algunas propiedades.
Con la Proposicién 11.23 se puede demostrar lo siguiente :

Proposicién 11.24. Sea f(z) = aya1x + ... + apz® un polinomio en Rlx].

Entonces f(z) es una unidad en R[x] si y solo siag ¢ M y ay,...,a, € M.

Demostracion. Supongamos que f(z) es unidad. Y sea ¢ : R[z] — Rlz]/M
un morfismo que toma los coeficientes de polinomios a sus correspondientes
clases en R/M. Ya que R/M es un campo, las unidades de R[x]/M son los
polinomios constantes a + M. Ahora si f(z) es una unidad en R|x], entonces
Y(f(z)) es también una unidad. Esto es porque si f(z)g(z) = 1, entonces
L+ M =4(1) = (f(x)g(x)) = ¥(f(2))¢(g(x)). Usando este hecho ¢(f(x))
sigue siendo una unidad en R[z], significa ¥(f(x)) = ¥(aop) + ¥(a1)z + ... +
Y(ag)x® = ag+ ... + apx® + M, es constante y distinto de cero. Por lo tanto,
ag ¢ M y el resto de los coeficientes estan en M.

Ya que ap ¢ M esto significa que ag es unidad en R , asi como en R[z].
El elemento a;z + ... + axx® es nilpotente en R[x]. Ya que R[x] es un anillo
unitario, la Proposicién 11.23 implica que f(z) = ap+ a1z + ... + axz"® es una
unidad también. O

Proposicién 11.25. f(x) € R[z] es un elemento nilpotente en R|x] si y sdlo
st ag, ..., a, son nilpotentes.

Demostracion. =] Como f(z) es nilpotente, 1+ f(x) es una unidad en R[z].
Por la Proposicién 11.24, a4, ..., a, son nilpotentes en R mientras 1 + ag €
U(R). Por lo tanto para n lo suficientemente grande, f" = 0, implica que
ag = 0, asi ag es nilpotente también.

<] Sin; € N es tal que a?j =0,0<j<nymn;> 2, definiendo

ni= (3 onj) —n

tenemos f(z)™ = 0. De hecho, f(z)" es una combinacién lineal, con coefi-
cientes enteros, de productos de la forma

To 71

Tt T k+
(IO CLI <Ay ...a/n”l'

tal que Z?:o r; = n, para cada 0 < k; < nn.
Ya que no podemos simultaneamente tener r; < n;, para cada j, cada uno
de estos productos es cero. O
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Proposicién 11.26. Sea R un anillo. f(z) € R[x] es un divisor de cero si
y sdlo si existe un elemento 0 # a € R tal que af(x) = 0.

Demostracion. =] Escojamos un polinomio particular g € {h € R[z] | h #
0,hf = 0} # 0 con grado minimo. Digamos g(z) = by + bz + ... + bpz™
con b, # 0. Afirmamos que b,,f = 0. De lo contrario existe un entero r €
{0,1,...,n} tal que b,a, # 0 asi que b,,a; = 0, para todo i € {r +1,...,n}.
Entonces,para todo i € {r + 1,...,n}, tenemos a;gf = 0 y el grado de

a;g = a;(byp + b1z + ... + b z™)
= a;by + a;bir + ... + aibm_lxm_l

es menor que el grado de g. Por nuestra eleccion de g, sabemos que a;g = 0
para todo ¢ € {r + 1,...,n}. Pero entonces tenemos

0=fg="(ao+ ...+ aa" + a12" + ...+ a,a™)g
=(ap+ ... + a,x")g
= (ap+ ... + a,2")(bo + ... + bpx™),

lo cual fuerza a,b,, = 0, lo cual es una contradiccion.
<] Se cumple por definicién. O
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Capitulo 12

Polinomios regulares en el

anillo R [z/

En esta seccion seguiremos con nuestro estudio del anillo de polinomios
pero esta vez vamos a considerar a R como un anillo finito, local y conmu-
tativo con ideal maximo M tnico y campo residual K = R/M.

El 7 : R — K morfismo sobreyectivo natural se extiende a un morfismo de
anillos de polinomios.

i Rlx] — K|x]

Definicién 12.1. Sea A un anillo conmutativo, un ideal I de A es llamado
primario si I # A ademds cuando xy € I y x ¢ I entonces y™ € I, para
algin n € N.

Definicién 12.2. Sea f y g elementos de R[x]
1. f es regular si no es un divisor de cero.

2. f es primario si (f) es un ideal primario.

3. [ y g son primos relativos si R[z] = (f) + (g).

Proposicién 12.3. Sea f(z) = ag + a1z + ... + a,z™ un elemento de R[z],
las siguientes condiciones son equivalentes:

1. f es una unidad.

2. u(f) es una unidad en Klz].

103
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3. ag es una unidad en R y aq, ..., a, son nilpotentes.

Demostracion. 1. = 2. Si f es una unidad, entonces existe un polinomio g
tal que fg = 1. Consecuentemente, 1 = (1) = u(fg) = pu(fu(g), ast p(f)
es una unidad.

