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LICENCIATURA EN MATEMÁTICAS
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PRESENTA
Luis Felipe Munguia Aca

DIRECTORES DE TESIS
Dr. Iván Fernando Vilchis Montalvo

PUEBLA, PUE. FECHA: FEBRERO 2019





Dedicatoria
A mis padres.

Por haberme apoyado en todos estos años de la carrera, por confiar en mı́, y
por siempre estar al pendiente de mı́.
A mi maestros.
Dr. Iván Fernando Vilchis Montalvo por haberme aceptado como su alumno,
por su apoyo, su amistad, sus consejos, y por la inspiración a seguir en el
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Esté trabajo de tesis fue logrado gracias a la participación de varias per-
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Introducción

El estudio de los anillos finitos conmutativos, además de tener un cierto
intéres en el aspecto teórico tiene bastantes aplicaciones, una de las cuales
es la teoŕıa de la codificación. En este trabajo nuestra intención es dar una
introducción sutil a los temas de la teoŕıa de códigos y de los anillos conmu-
tativos finitos.
Aśı, por lo anteriormente dicho, estás notas hablarán sobre la teoŕıa de códi-
gos. En el d́ıa a d́ıa convivimos con muchos códigos aunque no nos demos
cuenta. Por ejemplo, los más comunes son el código de barras, el ISBN usado
en los libros y el código ASCII usado en las computadoras. Quizá los primeros
códigos usados son el código Morse, usado en la telegraf́ıa desde el siglo XIX,
y el sistema Braile para no-videntes. Además cualquier artefacto tecnológico,
que transmita o almacene mensajes, imagenes o sonidos, involucra al menos
un código. Por mencionar a algunos, tenemos las computadoras, celulares,
satelites, C.D’s, D.V.D’s, etc.
La situación en la que nos vamos a encontrar es la que muestra la Figura
1: Supongamos que queremos enviar un mensaje x. La idea es que, antes
de enviarlo, codifiquemos el mensaje x como c. Lo común, es reescribir el
mensaje (en el caso no trivial) en forma diferente incluso usando un alfabeto
distinto, pero nosotros lo haremos bajo determinadas reglas. Una de ellas es
que cada mensaje (palabra) no puede tener más de una palabra código en el
código. Además debemos añadirle a x información redundante, de tal forma
que si en el canal de transmisión se produce ruido r y el receptor en vez de c
recibe un mensaje alterado c’=c+r sea, a pesar de todo, capaz de recuperar
el mensaje original y si no al menos el más probable.

Figura 1: Figura 1

Supongamos la siguiente situación concreta: Imaginemos que somos los
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encargados en el cambio de v́ıas de un tren, que manejamos a control remoto
desde nuestra cabina por medio de un canal que transmite impulsos eléctricos
de dos voltajes distintos, que denotaremos por 0 y 1 respectivamente. El
cambio de v́ıas puede hacer que el tren siga su curso normal, gire a la derecha,
a la izquierda o incluso regresar por donde vino. Luego, nuestros mensajes
son N , R, D e I. Y los codificamos por ejemplo:

N → 10, R→ 01, D → 00, I → 11

Ahora supongamos que necesitamos que el tren tome la v́ıa de la derecha.
Enviamos el mensaje 00. Si ocurre una interferencia en la transmisión hace
que el cambio de v́ıas reciba 01, es decir que regrese. El problema está en
nuestro código

C = {00, 01, 10, 11}

que no detecta errores. Ya que, si hay un error en la transmisión, la palabra
recibida es otra palabra código. Para tratar de arreglar esto, podemos agregar
redundancia por ejemplo agregando un d́ıgito extra a cada palabra código de
modo que la suma de los d́ıgitos de cada palabra código sea 0 o par. Aśı el
nuevo código será el siguiente:

C ′ = {000, 011, 101, 110} ⊂ Z3
2

Por lo tanto si enviamos el mensaje 000 y se recibe digamos 010. Como la
palabra código no pertenece al código, se detecta un error, no se produce el
cambio de v́ıa, y por lo tanto podŕıamos volver a intentar mandar el mensaje.
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Caṕıtulo 1

Algunos resultados básicos de
álgebra

Primero vamos a recordar algunos conceptos básicos del álgebra, en par-
ticular la teoŕıa de los anillos conmutativos finitos que es la base para el
desarrollo de la teoŕıa de códigos.
De ahora en adelante, consideraremos a R como un anillo conmutativo con
unidad.

Definición 1.1. Un subconjunto S de un anillo R es un subanillo de R si

1. 1 ∈ S.

2. Si a, b ∈ S, entonces a− b ∈ S.

3. Si a, b ∈ S, entonces ab ∈ S.

Ejemplo 1.2. El conjunto

S = {
[
a 0
b c

]
| a, b, c ∈ Z}

es un subanillo del anillo M2×2(Z).

Definición 1.3. Un elemento a en un anillo R es llamado un divisor de
cero si a 6= 0 y si existe 0 6= b ∈ R tal que ab = 0.

Ejemplo 1.4. En el anillo Z6, los elementos 3 y 4 son distintos de la clase
0, pero (3)(4) = 12 = 0 en Z6, por lo tanto 3 y 4 son divisores de cero.

1



2 Algunos resultados básicos de álgebra

Definición 1.5. Sea R 6= {0} un anillo. Decimos que R es un dominio
entero si no contiene divisores de cero no triviales.

Ejemplo 1.6. (Z,+, ·)

Definición 1.7. Un elemento 0 6= x ∈ R es nilpotente si xn = 0 para algún
entero positivo n.

Ejemplo 1.8. 1. En el anillo Z9, el elemento 3 es nilpotente, ya que 3
2

=
32 = 9 = 0.

2. Un elemento nilpotente es un divisor de cero en R, siempre que R no sea
el anillo trivial, es decir, R = 0.

Definición 1.9. Sea u ∈ R, decimos que u es unidad si exite v ∈ R tal que
uv = 1, denotamos v = u−1.

Ejemplo 1.10. En el anillo de los enteros, Z, las unidades son precisamente
1 y −1.

Definición 1.11. El subconjunto de R

U(R) := {x ∈ R | ∃ y ∈ R tal que xy = yx = 1}

es un grupo multiplicativo con respecto al producto en R, y sus elementos son
llamados las unidades de R.

Ejemplo 1.12. En Z, U(Z) = {1,−1} ∼= Z2. Donde el isomorfismo es de
grupos abelianos.

Definición 1.13. Un anillo R 6= {0} es un campo si todo elemento no cero
es unidad. Es decir, U(R) = R∗ := R \ {0}.

Para este trabajo denotaremos a los campos por F. Diremos que Fq es un
campo finito si tiene un número q de elementos, donde q ∈ N.

Ejemplo 1.14. Los ejemplos más comunes de campos infinitos son Q,R y
C y el ejemplo más común de campo finito son los enteros Z mod p denotado
por Zp.

Definición 1.15. Un subcampo de un campo F es un subanillo k de F que
es también un campo.
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Proposición 1.16. Todo campo es un dominio entero.

Demostración. Ya que ab = 0 y a 6= 0 implica que b = 1b = (a−1a)b =
a−1(ab) = a−10 = 0.

Proposición 1.17. Todo dominio entero finito es un campo.

Demostración. Asumamos que {a1, a2, ..., an} son los elementos de un domi-
nio entero finito R. Para un elemento 0 6= a ∈ R consideremos todos los
productos {aa1, aa2, ..., aan}. Estos son distintos, porque si aai = aaj, enton-
ces a(ai − aj) = 0, y ya que a 6= 0, tenemos que ai = aj. Se sigue que cada
elemento de R es de la forma aaj; en particular, existe h ∈ {1, ..., n} tal que
1R = aah. Ya que R es conmutativo, tenemos también 1R = aha, entonces
ah = a−1. Por lo tanto, los elementos no cero de R forman un grupo abeliano
con respecto a la multiplicación.

Ejemplo 1.18. Son equivalentes las siguientes condiciones:

i. Zp es campo.

ii. Zp es dominio entero.

iii. p es primo.

Demostración. i. ⇒] ii. Por la Proposición 1.16.
ii. ⇒] i. Por la Proposición 1.17.
ii. ⇒] iii. Si p no es primo, entonces existen a, b ∈ Z, con 1 < a, b < p, tales
que p = ab. Luego ab = p en Zp implica que ab = p = 0, por lo tanto Zp no
es dominio entero, contradicción.
iii. ⇒] ii. Sean a,b en Zp y p primo. Supongamos que ab = 0, entonces p | ab,
por lo que p | a ó p | b, pero esto significa que a = 0 ó b = 0 en Zp, por lo
que Zp es dominio entero.

Lema 1.19. Sean a, b dos elementos de un campo F entonces,

i. (−1)a = −a.

ii. ab = 0 implica a = 0 ó b = 0.

Demostración. i. (−1)a+ a = (−1)a+ 1a = ((−1) + 1)a = 0a = 0. Por lo
tanto (−1)a = −a, por la unicidad de los inversos.
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ii. Si a 6= 0, entonces 0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

Nota: La condición i. se cumple para cualquier anillo y la ii. se cumple
par cualquier dominio entero.

Definición 1.20. Para un anillo R, un entero n ≥ 1 y a ∈ R denotamos
por na el elemento,

n∑
k=1

a = a+a+a+...+a

Definición 1.21. Sea F un campo, la caracteŕıstica de F es el menor entero
positivo p tal que p1 = 0, donde 1 es el neutro multiplicativo de F. Si tal p
no existe decimos que es de caracteŕıstica 0.

Proposición 1.22. La caracteŕıstica de un campo es 0 o un número primo.

Demostración. Es claro que 1 no puede ser la caracteŕıstica, ya que 1(1) =
1 6= 0. Supongamos que la caracteŕıstica del campo F es p con p = nm con
1 < n,m < p, pero

(n1)(m1)=(
n∑
i=1

1)(
m∑
j=1

1)=(mn)1=p1 =0.

por el Lema 1.19, m1 = 0 ó n1=0. Contradicción.

Proposición 1.23. Si F es un campo de caracteŕıstica p ≥ 0, entonces
pa = 0 para todo a ∈ F.

Demostración. Ya que F tiene caracteŕıstica p, tenemos que p1 = 0, donde 1
es el uno de F. Aśı

pa = p(1a) = (p1)a = 0a = 0.

Proposición 1.24. Sea F un campo y p primo, entonces p divide
(
p
r

)
para

todo 1 ≤ r ≤ p− 1.



5

Demostración. Para p primo,
(
p
r

)
= p!

r!(p−r)! . Ya que
(
p
r

)
es un entero, r!(p− r)!

divide p! para 1 ≤ r ≤ p−1. Como
(
p
r

)
= p

r

(
p−1
r−1

)
, seguidamente multiplicando

por r en ambos lados, tenemos r
(
p
r

)
= p

(
p−1
r−1

)
, aśı p | r

(
p
r

)
, entonces p | r ó

p |
(
p
r

)
. Por lo tanto p |

(
p
r

)
.

Proposición 1.25. Si F es un campo de caracteŕıstica p y a, b ∈ F, entonces
(a+ b)p

n
= ap

n
+ bp

n
.

Demostración. Por el Teorema Binomial

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + ...+

(
p

p− 1

)
abp−1 +

(
n

n

)
bn

Usando las Proposiciones 1.24 y 1.23 concluimos (a+ b)p = ap+ bp. Haciendo
inducción sobre n.

1. Cuando n = 1, entonces (a+ b)p = ap + bp.

2. Supongamos que se cumple para n = k, es decir

(a+ b)p
k

= ap
k

+ bp
k

3. Veamos que se cumple para n = k + 1.

(a+ b)p
k+1

= (a+ b)p
kp

= ((a+ b)p
k
)p

= (ap
k

+ bp
k
)p

= (ap
k
)p + (bp

k
)p

= ap
k+1

+ bp
k+1

.

Proposición 1.26. Sea p ∈ N primo. Un campo finito F de caracteŕıstica p
contiene pn elementos para algún natural n ≥1.

Demostración. Sea p la caracteristica de F. Como 1 ∈ F, tenemos que p1 = 0,
y dado que F es finito, entonces el orden de 1 es igual a p y es tal que p | |F|.
Supongamos que existe q 6= p primo tal que q | |F|. Por el Teorema de Cauchy
existe x ∈ F tal que el orden de x es q, aśı m.c.d(p, q) = 1, lo que implica que
existen s, t ∈ Z tales que sp + tq = 1, multiplicando por x en ambos lados
tenemos que x = s(px) + t(qx) = 0, lo que es una contradicción. Por lo tanto
|F| = pn.
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Caṕıtulo 2

Anillo de Polinomios

En la teoŕıa de anillos conmutativos, el anillo de polinomios sobre un anillo
R es quizás el anillo más importante de está teoŕıa debido a su interdepen-
dencia con los demás conceptos. En particular en este trabajo su importancia
radicará en el estudio de los códigos ćıclicos y en algunos resultados sobre el
anillo de polinomios sobre los anillos de Galois.

Definición 2.1. Sea R un anillo. Una sucesión en R es una función

σ : N −→ R
i 7−→ si

Notamos que σ la podemos representar de la siguiente manera:

σ = (s0, s1, ..., si, ...).

A las entradas si ∈ R, para todo i ∈ N, los llamamos los coeficientes de σ.

Sea τ : N −→ R y σ : N −→ R, donde τ = (t0, ..., ti, ...) y σ = (s0, ..., si, ...).
Decimos que τ = σ śı y sólo si si = ti para toda i ∈ N.

Definición 2.2. Una sucesión σ = (s0, s1, ..., si, ...) en R es llamado un
polinomio si hay algún natural m ≥ 0 con si = 0, para todo i > m, esto es,

σ = (s0, s1, ..., sm, 0, 0, ...).

Un polinomio tiene a lo más un número finito de coeficientes distintos de
cero. El polinomio cero, denotado por σ = 0 es la sucesión σ = (0, 0, ..., 0).

7



8 Anillo de Polinomios

Definición 2.3. Si 0 6= σ = (s0, s1, ..., sm, 0, 0, ...) es un polinomio, entonces
existe sn 6= 0 con si = 0 para todo i > n. Decimos que sn es el coeficiente
principal de σ y que n es el grado de σ, denotado por gr(σ) = n.

El polinomio cero 0 no tiene un grado porque no tiene coeficientes dis-
tintos de cero. Sera conveniente decir que el grado del polinomio cero es el
simbolo −∞ y adoptar las convenciones habituales que −∞ < n para todo
n ∈ N, −∞+ (−∞) =∞, −∞+ n =∞.

Notación Si R es un anillo, entonces el conjunto de todos los polinomios
con coeficientes en R es denotado por R[x].

Proposición 2.4. Si R es un anillo, entonces R[x] es un anillo que contiene
a R como un subanillo.

Demostración. Si σ = (s0, s1, ...), τ = (t0, t1, ...) y γ = (v0, v1, ...) definimos
la suma y la multiplicación respectivamente como,

σ+τ=(s0 + t0, s1 + t1, ..., sn + tn, ...)

y

στ= (c0, c1, c2, ...),

donde ck esta dada por

ck=
k∑
i=0

sitk−i=
∑
i+j=k

sitj

Veamos que R[x] es un anillo.

1. Inverso aditivo.
Si σ = (s0, s1, ..., sn, ...) ∈ R[x], definimos −σ = (−s0,−s1, ...,−sn, ...) ∈
R[x] tal que σ+(−σ)= (s0+(−s0), s1+(−s1), ..., sn+(−sn), ...)= (0, 0, ...,0, ...).

2. Neutro aditivo.
Si σ = (s0, s1, ..., sn, ...) ∈ R[x], y 0 = (0, 0, 0, ...) ∈ R[x], entonces σ+0 =
(s0 + 0, s1 + 0, ..., sn + 0, ...) = (s0, s1, ..., sn, ...).

3. Conmutatividad de la suma.
Sean σ, τ ∈ R[x], entonces σ + τ = (s0, s1, ..., sn, ...) + (t0, t1, ..., tn, ...) =
(s0+t0, s1+t1, ..., sn+tn, ...) = (t0+s0, t1+s1, ..., tn+sn, ...) = (t0, t1, ..., tn, ...)+
(s0, s1, ..., sn, ...) = τ + σ.
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4. Asociatividad.
Sean σ, τ, γ ∈ R[x] entonces σ + (τ + γ) = (q0, q1, ..., qn) donde qi =
si+(ti+vi) = (si+ti)+vi para cada i. Por lo tanto σ+(τ+γ)=(σ+τ)+γ.

5. Conmutatividad del producto.
Sea σ, τ ∈ R[x], luego στ = (c0, c1, ...) donde

ck =
∑

i+j=k
sitj =

∑
j+i=k

tjsi

por lo tanto στ=τσ.

6. Asociatividad del producto.
Sea σ, τ, γ ∈ R[x] con γ = (r0, r1, ..., rn) entonces γ(στ) = γ(c0, c1, ..., cn, ...)
donde

ck =
∑

i+j=k
sitj

luego γ(c0, c1, ..., cn, ...) = (d0, d1, ..., dn, ...) donde

dl =
∑

n+k=l
rnck =

∑
rn(
∑

i+j=k
sitj) =

∑
h+i+j=l

rn(sitj) =∑
i+h+j=l

(rnsi)tj =
∑

k′+j
c′ktj

donde
c′k =

∑
(rnsi).

Por lo tanto γ(στ)= (γσ)τ .

7. Distributividad del producto.
Sea σ, τ, γ ∈ R[x]. Entonces σ(τ + γ) = (c0, c1, ..., ck, ...) donde

ck =
∑

i+j=k
si(tj + rj) =

∑
i+j=k

sitj +
∑

i+j=k
sirj

donde es la entrada k-ésima de στ +σγ. Por lo tanto σ(τ + γ) = στ +σγ.

8. Neutro respecto al producto.
Afirmamos que 1R[x] = (1, 0, 0, ..., 0, ...) tal que si σ = (s0, s1, ..., sn, ...) ∈
R[x] entonces σ1R[x] = (c0, c1, ..., ck, ...) si identificamos 1R[x] = (1, 0, 0, ..., 0, ...) =
(t0, t1, ...tn, ...) se sigue que

ck =
∑

i+j=k
sitj = skt0 = sk

Por lo tanto σ1R[x] = (s0, s1, ..., sn, ...)
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Observemos que el subconjunto {(r, 0, 0, ...) | r ∈ R} es un subanillo de R[x]
que identificamos con R.

Lema 2.5. Sea R un anillo y sea σ, τ ∈ R[x] polinomios distintos de cero,

i. στ = 0 ó gr(στ) ≤ gr(σ) + gr(τ).

ii. Si R es un dominio entero, entonces στ 6= 0 y gr(στ) = gr(σ) + gr(τ).

iii. Si R es un dominio entero, entonces R[x] es un dominio entero.

Demostración. i. Sea σ = (s0, s1, ..., sn, ...) , τ = (t0, t1, ..., tm, ...) ∈ R[x]
con gr(σ) = n y gr(τ) = m respectivamente. Sea στ 6= 0, y supongamos
que gr(στ) = k > n+m = gr(σ) + gr(τ). Consideremos

ck=
k∑
i=1

sitk−i

donde ck es la entrada k-ésima de στ , y aśı tenemos dos casos:

1. Si i > n entonces si = 0, por lo que sitk−i = 0.

2. Observemos que si i ≤ n implica 0 ≤ n − i, luego considerando que
k > n+m, tenemos que k − i > n+m− i ≥ m. Por lo que tk−i = 0
y aśı sitk−i = 0.

Esto implica que ck = 0 para todo k > n + m, contradicción. Por lo
tanto k ≤ n+m.

ii. Afirmamos que cada término en

cn+m =
n+m∑
i=1

sitn+m−i

es 0 ya que:

1. Si i > n, entonces si = 0. Por lo tanto sitn+m−i = 0.

2. Si i < n, entonces 0 < n − i, luego m < n + m − i, por lo que
tn+m−i = 0. Por lo tanto sitn+m−i = 0.
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con la excepción de i = n, que implica cn+m = sntm, ya que R es
dominio entero, sn 6= 0 y tn 6= 0 implica que cn+m 6= 0, donde cn+m

es el coeficiente principal de στ , de ah́ı que στ 6= 0, además gr(στ) =
gr(σ) + gr(τ).

iii. Es consecuencia del inciso 2. Puesto que el producto de dos polinomios
distintos de cero, es distinto de cero.

Definición 2.6. Si R es un anillo, entonces R[x] es llamado el anillo de
polinomios sobre R.

Definición 2.7. Definimos el elemento x ∈ R[x] por

x = (0, 1, 0, 0, ...).

Proposición 2.8. 1. Si τ = (t0, t1, ..., tn, ...) ∈ R[x], entonces

xτ = (0, t0, t1, ....).

2. Si n ≥ 1, entonces xn es el polinomio que tiene 0 en todos los lugares
excepto el 1 en el n-ésima coordenada.

3. Si r ∈ R, entonces

(r, 0, 0, ...)(s0, s1, ..., sj, ...) = (rs0, rs1, ..., rsj, ...)

Demostración. 1. Sean x = (0, 1, 0, 0, ...), τ = (t0, t1, ..., tn, ...) ∈ R[x], luego
xτ = (c0, ..., ck, ...). Si identificamos x = (0, 1, 0, 0, ...) = (s0, s1, ...), enton-
ces c0 =

∑
i+j=0 sitj = s0t0 = 0, y además para k > 0. ck =

∑
i+j=k sitj =

s1tk−1 = tk−1. Por lo tanto xτ = (c0, c1, ..., ck, ...) = (0, t0, t1, ..., tk−1, ...).

2. Por inducción, para n = 1 entonces x = (0, 1, 0, 0, ...), se cumple. Supon-
gamos que se cumple para n = k, es decir xk = (0, ..., 0, 1, 0, ...), donde hay
k ceros a la izquierda del 1. Veamos que se cumple para xk+1 = xkx1 =
(0, ..., 0, 1, 0, ...)(0, 1, 0, 0, ...) = (0, ..., 0, 0, 1, 0, ...) donde hay k + 1 ceros a
la izquierda.

3. Sean r = (r, 0, 0, 0, ...), τ = (t0, t1, ..., tn, ...) ∈ R[x]. Si identificamos a
r = (r, 0, 0, 0, ...) = (s0, s1, ...), entonces rσ = (c0, c1, ..., ck, ...), donde ck =∑k

i=0 sitk−i = s0tk = rtk. Por lo tanto rσ = (c0, ..., ck, ...)=(rt0, ..., rtn, ...).
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Proposición 2.9. Si σ = (s0, s1, ..., sn, 0, 0, ...), entonces

σ = s0 + s1x+ s2x
2 + ...+ snx

n.

donde cada término s ∈ R esta identificado con el polinomio (s, 0, 0, ...)

Demostración. σ = (s0, s1, ..., sn, 0, 0, ...)

= (s0, 0, 0, ...) + (0, s1, 0, ...) + (0, 0, 0, ..., sn, 0...)

= s0(1, 0, 0, ...) + s1(0, 1, 0, ...) + sn(0, 0, 0, ..., 1, 0...)

= s0 + s1x+ s2x
2 + ...+ snx

n

Notación: Identificamos a σ con f(x) = s0+s1x+s2x
2+...+snx

n donde s0

el término constante, sn el coeficiente principal. Si el coeficiente principal sn =
1, entonces f(x) es llamado mónico y n = gr(f). Un polinomio constante
es el polinomio cero ó un polinomio de grado 0.

Definición 2.10. Si R es un anillo y f(x) =
∑n

i=0 six
i ∈ R[x] con gr(f(x)) =

n ≥ 1, definimos su derivada f ′(x) ∈ R[x] por

f ′(x) = s1 + 2s2x+ 3s3x
2 + ...+ nsnx

n−1;

si f(x) es un polinomio constante, definimos su derivada como el polinomio
cero.

Además se cumple lo siguiente:

1. (f + g)′ = f ′ + g′;

2. (rf)′ = r(f ′) si r ∈ R;

3. (fg)′ = fg′ + f ′g;

4. (fn)′ = nfn−1f ′ para todo n ≥ 1.

Proposición 2.11. Sea R un anillo y sea f(x) ∈ R[x].

1. Si (x− a)2 | f(x), entones x− a | f ′(x) en R[x].

2. Si x− a | f(x) y x− a | f ′(x), entonces (x− a)2 | f(x).
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Demostración. 1. Sea f(x) ∈ R[x] y supongamos (x−a)2 | f(x) entonces,
existe g(x) ∈ R[x] tal que f(x) = g(x)(x− a)2. Luego,

f ′(x) = g′(x)(x− a)2 + g(x)(2)(x− a)
= (x− a)[g′(x)(x− a) + 2g(x)].

Aśı x− a | f ′(x).

2. Sean x−a | f(x) y x−a | f ′(x), entonces existen g(x), h(x) ∈ R[x] tales
que f(x) = g(x)(x − a) y f ′(x) = h(x)(x − a), de la primera igualdad
f ′(x) = g′(x)(x− a) + g(x). Entonces

h(x)(x− a) = g′(x)(x− a) + g(x)

luego,

h(x)(x− a)− g′(x)(x− a) = g(x).

Aśı

f(x) = (x− a)[h(x)− g′(x)](x− a).

De ah́ı que f(x) = (x− a)2[h(x)− g′(x)], por lo tanto (x− a)2 | f(x).

2.1. Máximo Común Divisor

Proposición 2.12. Sea F un campo y f(x), g(x) ∈ F[x] donde f(x) 6= 0.
Entonces existen únicos q(x), r(x) ∈ F[x] tales que g(x) = q(x)f(x) + r(x)
con r(x) = 0 ó gr(r(x)) < gr(f(x)).

Demostración. Existencia . Si f(x) | g(x) en F[x], entonces g(x) = q(x)f(x)
para algún q(x) ∈ F[x] y con r(x) = 0. Si f(x) - g(x). Sea A = {g(x) −
q(x)f(x) 6= 0 | q(x) ∈ F[x]}. Notemos que A 6= ∅ ya que si A = ∅ implica
que f(x) | g(x). Luego, por el Principio del Buen Orden existe r(x) ∈ A de
menor grado tal que r(x) = g(x)− q(x)f(x) para algún q(x) ∈ F[x], entonces
r(x) = g(x) − q(x)f(x) 6= 0. Solo resta demostrar que gr(r(x)) < gr(f(x)).
Supongamos que gr(f(x)) ≤ gr(r(x)). Sean f(x) = anx

n+an−1x
n−1 + ...+a0
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y r(x) = bmx
m + bm−1x

m−1 + ... + b0 con gr(f(x)) = n y gr(r(x)) = m
respectivamente. Si n ≤ m se sigue que xm−n ∈ F[x]. Definimos h(x) =
r(x)− a−1

n bmx
m−nf(x) ∈ F[x]. Notemos que h(x) = 0 ó gr(h(x)) < gr(r(x)).

Supongamos que h(x) = 0. Entonces r(x) = a−1
n bmx

m−nf(x), además g(x) =
q(x)f(x) + r(x) = (q(x) + a−1

n bmx
m−n)f(x) lo que contradice f(x) - g(x).

Si h(x) 6= 0, entonces gr(h(x)) < gr(r(x)) y g(x) − q(x)f(x) = r(x) =
h(x)+a−1

n bmx
m−nf(x) se sigue que h(x) = g(x)−(q(x)+a−1

n bmx
m−n)f(x) ∈ A

contradiciendo el hecho de que r(x) es un polinomio de menor grado en A.
Por lo tanto gr(r(x)) < gr(f(x)).
Unicidad. Supongamos que exiten q′(x), r′(x) ∈ F[x] tal que g(x) = q′(x)f(x)+
r′(x), con r′(x) = 0 ó gr(r′(x)) < gr(f(x)), entonces q(x)f(x) + r(x) =
q′(x)f(x) + r′(x), se sigue que (q(x) − q′(x))f(x) = r′(x) − r(x). Suponga-
mos que r′(x) 6= r(x) entonces cada lado tiene un grado. Pero el gr((q(x)−
q′(x))f(x)) = gr(q(x)−q′(x))+gr(f(x)) ≥ gr(f(x)), mientras que gr(r′(x)−
r(x)) ≤ max{gr(r′(x)),gr(r(x))} < gr(f(x)), contradicción. Por lo tanto
r′(x) = r(x) y (q(x) − q′(x))f(x) = 0. Como F[x] es un dominio entero y
f(x) 6= 0, se sigue que q(x)− q′(x) = 0 por lo tanto q(x) = q′(x).

Definición 2.13. Sea f(x) = a0 + a1x + ... + anx
n ∈ R[x]. Un polinomio

define una función polinomial f : R −→ R, tal que a 7→ f(a) = a0 + a1a +
a2a

2 + ...+ ana
n

Definición 2.14. Sea F un campo y f(x) ∈ F[x]. Un elemento a ∈ F es una
ráız de f(x) si f(a) = 0.

Lema 2.15. Sea F un campo, f(x) ∈ F[x] y a ∈ F. Entonces existe un
polinomio q(x) ∈ F[x] tal que f(x) = q(x)(x− a) + f(a).

Demostración. Por la Proposición 2.12, existen q(x), r(x) ∈ F[x], tales que
f(x) = q(x)(x − a) + r(x) con r(x) = 0 ó gr(r(x)) < gr(x − a) = 1. Por lo
tanto r es una constante porque x− a tiene grado 1. Luego evaluando:

f(a) = q(a)(a− a) + r.

Aśı r = f(a). Por lo tanto f(x) = q(x)(x− a) + f(a).

Proposición 2.16. Sea F un campo, f(x) ∈ F[x] y a ∈ F. Entonces a ∈ F
es ráız de f(x) si y sólo si (x− a) | f(x) en F[x].
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Demostración. ⇒] Por el Lema 2.15, f(x) = q(x)(x − a) + f(a) para algún
q(x) ∈ F[x], además f(a) = 0. Por lo tanto f(x) = q(x)(x − a), es decir,
(x− a) | f(x).
⇐] Por hipótesis, existe h(x) ∈ F[x] tal que f(x) = h(x)(x − a), evaluando
en a, f(a) = h(a)(a− a) = 0. Por lo tanto a es una ráız de f(x) en F.

Proposición 2.17. Sea F un campo y 0 6= f(x) ∈ F[x] con gr(f(x)) = n.
Entonces f(x) tiene a lo más n ráıces en F.

Demostración. La demostración se hará por inducción sobre n = gr(f(x)).
Para n = 0, tenemos 0 6= f(x) = c ∈ F con c una constante, entonces
el número de ráıces de f(x) es cero que es menor o igual al gr(f) = 0.
Ahora sea n ≥ 1. Si f(x) no tiene ráıces en F, entonces el número de ráıces
de f(x) es cero, que es menor al gr(f(x)). Supongamos que f(x) tiene a
a ∈ F como ráız. Entonces por la Proposición 2.16, existe q(x) ∈ F[x] tal que
f(x) = q(x)(x − a); más aún, q(x) tiene grado n − 1. Ahora sea a 6= b ∈ F
una ráız de f(x), entonces

0 = f(b) = q(b)(b− a).

Ya que b 6= a, entonces q(b) = 0, por lo tanto b es una ráız de q. Como el
gr(q(x)) = n − 1 < n, aśı que por la hipótesis de inducción que afirma que
q(x) tiene a lo más n− 1 ráıces en F. Se concluye que f(x) tiene a lo más n
ráıces en F.

Definición 2.18. Sea F un campo y f(x), g(x) ∈ F[x]. Un polinomio c(x) ∈
F[x] es un divisor común de f(x) y g(x), si c(x) | f(x) y c(x) | g(x) en F[x].
Si f(x) y g(x) no ambos cero, escribimos m.c.d(f(x), g(x)) para denotar el
máximo común divisor de f(x) y g(x), y lo definimos como un divisor común
de f(x) y g(x) tal que es un polinomio mónico de mayor grado.

Si f(x) = g(x) = 0, entonces m.c.d(f(x), g(x)) = 0.

Proposición 2.19. Sea F un campo, f(x), g(x) ∈ F[x]. Entonces d(x) =
m.c.d(f(x), g(x)) existe y es combinación lineal de f(x) y g(x). Es decir,
existen s(x), t(x) ∈ F[x] tales que d(x) = s(x)f(x) + t(x)g(x).

Una vez introduccido el concepto de dominio de ideales principales po-
dremos demostrar esta proposición.

Definición 2.20. Sean R un dominio entero y p ∈ R. Decimos que p es un
elemento irreducible en R si p 6= 0, p no es unidad y p = ab con a, b ∈ R,
implica que a ∈ R es unidad o b ∈ R es unidad.
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Lema 2.21. Un polinomio 0 6= g(x) ∈ F[x] es unidad si y sólo si gr(g(x))
=0

Demostración. ⇒] Si g(x) es unidad, entonces existe h(x) ∈ F[x] tal que
g(x)h(x) = 1, de modo que gr(g(x))+gr(h(x)) = 0 implica gr(g(x)) = 0,
por lo tanto g(x) ∈ F.
⇐] Si gr(g(x)) = 0, entonces 0 6= g(x) ∈ F. Por lo tanto g(x) es unidad.

Proposición 2.22. Si F es un campo. Entonces un elemento p(x) ∈ F[x] es
irreducible si y sólo si gr(p(x)) = n ≥ 1 y no existe una factorización en F[x]
de la forma p(x) = g(x)h(x) con 0 < gr(g(x)) < n y 0 < gr(h(x)) < n.

Demostración. ⇒] Sea p(x) ∈ F[x] irreducible, aśı p(x) 6= 0 y p(x) no es
unidad en F[x], implica gr(p(x)) ≥ 1. Si p(x) = g(x)h(x), entonces g(x)
es unidad y aśı gr(g(x)) = 0 y gr(h(x)) = n ó h(x) es unidad implica
gr(g(x)) = n y gr(h(x)) = 0.
⇐] Notemos que gr(p(x)) = n ≥ 1 implica que p(x) 6= 0 y p(x) no es unidad
en F[x]. Sea p(x) = a(x)b(x) en F[x] y supongamos que a(x) no es unidad
y que b(x) no es unidad, entonces gr(a(x)) > 0 y gr(b(x)) > 0 además
n = gr(p(x)) = gr(a(x)) + gr(b(x)) implica gr(a(x)) < n y gr(b(x)) < n,
contradicción. Por lo tanto a(x) ∈ F[x] es unidad o b(x) ∈ F[x].

Lema 2.23. Sea F un campo y p(x), f(x) ∈ F[x] con p(x) irreducible mónico.
Entonces

d(x) = m.c.d.(p(x), f(x)) =

{
1 , p(x) - f(x)
p(x) , p(x) | f(x)

Demostración. Como d(x) | p(x), entonces existe q(x) ∈ F[x], tal que p(x) =
d(x)q(x), aśı d(x) es unidad o q(x) es unidad. Si d(x) es unidad, entonces
gr(d(x)) = 0, luego d(x) = c ∈ F[x] un polinomio constante, esto significa
que c es el coeficiente principal de d(x). Por lo tanto d(x) = 1 por ser mónico.
Si q(x) es unidad, q(x) = u ∈ K, aśı p(x) = d(x)u, el coeficiente principal de
p(x) es 1, el coeficiente principal de d(x)u = u ya que d(x) es mónico. Por lo
tanto u = 1 y aśı d(x) = p(x). Por lo tanto

d(x) =

{
1

p(x)

Luego p(x) | f(x) y p(x) | p(x), entonces p(x) | d(x) y d(x) | p(x). Aśı d(x) =
p(x)u(x), p(x) = d(x)v(x) con u(x), v(x) ∈ F[x], aśı d(x) = d(x)v(x)u(x)
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implica que u(x)v(x) = 1. Por lo tanto u(x) ∈ F[x] es unidad. Como d(x) =
p(x)u(x) tenemos que d(x) = p(x) ya que p(x), d(x) son mónicos.
Si p(x) - f(x), podemos suponer que d(x) = p(x) aśı d(x) | f(x) por lo tanto
p(x) | f(x), lo que es una contradicción. Por lo tanto d(x) = 1.

Definición 2.24. Dos polinomios f(x), g(x) ∈ F[x], donde F es un campo,
son llamados primos relativos si m.c.d(f(x), g(x)) = 1.

Proposición 2.25. Sea f(x) = (x − a1)...(x − an) ∈ F[x] con F un campo,
entonces f(x) no tiene ráıces repetidas si y sólo si m.c.d(f, f ′) = 1.

Demostración. ⇒] Supongamos que f(x) no tiene ráıces repetidas y supon-
gamos que m.c.d(f, f ′) = d(x) con d(x) 6= 1. Como F[x] es campo, entonces
gr(d(x)) > 0. Sea (x− a) un factor de d(x), por la Proposición 2.11 parte 2.
x−a | f ′(x) entonces (x−a)2 | f(x). Luego a tiene multiplicidad 2, entonces
a es una ráız repetida. Por lo tanto f(x) tiene ráıces repetidas, contradicción.
Aśı d(x) = 1.
⇐] Supongamos que f(x) tiene una ráız repetida, digamos a, entones (x−a)2

por la Proposición 2.11 parte 1. (x−a) | f ′(x), entonces (x−a) | m.c.d(f, f)′

aśı (x−a) | 1. Por lo que (x−a) es unidad, contradicción, ya que gr(x−a) = 1.
Por lo tanto f(x) no tiene ráıces repetidas.

Proposición 2.26. Sea F y f(x) ∈ F[x] tal que gr(f(x)) ≥ 1. Entonces
existe 0 6= a ∈ F y p1(x), ..., pr(x) ∈ F[x] mónicos irreducibles tales que
f(x) = ap1(x)...p2(x), luego esta factorización es única salvo por el orden de
los factores.

Demostración. Existencia. Por inducción en el gr(f(x)) = n ≥ 1. Si n = 1
entonces f(x) = ax+b= a(x+ba−1) y con a 6= 0, luego x+ba−1 ∈ F[x] es móni-
co irreducible con a ∈ F. Sea n > 1, si f(x) ∈ F es irreducible, con a es el coefi-
ciente principal de f(x), entonces f(x) = a(a−1f(x)) donde a−1f(x) ∈ F[x] es
irreducible mónico, si f(x) ∈ F[x] no es irreducible existen g(x), h(x) ∈ F[x]
tales que f(x) = g(x)h(x) y 0 < gr(h(x)),gr(g(x)) < n. Por hipótesis induc-
tiva existen a, b ∈ F no cero y p1(x), ..., pl(x), q1(x), ..., qs(x) ∈ F[x] polinomios
mónicos irreducibles tal que g(x) = ap1(x), ..., pl(x) y h(x) = bq1(x), ..., qs(x),
por lo tanto f(x) = abp1(x)...pl(x)q1(x)...qs(x) con 0 6= ab ∈ F.
Unicidad. Sea f(x) = ap1(x)...pl(x)=bq1(x)...qr(x) con a, b ∈ F no ce-
ros y cada pi, qi ∈ F[x] irreducibles mónicos, por lo tanto a = b. Luego
p1(x)...pl(x) = q1(x)...qr(x), sea M = max{l, r} ≥ 1, se hará inducción sobre
M ≥ 1, si M = 1, entonces ap(x) = bq1, y por lo tanto p1(x) = q1(x). Si
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M > 1 entonces pl | p1(x), ..., pl(x) = q1(x), ..., qr(x), aśı existe j ∈ {1, ..., r}
tal que pl(x) | qj(x) entonces qj = h(x)pl(x) lo cual implica h(x) ∈ F, sin
perdida de generalidad qj(x) = qr(x) = pl(x), asi h(x) = 1 y qr(x) = pl(x),
por lo que p1(x), ..., pl−1(x) = q1(x), ..., qr−1(x). Por la hipótesis de induc-
ción l − 1 = r − 1 si y sólo si l = r, por lo tanto pi(x) = qi(x) para todo
i ∈ {1, ..., l − 1}.



Caṕıtulo 3

Morfismos

En el estudio de cualquier teoŕıa matemática formal hay dos conceptos
muy importantes, uno es el estudio de los objetos y el otro el estudio de
las relaciones entre los objetos. En la teoŕıa de los anillos conmutativos fi-
nitos los objetos son los anillos y las relaciones entre ellos más importantes
son los morfismos. En esta sección daremos cuenta de las propiedades más
importantes de estos morfismos necesarias para desarrollar la teoŕıa.

Definición 3.1. Sean R y R′ anillos. Un morfismo de anillos es una función
f : R→ R′ que cumple lo siguiente :

f(r1 + r2) = f(r1) + f(r2)

f(r1 · r2) = f(r1) · f(r2)

f(1R) = 1R′

Lema 3.2. f(0) = 0R′

Demostración. Notemos que:
0R′ + f(0) = f(0) = f(0 + 0) = f(0) + f(0).
Cancelando en ambos lados f(0), se obtiene el resultado.

Definición 3.3. Un morfismo de anillos f : R → R′ es llamado mono-
morfismo si para cualesquiera g1, g2 : R′′ → R morfismos de anillos tal que
fg1 = fg2, implica que g1 = g2.

Definición 3.4. Un morfismo de anillos f : R → R′ es llamado epimor-
fismo si para cualesquiera g1, g2 : R′ → R′′ morfismos de anillos tal que
g1f = g2f , implica que g1 = g2.

19
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Proposición 3.5. Sean R y R′ anillos y γ : R→ R′ un morfismo. Entonces
γ es monomorfismo si y sólo si γ es inyectiva.

Demostración. ⇒] Supongamos que f(a) = f(b), para a, b ∈ R y a 6= b.
Consideremos el anillo de polinomios con coeficientes en Z, Z[x]. Y tomemos
los morfismos h, g : Z[x]→ R tal que h(x) = a y g(x) = b. Aśı

fh(z0 + z1x+ ...+ znx
n) = f(h(z0 + z1x+ ...+ znx

n))

= f(z0 + z1a+ ...+ zna
n)

= z0 + z1f(a) + ...+ znf(a)n

= z0 + z1f(b) + ...+ znf(b)n

= f(z0 + z1b+ ...+ znb
n)

= fg(z0 + z1x+ ...+ znx
n).