2. = 3. Las tnicas unidades en K[z] son los polinomios constantes u(f) = c,
asi por definicion de p, los coeficientes a1, 1 < ¢ < n, deben pertenecer a M,
es decir son nilpotentes, ag es de la forma ag = ¢+ h, donde h es un elemento
nilpotente y ¢ es una unidad; por lo tanto aq es invertible.

3. = 1. Es una consecuencia de la Proposicién 11.24. O

Proposicién 12.4. Sea f(x) = ag + a1 + ... + a,2™ un polinomio en R[x]
lo siguiente es equivalente:

1. f es nilpotente.

2. u(f) =0.

3. ag,...,a, son nilpotentes en R.
4. f es un divisor de cero.
5. Exite un elemento a € R\ {0} tal que af(x) = 0.

Demostracion. Las implicaciones 2. < 3. y 3. < 4. se siguen del hecho que
R es local y finito, asi es suficiente mostrar que 3. es equivalente a 1. y 5.

Por la Proposicién 11.25, f(z) es nilpotente si y sélo si sus coeficientes son
nilpotentes. La implicacion 3. = 5. se sigue de la proposiciéon 11.26 ya que,
si f(z) es nilpotente, entonces este es un divisor de cero. Veamos 5. = 3.
Supongamos que existe a € R\ {0}, que por hipdtesis cumple aa; = 0 para
todo 0 < 7 < n, de manera que todos los a; son divisores de cero en R; Por
lo tanto por la estructura de R, ellos son nilpotentes. O

Proposicién 12.5. Sea f(x) = Y. a;x" un polinomio en R[x]. Las siguien-
tes condiciones son equivalentes:

1. f es reqular.
2. Bl ideal generado por ag,aq, ...,a, coincide con R.

3. a; es una unidad en R para algin i, 0 <1 < n.
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4. u(f) #0.

Demostracion. 1. = 2. Se sigue de 12.4 (3); de hecho, existe un subindice
i € {1,...,n} tal que a; es una unidad en R.

2. = 3. Obvio.
3. = 4. Obvio.
4. = 5. Si p(f) # 0, entonces f no es un divisor de cero en R[z]| (ver 12.4
(4))- O

Si A es un ideal de un anillo R, escribimos A[z]| para denotar el subanillo
de R[z| definido por

Azl ={ag+ mz+ ... + a2 |n > 0,0, € A,0<i<n}
Proposicion 12.6. Sea R finito, local y M su ideal mdzimo. Entonces

1. M[z] = ﬂ P, donde P es un ideal primo en R[z].
PeR|x]
2. Mlz] = {f(z) € R[z] | g(x)f(x) + 1 tiene un inverso, para todo g(x) €
Rlal} = J(Rx]).
Demostracion. 1. Por la Proposicién 12.4,
Mlz] ={f(z) € R[z] | f(z) nilpotente} = Nil(R[z]).

2. Sea f(x) € M|[zx]; ya que M|[z] es un ideal en R[z], g(z)f(x) es nilpotente,
para todo g(z) en R[z]|. De ahi, M[z] C J(R]z]). Por otro lado, si f(z) €
J(R[z]), donde f(z) = Y i ,a;x" con a; € R, entonces xf(z) + 1 tiene un
inverso [

Proposicién 12.7. Sea f un elemento de R|x], donde R es un anillo local,
finito y sea pu(f) = gi...Gn, donde gi...g, € K[x] son polinomios primos rela-
tiwos disjuntos en el dominio euclidiano K[z]. Entonces existen polinomios
g1, -, gn € Rlx| tal que

1. g1, ..., gn SON primos relativos disjuntos en R[z].
2. 1(gi) = gi, 1 <i <.
3. f =915 9n-

Demostracion. Por induccidén sobre n. Para n = 2 tenemos
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f = hlhz +U,

donde v € M[z]y u(h1) = g1, p(he) = g2. Ya que g1 y g2 son primos relativos
si y sélo si hy y hy son primos relativos en R|x], asi existe A\; y Ay en R[z],
tal que

>\1h1 + )\ghg =1
Poniendo

hl,l = hl + )\2?],
hQ,l = hz + )\Q'U

da
h1’1h2,1 - f + )\1)\21)2.

Por lo tanto f = hy 1he1(mod v?)., con u(hi, 1) = p(hy), i = 1,2y hy1, has
primos relativos. En este punto podemos repetir el argumento aplicando esto
a hi1 y hoy; Por iteracién, podemos encontrar 2 polinomios hy, y hey en
R]z], para todo entero positivo tal que

f=hig, h2,t0mod(v2t)

p(hiyt) = p(h) coni=1,2.

Obtenemos la afirmacién (para el caso n = 2) eligiendo g; = h;, tg, 1 < i < 2.
En general, si u(f) = ¢1...gn, es suficiente observar que g; es primo relativo
a g, 2 <1 <mn,asi {q,..., g} son primos relativos disjuntos. Poniendo
r = ga...gn n0s da p(f) = gir el cual completa la prueba. O
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