Por lo tanto fh = fg, entonces h = g, es decir, a = h(x) = g(x) = b.
⇐] Sea f = R → R′ y g, h : R′′ → R morfismos, tales que fg = fh. Por
demostrar que g = h.
Sea r ∈ R′′ tal que (fg)(r) = (fh)(r), entonces f(g(r)) = f(h(r)). Por lo
tanto g(r) = h(r) para todo r ∈ R′′.

Proposición 3.6. Sea f : A → R un morfismo de anillos, sea 0 6= a ∈ A,
entonces

1. f(an) = (f(a))n para todo n ∈ N.

2. Si a ∈ U(A), entonces f(a−1) = (f(a))−1. Además f(a−n) = (f(a))−n

para todo n ∈ N.

Demostración. 1. Por inducción sobre n. Si n = 0, entonces an = 1, luego
f(1) = 1, además (f(a))n = 1. Por lo tanto f(an) = (f(a))n para n = 0.
Para el paso inductivo. f(an+1) = f(aan) = f(a)f(an) = f(a)(f(a))n =
(f(a))n+1.

2. Si a ∈ U(a), entonces existe a−1 ∈ A, tal que aa−1 = 1, entonces
f(a)f(a−1) = f(aa−1) = f(1) = 1. Entonces f(a−1) = (f(a))−1.
Notemos que f(U(A)) ⊆ U(R).
Si n > 0, a−n = (a−1)n. Luego f(a−n) = f((a−1)n) = f(a−1)n =
(f(a)−1)n = (f(a))−n.
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Lema 3.7. El morfismo i : Z ↪→ Q es epimorfismo pero no es suprayectivo.

Demostración. Sean α, β : Q→ R morfismos de anillos tales que αi = βi. Sea
m ∈ Z, entonces α(m) = αi(m) = βi(m) = β(m). Es decir, α(m) = β(m),
para todo m ∈ Z.
Sea 0 6= q ∈ Q tal que q = nm−1 para n,m ∈ Z y m 6= 0, entonces

α(q) = α(nm−1) = α(n)α(m−1)

= α(n)α(m)−1

= β(n)β(m)−1

= β(n)β(m−1)

= β(nm−1)

= β(q).

Por lo tanto α(q) = β(q) para todo q ∈ Q. Por lo tanto α = β. Aśı que i es
epimorfismo y claramente no es suprayectiva. Por lo que en teoŕıa de anillos
epimorfismo no coincide con morfismo suprayectivo.

Definición 3.8. Sea f : R → R′ un morfismo, f es un isomorfismo si
existe un morfismo g : R′ → R, tal que f ◦ g = 1R′ y g ◦ f = 1R.

Proposición 3.9. Son equivalentes los siguientes enunciados:

1. f : R→ S es isomorfismo de anillos.

2. f : R→ S es morfismo biyectivo.

Demostración. 1. ⇒] 2. Como f : R → S es isomorfismo en particular es
morfismo, además existe g : S → R tal que f ◦ g = 1S, g ◦ f = 1R entonces
f es suprayectiva y f es inyectiva, por lo tanto f es biyectica.
2. ⇒] 1. Como f es biyectiva, existe f−1 : S → R tal que f ◦ f−1 = 1dS y
f−1 ◦ f = 1dR. Por demostrar que f−1 : S → R es un morfismo de anillos.
Para s1, s2 ∈ S, existen r1, r2 ∈ R tal que f(r1) = s1 y f(r2) = s2 aśı,

1. f−1(s1 + s2) = f−1(f(r1) + f(r2))

= f−1(f(r1 + r2))

= r1 + r2
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= f−1(s1) + f−1(s2).

2. f−1(s1s2) = f−1(f(r1)f(r2))

= f−1(f(r1r2))

= r1r2

= f−1(s1)f−1(s2).

3. f−1(1S) = f−1(f(1R) = 1R.

Ejemplo 3.10. Cuando un elemento en un anillo R fue identificado con un
polinomio constante. Esto es r fue identificado con (r, 0, 0, ...), implicamos
que R es un subanillo de R[x]. El subconjunto R′ = {(r, 0, 0, ...) | r ∈ R}
es un subanillo de R[x], además la función f : R → R′ definido por f(r) =
(r, 0, 0, ...) es un isomorfismo.

Demostración. Veamos que R′ = {(r, 0, 0, ...) | r ∈ R} es un subanillo de
R[x]

1. 1̄ = (1, 0, ...) ∈ R′.

2. Si (r1, 0, ...), (r2, 0, ...) ∈ R′, entonces (r1, 0, ...) − (r2, 0, ...) = (r1 −
r2, 0, ...) ∈ R′.

3. Si (r1, 0, ...), (r2, 0, ...) ∈ R′, entonces (r1, 0, ...)(r2, 0, ...) = (r1r2, 0, ...) ∈
R′.

Veamos que f : R→ R′ tal que f(a) = (a, 0, ...) es morfismos de anillos.

1. f(1) = (1, 0, ...).

2. f(a+ b) = (a+ b, 0, ...) = (a, 0, ...) + (b, 0, ...) = f(a) + f(b).

3. f(ab) = (ab, 0, ...) = (a, 0, ...)(b, 0, ...) = f(a)f(b).

Supongamos que (a, 0, ...) = (a′, 0, ...) pero esto significa que a = a′. Por lo
tanto f es inyectiva. Y claramente es sobreyectiva. Por lo tanto R ∼= R′ ⊂
R[x].

Proposición 3.11. Sean A, R anillos. Si ϕ : A → R es un morfismo de
anillos, entonces ϕ∗ : A[x] → R[x] dado por

∑
aix

i 7→
∑
ϕ(ai)x

i es un
morfismo de anillos.
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Demostración. Notemos que ϕ es un momorfismo entre A y R como grupos
aditivos. Por lo tanto ϕ(0A) = 0R.

1. Probemos que ϕ∗((1A, 0, 0, ...)) = (1R, 0, 0, ...). Aśı ϕ∗((1A, 0A, 0A, ...)) =
(ϕ(1A), ϕ(0A), ϕ(0A) = (1R, 0R, 0R, ...).

2. ϕ∗((a0, a1, ..., an, 0, 0, ..)+(b0, b1, ..., bn, 0, 0, ...) = ϕ∗((a0+b0, a1+b1, ..., an+
bn, 0, ...)) = (ϕ(a0+b0), ϕ(a1+b1), ..., ϕ(an+bn), ϕ(0), ϕ(0), ...) = (ϕ(a0)+
ϕ(b0), ..., ϕ(an)+ϕ(bn), 0R, 0R, ...) = (ϕ(a0), ϕ(a1), ..., ϕ(an), 0R, 0R, ...)+
(ϕ(b0), ϕ(b1), ..., ϕ(bn), 0R, 0r, ...).

3. Sea σ = (a0, a1, ..., ) y τ = (b1, b2, ..., ). Entonces el coeficiente k-ésimo
de ϕ∗(στ) es ϕ(

∑
i+j=k aibi) =

∑
i+j=k ϕ(ai)ϕ(bi). Por otro lado

ϕ∗(σ) = (ϕ(a0), ϕ(a1), ...)
ϕ∗(τ) = (ϕ(b0), ϕ(b1), ...)

Aśı el coeficiente k−ésimo de ϕ∗(σ)ϕ∗(τ) es
∑

i+j=k ϕ(ai)ϕ(bi).

Definición 3.12. Sea f : R→ A un momorfismo de anillos,

1. El núcleo de f está definido por ker f = {r ∈ R | f(r) = 0}.

2. La imagen de f está definida por im f = {a ∈ A | f(r) = a para algún
r ∈ R}.

Definición 3.13. Un ideal en un anillo R es un subconjunto I de R tal que:

1. 0 ∈ I.

2. Si a, b ∈ I, entonces a+ b ∈ I.

3. Si a ∈ I y r ∈ R, entonces ra ∈ I.

Denotaremos a los ideales por I ≤ R. El anillo R y el subconjunto que con-
siste únicamente del elemento 0, el cual denotaremos por {0} son siempre
ideales del anillo R. Un ideal I 6= R es llamado un ideal propio. A partir
de ahora denotaremos a los ideales propios por I < R.
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Ejemplo 3.14. Si b1, b2, ..., bn ∈ R, entonces el conjunto de todas las com-
binaciones lineales I = {r1b1 + r2b2 + ... + rnbn | ri ∈ R, ∀i ∈ {1, 2, ...n}}
es un ideal de R. Escribimos I = (b1, ..., bn) en este caso y decimos que I
es el ideal generado por b1, b2, ..., bn. En particular, si n = 1, entonces
I = (b) = {rb | r ∈ R} es un ideal de R que consiste de todos los múltiplos
de b, y este es llamado el ideal principal generado por b. Notemos que R
y {0} son ideales principales.

Proposición 3.15. Un ideal propio de R no contiene unidades.

Demostración. Supongamos I < R y u ∈ I, unidad, luego existe v ∈ R tal
que uv = 1, contradicción, ya que 1 no está en I.

Proposición 3.16. Sea f : R → A un morfismo de anillos, entonces kerf
es un ideal de R y imf es un subanillo de A.

Demostración. Veamos que ker f es un ideal de R.

1. f(0) = 0, aśı 0 ∈ ker(f).

2. Sean a, b ∈ kerf , f(a+ b) = f(a) + f(b) = 0, aśı a+ b ∈ kerf .

3. a ∈ kerf y r ∈ R, f(ra) = f(r)f(a) = 0, aśı ra ∈ kerf .

Veamos que imf es un subanillo de A.

1. f(1) = 1, aśı 1 ∈ imf .

2. Si a, b ∈ imf , entonces existen r1, r2 ∈ R tales que f(r1) = a y f(r2) =
b, por lo que, a− b = f(r1)− f(r2) = f(r1 − r2) ∈ imf .

3. Sean a, b ∈ imf , ab = f(r1)f(r2) = f(r1r2) ∈ imf .

Proposición 3.17. Sea f : R → A un morfismo de anillos. Entonces f es
inyectivo si y sólo si kerf = {0}.

Demostración. ⇒] Sea a ∈ kerf entonces f(a) = 0 y f(0) = 0 ya que
0 + f(0) = f(0 + 0) = f(0) + f(0), aśı f(0) = f(a) y como f es inyectiva,
a = 0. Por lo tanto kerf = {0}.
⇐] f(a) = f(b) si y sólo si f(a) − f(b) = 0, luego f(a − b) = 0 aśı a − b ∈
kerf = {0}. Por lo tanto a− b = 0 implica a = b.
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Proposición 3.18. Sea f : R → S un morfismo de anillos suprayectivo. Si
I es un ideal de R, entonces f(I) es un ideal de S.

Demostración. Basta demostrar que para todo s ∈ S y x ∈ f(I) se cumple
que sx ∈ f(I). Sea x ∈ f(I) entones x = f(a) para algún a ∈ I y sea s ∈ S,
entonces existe r ∈ R tal que f(r) = s, aśı sx = f(r)f(a) = f(ra), con
ra ∈ I. Por lo tanto sx = f(ra) ∈ f(I).

Proposición 3.19. Sea f : R→ S morfismo de anillos. Si J es un ideal de
S, entonces f−1(J) es un ideal de R.

Demostración. Basta demostrar que para todo r ∈ R y para todo x ∈ f−1(J),
rx ∈ f−1(J).
Sean r ∈ R y x ∈ f−1(J), aśı f(x) ∈ J . Entonces f(rx) = f(r) · f(x) ∈ J .
Por lo tanto rx ∈ f−1(J).

Proposición 3.20. Si f : R → S es un morfismo de anillos, tal que I ⊆
J ⊆ R, entonces f(I) ⊆ f(J)

Demostración. Si x ∈ f(I), entonces x = f(a) para algún a ∈ I, como I ⊆ J
entonces x = f(a) ∈ f(J).

Proposición 3.21. Si f : R → S es un morfismo de anillos, tal que si
I ′ ⊆ K ′ ⊆ S, entonces f−1(I ′) ⊆ f−1(K ′).

Demostración. Si x ∈ f−1(I ′), entonces f(x) ∈ I ′ ⊆ K ′. Por lo tanto x ∈
f−1(K ′).

Proposición 3.22. Sea f : R → S es un morfismo de anillos y I un ideal
de R. Entonces f−1f(I) = Kerf + I.

Demostración. ⊆] Sea y ∈ f−1f(I), entonces f(y) ∈ f(I) aśı f(y) = f(a),
para algún a ∈ I, entonces f(y− a) = 0S, de modo que (y− a) ∈ Ker(f) aśı
y = a+ (y − a) con a ∈ I y (y − a) ∈ Ker(f). Por lo tanto y ∈ I +Ker(f).
⊇] Sabemos que 0S ∈ f(I), entonces f−1(0S) ⊆ f−1f(I). Por lo tanto kerf ⊆
f−1(f(I)).
Si x ∈ I, f(x) ∈ f(I), entonces x ∈ f−1(f(I)), aśı I ⊆ f−1(f(I)). Entonces
ker(f) + I ⊆ f−1f(I).

Más adelante cuando contemos con la estructura de anillo cociente, podre-
mos seguir mostrando propiedades de los morfismos sobre dicha estructura.
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3.1. Dominio de Ideales Principales

Es común en álgebra abstraer. Debido a que el anillo de los enteros es
un dominio de ideales principales y que de este hecho surja una teoŕıa de
divisibilidad no es ninguna casualidad. En está corta sección se trabaja con
este concepto solamente lo necesario.

Definición 3.23. Sea R un Dominio Entero. R es un Dominio de Ideales
Principales (D.I.P) si para cada ideal I de R, existe un elemento a ∈ R tal
que 〈a〉 = I.

Proposición 3.24. Sea F un campo entonces F[x] es un D.I.P. Además para
cada I ⊆ F[x], existe f(x) ∈ F[x] mónico tal que 〈f(x)〉 = I

Demostración. Si F un campo entonces F[x] es un ejemplo de un dominio
euclidiano. En la Proposición 3.29 probaremos que todo ideal en un anillo
euclidiano es un ideal princial.

Definición 3.25. Sea R un anillo. Sean a, b, δ, γ ∈ R. δ es un máximo común
divisor si:

1. δ | a y δ | b.

2. Si γ es otro común divisor de a y b, entonces γ | δ.

Proposición 3.26. Sea R un D.I.P

1. Para todo a, b ∈ R existe un m.c.d, δ, el cual es combinación lineal de
a y b :

δ = σa+ τb,

para algunos σ, τ ∈ R.

2. Si p es irreducible y p | ab, entonces p | a ó p | b.

Demostración. 1. Si a = b = 0, entonces (0, 0) = 0 = 0a+ 0b. Considere-
mos el conjunto J de todas las combinaciones lineales

J = {σa+ τb | σ, τ ∈ R}.
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Ahora a y b están en J , ya que podemos tomar σ = 1 y τ = 0 o
viceversa. Es necesario ver que J es un ideal:

a) 0 ∈ I, ya que si tomamos σ = τ = 0, entonces σa+ τb = 0.

b) Si x, y ∈ J , entonces x = σ′a+ τ ′b, y = σ′′a+ τ ′′b, luego

x+ y = (σ′a+ τ ′b) + (σ′′a+ τ ′′b) = (σ′ + σ′′)a+ (τ ′ + τ ′′)b ∈ J .

c) Si x ∈ J , r ∈ R, entonces x = σa + τb, luego rx = r(σa + τb) =
(rσ)a+ (rτ)b ∈ J .

Y aśı existe δ ∈ J tal que J = 〈δ〉, ya que R es un D.I.P. Afirmamos
que δ es un m.c.d de a y b. Como a ∈ J = 〈δ〉, tenemos que a = pδ
para algún p ∈ R, esto es, δ es un divisor de a, similarmente, δ es un
divisor de b, y aśı δ es un común divisor de a y b.
Ya que δ ∈ I, es una combinación lineal de a y b, entonces existen
σ, τ ∈ R con

δ = σa+ τb.

Finalmente, si γ es otro común divisor de a y b, entonces a = γa
′

y
b = γb

′
, luego δ = σa+ τb = γ(σa

′
+ τb

′
), aśı γ divide δ. Y concluimos

que δ es un m.c.d.

2. Si p | a se ha terminado. Si p - a entonces (p, a) = 1, entonces existen
s, t ∈ R tal que sp+ ta = 1, luego multiplicando por b en ambos lados,
spb + tab = b. Como p | ab entonces existe h ∈ R tal que ab = hp, aśı
b = (sb+ th)p. Esto implica que p | b.

Definición 3.27. Un Dominio Euclidiano es un Dominio Entero R, que
está equipado con una función

∂ : R\{0} −→ N

llamado una función grado, tal que.

1. ∂(f) ≤ ∂(f · g) para todo f, g ∈ R con f, g 6= 0.

2. Para todo f, g ∈ R con f 6= 0, existe q, r ∈ R con

g = qf + r,
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donde r = 0 ó ∂(r) < ∂(f).

Ejemplo 3.28. Si K es un campo, el dominio K[x] es un anillo euclidiano
con función grado el grado usual de un polinomio distinto de cero. En K[x],
tenemos,

∂(f · g) = gr(f · g) = gr(f) + gr(g)

= ∂(f) + ∂(g)

Proposición 3.29. Todo Dominio Euclidiano es un D.I.P.

Demostración. Sea R un dominio euclidiano e I un ideal de R. Si I = {0},
entonces I = 〈0〉 es principal. Si I 6= {0}, por el Principio del Buen Orden,
en el conjunto de todos los grados de elementos distintos de cero en I existe
un elemento de menor grado 0 6= a ∈ I con ∂(a) = n. Claramente 〈a〉 ⊆ I.
Sea b ∈ I, puesto que a 6= 0, existen q, r ∈ R tal que b = qa + r con r = 0
ó ∂(r) < ∂(a). Supongamos que r 6= 0, entonces r = b − qa ∈ I, lo que es
una contradicción, ya que r tiene grado menor que a. Por lo tanto r = 0, aśı
b = qa y aśı b ∈ 〈a〉. Aśı I ⊆ 〈a〉. Por lo tanto I = 〈a〉.



Caṕıtulo 4

Espacios Vectoriales

Un código lineal de longitud n sobre el campo finito Fq no es más que
un subespacio del espacio vectorial Fnq . Ya que los códigos lineales son espa-
cios vectoriales, será importante recordar nuevamente las propiedades más
importantes que poseen estós,

Definición 4.1. Sea Fq un campo finito. Un espacio vectorial es un grupo
aditivo abeliano (V,+) con un producto escalar

Fq × V −→ V
(k, v) −→ kv

tal que:

i. k(v1 + v2) = kv1 + kv2 para todo k ∈ Fq, v1, v2 ∈ V .

ii. (k1 + k2)v = k1v + k2v para todo k1, k2 ∈ Fq y v ∈ V .

iii. (k1k2)v = k1(k2v) para todo k1, k2 ∈ Fq y v ∈ V .

iv. 1kv = v para todo v ∈ V .

A los elementos de V los llamamos vectores y a los elementos de Fq los
llamamos escalares.

Ejemplo 4.2. Sea F un campo y X un conjunto. Entonces

FX = {f : X → F | f es una función }.

Sea define la suma de funciones de la manera usual, y el producto de un
elemento de F por una función también de la manera usual.

29
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1. f+̂g : X → F es la función tal que (f+̂g)(x) = f(x) + g(x).

2. c · f : X → F es la función tal que (c · f)(x) = c(f(x)).

Entonces (FX , +̂, 0̂, · : F× FX → FX) es un espacio vectorial.

Demostración. Veamos que (FX , +̂, 0̂) es un grupo abeliano.

1. ((f+̂g)+̂h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f+̂(g+̂h))(x).

2. Definimos 0̂ : X → F como 0̂(x) = 0 y es tal que

(0̂+̂f)(x) = 0̂(x) + f(x) = 0 + f(x) = f(x) + 0 = (f+̂0̂)(x).

3. Para toda f ∈ FX , existe −f ∈ FX , definida por −f : X → F tal que
x 7→ −f(x), por lo tanto f+̂(−f))(x) = f(x)+(−f(x)) = f(x)−f(x) =
0

4. (f+̂g)(x) = f(x) + g(x) = g(x) + f(x) = (g+̂f)(x).

Veamos que se cumplen las propiedades del producto por escalares:

1. (1 · f)(x) = 1 · f(x) = f(x), para toda x ∈ X.

2. [(cd) · f ](x) = (cd)f(x) = c(df(x)) = c((df)(x)) = (c · (d · f))(x), para
toda x ∈ X.

3. [(c + d)(f)](x) = (c + d)(f(x)) = cf(x) + df(x) = (cf)(x) + (df)(x) =
(cf + df)(x), para toda x ∈ X.

4. [c · (f+̂g)](x) = c[(f+̂g)(x)] = c[f(x) + g(x)] = c(f(x)) + c(g(x)) =
(c · f)(x) + (c · g)(x), para todo x ∈ X.

Por lo tanto (FX , +̂, 0̂, · : F× FX → FX) es un espacio vectorial.

Ejemplo 4.3. Sea Fq un campo, y Fnq el conjunto

Fnq= {(x1, ..., xn) : xi ∈ Fq}



31

donde están definidas las siguientes operaciones

(a1, a2, ..., an)+(b1, b2, ..., bn)= (a1 + b1, a2 + b2, ..., an + bn)
α(a1, a2, ..., an)= (αa1, αa2, ..., αan)

Estas operaciones hacen que Fnq sea un espacio vectorial sobre Fq.

Definición 4.4. Sean F un campo y X = {1, 2, ..., n}× {1, 2, ...,m}, un ele-
mento A en FX se llama una matriz de n × m con coeficientes en F y la
denotamos como A ∈Mn×m(F) y notemos que es un elemento de FX .
Por costumbre, uno escribe Ai,j en lugar de escribir A(i, j). También por
costumbre, uno suele escribir una matriz A en la forma de un arreglo rectan-
gular: 

A1,1 A1,2 A1,3 ... A1,m

A2,1 A2,2 A2,3 ... A2,m
...

An,1 An,2 An,3 ... An,m


Definición 4.5. Si A ∈Mn×m(F), su transpuesta es la matriz AT ∈Mm×n(F)
tal que

ATi,j = Aj,i.

Definición 4.6. Sea Fq campo y V un espacio vectorial. Un subconjunto
U ⊆ V es un subespacio vectorial de V si :

1. 0 ∈ U .

2. Si u1, u2 ∈ U entonces u1 + u2 ∈ U .

3. Si u ∈ U y r ∈ Fq entonces ru ∈ U .

Ejemplo 4.7. Usando la notación del Ejemplo 4.3 con q = 3 y n = 3,
C = {(0, 0, 0), (0, 1, 2), (0, 2, 1)} es subespacio de F3

3.

Proposición 4.8. Un subconjunto no vaćıo C de un espacio vectorial V
sobre F es un subespacio si y sólo si la siguiente condición se satistace:

Si x, y ∈ C y λ ∈ Fq, entonces λx+ y ∈ C.
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Demostración. Supongamos que C es un conjunto no vaćıo de V tal que λx+
y pertenece a C para todos los vectores x, y ∈ C y todos los escalares λ ∈ F.
Ya que C es no vaćıo, existe un vector p en C y por lo tanto (−1)p+p = 0 esta
en C. Entonces si x es cualquier vector en C y λ cualquier escalar, el vector
λx=λx +0 está en C. En particular, (−1)x = −x está en C. Finalmente si
x e y están en C, entonces x + y= 1x + y está en C. Por lo tanto C es un
subespacio vectorial de V . Rećıprocamente, si C es un subespacio de V , x e
y en C y λ un escalar, entonces λx+ y está en C.

Definición 4.9. Sea V un espacio vectorial sobre F. Sea X = {v1, ..., vn} un
subconjunto no vaćıo de V , una combinación lineal de X es un vector de la
forma∑n

i=1 rivi = r1v1 + ...+ rnvn ∈ V donde ri ∈ Fq para toda i ∈ {1, 2, ..., n}.

Denotamos al conjunto de todas las combinaciones lineales de v1, ..., vn
como

〈v1, ..., vn〉 = {
∑n

i=1 rivi | ri ∈ Fq} = 〈X〉.

Note que 〈X〉 es el menor subespacio que contiene a X. Por lo tanto 〈X〉 es
el subespacio generado por X. Además si X = ∅ es claro que {0} es el menor
subespacio que contiene al vaćıo. Por lo que 〈∅〉 = {0}.

Ejemplo 4.10. Sea A ∈ Mn×m(F) el espacio columna de A es el con-
junto de aquellos vectores de Fn que se pueden expresar como combinaciones
lineales de las m columnas de la matriz A. Aśı el espacio columna consiste
de aquellos vectores de la forma

x1a1 + x2a2 + ...+ xmam.

Donde los xi ∈ F y los ai son las columnas de A.
Sea A ∈ Mn×m(F), el espacio fila de A es el conjunto de aquellos vectores
de Fm que se pueden expresar como combinaciones lineales de los n renglones
de la matriz A. Aśı el espacio fila consiste de aquellos vectores de la forma

x1a1 + x2a2 + ...+ xnan.

Donde los xi ∈ F y los ai son las filas de A.

Definición 4.11. Un subconjunto no vaćıo X = {v1, ..., vn} de vectores en
V , es linealmente dependiente si existen a1, ..., an ∈ K no todos ceros tal
que
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n∑
i=1

aivi = 0.

X es linealmente independiente si la relación

n∑
i=1

aivi = 0.

sólo se satisface si ai = 0 para cada i ∈ {1, ...n}.

Ejemplo 4.12. 1. Cualquier conjunto S que contenga al 0 es linealmente
dependiente.

2. Para cualquier Fq, el conjunto {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 1)} es li-
nealmente independiente.

Definición 4.13. Una base de un espacio vectorial V es un conjunto X
linealmente independiente tal que V = 〈X〉.

Proposición 4.14. Todo espacio vectorial distinto del cero tiene una base.

Demostración. Sea V un espacio vectorial distinto del cero, y sea S = {L ⊆
V | L es linealmente independiente} . Un vector 0 6= v ∈ V es linealmente
independiente, aśı {v} ∈ S, por lo tanto S 6= ∅. Para dos conjuntos lineal-
mente independientes, afirmamos L ≤ L′ si L ⊂ L′. Este es el orden parcial
sobre S dado por la inclusión. Además cualquier subconjunto de un con-
junto linealmente independiente es también linealmente independiente, aśı si
L ∈ S entonces cualquier subconjunto de L está también en S. Asumamos
que C = {Li}i∈I es una cadena de S. Esto es, todo Li es un conjunto lineal-
mente independiente en V y para todo Li y Lj en C tenemos que Li ⊂ Lj ó
Lj ⊂ Li. Afirmamos que

L =
⋃
i∈I

Li,

es un cota superior en S. Necesitamos mostrar que L es un conjunto lineal-
mente independiente, es decir L ∈ S. Escogemos un conjunto finito de vecto-
res v1, ...vn ∈ L. Aśı cada vk está en algún Li, digamos v1 ∈ Li1 , ..., vn ∈ Lin .
Ya que los Li están totalmente ordenados, uno de los conjuntos Li1 , ..., Lin
contiene a los demás. Esto significa que v1, ..., vn están todos en algún Li, y
aśı estos son linealmente independientes. Por el Lema de Zorn, S contiene un
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elemento máximo, es decir, existe un conjunto B linealmente independiente
en V que no está contenido en ningún conjunto linealmente independiente
más grande en V . Vamos a demostrar que B genera a V , es decir es una base.
Sea W el subespacio generado por B. Esto significa que W es el conjunto de
todas las combinaciones lineales finitas

∑k
i=1 civi con k ≥ 1, ci ∈ F, y vi ∈ B.

Si B no genera V entonces W 6= V , aśı podemos escoger v ∈ V con v /∈ W .
Entonces B es un subconjunto propio de B ∪ {v}. Vamos a demostrar que
B ∪ {v} es linealmente independiente, lo que contradice el hecho que B es
máximo y por lo tanto W = V .
Para probar que B ∪ {v} es linealmente independiente, asumamos lo contra-
rio, es decir, que existe una expresión

k∑
i=1

civi = 0

donde los coeficientes no son todos cero y los vi son tomados de B ∪ {v}.
Ya que los elementos de B son linealmente independientes, uno de los vi con
un coeficiente distinto del cero tiene que ser v. Sin perdida de generalidad
supongamos que vk = v, aśı ck 6= 0. Debemos tener que k ≥ 2. ya que de otra
manera c1v = 0, lo cual es una contradicción ya que v 6= 0 y el coeficiente de
v es distinto de cero. Entonces

ckv = −
k−1∑
i=1

civi.

Multiplicando en ambos lados por 1/ck,

v =
k−1∑
i=1

(
− ci
ck

)
vi,

lo que muestra que v ∈ W . Pero v /∈ W . Por lo tanto B ∪{v} es un conjunto
linealmente independiente.

Proposición 4.15. Sean u1, ..., un elementos en un espacio vectorial V , y
sea v1, ..., vm ∈ 〈u1, ..., un〉. Si m > n entonces {v1, ..., vm} es un conjunto
linealmente dependiente.

Demostración. La demostración se hará por inducción sobre n ≥ 1.
Si n = 1, entonces m > 1, entoces existen al menos dos vectores v1, v2 ∈ 〈u1〉.
Si u1 = 0, entonces v1 = 0 y aśı {v1, ..., vm} es un conjunto linealmente
dependiente. Supongamos que u1 6= 0. Podemos considerar v1 6= 0 6= v2.
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Ahora como v1, v2 ∈ 〈u1〉, entonces existen a, b ∈ K tal que v1 = au1 y
v2 = bu1, entonces a 6= 0, implica u1 = a−1v1, aśı v2 = ba−1v1, por lo tanto
1v2 − ba−1v1 = 0 es una combinación lineal de elementos de {v1, ..., vm} no
trivial. Por lo tanto el conjunto {v1, ..., vm} es linealmente dependiente.
Para n > 1, existen ecuaciones, para i = 1, ...m,

vi = ai1u1 + ...+ ainun.

Podemos asumir que algún ai1 6= 0, ya que si aj1 = 0 para j ∈ {1, ...,m},
entonces v1, ..., vm ∈ 〈u2, ..., un〉, y por hipótesis inductiva {v1, ..., vm} es li-
nealmente dependiente. Supongamos sin pérdida de generalidad que a11 6= 0.
Para cada i ≥ 2, definimos

v′i = vi − ai1a−1
11 v1 ∈ 〈u2, ..., un〉

Ya que m − 1 > n − 1, por hipótesis inductiva, existe escalares b2, ..., bm no
todos cero, con

b2v
′
2 + ...+ bmv

′
m = 0.

Reescribiendo la ecuación usando la igualdad de v′i:(
−
∑
i≥2

biai1a
−1
11

)
v1 + b2v2 + ...+ bmvm = 0

Notemos que no todos los coeficientes son 0, aśı el conjunto {v1, ..., vm} es
linealmente dependiente.

Proposición 4.16. Sean X = {x1, ..., xn} y Y = {y1, ..., ym} dos bases de
un espacio vectorial V sobre Fq entonces m = n.

Demostración. Supongamos que m > n entonces y1, ..., ym ∈ 〈x1, ..., xn〉 =
V . Por ser X una base, entonces {y1, ..., ym} es linealmente dependiente,
contradicción.
Si m < n, entonces x1, .., xn ∈ 〈y1, ..., ym〉 = V . Por ser Y una base, entonces
{x1, .., xn} es linealmente dependiente, contradicción. Por lo tantom = n.

Definición 4.17. Un espacio vectorial V es llamado de dimensión finita
si tiene una base que consiste de un número finito de vectores. El único
número de vectores en cada base para V es llamada la dimensión de V y
denotada por dim(V ).

Definición 4.18. La dimensión del espacio fila de la matriz A es llamado el
rango de la matriz A
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Ejemplo 4.19. 1. El espacio vectorial {0} tiene dimensión cero.

2. El espacio vectorial Fnq tiene dimensión n.

Proposición 4.20. Sea X = {v1, ...vn} un conjunto de vectores de V . X
es base de V si y sólo si todo vector en V tiene una única expresión como
combinación lineal de los elementos de X.

Demostración. ⇒] Sea X es base de V y u ∈ V , entonces existen ri ∈ Fq tal
que

u =
n∑
i=1

rivi

y supongamos que u también se puede escribir como

u =
n∑
i=1

sivi y con si ∈ Fq.

entonces

n∑
i=1

rivi −
n∑
i=1

sivi =
n∑
i=1

(ri − si)vi = 0

puesto que X es linealmente independiente, entonces ri − si = 0, de modo
que ri = si para todo 1 ≤ i ≤ n.
⇐] Todo vector es combinación lineal de los elementos de X, aśı 〈X〉 = V .
Por otro lado si

n∑
i=1

rivi = 0 =
n∑
i=1

0vi

y dado que la expresión es única, tenemos que ai = 0 para todo 1 ≤ i ≤ n,
por lo tanto X es linealmente independiente y aśı X es base de V .

Proposición 4.21. Cualesquiera vectores linealmente independientes a1, ..., am
con m ≤ k, en un espacio vectorial de dimensión k, forma parte de una base
a1, ..., am, bm+1, ..., bk de ese espacio vectorial.

Demostración. Se hará por inducción sobre m.
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1. Para m = 1. Dado un vector a el cual es linealmente independiente,
es decir, distinto de cero, en un espacio lineal V , escojemos una base
arbitraria de k vectores en V , b1, ..., bk. Podemos expresar a como una
combinación lineal a =

∑k
i=1 tibi Alguno de los coeficientes ti es distinto

de cero, ya que a 6= 0. Supongamos por ejemplo, que t1 6= 0. Entonces
mostraremos que a, b2, ..., bk forma una base de V . En efecto:

a. Los vectores a, b2, ..., bk generan el espacio V porque cada uno de
los vectores bi que generan V , es una combinación de esos vectores.
Esto es obvio para i = 2, ..., k y para i = 1, tenemos

b1 = t−1
1 a−

k∑
i=2

(t−1
1 ti)bi.

b. Para probar la independencia lineal, consideremos una combinación
lineal

s1a+ s2b2 + ...+ skbk = 0.

Ya que a =
∑k

i=1 tibi, tenemos

s1t1b1 + (s2 + s1t2)b2 + ...+ (sk + s1tk)bk = 0.

De la independencia lineal de b1, ..., bk, concluimos que s1t1 = 0 (aśı,
s1 = 0 porque t1 6= 0 por hipótesis) y como si + s1ti = 0, implica
si = 0 para i = 2, ..., k. De ah́ı la combinación lineal es trivial.

2. Paso inductivo: Supongamos que se cumple para a1, ..., am−1 es de-
cir, existe una base a1, ..., am−1, bm, ..., bk. Tenemos que mostrar que la
proposición se cumple para a1, ..., am. Podemos expresar am como una
combinación lineal

am = t1a1 + ...+ tm−1am−1 + smbm + ...+ skbk.

Alguno de los coeficientes si es distinto de cero (ya que am no es una
combinación lineal de a1, ..., am−1). Supongamos,por ejemplo que sm 6=
0. Entonces a1, ..., am−1, am, bm+1, ..., bk es una base de V . Esto se sigue,
de manera analoga al paso anterior m = 1, de el hecho que bm es una
combinación lineal de estos vectores:

bm =
m−1∑
i=1

(−s−1
m ti)ai + s−1

m am +
k∑

i=m+1

(−s−1
m si)bi.
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Proposición 4.22. En un espacio vectorial V de dimensión k se tiene las
siguientes propiedades:

1. Cada k vectores linealmente independientes forma una base.

2. k es el número más grande de vectores linealmente independientes en
V .

3. Todo subespacio de V , excepto V , tiene dimensión más pequeña que k.

Demostración. 1. Es claro por la Proposición 4.21.

2. Es claro por la Proposición 4.21.

3. Sea K un subespacio lineal de V y sea m el número más grande de
vectores linealmente independentes en K. Por 2, sabemos que m ≤ k.
Cualquier colección linealmente independiente a1, ..., am de vectores en
K es una base de K. (De hecho, para cada vector a 6= 0, la colección
a, a1, ..., am es linealmente dependiente, aśı existe una combinación li-
neal no trivial ta +

∑
tiai = 0. La independencia lineal de a1, ..., am

implica que t 6= 0, y entonces a =
∑

(−t−1ti)ai. De ah́ı, a1, ..., am ge-
nera K.) Si m = k, entonces, por 1. a1, ..., am forma una base de V , y
aśı. V = K. En otras palabras, si K 6= V , entonces m < k.

Proposición 4.23. Sea V un espacio vectorial sobre Fq. Si dim(V ) = k,
entonces V tiene qk elementos.

Demostración. Si {v1, ..., vk} es una base para V , entonces

V = {a1v1 + ...+ akvk | a1, ..., ak ∈ Fq}

Ya que |Fq| = q, existen exactamente q elecciones para cada de a1, ..., ak; por
lo tanto, V tiene exactamente qk elementos.

Veamos una última propiedad de las matrices.

Proposición 4.24. Toda matriz de rango k tiene k columnas linealmente
independientes.
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Demostración. Si una matriz A está en forma escalonada, entonces esta tie-
ne k filas distintas de cero y seleccionamos las k columnas en las que se
encuentran los coeficientes principales de las filas. Estas columnas son lineal-
mente independientes porque si los escribimos como filas (de arriba haćıa
abajo), claramente tenemos una matriz de k filas distintas de cero en forma
escalonada. Ya que toda matriz puede ser puesta en forma escalonada por
una sucesión de operaciones elementales en las filas. Es suficiente mostrar
que ninguna de las operaciones en las filas cambia la independencia lineal
de las columnas. Presentamos la demostración para el caso del intercam-
bio de dos filas (los otros dos casos de operaciones elementales en filas son
análogos). Consideremos k columnas de la matriz A con número de colum-
nas j1, j2, ..., jk. Si las escribimos como filas, obtenemos k vectores bj1 , ..., bjk .
Ahora intercambiamos la i-ésima y la i′-ésima filas de la matriz A. Las co-
rrespondientes columnas b̄j1 , ..., b̄jk de la nueva matriz son obtenidos de los
vectores originales bj1 , ..., bjk intercambiando las i-ésima y i′-ésima posicio-
nes. Por lo tanto demostraremos que los vectores bj1 , ..., bjk son linealmente
independientes si y sólo si aśı lo son los nuevos vectores b̄j1 , ..., b̄jk . Pero ya
que, dado escalares t1, ..., tk claramente tenemos

t1bj1 + ...+ tkbjk = 0 si y sólo si t1b̄j1 + ...+ tkb̄jk = 0.

Definición 4.25. Sean v = (v1, v2, ..., vn) y w = (w1, w2, ..., wn) ∈ Fn

1. El producto escalar o el producto punto de v y w está definido
como

v ·w = v1w1 + ...+ vnwn ∈ F.

2. Los dos vectores v y w se dicen ortogonales si v ·w = 0.

3. Sea S un subconjunto no vaćıo de Fnq . El complemento ortogonal
S⊥ de S está definido por

S⊥ = {v ∈ Fnq | v · s = 0 para todo s ∈ S}.

Si S = ∅, entonces S⊥ = Fnq .

Lema 4.26. S⊥ es un subespacio vectorial de Fnq para cualquier subconjunto
de Fnq , y que 〈S〉⊥ = S⊥.
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Demostración. Sean x, y ∈ S⊥ y α, β ∈ Fq. Aśı x · s = 0 y y · s = 0 para toda
s ∈ S. Además α(x ·s) = 0 y β(y ·s) = 0, por lo tanto 0 = α(x ·s)+β(y ·s) =
(αx) · s+ (βy) · s = (αx+βy) · s. Por la Proposición 4.8, S⊥ es un subespacio
vectorial de Fnq .

Proposición 4.27. El complemento ortogonal de un subespacio L de dimen-
sión k del espacio vectorial Fn, tiene dimensión dim(L⊥) = n− dim(L).

Demostración. Sea a1, ..., ak una base de un subespacio lineal L de Fn. Aque-
llos vectores, escritos como filas, forman una matriz A ∈Mk×n(F). Un vector
b esta en el complemento ortogonal de L si y sólo si AbT = 0T . Ya que A tie-
ne rango k, tiene k columnas linealmente independientes por la Proposición
4.24. La longitud de las columnas es k, y aśı por la Proposición 4.22 (3) las
columnas generan el espacio lineal Fk siempre que escribamos los vectores
de Fk como columnas. Aśı , todo vector v ∈ Fk es una combinación lineal
de las columnas de A, en otras palabras, v tiene la forma v = AwT para
algún vector w ∈ Fn. Sea r la dimensión de L⊥. Escojemos una base b1, ..., br
de L⊥ y a acompletamos a una base b1, ..., br, cr+1, ..., cn del espacio Fn (ver
Proposición 4.21). Vamos a mostrar que los n− r vectores

AcTr+1, ..., Ac
T
n

forman una base del espacio Fk. Probaremos que k = n − r. aśı, r = n − k,
por lo cual la prueba estara terminada.

1. Los vectores de arriba generan Fk. En efecto, todo vector v ∈ Fk tiene
la forma

v = AwT

Podemos expresar el vector w como una combinación lineal

w =
r∑
i=1

tibi +
n∑

j=r+1

sjcj

y entonces AbTi = 0. implica

v = A

(
r∑
i=1

tib
T
i +

n∑
j=r+1

sjc
T
j

)
=

n∑
j=r+1

sjA
T
cj
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2. Los vectores de arriba son linealmente independientes. En efecto, con-
sideremos una combinación lineal,

n∑
j=r+1

tjAc
T
j = 0T

El vector c =
∑n

j=r+1 tjcj, cumple AcT = 0T , es decir, c ∈ L⊥. Aśı,
c es una combinación lineal de los vetores b1, ..., br (forman una base
de L⊥) aśı como una combinación lineal de los vectores cr+1, ..., cn.
Ya que b1, ..., br, cr+1, ..., cn forma una base de Fn, la Proposición 4.20
implica que c = 0. Ahora, por la independencia lineal de cr+1, ..., cn,
concluimos que ti = 0 para todo i, lo cual prueba la independencia
lineal de AcTr+1, ..., Ac

T
n .
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Caṕıtulo 5

Anillo Cociente

En álgebra resulta de vital importancia la construcción del objeto cocien-
te. En esta sección estudiaremos el anillo cociente, sus teoremas más clasicos
y haremos énfasis en la ret́ıcula de ideales de los anillos cociente.

Proposición 5.1. Sea R un anillo e I un ideal de R entonces R/I = {a+I |
a ∈ R} es un anillo con las siguientes operaciones:

1. (a+ I)+(b+ I)= (a+ b) + I.

2. (a+ I)(b+ I)= (ab) + I.

Además

π : R→ R/I
a 7→ a+ I

es un momorfismo de anillos, llamado el momorfismo sobreyectivo natural.

Demostración. Veamos que la suma y la multiplicación están bien definidas,
asumimos que a+I = a′+I y b+I = b′+I si y sólo si a−a′ ∈ I y b− b′ ∈ I,
aśı ab−a′b′ = ab−ba′+ba′−a′b′ = b(a−a′)+a′(b−b′) ∈ I entonces tenemos
que ab− a′b′ ∈ I si y sólo si ab + I = a′b′ + I, aśı (a + I)(b + I) = ab + I =
a′b′ + I = (a′ + I)(b′ + I). Veamos que + es asociativa.
Sean (a + I), (b + I), (c + I) ∈ R/I, entonces (a + I) + [(b + I) + (c + I)] =
(a+I)+((b+c)+I)= [a+(b+c)]+I=[(a+b)+c]+I= [(a+b)+I]+(c+I)=
[(a+ I) + (b+ I)] + (c+ I).
Afirmamos que el elemento neutro es (0 + I). Ya que
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(0 + I) + (a+ I) = (0 + a) + I

= a+ I

= (a+ 0) + I

= (a+ I) + (0 + I)

para toda a ∈ R.
Además −(a+ I) = −a+ I para cada a+ I ∈ R/I. Puesto que

(a+ I) + (−a+ I) = (a+ (−a)) + I

= (a− a) + I

= 0 + I

Veamos la conmutatividad

(a+ I) + (b+ I) = (a+ b) + I

= (b+ a) + I

= (b+ I) + (a+ I)

Veamos la conmutatividad con el producto.

(a+ I)(b+ I) = (ab) + I

= (ba) + I

= (b+ I)(a+ I)

Veamos la asociatividad con el producto

[(a+ I)(b+ I)](c+ I) = [(ab) + I](c+ I)

= [(ab)c+ I]

= [a(bc) + I]

= (a+ I)[(bc) + I]

= (a+ I)[(b+ I)(c+ I)]

Afirmamos que el elemento neutro para el producto es 1 + I ∈ R/I, pues
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(a+ I)(1 + I) = (a1) + I

= (a1) + I

= a+ I

= (1a) + I

= (1 + I)(a+ I)

Finalmente veamos la distribución,

(a+ I)[(b+ I) + (c+ I)] = (a+ I)[(b+ c) + I]

= a(b+ c) + I

= (ab+ ac) + I

= (ab+ I) + (ac+ I)

= (a+ I)(b+ I) + (a+ I)(c+ I).

Veamos que π : R→ R/I es momorfismo de anillos.

1. π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b).

2. π(ab) = (ab) + I = (a+ I)(b+ I) = π(a)π(b).

3. π(1R) = 1R + I.

Definición 5.2. El anillo R/I construido en la Proposición 5.1 es llamado
el anillo cociente de R módulo I.

Definición 5.3. Un conjunto parcialmente ordenado (Copo) es un par
(A,≤) tal que

1. a ≤ a para todo a ∈ A.

2. Si a ≤ b y b ≤ c, entonces a ≤ c para todo a, b, c ∈ A.

3. Si a ≤ b y b ≤ a, entonces a = b para todo a, b ∈ A.

Si (A,≤) es un conjunto parcialmente ordenado y B ⊂ A entonces:

1. a = infB si y sólo si para toda b ∈ B, a ≤ b y si c ∈ A es tal que, para
toda b ∈ B, c ≤ b, entonces c ≤ a.
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2. a = supB si y sólo si para toda b ∈ B, b ≤ a y si c ∈ A es tal que, para
toda b ∈ B, b ≤ c, entonces a ≤ c.

Si (A,≤) es un copo, (A,≤) se llama ret́ıcula si y sólo si para toda a, b ∈ A
existen a0, b0 ∈ A tales que a0 = inf{a, b} y b0 = sup{a, b}.
Usaremos la siguiente notación sup{a, b} = a ∨ b y inf{a, b} = a ∧ b.

Definición 5.4. Una función f : (A,≤)→ (B,≤) entre dos copos es llamado
un morfismo de orden si para dos elementos en A, a ≤ a′ implica f(a) ≤
f(a′) en B. Un morfismo de orden inyectivo se llamará morfismo de orden
estricto. Una biyección que es un morfismo de orden, tal que su inversa es
también un morfismo de orden, se llamara un isomorfismo de orden.

Ejemplo 5.5. Sea

(N, |)→ (N,≤)
n | m 7→ n ≤ m

hay una correspondencia biyectiva de orden (→), pero no es isomorfismo de
ordenes parciales.

Definición 5.6. Una función f : L → L′ entre dos ret́ıculas es llamado
morfismo de ret́ıculas si:

1. f(a ∨ b) = f(a) ∨ f(b) para todo a, b ∈ L.

2. f(a ∧ b) = f(a) ∧ f(b) para todo a, b ∈ L.

Un morfismo de ret́ıculas biyectivo es llamado un isomorfismo de ret́ıcu-
las. Para ret́ıculas isomorfas L y L′ usamos la notación L ∼= L′.

Notación Sean R un anillo e I un ideal propio de R.

[I, R] = {K ⊆ R | I ≤ K ≤ R}.

[0̄, R/I] = {L ⊆ R/I | L ≤ R/I}.

Proposición 5.7. Sea R un anillo y I ⊆ R. Entonces [I, R], [0̄, R/I] son
ret́ıculas isomorfas.
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Demostración. Sea γ : R� R/I tal que f(r) = r+I. Definimos γ′ : [I, R]→
[0̄, R/I] por γ′(J) = γ(J)′ = J/I. Aśı que tenemos el siguiente diagrama
conmutativo:

R
γ // R/I

J
?�

OO

γ′ // γ′(J)
?�

OO

Veamos que γ′ es inyectiva.
Sea γ′(J) = γ′(K), entonces γ(J) = γ(K), donde γ(J), γ(K) ≤ R/I con
J,K ∈ [I, R], entonces γ−1(γ(J)) = γ−1(γ(K)), luego J + ker(γ) = K +
ker(γ), es decir J + I = K + I, por lo tanto J = K.
Veamos que γ′ es sobreyectiva.
Sea J̄ ∈ [0̄, R/I], aśı 0̄ ≤ J̄ , luego ker(γ) = I = γ−1(0̄) ≤ γ−1(J̄), aśı
γ−1(J̄) ∈ [I, R] y γ′(γ−1(J̄)) = γ(γ−1(J̄)) = J̄ . Por lo tanto γ′ es una
biyección.
Finalmente debido a que γ′ es inyectiva tenemos que:

1. γ′(
⋂
j∈J Kj) =

⋂
j∈J γ

′(Kj).

2. γ′(
∑

j∈J Kj) =
∑

j∈J γ
′(Kj).

Por lo tanto γ′ es un isomorfismo de ret́ıculas.

Proposición 5.8. Sea f : R→ A un morfismo de anillos, entonces kerf es
un ideal de R, Imf es subanillo de A y

R/kerf ∼= Imf .

Demostración. Sea

ϕ : R/kerf → Imf
a+K 7→ f(a),

donde K = kerf . Veamos que ϕ está bien definida.
Sea a + K = b + K si y sólo si a − b ∈ K, es decir existe k ∈ K tal que
a− b = k si y sólo si a = b+ k. Por lo tanto

ϕ(a+K) = f(a) = f(b+ k) = f(b) + f(k) = f(b) = ϕ(b+K).
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Aśı ϕ está bien definida. Claramente ϕ es sobreyectiva. Veamos que ϕ es
inyectiva.
Sea ϕ(a+K) = ϕ(b+K) implica que f(a) = f(b) si y sólo si f(a)− f(b) =
f(a− b) = 0, aśı a− b ∈ K. Por lo tanto a+K = b+K. Ahora veamos que
ϕ es momorfismo.

1. ϕ(1R +K) = f(1R) = 1A.

2. ϕ((a + K) + (b + K)) = ϕ((a + b) + K) = f(a + b) = f(a) + f(b) =
ϕ(a+K) + ϕ(b+K).

3. ϕ((a+K)(b+K)) = ϕ(ab+K) = f(ab) = f(a)f(b) = ϕ(a+K)ϕ(b+K).

Proposición 5.9. Si 〈0〉 6= R un anillo, son equivalentes:

1. R es un campo

2. Sus únicos ideales son {0}, 〈1〉 = R

3. Todo morfismo distinto del morfismo cero de R→ S es inyectivo.

Demostración. 1.⇒]2. Sea I ≤ R con I 6= {0} entonces existe a ∈ I tal que
a 6= 0R, con a es unidad y 〈a〉 = 〈1〉 = R.
2. ⇒]3. Sea f : R → S, con Ker(f) un ideal propio de R, entonces kerf =
{0}, por la Proposición 3.17, f es inyectivo.
3. ⇒]1. Sea 0 6= x ∈ R, 〈x〉 un ideal propio de R tal que {0̄} 6= R/ 〈x〉, ϕ :
R � R/ 〈x〉 el morfismo sobreyectivo natural. Entonces {0R} = Ker(ϕ) =
〈x〉, luego 〈x〉 = {0R}, contradicción. Por lo tanto 〈x〉 = R, luego x es unidad,
notemos que ϕ 6= 0, por lo tanto R es campo.

Proposición 5.10. Sea F un campo, p(x) un polinomio sobre F[x] con
gr(p(x)) ≥ 1 y 〈p(x)〉 = I ≤ F[x]. Entonces son equivalentes:

1. p(x) ∈ F[x] es irreducible.

2. F[x]/〈f(x)〉 es un campo.

3. F[x]/〈f(x)〉 es dominio entero.
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Demostración. Sea I = 〈f(x)〉.
1 ⇒ 2 ] Si p(x) no es unidad, entonces 1 /∈ I si y sólo si 0 + I 6= 1 + I.
Sea ahora 0 + I 6= f(x) + I ∈ F[x]/I, entonces f(x) /∈ I implica que p(x) -
f(x) entonces m.c.d(p(x), f(x)) = 1, es decir, existen s(x), t(x) ∈ F[x] tal
que s(x)p(x) + t(x)f(x) = 1, luego [s(x)p(x) + t(x)f(x)] + I = 1 + I=
(s(x)+I)(p(x)+I)+(t(x)+I)(f(x)+I) = 1+I en F[x]/I , pero p(x)+I = 0,
aśı (t(x)+I)(f(x)+I) = 1+I. Por lo tanto t(x)+I es el inverso de f(x)+I.
2 ⇒ 3 ] Por la proposición 1.16.
3 ⇒ 1 ] Supongamos que p(x) ∈ F[x] es no irreducible, es decir, existen
g(x), h(x) ∈ F[x] tales que p(x) = g(x)h(x) con gr(g),gr(h) < gr(p), aśı
g(x), h(x) /∈ I entonces g(x) + I 6= 0 + I 6= h(x) + I, además (g(x) +
I)(h(x) + I)= g(x)h(x) + I=p(x) + I contradicción. Ya que F[x]/〈f(x)〉 es
dominio entero y por lo tanto p(x) ∈ F[x] es irreducible.

Proposición 5.11. Sea k un campo, p(x) ∈ k[x] mónico irreducible con
gr(p(x) = d, sea I = 〈p(x)〉, K = k[x]/I y sea β = x+ I ∈ K.

1. Entonces K es campo y k′ = {a + I | a ∈ k} es un subcampo de K
isomorfo a k.

2. β es una ráız de p(x) en K.

Demostración. 1. El anillo cociente K = k[x]/I es un campo, por la Pro-
posición 5.10. Además tenemos el momorfismo sobreyectivo natural

π : k[x]→ k[x]/I
f(x) 7→ f(x) + I

Sea

ϕ = π|k : k → k′

a 7→ a+ I.

Aśı Imϕ = k′. Veamos que ϕ es inyectiva. Sea ϕ(a) = ϕ(b) con a, b ∈ k,
entonces a+ I = b+ I si y sólo si a− b ∈ I. Supongamos que a− b 6= 0
entonces I contiene una unidad, aśı I = k[x], contradicción, ya que
p(x) es mónico irreducible. Por lo tanto a = b. Por la Proposición 5.8,
k ∼= k′ ⊆ K.
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2. Sea p(x) = a0 + a1x + ... + adx
d−1 + xd, donde ai ∈ k para todo i. En

K = k[x]/I, tenemos

p(β) = (a0 + I) + (a1 + I)β + ...+ (1 + I)βd

= (a0 + I) + (a1 + I)(x+ I) + ...+ (1 + I)(x+ I)d

= (a+ I) + ...+ (a1x+ I) + ...+ (1xd + I)

= a0 + a1x+ ...+ xd + I

= p(x) + I = I,

ya que p(x) ∈ I = 〈p(x)〉. Pero I = 0 + I es el elemento cero de
K = k[x]/I, y aśı β en k es una ráız de p(x).

Definición 5.12. Sea K un campo y k ⊆ K un subcampo. Entonces K es
una extensión de campo sobre k y lo denotamos por K/k. Notemos que K/k
es un espacio vectorial sobre k. Decimos que K/k es una extensión finita si
dimkK <∞.

Notación: [K : k] = dim(K/k) <∞ es el grado de la extensión.

Proposición 5.13. Sea k un campo y f(x) ∈ k[x] con gr(f(x)) ≥ 1, enton-
ces existe K/k una extensión de campo tal que f(x) ∈ K[x] es producto de
polinomios lineales.

Demostración. La demostración se hará por inducción sobre gr(f(x)) = n ≥
1. Si n = 1, entonces K = k. Si n > 1, escribimos f(x) = p(x)g(x), donde
p(x) es mónico irreducible. Ahora por la Proposición 5.11 proporciona un
campo F que contiene a k tal que p(x) tiene una ráız a ∈ F, entonces p(x) =
(x − a)h(x) ∈ F[x]. Por lo tanto, en F [x], tenemos p(x) = (x − a)h(x) y
f(x) = (x−a)h(x)g(x). Sea gr(h(x)g(x)) = n−1, por hipótesis de inducción
existe F ⊆ K( y por lo tanto k ⊂ K) y aśı h(x)g(x) ∈ K es producto de
factores lineales. Por lo tanto f(x) = (x− a)h(x)g(x) ∈ K[x] es producto de
factores lineales.



Caṕıtulo 6

Ideales Primos y Máximos

En esta sección trataremos con la generalización de número primo, dando
lugar a los conceptos de ideal primo e ideal máximo. Introducimos conceptos
muy importantes en la teoŕıa de anillos tales como: el espectro, el radical y
el nilradical. Además de mostrar la existencia de ideales máximos.

Definición 6.1. Un ideal propio, P de R se dice que es ideal primo, si para
cualesquiera a, b ∈ R tal que ab ∈ P y a /∈ P , implica que b ∈ P .

Ejemplo 6.2. Recordemos que un anillo R distinto de cero es un dominio
entero si y sólo si ab = 0 en R, implica que a = 0 ó b = 0. Por lo tanto, el
ideal (0) = {0} es primo en R si y sólo si R es un dominio entero.

Ejemplo 6.3. Un ideal (m) = mZ < Z es un ideal primo si y sólo si m es
un primo o cero.

Demostración. ⇒] Dado que m y −m generan el mismo ideal principal, con-
sideremos solo los generadores positivos. Si m = 0 entonces el resultado se
sigue del ejemplo anterior. Ya que Z es un dominio entero. Si m > 0, veamos
que (m) es un ideal propio, de otra manera 1 ∈ (m), aśı, debe existir un
entero p tal que mp = 1, contradicción. Luego, si ab ∈ (m) entonces p | ab.
Por el Lema de Euclides, p | a ó p | b, es decir, p ∈ (a) ó p ∈ (b). Por lo tanto
(p) es un ideal primo.
⇐] Si m > 1 y no es primo, entonces se tiene una factorización m = ab con
0 < a, b < m. Por lo tanto ni a ni b es un múltiplo de m, es decir a /∈ (m) y
b /∈ (m) pero ab = m ∈ (m) y aśı (m) no es un ideal primo.

Definición 6.4. Un ideal propio M en R es llamado un ideal máximo si no
existe un ideal propio de R, digamos J , tal que
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M < J < R

Ejemplo 6.5. Si R = F es campo, entonces su único ideal máximo es (0).

Proposición 6.6. Sea R un anillo. El ideal M < R es máximo si y sólo si
R/M es un campo.

Demostración. ⇒] Sea a + M 6= 0 + M , lo que significa que a /∈ M , ahora
consideremos el ideal Ra + M tal que M < Ra + M , por ser M máximo,
entonces M + Ra = R, luego existen m ∈ M , b ∈ R tal que 1 = m + ab,
entonces ab−1 ∈M , aśı ab+M = 1+M , de manera que (a+M)−1 = b+M ,
luego R/M es un campo.
⇐] Sea M < I con I un ideal de R, luego existe a ∈ I tal que a /∈ M , por
ser R/M campo, entonces existe b ∈ M talque (a + M)(b + M) = 1 + M ,
luego 1− ab ∈M < I y como ab ∈ I entonces 1 ∈ I e I = R.

Ejemplo 6.7. Una aplicación del teorema anterior es la siguiente:

pZ = (p) es máximo si y sólo si Zp es campo.

Proposición 6.8. Sea R un anillo. Un ideal propio P es un ideal primo si
y sólo si R/P es un dominio entero.

Demostración. ⇒. Supongamos que (a + P )(b + P ) = 0 + P , luego ab ∈ P ,
por ser P primo. a ∈ P ó b ∈ P , es decir, a+ P = 0 + P ó b+ P = 0 + P .
⇐. Supongamos que ab ∈ P , entonces (a+ P )(b+ P ) = 0 + P . Por ser R/P
dominio entero, a+P = 0 +P ó b+P = 0 +P , es decir, a ∈ P ó b ∈ P .

Proposición 6.9. Sea R un anillo. Si M es un ideal máximo, entonces es
un ideal primo.

Demostración. Por la Proposición 1.16.

Ejemplo 6.10. En general no es cierto el rećıproco del teorema anterior.
Por ejemplo, en Z, {0} es ideal primo pero no es ideal máximo.

Proposición 6.11. Si 0 6= R es un anillo. Entonces R tiene un ideal máxi-
mo. Más aún, todo ideal propio I en R está contenido en un ideal máximo.

Demostración. Nótese que la segunda afirmación implica la primera. Sea
I < R y X la familia de todos los ideales propios que contienen a I. Notemos
que X 6= ∅ ya que I ∈ X. Es claro que X está ordenado parcialmente y el
orden parcial en X está dado por la inclusión. Sea C una cadena en X. Es
decir, dados I, J ∈ C, entonces I ⊆ J ó J ⊆ I. Afirmamos que
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I∗ =
⋃
I∈C

I

es una cota superior de C. Claramente, I ⊆ I∗, aśı que resta demostrar que
I∗ ∈ X, es decir, que I∗ es un ideal propio.

1. I∗ es un ideal. Supongamos que r ∈ R y a ∈ I∗, entonces, a ∈ I para
algún I ∈ C. Por lo tanto, ra ∈ I, y aśı ra ∈ I∗.
Ahora supongamos que a, b ∈ I∗, entonces existen Ia, Ib ∈ C, con a ∈ Ia
y b ∈ Ib, pero ya que C es totalmente ordenado, Ia ⊆ Ib ó Ib ⊆ Ia. Sin
perdida de generalidad, supongamos que Ib ⊆ Ia, entonces a, b ∈ Ia. Por
lo tanto a+ b ∈ Ia, aśı a+ b ∈ I∗.
Claramente 0 ∈ I para todo I ∈ C. Por lo tanto 0 ∈ I∗.

2. I∗ es propio, es decir, I∗ 6= R. Ya que 1 /∈ J , para cada J ∈ C, tenemos
que 1 /∈ I∗, de ah́ı que I∗ 6= R.
Ya que X satisface las hipótesis del Lema de Zorn, concluimos que tiene
elemento máximo, el cual es un ideal propio máximo que contiene a I.

Definición 6.12. El conjunto de todos los ideales primos en un anillo R es
llamado el espectro de R y lo denotaremos por Spec(R) mientras el con-
junto de sus ideales máximos es el espectro máximo de R, denotado por
Specm(R). Además se puede observar que Specm(R) ⊆ Spec(R).

Ejemplo 6.13. 1. Si R = Z. Entonces Spec(Z) = {(p) | p ∈ Z primo} ∪
{(0)}

Definición 6.14. Un anillo R con un único ideal máximo M es llamado
anillo local. Por la Proposición 6.6

K := R/M

es un campo. A este campo se le conoce como el campo residual. Se veri-
ficará más adelante que M = {r ∈ R | r no es una unidad}.
Un momorfismo de anillos locales f : R→ S es llamado un morfismo local si
f(MR) ⊆MS, donde MR y MS son los ideales máximos de los anillos locales
de R y S respectivamente.

Ejemplo 6.15. Un morfismo local es el siguiente:
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µ : Z4 → Z2

0 7→ 0

1 7→ 1

2 7→ 0

3 7→ 1

Este morfismo está determinado por la estructura de Z4, es decir, Z4 es
un anillo finito, conmutativo, local con ideal máximo 2Z4 = {0, 2} y campo
residual Z4/2Z4

∼= Z2. Por lo tanto, µ es el morfismo sobreyectivo natural y
el ideal máximo 2Z4 asigna el elemento cero del campo.

Proposición 6.16. Sea R un anillo.

1. Si M 6= (0) un ideal tal que cada x ∈ R \M es una unidad. Entonces R
es un anillo local y M es su único ideal máximo.

2. Si M es un ideal máximo tal que cada elemento del conjunto 1 + M :=
{1 + x | x ∈M} es una unidad en R. Entonces R es un anillo local.

Demostración. 1. Sea I un ideal propio. Supongamos que existe x ∈ I y
x /∈ M , luego x ∈ R \M , entonces x es unidad. Aśı que I = R, contra-
dicción. Por lo tanto x ∈ I implica x ∈ M . Aśı I ⊆ M . De esta manera
demostramos que M es el único ideal máximo.

2. Sea x ∈ R \M . Como M es máximo, el ideal J = (x,M) coincide con R,
esto implica que existe y ∈ R y t ∈M tal que xy+ t = 1, aśı xy = 1− t ∈
1 +M es una unidad en R, luego existe s ∈ R tal que (xy)s = s(xy) = 1.
Aśı 1 = x(ys) = (ys)x. Por lo tanto x ∈ U(R). Por 1. R es un anillo local.

Definición 6.17. Un anillo que contiene solo un número finito de ideales
máximos es llamado semilocal.

Ejemplo 6.18. 1. Cada anillo finito es un anillo semilocal.

2. Z tiene infinitos ideales máximos y por lo tanto no es un anillo semi-
local.

3. Q es infinito y es semilocal.
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Definición 6.19. Dado un ideal I de R, el conjunto
√
I := {r ∈ R | rs ∈ I para algún s ∈ N }

es un ideal de R, llamado el radical de I. Claramete I ⊆
√
I. Un ideal J es

llamado un ideal radical si
√
J = J .

Ejemplo 6.20. El ideal radical del ideal 4Z es 2Z.

Proposición 6.21. Sea M un ideal máximo de R. Entonces M es un ideal
radical.

Demostración. Por definición, M ⊆
√
M . Por ser M máximo se tiene que

M =
√
M en este caso M es el ideal radical ó

√
M = R, contradicción.

Proposición 6.22. Si P es un ideal primo de R, entonces P es un ideal
radical.

Demostración. Por definición P ⊆
√
P . Sea a un elemento de

√
P y n un

entero positivo tal que an ∈ P . Demostraremos que si an ∈ P , entonces
a ∈ P , se hará por inducción.

1. Para n = 1, x = x1 ∈ P implica que x ∈ P .

2. Supongamos que se cumple para n = k, es decir, que ak ∈ P implica que
a ∈ P .

3. Veamos que se cumple para n = k+ 1, ak+1 = aak están en el ideal primo,
entonces a ∈ P ó ak ∈ P , si a ∈ P , se termina la demostración. Si ak ∈ P ,
entonces por hipótesis de inducción, tenemos a ∈ P .

Definición 6.23. Si R es un anillo conmutativo, entonces su nilradical
nil(R) es definido como la intersección de todos los ideales primos en R, es
decir

Nil(R) :=
⋂

P∈Spec(R)

P

Definición 6.24. Si R es un anillo, entonces el radical de Jacobson J(R)
está definido como la intersección de todos los ideales máximos de R.
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Ejemplo 6.25. 1. En cualquier dominio entero el nilradical es el ideal
(0).

2. En cualquier anillo local el radical de Jacobson es el único ideal máximo.

Proposición 6.26. Sea R un anillo, entonces

Nil(R) = {f ∈ R | ∃n ∈ N, fn = 0}.

Demostración. Supongamos que S es el conjunto de los elementos nilpoten-
tes. Veamos S ⊆ Nil(R). Sea f ∈ S y p ∈ spec(R), entonces existe n ∈ N
tal que fn = 0. Pero 0 ∈ P aśı que fn ∈ P por la Proposición 6.22. Aśı
que f ∈ P para todo p ∈ Spec(R), entonces f ∈

⋂
p∈Spec(R) P = Nil(R).

Aśı S ⊆ Nil(R). Ahora veamos Nil(R) ⊆ S. Es decir, debemos demostrar
que f ∈ Nil(R) implica que existe n ∈ N tal que fn = 0. Pero notemos que
esto es equivalente a demostrar que si fn 6= 0, para n ∈ N entonces existe
p ∈ spec(R) tal que f /∈ P .
Supongamos que fn 6= 0 para todo n ∈ N. Sea Γ = {I ≤ R | fn /∈ I,
para algún n ∈ N}. Note que Γ 6= ∅, ya que si {0} ⊆ R y n ∈ N, entonces
fn /∈ {0}, aśı {0} ∈ Γ. Además (Γ,⊆) es un copo. Consideremos una cadena
Φ ⊆ Γ,

⋃
Φ ⊆ R la unión de una cadena de ideales es un ideal, pero la unión

de ideales no necesariamos es ideal. Supongamos que existe n ∈ N tal que
fn ∈

⋃
Φ, entonces fn ∈ I para algún I ∈ Φ. Contradicción. Aśı

⋃
Φ ∈ Γ

y es una cota superior para Φ. Por el Lema de Zorn, Γ tiene un elemento
máximo P . Veamos que P es ideal primo.
Supongamos que x, y /∈ P . Veamos que xy /∈ P . Como x /∈ P entonces
P < P + 〈x〉 es ideal mayor propio. De manera análoga y /∈ P , entonces
P < P + 〈y〉. Como P es máximo, entonces P + 〈x〉 /∈ Γ y P + 〈y〉 /∈ Γ,
entonces, existen n,m ∈ N tales que fn ∈ P + 〈x〉 y fm ∈ P + 〈y〉, aśı
fn = p1 + r1x y fm = p2 + r2y, con r1, r2 ∈ R. Aśı

fnfm = (p1 + r1x)(p2 + r2y) = p1p2 + p1r2y + p2r1x+ r1xr2y.

Entonces fnfm = fn+m ∈ P + 〈xy〉. Aśı P + 〈xy〉 /∈ Γ y P + 〈xy〉 ≥ P . Aśı
P + 〈xy〉 > P entonces xy /∈ P . Por lo tanto P es un ideal primo, P ∈ Γ
y fn /∈ P para todo n ∈ N. En particular, para n = 1, f /∈ P entonces
f /∈ Nil(R). Por lo tanto Nil(R) ⊆ S. Aśı Nil(R) = S.

Proposición 6.27. Sea R un anillo, x ∈ J(R) si y sólo si 1 − xy es una
unidad de R para cada y ∈ R.
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Demostración. ⇒] Si 1 − xy no es una unidad, entonces por la Proposición
6.11, (1−xy) pertenece a algún ideal máximo M de R; ya que x ∈ J(R) ⊆M ,
xy ∈M , lo que implica 1 ∈M , contradicción.
⇐] Si x /∈ M , para algún ideal máximo M , entonces (M,x) = R por ser
M máximo. Por lo tanto, existe v ∈ M y y ∈ R tal que v + xy = 1. Aśı
1− xy ∈M , lo que implica que 1− xy no es una unidad, contradicción.
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Caṕıtulo 7

Estructura de los campos
finitos

Dado que la teoria de códigos se desarrolla sobre los campos finitos, en
esta sección se estudiaran algunas de sus caracteŕısticas pero todavia más
importante se demostrará la abundante existencia de dichos campos.

Proposición 7.1. Para todo elemento β de un campo finito F con q elemen-
tos, βq=β.

Demostración. En el caso en que β = 0 se tiene 0q = 0. Supongamos ahora
que β 6= 0. Sea F∗={β1, ..., βq−1} el conjunto de todos los elementos no cero
de F. Dado que β 6= 0, tenemos que {ββ1, ββ2, ..., ββq−1} = F∗ son también
elementos no cero, luego β1β2...βq−1 = βq−1(β1β2...βq−1). Por lo tanto βq−1 =
1.

Proposición 7.2. Sea F un subcampo de E con |F | = q. Entonces un ele-
mento β de E está en F si y sólo si βq = β.

Demostración. ⇒] Por la Proposición 7.1 se cumple.
⇐] Consideremos el polinomio xq − x ∈ E[x]. El cual tiene a lo más q ráıces
distintas en E. Como todos los elementos de F son ráıces de xq−x y |F | = q,
obtenemos F = {α | α es ráız de xq−x en E}. Por lo tanto, para todo β ∈ E
que satisface βq = β, es una ráız de xq − x, es decir, β ∈ F .

Proposición 7.3. Sea p ∈ Z primo, y n ∈ N. Entonces existen campos con
pn elementos.
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Demostración. Sea q = pn, y consideremos f(x) = xq − x ∈ Fp[x]. Por
la Proposición 5.13 existe K campo tal que Fp ⊆ K en el cual f(x) se
descompone totalmente.
Este polinomio tiene q ráıces distintas en K ya que su derivada es qxq−1−1 =
−1 en Fq[x] y aśı no puede tener una ráız común con xq−x por la Proposición
2.25. Sea S = {a ∈ K | aq − a = 0}. Entonces S es un subanillo de K ya que

1. f(1) = 1q − 1 = 0, aśı 1 ∈ S.

2. Si a, b ∈ S entonces por la Proposición 1.25 que (a−b)q = aq−bq = a−b
y aśı a− b ∈ S.

3. Para a, b ∈ S y b 6= 0, tenemos (ab−1)q = aq(b−1)q = aqb−q = aq(bq)−1 =
ab−1 y aśı ab−1 ∈ S.

Pero, por otro lado xq − x se puede factorizar en S, ya que S contiene toda
sus ráıces. Por lo tanto K = S, y ya que S tiene q elementos, K es campo
finito con q = pn elementos.

Definición 7.4. Un elemento α en un campo finito Fq es llamado elemento
generador o primitivo de Fq si Fq = {0, α, α2, ..., αq−1}.

Ejemplo 7.5. En Z7 el elemento 3̄ es un elemento primitivo.

Definición 7.6. El orden de un elemento distinto de cero α ∈ Fq denotado
por ord(α) es el entero positivo más pequeño k tal que αk = 1.

Ejemplo 7.7. Siguiendo con el Ejemplo 7.5, el orden de 3̄ es 6.

Proposición 7.8. El orden ord(α) divide a q − 1 para todo α ∈ F∗q.

Demostración. Sea m un entero positivo que tenga como propiedad αm = 1,
usando el algoritmo de la división escribimos m = aord(α) + b para algunos
enteros a y b tales que 0 ≤ a y 0 ≤ b < ord(α) entonces

1 = αm = αaord(α)+b = αaord(α)αb = (αord)aαb = 1αb = αb.

Por lo tanto b = 0, esto es, aord(α) = m, es decir, ord(α) | m. Además
sabemos que para cada α ∈ F∗q tenemos que αq−1 = 1, es decir, ord(α) |
q − 1.

Proposición 7.9. Para dos elementos α, β ∈ F∗q si m.c.d(ord(α),ord(β)) =
1, entonces ord(αβ)=ord(α)ord(β).
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Demostración. Sea r = ord(α)ord(β). Es claro que αr = 1 = βr ya que el
ord(α) y ord(β) son divisores de r. Por lo tanto

(αβ)r = αrβr = 1.

Aśı ord(αβ) ≤ ord(α)ord(β).
Por otro lado, sea t = ord(αβ), tenemos

1 = (αβ)t·ord(α) = (αord(α))tβt·ord(α) = βt·ord(α).

Esto implica que ord(β) divide t·ord(α) por la Proposición de 7.8, aśı el
ord(β) divide a t ya que ord(α) es primo relativo con ord(β).
En la misma forma se muestra que ord(α) divide a t. Esto implica que ord(α)
y ord(β) dividen a t. Por lo tanto, ord(αβ) = t ≥ ord(α)ord(β).

Proposición 7.10. Un elemento distinto de cero de Fq es un elemento pri-
mitivo si y sólo si su orden es q − 1.

Demostración. Por la Proposición 7.1 tenemos que para todo α ∈ F∗q se tiene
que el orden es q−1 si y sólo si α, α2, ..., αq−1 son distintos. Esto es equivalente
a decir que Fq = {0, α, α2, ..., αq−1}.

Proposición 7.11. Todo campo finito tiene al menos un elemento primitivo.

Demostración. Sea m el mı́nimo común múltiplo de los ordenes de todos
los elementos de F∗q. Si rk es una potencia de un primo en la factorización

canónica de m, entonces rk | ord(α) para algún α ∈ F∗q. El orden de αord(α)/rk

es rk. Por lo tanto, si

m = rk11 ...r
kn
n

es la factorización canónica de m para distintos primos r1, ..., rn, entonces,
para cada i = 1, ..., n, existen βi ∈ F∗q con ord(βi) = rkii . La Proposición
7.9 implica que existe β ∈ F∗q con ord(β) = m. Además m | (q − 1) por la
Proposición 7.8 y por otra parte todos los (q− 1) elementos de F∗q son ráıces
del polinomio xm−1, de modo que m ≥ q−1. Por lo tanto, ord(β) = m = q−1
y el resultado se termina por la Proposición 7.10.
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Caṕıtulo 8

Codificación

En esta sección, empezaremos a definir desde el punto matemático con-
ceptos tales como código, mensaje, codificación y decodificación que son de
vital importancia para la teoŕıa de códigos. Para esto, usamos como punto
de partida las definiciones dadas por J. Adámek ([1]) que sirvierón como
inspiración para que nosotros pudieramos dar desde nuestro punto de vista
nuestras propias definiciones.

Definición 8.1. Dados conjuntos finitos A (alfabeto de origen) y B (alfabeto
código) una palabra origen es un elemento de

⋃
n∈NA

n, una palabra código
es un elemento de

⋃
n∈NB

n.
Al conjunto de las palabras origen lo denotamos por Po y al conjunto de
palabras códigos Pc.

Definición 8.2. Si p ∈ Po es una palabra origen, entonces p ∈ Am para
algún m ∈ N. Es decir, p = (a1, ..., am), con ai ∈ A, en este caso decimos
que p tiene longitud m.
Una codificación es una función inyectiva f : A → Pc la cual asigna a
cada elemento de A exactamente una palabra código. Si f : A → Pc es
una codificación, decimos que f(A) es un código.

Definición 8.3. Sea f una codificación. Sea a ∈ Po, entonces a = (a1, ..., an)
para algún n ∈ N , un mensaje de la codificación f enviado por a es un
elemento m de Pc definido por m = f ′(a) = (f(a1), ..., f(an)), donde f ′ :
Po → Pc.

Definición 8.4. La decodificación del mensaje m es
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dm = (f−1f(a1), ..., f−1f(an)).

Ejemplo 8.5. Sea A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} y B = F2, y sea Pc de las
palabras código de longitud 5 que tengan solo dos 1’s, de tal manera que la
columna de la izquierda representa a los elementos de A y la columna de la
derecha representa a su imagen bajo la codificación f representada por esta
asignación.

1 7→ (1, 1, 0, 0, 0)
2 7→ (1, 0, 1, 0, 0)
3 7→ (0, 1, 1, 0, 0)
4 7→ (1, 0, 0, 1, 0)
5 7→ (0, 1, 0, 1, 0)
6 7→ (0, 0, 1, 1, 0)
7 7→ (1, 0, 0, 0, 1)
8 7→ (0, 1, 0, 0, 1)
9 7→ (0, 0, 1, 0, 1)
10 7→ (0, 0, 0, 1, 1)

aśı, la palabra a = (1, 7, 3) al ser enviada mediante f ′, obtenemos el mensaje
m = f ′(a) = ((1, 1, 0, 0, 0), (1, 0, 0, 0, 1), (0, 1, 1, 0, 0)). Usualmente se abusa
de la notación y el mensaje m se denonta m = (11000, 10001, 01100). Esto
se hace para evitar una notación engorrosa.

A veces en la teoŕıa de códigos se omite la codificación y se escribe siem-
plemente el código C = {c1, ..., cn} donde ci ∈ Bn. Por ejemplo, podemos
escribir el código del ejemplo anterior como C = {c1 = (1, 1, 0, 0, 0), c2 =
(1, 0, 1, 0, 0), ..., c10 = (0, 0, 0, 1, 1)}. No se escribe la codificación debido a
que es bastante claro que podemos definir cualquier función codificadora. En
el ejemplo, escribimos A = {1, ..., 10}, donde f es tal que f(i) = ci; pero
podŕıamos haber codificado también aśı: A = {a, b, c, d, e, f, g, h, i, j} donde
f es tal que f(a) = c1, f(b) = c2,...,f(j) = c10. Notemos que las dos funciones
nos propocionan exactamente el mismo código.

Definición 8.6. Si B es un alfabeto código definimos al conjunto de palabras
código de longitud n como Bn. Si f : A → Bn es una codificación, decimos
que f(A) es un código bloque de longitud n.
Además, si B = F2 y f : A → Fn2 es una codificación, entonces diremos que
f(A) es un código binario de longitud n.



Caṕıtulo 9

Detección de errores

Aśı, para decodificar será útil poner una medida de que tan cerca dos
palabras código están una de la otra. Una manera de hacerlo es con la dis-
tanćıa de Hamming que a continuación definimos. Además definiremos otro
concepto desde el punto matemático, el concepto de transmisión y veremos
cuando un código se puede corregir y cuando no.

Definición 9.1. Sean x e y dos palabras de longitud n sobre el mismo alfabeto
B. La distancia de Hamming entre x e y, denotada por d(x, y), se define
como el número de coordenadas en que x e y difieren, es decir, d : Bn×Bn −→
[0, n] ⊂ N. Donde si x = (x1, x2, ..., xn) e y = (y1, y2, ..., yn), entonces

d(x, y) = d(x1, y1) + d(x2, y2) + ...+ d(xn, yn)

con

d(xi, yi) =

{
1 si xi 6= yi
0 si xi = yi

A partir de aqúı, si C es un código de longitud n. Escribiremos x =
x1x2...xn ∈ C en lugar de x = (x1, x2, ..., xn).

Ejemplo 9.2. Sea Z2 = {0, 1} y sea x = 01010, y = 01101, z = 11101 ∈ Z5
2.

Entonces

1. d(x, y) = 3

2. d(y, z) = 1

3. d(z, x) = 4
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Ahora veamos que (Bn, d) es un espacio métrico.

Proposición 9.3. Sean x, y, z, palabras de longitud n sobre B. Entonces
tenemos que:

i. 0 ≤ d(x, y) ≤ n

ii. d(x, y) = 0 si y sólo si x = y.

iii. d(x, y) = d(y, x)

iv. d(x, z) ≤ d(x, y) + d(y, z).

Demostración. Consideremos x = (x1, x2, ..., xn) , y = (y1, y2, ..., yn) y z =
(z1, z2, ..., zn).

i. De la definición de distancia de Hamming tenemos que d(x, y) = d(x1, y1)+
d(x2, y2) + ... + d(xn, yn), supongamos que en todos los casos xi = yi
por lo que d(x, y) = 0 y ahora suponiendo que xi 6= yi, para todo
i ∈ {1, 2, ..., n}, tendŕıamos que d(x1, y1) + d(x2, y2) + ... + d(xn, yn) =
1 + 1 + ...+ 1 = 1(n) = n por lo que 0 ≤ d(x, y) ≤ n.

ii. d(x, y) = d(x1, y1)+d(x2, y2)+ ...+d(xn, yn) = 0 si y sólo si d(xi, yi) = 0
para todo i ∈ {1, ..., n} si y sólo si xi = yi para todo i ∈ {1, ..., n} si y
sólo si x = y.

iii. d(x, y) = d(x1, y1) + d(x2, y2) + ... + d(xn, yn) = d(y1, x1) + d(y2, x2) +
...+ d(yn, xn) = d(y, x).

iv. Si x = z entonces d(x, z) = 0. Observemos que si x y z difieren en un
lugar, es decir, xi 6= zi para algún i ∈ {i, ...n} entonces x y y difieren en
ese mismo lugar xi 6= yi ó z e y difieren en ese mismo lugar zi 6= yi ó
en ambos, de ah́ı el número de lugares donde x y z que difiere es menor
o igual a el número de lugares donde x e y difieren más el número de
lugares donde z e y difieren.

Apartir de aqúı, cuando mencionemos distancia nos estaremos refiriendo
a la distancia de Hamming.
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Definición 9.4. Sea C ⊆ Bn un código bloque de tamaño n, definimos una
transmisión como una función T : C −→ Bn, además decimos que T no
tiene ruido si T (c) = c para todo c ∈ C, es decir, si T es la función inclusión,
de otra manera decimos que T tiene ruido. Decimos que c ∈ C tiene k errores
en la transmisión T si d(c, T (c)) = k.

La idea básica de detección de errores, es simple, si recibimos una palabra
que no es una palabra código entonces sabremos que se ha cometido un error.

Definición 9.5. Dado un código bloque C de tamaño n definimos la distan-
cia mı́nima de C denotada d(C), como la menor distancia no nula entre
cualesquiera dos palabras código, es decir,

d(C) = min{d(x, y) : x 6= y, x,y ∈ C}.

Definición 9.6. Dado x ∈ Bn, con | B |= q y r ≥ 0, se define la esfera de
radio r y centrada en x como

Sq(x, r) = {y ∈ Bn : d(x, y) = r}.

y la bola de radio r centrada en x como

Bq(x, r) = {y ∈ Bn : d(x, y) ≤ r} =
r⋃
i=0

Sq(x, i)

Veamos que las bolas de radio t =
⌊
d(C)−1

2

⌋
centradas en palabras código

son disjuntas. Donde buc es el mayor entero menor que o igual a u.

Proposición 9.7. Si C es un código con distancia mı́nima d(C) = 2t+ 1 ó
d(C) = 2t+ 2, entonces

Bq(c, t) ∩Bq(c
′, t) = ∅

Para todo c, c′ ∈ C con c 6= c′.

Demostración. Sea x ∈ Bq(c, t) con c ∈ C. Entonces x /∈ Bq(c
′, t) para todo

c′ ∈ C con c′ 6= c. Ya que si no fuera aśı, por la desigualdad del triángulo
tendriamos

d(c, c′) ≤ d(c, x) + d(x, c′) ≤ t+ t = 2t < 2t+ 1 = d(C).

Lo que es una contradicción.
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Definición 9.8. Un código bloque C se dice que detecta t errores siempre
que para cada palabra código a y cada palabra a′ obtenida de a por diferir en
1, 2, ..., t simbolos, a′ no es una palabra código.

Proposición 9.9. Un código C detecta t errores si y sólo si d(C) ≥ t+ 1.

Demostración. ⇒] Supongamos que C detecta t errores y que d(C) < t+1, es
decir, d(C) ≤ t, entonces existen x, y ∈ C tales que 1 ≤ d(x, y) = d(C) ≤ t.
Por lo tanto es posible que comencemos con la palabra código x y d(C) errores
de tal manera que la palabra código resultante es y una palabra código en
C. Por lo tanto C, no detecta t errores.
⇐] Supongamos que d(C) ≥ t + 1. Si c ∈ C y x son tales que 1 ≤ d(c, x) ≤
t < d(C). Se sigue que x /∈ C. Por lo tanto C detecta t errores.

Definición 9.10. Un código de bloque C se dice que corrige t errores
siempre que para cada palabra código a y cada palabra a′ obtenido por diferir
en 1, 2, ..., t śımbolos, la distancia de Hamming d(a, a′) es estrictamente más
pequeña que la distancia de Hamming de a′ a cualquier otra palabra código.
En śımbolos, para cada palabra código a ∈ C y cada palabra a′ tal que 1 ≤
d(a, a′) ≤ t, se tiene que d(a, a′) < d(b, a′) para todas las palabras código
b ∈ C, b 6= a.

Proposición 9.11. Un código C corrige t errores si y sólo si d(C) ≥ 2t+ 1.

Demostración. ⇒]Sea d(C) ≤ 2t. Entonces mostraremos que C no puede
corregir t errores distribuidos arbitrariamente. En otras palabras, encontra-
remos una palabra código a y una palabra a′ que tiene distanćıa de Hamming
t o menor de a y sin embargo, su distanćıa de Hamming de una palabra códi-
go diferente es aún más pequeña. Sean a, b ∈ C con d(a, b) = d(C). Sean
i1, i2..., ir todos los ı́ndices en los cuales a difiere de b. Entonces r ≤ 2t.
Supongamos que enviamos a y el ruido cambia todos los śımbolos ai con
i ∈ {i2, i4, i6, ...} (es decir, todos los ı́ndices pares en los cuales a y b difieren)
a los valores en b. Esto es, recibimos la palabra a′, donde

ai
′ =


ai = bi si i 6= i1, i2, ..., ir,
ai si i = i1, i3, ...,
bi si i = i2, i4, ....

Aśı d(a, a′) ≤ r
2
≤ t y sin embargo d(a′, b) ≤ d(a′, a). Esto puede llevar a la

decodificación de a′ incorrectamente como b.
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⇐] Sea d(C) > 2t. Entonces C corrige t errores. En efecto, supongamos
que enviamos una palabra a y recibimos una palabra a′ con distancia de
Hamming d(a, a′) ≤ t. Tenemos la siguiente situación con cualquier palabra
código b 6= a : d(a, b) ≥ d(C) > 2t y por la desigualdad del triángulo

d(a, a′) + d(a′, b) ≥ d(a, b) > 2t. (9.1)

Por lo tanto d(a′, b) > 2t− d(a, a′) ≥ 2t− t = t ≥ d(a, a′).

Ejemplo 9.12. El código C1 = {00, 01, 10, 11} no detecta ningún error,
mientras que C2 = {001, 010, 100} detecta 1 error,

Notación Un código de longitud n, con M palabras códigos, y con dis-
tancia mı́nima d = d(C), es llamado un (n,M,d) código.

Proposición 9.13. Sea C un código. Una bola Bq(x, c) de radio r centrada
en una palabra código c tiene:(

n
0

)
+
(
n
1

)
(q − 1) +

(
n
2

)
(q − 1)2 + ...+

(
n
r

)
(q − 1)r

elementos.

Demostración. Primero calculemos el número de vectores que tienen una
distancia 1 de la palabra código c. Estos vectores son los que difieren en
C en exactamente una coordenada, además hay n posibles coordenadas y
q − 1 formas para hacer una entrada diferente. Por lo tanto el número de
vectores que tienen una distancia de 1 a c es n(q − 1). Ahora calculemos el
número de vectores que tienen distancia m de c , hay

(
n
m

)
formas en las cuales

podemos elegir m coordenadas para diferir de los valores de c, además para
cada una de esas coordenadas, hay q − 1 elecciones para śımbolos diferentes
de el correspondiente śımbolo de la palabra código c. Por lo tanto, hay(

n
m

)
(q − 1)m

elementos que tienen distancia m de la palabra código c. Incluyendo la misma
palabra código c y usando la identidad

(
n
0

)
= 1. Obtenemos:(

n
0

)
+
(
n
1

)
(q − 1) +

(
n
2

)
(q − 1)2 + ...+

(
n
r

)
(q − 1)r .

Proposición 9.14. Sea C un [n,M,d]-código con d ≥ 2t+ 1 Entonces

M ≤ qn∑t
j=0

(
n
j

)
(q − 1)j
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Demostración. Alrededor de cada palabra código colocamos una bola de ra-
dio t. Ya que la mı́nima distancia de el código es d ≥ 2t + 1 las bolas no
se superponen. El número total de vectores de cada bola no puede ser más
grande que qn. Por lo tanto obtenemos

(número de palabras códigos)×(número de elementos por bola)

= M
t∑

j=0

(
n

j

)
(q − 1)j ≤ qn

Por lo tanto se cumple la desigualdad deseada.

A este resultado se le llama la Cota de Hamming o a veces también
llamado empaquetamiento de esferas.



Caṕıtulo 10

Códigos Lineales

En está sección hablaremos sobre qué son los códigos lineales y discutire-
mos sus propiedades elementales.

Definición 10.1. Un código lineal de longitud n sobre un campo Fq es
un subespacio C ⊂ Fnq de dimensión k. En este caso decimos que C es un
[n,k]-código sobre Fq . Si C tiene distanćıa mı́nima d entonces decimos que
C es un [n,k,d]-código sobre Fq.

Observación 10.2. Por lo tanto un código lineal de longitud n es un con-
junto de palabras de longitud n tal que:

1. Si a y b son palabras códigos, entonces a+ b es una palabra código.

2. Si a es una palabra código, entonces para cada múltiplo escalar t, ta es
una palabra código.

3. Si C es un subespacio de dimensión k de Fnq y sean e1, ..., ek una base
de C. Entonces para cada palabra código v se sigue que,

v =
k∑

n=1

uiei.

4. Si el alfabeto código F tiene r śımbolos, entonces existen rk palabras
códigos en C.

Ejemplo 10.3. Sea Z3
2. C = {000, 001, 010, 011} es un código lineal.
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Definición 10.4. Sea C un código lineal en Fnq .

1. El código dual de C, denotado por C⊥, es el complemento ortogonal
del subespacio C de Fnq .

2. La dimensión del código lineal C es la dimensión de C como un
espacio vectorial sobre Fq, denotada por dim(C).

Proposición 10.5. Sea C un código lineal de longitud n sobre Fq. Entonces,

1. |C| = qdim(C), es decir, dim(C)=logq |C|.

2. C⊥ es un código lineal y dim(C)+dim(C⊥) = n.

3. (C⊥)⊥ = C.

Demostración. 1. Por el Lema 4.26 se cumple.

2. Usando la igualdad del Lema 4.26 y la Proposición 4.27 con C = S.

3. Veamos que C ⊂ (C⊥)⊥. Sea c ∈ C, debemos demostrar que c ∈ (C⊥)⊥,
es decir c · x = 0 para todo x ∈ C⊥. Aśı tomando c ∈ C y x ∈ C⊥ se tiene
que x · c′ = 0 Para todo c′ ∈ C, en particular para c. Por lo tanto x · c = 0.
Luego usando la igualdad de la parte 2. y reemplazando C por C⊥. te-
nemos que la dim(C⊥)⊥ = n − (n − k) = k = dim(C). Por lo tanto
C = (C⊥)⊥.

Ejemplo 10.6. Sea Z4
2. Consideremos el código C = {0000, 1010, 0101, 1111},

aśı, dim(C)=log2 |C| = log24 = 2. Es claro que C⊥ = {0000, 0101, 1010, 1111} =
C, es decir, dim(C⊥) = 2. Además se cumplen las propiedades 2. y 3. de la
Proposición 10.5.

Definición 10.7. Sea x ∈ Fnq una palabra. El peso de Hamming de x,
denotado por w(x), está definido como el número de coordenadas no nulas
de x, es decir,

w(x) = d(x,0),

donde 0 es la palabra cero.

Lema 10.8. Para todo elemento x de Fq, podemos definir el peso de Ham-
ming como sigue:

w(x) = d(x, 0) =

{
1 si x 6= 0
0 si x = 0
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es decir el peso de x es la distancia de x al 0 = (0, 0, ..., 0). Si C es un
código se define el peso de C como,

w(C) = min{w(x) : x 6= 0,x ∈ C}.

El peso Hamming de x = (x1, x2, ..., xn) puede reescribirse como,

w(x) = w(x1) + w(x2) + ...+ w(xn)

Proposición 10.9. Si x,y ∈ Fnq , entonces d(x, y) = w(x− y)

Demostración. Para x, y ∈ Fq, d(x, y) = 0 si y sólo si x = y, pero esto es
equivalente a x−y = 0 por otro lado w(x−y) = d(x−y, 0) = 0. Por lo tanto
d(x, y) = w(x− y).

Proposición 10.10. Sea q par. Si x, y ∈ Fnq , entonces d(x, y) = w(x+ y).

Demostración. Ya que a = −a para toda a ∈ Fq cuando q es par, el resultado
es una inmediata consecuencia de la Proposición 10.9.

Definición 10.11. Si x = (x1, x2, ..., xn), y = (y1, y2, ..., y3) ∈ Fn2 palabras
binarias se define la intersección de x e y como

x ∩ y= (x1y1, x2y2, ..., xnyn)

Lema 10.12. Si x, y ∈ Fn2 entonces w(x+ y) = w(x) + w(y)− 2w(x ∩ y).

Demostración. Es suficiente ver los siguientes 4 casos, para las coordenadas
de x y y.

x y w(x) + w(y)− 2w(x ∩ y) w(x+ y)
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Lema 10.13. Para cualquier potencia prima q y x, y ∈ Fnq tenemos que

w(x) + w(y) ≥ w(x+ y) ≥ w(x)− w(y)

Demostración. Sea x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) donde
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w(x) = d(x, 0) = d(x1, 0) + d(x2, 0) + ...+ d(xn, 0)
w(y) = d(y, 0) = d(y1, 0) + d(y2, 0) + ...+ d(yn, 0)

entonces

w(x)+w(y) = d(x1, 0)+d(x2, 0)+...+d(xn, 0)+d(y1, 0)+d(y2, 0)+....+d(yn, 0)

pero d(xi, yi) ≤ d(xi, 0) + d(0, yi). Aśı

w(x+ y) = d(x, y) =
∑n

i=1 d(xi, yi) ≤
∑n

i=1 d(xi, 0) + d(0, yi) = w(x) +w(y).

Análogamente

w(x)− w(y) = d(x1, 0) + ...+ d(xn, 0)− d(y1, 0)− ...− d(yn, 0)

= (d(x1, 0)− d(0, y1)) + ...+ (d(xn, 0)− d(yn, 0))

Recordando que w(x + y) = d(x, y) = d(x1, y1) + ... + d(xn, yn), debemos
demostrar que d(xi, yi) ≥ d(xi, 0)− d(yi, 0) para toda i ∈ {1, ..., n}.
Supongamos que d(xi, yi) < d(xi, 0) − d(yi, 0), luego d(xi, yi) + d(yi, 0) <
d(xi, 0), pero d(xi, 0) ≤ d(xi, yi) + d(yi, 0) < d(xi, 0), lo que es una contradic-
ción. Aśı d(xi, yi) ≥ d(xi, 0)− d(yi, 0). Por lo tanto

w(x+ y) =
n∑
i=1

d(xi, yi) ≥
n∑
i=1

d(xi, 0)− d(yi, 0) = w(x)− w(y)

Proposición 10.14. Si C es un código lineal entonces d(C) = w(C).

Demostración. Usando la definición de distancia mı́nima existen x, y, z ∈ C
con x 6= y y z 6= 0 tales que,

d(C) = d(x, y) = w(x− y) > w(C)

puesto que x− y es un elemento de C, por otro lado

w(C) = w(z) = d(z, 0) > d(C)

Ejemplo 10.15. Sea Z4
2 y el código lineal binario C = {0000, 1000, 0100, 1100}.

w(1000) = 1.
w(0100) = 1.
w(1100) = 2.
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Por lo tanto, d(C) = 1.

En teoria de códigos una base para un código lineal es a menudo re-
presentado en la forma de una matriz, llamada una matriz generadora,
mientras una matriz que representa una base para el código dual es llamada
una matriz checadora de paridad.

Definición 10.16. Sea C un [n,k,d]-código con c1, c2, ..., ck una base. Una
matriz generadora de C es una matriz G ∈Mk×n(Fq) definida por

G =


c1

c2

.

.

.
ck


cuyas filas forman una base para C.

Observación 10.17. Notemos que G siempre existe y tiene rango k. Obser-
vemos que G genera a C, es decir,

C = {uG : u ∈ Fkq}

Sea {c1, ..., ck} una base de C y ci =
n∑
j=1

cijej para ciertos cij ∈ Fq, con

e1, ...en la base canónica de Fnq . Si u ∈ Fkq , entonces uG ∈ C, pues

uG = (u1, u2, ..., uk)


c1

c2

.

.

.
ck

 =

= (
k∑
i=1

uici1, ...,
k∑
i=1

uicin)=
n∑
j=1

(
k∑
i=1

uicij)ej=
k∑
i=1

ui(
n∑
j=1

cijej)=
k∑
i=1

uici.
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Rećıprocamente, si c ∈ C, existen únicos u1, ..., uk tal que c =
k∑
i=1

uici. Luego,

tomando u = (u1, ..., uk) ∈ Fkq se cumple que c = uG.
Por lo tanto, el proceso de representación de los elementos u ∈ Fkq como
palabras código c = uG en C es llamado codificación.

Ejemplo 10.18. Sea C un [5,3]-código lineal binario con matriz generadora

G =

1 0 1 1 0
0 1 0 1 1
0 0 1 0 1

 .

Como las filas son linealmente independientes, C tiene rango 3. Además

(
x1 x2 x3

)1 0 1 1 0
0 1 0 1 1
0 0 1 0 1

 =
(
x1, x2, x1 + x3, x1 + x2, x2 + x3

)
.

Entonces el mensaje u = 101 es codificado como 10011.

Definición 10.19. Sea C un [n,k]-código. Una matriz H sobre Fq se dice
matriz checadora de paridad de C siempre que se cumpla lo siguiente:
Para palabras código v = v1v2...vn en Fn, v es una palabra código de C si y
sólo si HvT = 0T , es decir,

v ∈ C ⇔ H



v1

v2

v3

.

.

.
vn


=



0
0
0
.
.
.
0


Definición 10.20. 1. Una matriz generadora está en forma estándar

si es de la forma G = (Ik|A) donde Ik es la matriz identidad k × k y
A es k × (n− k).

2. Una matriz checadora de paridad está en forma estándar si es de la
forma (Y |In−k) donde In−k es la matriz identidad (n− k)× (n− k).
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Lema 10.21. Sea C un [n,k]-código lineal sobre Fq con matriz generadora
G. Entonces v ∈ Fnq pertence a C⊥ si y sólo si v es ortogonal para toda
fila de G. Es decir v ∈ C⊥ si y sólo si vGT = 0. En particular, dado una
(n−k)×n matriz H, entonces H es una matriz checadora de paridad para C
si y sólo si las filas de H son linealmente independientes y HGT = 0. Donde
GT representa la transpuesta de G.

Demostración. Sea ri la i-ésima fila de G. En particular ri ∈ C para todo
1 ≤ i ≤ k, y todo c ∈ C puede ser escrito como

c = λ1r1 + ....+ λkrk.

donde λ1, ..., λk ∈ Fq.
⇒] Si v ∈ C⊥, entonces v · c = 0 para todo c ∈ C. En particular, v es
ortogonal a ri para todo 1 ≤ i ≤ k, es decir vGT = 0.
⇐] Si v · ri = 0 para todo 1 ≤ i ≤ k, entonces para cualquier c = λ1r1 + ....+
λkrk ∈ C,

v · c = λ1(v · r1) + ...+ λk(v · rk) = 0

Para la última afirmación, si H es la matriz checadora de paridad para C,
entonces las filas de H son linealmentes independientes por definición. Ya que
las filas de H son palabras código en C⊥, se deduce de la afirmación anterior
que HGT = 0.
Reciprocamente, si HGT = 0, entonces la afirmación anterior muestra que
las filas de H, y por lo tanto el espacio fila de H, están contenidos en C⊥.
Ya que las filas de H son linealmente independientes, el espacio fila de H
tiene dimensión n−k, entonces el espacio fila de H es de hecho C⊥. En otras
palabras, H es una matriz checadora de paridad para C.

Observación 10.22. Una formulación alternativa pero equivalente para el
Lema 10.21 es la siguiente:
Sea C un [n,k]-código lineal sobre Fq, con matriz checadora de paridad H.
Entonces v ∈ Fnq pertenece a C si y sólo si v es ortogonal a toda fila de H;
es decir, v ∈ C si y sólo si vHT = 0. En particular, dado una k × n matriz
G, entonces G es una matriz generadora para C si y sólo si las filas de G
son linealmente independientes y GHT = 0.

Proposición 10.23. Si G = (Ik | B) es la matriz generadora en forma
estándar de un [n,k]-código C, entonces una matriz checadora de paridad
para C es H = (−BT | In−k)
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Demostración. Sea C un (n, k)-código con matriz generadora G = (Ik | B).
Si L denota el espacio fila de la matriz H de arriba, entonces vamos a mostrar
que C es el complemento ortogonal de L. Primero observemos que el rango de
la matriz H es n− k, ya que In−k es una matriz identidad. Por consiguiente,
la dimensión de LT es n− (n− k) = k es igual que la dimensión de C. Por lo
tanto es suficiente mostrar que toda fila g de la matriz G cumple HgT = 0T ,
luego se sigue que toda palabra código v de C también cumple HvT = 0T , es
decir, que C es un subespacio de L⊥. Entonces la igualdad de las dimensiones
implica que C = L⊥. Ahora, queremos probar que HGT es la matriz 0. Aśı

GHT = [−BT | I ′]

 I
−
BT

 = −BT I + I ′BT = −BT +BT = 0,

donde I ′ = In−k.

10.1. Equivalencia de códigos lineales

A continuación vamos a dar la definición tradicional de equivalencia de
códigos.

Definición 10.24. Dos [n,M]-códigos C1 y C2 sobre Fq son equivalen-
tes, y se denotan por C1 ' C2, si existe una permutación σ ∈ Sn de las n
coordenadas y permutaciones π1, ..., πn ∈ Biy(B) del alfabeto, tales que

c1, c2, ..., cn ∈ C1 si y sólo si π1(cσ(1))π2(cσ(2))...πn(cσ(n)) ∈ C2.

Una definición alternativa es la siguiente.

Definición 10.25. Dos [n,M]-códigos sobre Fq son equivalentes si un
código puede ser obtenido de otro por una serie de las siguientes operaciones:

1. Permutaciones en las coordenadas de los códigos.

2. Multiplicación por algún escalar distinto de cero en alguna coordenada del
código.

Ejemplo 10.26. Sea Z3
3 y consideremos el código C = {000, 011, 022}. Per-

mutando la primera y la segunda coordenada, y seguida por la multiplicación
por 2 en la tercera coodenada, obtenemos el código
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C
′
= {000, 102, 201}

Proposición 10.27. Todo código lineal es equivalente a un código en forma
estándar.

Demostración. La matriz generadora G de un (n, k)-código lineal C tiene
rango k, por lo tanto tiene k columnas que son linealmente independientes.
Supongamos que las primera k columnas de G son linealmente independien-
tes, esto es G = [A | B], donde A es una matriz cuadrada de k × k. Luego
aplicando operaciones elementales sobre las filas, las cuales transforman a A
en la matriz identidad. Luego si aplicamos las misma operaciones elementa-
les sobre las filas de G, obtenemos una matriz G′ = [I | B′]. Ya que G′ es
también una matriz generadora de el código C, se sigue que C está en forma
estándar.

10.2. Decodificación de códigos lineales.

A partir de ahora veremos dos formas de tratar de recuperar la palabra
código, una vez que ya ha sido enviado por el canar de transmición. Estamos
hablando de la decodificación del vecino más cercano y la decodificación por
Śındrome.

Definición 10.28. Sea C un código lineal de longitud n sobre Fq y sea u ∈ Fnq
cualquier vector de longitud n, definimos la clase de C determinada por u
como el conjunto

C + u = {v + u : v ∈ C}.

Ejemplo 10.29. Sea Z3
2 y C = {000, 101, 010, 111}. Entonces

C + 000 = {000, 101, 010, 111},
C + 001 = {001, 100, 011, 110},
C + 010 = {010, 111, 000, 101},
C + 011 = {011, 110, 001, 100},
C + 100 = {100, 001, 110, 011},
C + 101 = {101, 000, 111, 010},
C + 110 = {110, 011, 100, 001},
C + 111 = {111, 010, 101, 000}.

Notemos que
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C + 000 = C + 010 = C + 101 = C + 111 = C;
C + 001 = C + 011 = C + 100 = C + 110 = Z3

2/C.

Proposición 10.30. Sea C un [n,k,d]-código lineal sobre un campo finito
Fq. Entonces

1. Todo vector de Fnq está contenido en alguna clase de C.

2. Si |C| = r, entonces |C + v| = r.

3. Para todo u, v ∈ Fnq , u ∈ C + v implica que C + u = C + v.

4. Dos clases son la misma o su intersección es vaćıa.

5. Para todo u, v ∈ Fnq , u− v ∈ C si y sólo si u y v están en la misma clase.

Demostración. 1. Cada elemento x ∈ Fnq está en la clase C + x. En efecto,
C contiene al 0, y x = 0 + x.

2. Sea C = {c1, c2, ..., cr} con ci 6= cj para i 6= j. Toda clase tiene la forma:

C + x = {c1 + x, c2 + x, ..., cr + x},

y ci+x 6= cj+x, para i 6= j. En efecto, si ci+x = cj+x, entonces restándo
x obtenemos ci = cj. Por lo tanto, C + x tiene r elementos.

3. Sea x ∈ C + u entonces x = c + u para c ∈ C, como u ∈ C + v entonces
u = c′ + v para c′ ∈ C. Luego x = (c + c′) + v está en C + v, ya que
c+ c′ ∈ C. Entonces por 2. C + u = C + v.

4. Si las clases C + x y C + y tienen un elemento en común digamos z,
entonces escribimos z en dos formas

z = c′ + x = c′′ + y para c′, c′′ ∈ C.

Ahora, demostraremos que todo elemento t de la clase C+x está en C+y;
por simetŕıa llegamos a la conclusión de que C + x = C + y. Expresamos
t como t = c+ x para algún c ∈ C. Entonces

t = c+ x = c+ (c′′ − c′ + y) = (c+ c′′ − c′) + y.
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Como C es un código lineal (c+ c′′ − c′) ∈ C. Por lo tanto t ∈ C + y.

5. ⇒] Si u−v ∈ C, entonces existe c ∈ C tal que c = u−v, en otras palabras
u = c+ v ∈ C + v. Concluimos que u y v están en la misma clase v + C.
⇐] Si u y v están en la misma clase, digamos C + w, entonces u = c+ w
para algún c ∈ C y v = c′ + w para algún c′ ∈ C. Entonces C contiene
c− c′, y tenemos que

u− v = c+ w − (c′ + w) = c− c′ ∈ C.

Definición 10.31. Una palabra de mı́nimo peso de Hamming en una clase
es llamado lider de clase.

Definición 10.32. Sea Fnq . Una matriz estándar para un [n,k]-código es
una matriz de (qn−k × qk) donde,

1. La primera fila contiene todas las palabras código.

2. Cada fila tiene una clase con el lider de clase en la primera columna.

3. La entrada en la i-ésima fila y la j-ésima columna es la suma del i-
ésimo lider de clase y la j-ésima palabra código.

Ejemplo 10.33. Las clases para el código C = {0000, 1011, 0101, 1110} son
los siguientes:

0000 + C : 0000 1011 0101 1110
0001 + C : 0001 1010 0100 1111
0010 + C : 0010 1001 0111 1100
1000 + C : 1000 0011 1101 0110

La cual forma una matriz estándar.

10.3. Decodificación del vecino más cercano

para códigos lineales.

Sea C un código lineal. Asumamos que la palabra código v es transmitida
y la palabra w es recibida, resultando en el patrón de error.

e = w− v ∈ w + C.
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Entonces w−e = v ∈ C, aśı por la parte 5. de la Proposición 10.30, el patrón
de error e y la palabra recibida w están en la misma clase. La decodifica-
ción del vecino más cernano trabaja de la siguiente manera: Al recibir
la palabra w, escogemos una palabra e de menor peso en la clase w + C y
concluimos que v = w − e fue la palabra transmitida.

Observación 10.34. Interpretamos e+C = {e+v | v ∈ C} como el conjunto
de todas las posibles palabras recibidas w = e+ v, cuando una palabra código
v es enviada y el canal ruidoso agrega el patrón de error e.

Ejemplo 10.35. Sea Z4
2 y C = {0000, 1011, 0101, 1110}. Decodificamos la

siguiente palabra recibida: w=1101.
Primero, escribimos la matriz estándar de C, que es exactamente la misma
que en el Ejemplo 10.33:

0000 + C : 0000 1011 0101 1110
0001 + C : 0001 1010 0100 1111
0010 + C : 0010 1001 0111 1100
1000 + C : 1000 0011 1101 0110

w=1101: w + C está en la cuarta clase. La palabra de menor peso en esta
clase es 1000. Por lo tanto 1101− 1000 = 1101 + 1000 = 0101 fue la palabra
código que más probabilidad tuvo de ser enviada.

10.4. Decodificación por Śındrome

Definición 10.36. Sea C un [n,k,d]-código lineal sobre Fq y sea H una
matriz checadora de paridad para C. Para cualquier w ∈ Fnq , el śındrome
de w es la palabra S(w) = wHT .

Proposición 10.37. Sea C un [n,k,d]-código lineal y sea H una matriz
checadora de paridad para C. Para u, v ∈ Fnq tenemos:

i. S(u + v) = S(u) + S(v)

ii. S(u) = 0 si y sólo si u es una palabra código en C.

iii. S(u) = S(v) si y sólo si u y v están en la misma clase se C.

Demostración. i. S(u + v) = (u + v)HT = uHT + vHT = S(u) + S(v).
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ii. Por definición de śındrome, S(u) = 0 si y sólo si uHT = 0, por la
Observación 10.22, tenemos que u ∈ C.

iii. S(u) = S(v) si y sólo si S(u)−S(v) = S(u−v) = 0, aśı u−v ∈ C. Por
la propiedad 5. de la Proposición 10.30 u y v están en la misma clase.

Proposición 10.38. El patron de error tiene el mismo śındrome como la
palabra recibida. Esto es, para cada palabra código v y cada patrón de error
e la palabra w = v + e cumple

eHT = wHT (10.1)

Demostración. Ya que la palabra código cumple vHT = 0 tenemos,

wHT = (v + e)HT = vHT + eHT = 0 + eH t = eHT .

Esto último significa que todas las palabras en la clase tienen el mismo
śındrome.

10.5. Códigos Ćıclicos

En está sección vamos estudiar de manera resumida algunas de las pro-
piedades de los códigos ćıclicos que son un caso particular de los códigos
lineales. El cual tienen mucho intéres ya que se pueden estudiar con ayuda
de los anillos de polinomios.
Recordemos que si X es un conjunto con n elementos entonces Sn = {σ :
X → X | σ es función biyectiva} es el grupo simétrico de orden n!. Recorde-
mos σ = (1 2 3 ... n) es ciclo de longitud n.

Definición 10.39. Sea C un código lineal, c = (a1, a2, ...an) ∈ C y σ =
(1 2 ... n) ∈ Sn, luego definimos

σ(c) = (aσ(1), aσ(2), ..., aσ(n))

= (a2, a3, ..., an, a1).

Decimos que C es un código ciclico si σ(c) ∈ C, para toda c ∈ C.
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Supongamos el código C sobre un campo Fq. Sea el correspondiente ele-
mento v0, v1, ..., vn−1 en C con el elemento v(x) = v0 +v1x+ ...+vn−1x

n−1 en
el anillo cociente Rn = Fq[x]/A donde A es algún ideal de Fq[x]. Y recorde-
mos que Fq[x] es un anillo de ideales principales lo que significa que podemos
representar A como A = (f(x)).
Si usamos las operaciones de los polinomios para encontrar el primer cambio
ćıclico, esto significaria que queremos mover el coeficiente a0 a el coeficien-
te de x, a1 a el coeficiente de x2 y aśı sucesivamente, es decir claramente
debemos multiplicar por x:

a(x)x = (a0 + a1x+ a2x
2 + ...+ an−2x

n−2 + an−1x
n−1)x

= a0x+ a1x
2 + a2x

3 + ...+ an−2x
n−1 + an−1x

n

= an−1x
n + a0x+ a1x

2 + a2x
3 + ...+ an−2x

n−1

Este resultado corresponde a an−1a0, ..., an−2 solo śı xn = 1. Se sigue que
xn − 1 = 0, por lo que todos los polinomios se ven módulo xn − 1, Por lo
tanto f(x) = xn − 1 y Rn = Fq[x]/(xn − 1)

Proposición 10.40. Un conjunto de elementos S en Rn corresponde a un
código ćıclico C si y sólo si S es un ideal de Rn.

Demostración. Supongamos que S es un conjunto de elementos de Rn que
corresponde a un código ciclico. Entonces si a1(x) y a2(x) están en S, por la
definición de un código a1(x) ± a2(x) esta en S. Recordemos que el cambio
ciclico corresponde a la multiplicación por x entonces si a(x) esta en S,
entonces a(x)x esta en S. Consideremos a(x) en S y

b(x) =
n−1∑
i=0

bix
i

donde b(x) es algún polinomio en Rn luego

a(x)b(x) =
n−1∑
i=0

bia(x)xi

Pero cada elemento de la suma es un elemento de S, por lo tanto a(x)b(x)
esta en S. Por lo tanto S es un ideal. Si S es un ideal en Rn entonces los
polinomios en S corresponde a los vectores en un código ciclico.
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Rn es un anillo de ideales principales, por lo que un código ciclico C le
correspondera el ideal (g(x)) para algún g(x) ∈ Rn.
En los próximos teoremas daremos información acerca de g(x).

Proposición 10.41. Si C es un ideal de Rn = Fq[x]/(xn − 1), el cual por
el Teorema 10.40 lo convierte en un código ciclico. Sea g(x) un polinomio
mónico con el grado más pequeño en C. Entonces g(x) es el único polinomio
mónico con el grado más pequeño y C = (g(x)).

Demostración. Veamos que Rn es un anillo de ideales principales y que el
generador mónico de grado más pequeño de un ideal es único aunque un
ideal puede tener otros generadores.
Primero vamos a mostrar que Rn es un anillo de ideales principales. Sea g(x)
el polinomio mónico de grado más pequeño en C 6= (0), y sea a(x) otro
polinomio en C. Por el algoritmo de la división en Fq[x], a(x) = g(x)b(x) +
r(x) donde gr(r(x)) < gr(g(x)). Por la definición de un ideal r(x) esta en C
pero esto contradice el hecho de que tomamos a g(x) como el polinomio de
grado más pequeño, aśı r(x) = 0 y entonces a(x) = g(x)b(x). Por lo tanto
Rn es anillo de ideales principales.
Si g(x) y h(x) son polinomios mónicos de el mismo grado y ambos están en
C, entonces g(x)− h(x) ∈ C es de menor grado. Esto no puede pasar si g(x)
tiene el menor grado. Por lo tanto g(x) es el único polinomio mónico de grado
más pequeño en C y C = (g(x))

El siguiente teorema explica como encontrar este generador de un código
ćıclico.

Proposición 10.42. Si C es un ideal en Rn, entonces su único generador
mónico g(x) divide xn−1. Inversamente, si g(x) ∈ C y divide xn−1. Entonces
g(x) tiene el grado más pequeño en (g(x)).

Demostración. Supongamos primero que g(x) es el polinomio mónico de gra-
do más pequeño en C. Por el algoritmo de la división en Fq[x], xn − 1 =
a(x)g(x) + r(x) donde el gr(r(x)) < gr(g(x)) . Ahora r(x) = −a(x)g(x)
módulo (xn− 1), y entonces r(x) está en (g(x)). Está es una contradicción a
no ser que r(x) = 0. Por lo tanto g(x) divide xn − 1.
Inversamente, supongamos que g(x) divide xn − 1 y que b(x) esta en (g(x))
pero tiene menor grado que g(x). Entonces b(x) = c(x)g(x) + (xn − 1)d(x)
en Fq[x] porque b(x) está en C. Sin embargo ya que g(x) divide xn − 1, g(x)
divide b(x), el cual es una contradicción.
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Juntos, estos teoremas determinan todos los códigos ciclicos.
Del Teorema 10.40 sabemos que todos los códigos ćıclicos son ideales de
Rn. El teorema 10.41 dice que podemos corresponder un ideal (y por lo
tanto un código) con un polinomio en Rn, finalmente el Teorema 10.42 dice
exactamente cuales polinomios mónicos generan ideales, que son aquellos que
dividen xn − 1.

Observación 10.43. El polinomio mónico de grado más pequeño g(x) en C
es llamado el polinomio generador de C

Proposición 10.44. Si C corresponde a (g(x)) donde g(x) = g0 +g1x+ ...+
gn−kx

n−k ∈ Rn y el gr(g(x)) es n − k, entonces la dimensión de C es k y
una matriz generadora es:

g0 g1 g2 · · · 0 0 · · · 0
0 g0 g1 · · · gn−k−1 gn−k · · · 0

...
0 0 0 · · · gn−k


Demostración. Esto es equivalente a mostrar que los vectores

g(x), g(x)x, g(x)x2, ..., g(x)xk−1

en Rn son linealmente independientes y generan C. Supongamos que ellos
no son linealmente independientes. Entonces hay una combinación lineal de
esos vectores con algunos coeficientes distintos de cero el cual es igual a cero:

a0(g(x))+a1(g(x)x)+...+ak−1(g(x)xk−1) = (a0+a1x+...+ak−1x
k−1)g(x) = 0

Pero el gr(g(x)) = n − k, entonces el producto es un polinomio de grado
k− 1 + n− k = n− 1, entonces el polinomio no puede ser 0 módulo xn− 1 a
menos que todos los ai sean 0. Para ver que los vectores generan, recordemos
que el código es un ideal generado por g(x), entonces todo polinomio puede
ser escrito c(x)g(x) = c0g(x) + c1xg(x) + ...+ ck−1x

k−1g(x).

Lema 10.45. Sea R un anillo con ideal I y un elemento idempotente a ∈ I.
El elemento a es un generador de I si y sólo si actua como la unidad en I.

Demostración. Supongamos que a es un generador de I. Sea c = ba para
algún b en R. Ahora ca = (ba)a = b(a2) = ba = c. Entonces para elementos
de I, a actua como la unidad.
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Supongamos a actua como la unidad de I y c ∈ I. Para mostrar que I = (a)
debemos mostrar que c = ba para algún b. Pero esto es tan simple como
c = ca porque a es la unidad en I. Por lo tanto a genera I.

Finalmente, hablemos del código dual de un código ciclico. Notemos que si
g(x) es el polinomio generador de algún código C entonces xn−1 = g(x)h(x)
para algún h(x) porque g(x) divide xn−1. Ahora h(x) es llamado el polinomio
checador de C, aunque no necesariamente genera el código dual.

Definición 10.46. Consideremos un número s tal que 0 ≤ s ≤ pm−1. Sea r
el número más pequeño tal que pr+1s ≡ s(mod pm − 1). La clase ciclotómica
de s es {s, ps, p2s, ..., prs} donde los elementos son vistos módulos pm − 1.

Proposición 10.47. Las clases ciclotómicas particionan el conjunto

{0, 1, 2, ..., pm − 1}.

Demostración. Definamos la relación ∼ sobre el conjunto tal que x ∼ y si
x ≡ pky(mod pm− 1) para algún entero k donde 0 ≤ k ≤ m− 1. Veamos que
esto es una relación de equivalencia, el cual implica que particiona el conjunto
en clases de equivalencias. Es reflexiva porque x ≡ p0x. Es simétrica porque
si x ∼ y, entonces x ≡ pky, lo que implica pm−kx ≡ pm−kpky ≡ pmy ≡ y,
lo que implica que y ≡ pm−kx, es decir y ∼ x. Finalmente es transitiva. Si
x ∼ y y y ∼ z, entonces x ≡ pky y y ≡ plz. Entonces x ≡ pk(plz) ≡ pk+lz. Y
observemos que k+ l, puede ser más grande que m−1 pero no es tan grande
como 2m− 2. Si k+ l > m− 1, simplemente factorizamos pm, y notemos que
pm ≡ 1(mod pm − 1). Entonces x ≡ pk+lz ≡ pmpk+lp−mz ≡ pk+l−mz lo que
significa que x ∼ z lo que prueba la transitividad.
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Caṕıtulo 11

Anillos Conmutativos Finitos

En está sección estudiaremos algunos resultados interesantes de los anillos
finitos y los Anillos de Galois entre los cuales está que un anillo finito se puede
expresar como la suma directa de anillos locales y el Lema de Hensel que tiene
bastantes aplicaciones en la Teoŕıa de códigos sobre anillos de Galois.

11.1. Estructura de Anillos finitos conmuta-

tivos

Sean I1, I2, I3, ..., In ideales propios de un anillo R; Ij y Ik, con 1 ≤ j 6=
k ≤ n se dice que son ideales primos relativos o coprimos si Ij + Ik = R
donde

Ij + Ik := {a+ b | a ∈ Ij y b ∈ Ik}

Definición 11.1. Sean {Ri}i∈A anillos conmutativos, consideremos el pro-
ducto infinito de anillos como sigue:∏

i∈A

Ri = {f : A→
⋃
i∈A

Ri | f(i) ∈ Ri para cada i ∈ A}

Proposición 11.2. (
∏

i∈ARi,+, 0̂, ·, 1̂) es un anillo conmutativo.

Demostración. Sean f, g ∈
∏

i∈ARi, definimos (f + g) : A →
⋃
i∈ARi como

(f + g)(i) = f(i) + g(i).

1. La función cero, 0̂ ∈
∏

i∈ARi y es tal que 0̂(i) = ORi
.
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2. (f + 0̂)(i) = f(i) + 0̂(i) = f(i) + 0Ri
= f(i).

3. Para f ∈
∏

i∈ARi , definimos (−f) : A →
⋃
i∈ARi como (−f)(i) =

−f(i) y es tal que f + (−f) = 0̂.

4. Sean f, g, h ∈
∏

i∈ARi

[(f + g) + h](i) = (f + g)(i) + h(i)

= f(i) + g(i) + h(i)

= f(i) + (g(i) + h(i))

= f(i) + [g + h](i)

Por lo tanto (
∏

i∈ARi, 0̂,+) es un grupo abelino.
Para f, g ∈

∏
i∈ARi definimos (f · g)(i) = f(i) · g(i).

1. 1̂ : A→
⋃
i∈ARi y es tal que 1̂(i) = 1Ri

Por lo tanto (
∏

i∈ARi, ·, 1̂) es un monoide abeliano.

(f · (g + h))(i) = f(i)(g + h)(i)

= f(i)(g(i) + h(i))

= f(i)g(i) + f(i)h(i).

Aśı que (
∏

i∈ARi,+, 0̂, ·, 1̂) es un anillo conmutativo.

Definición 11.3. Si f ∈
∏

i∈ARi, el sop(f) = {i ∈ A | f(i) 6= 0}. Definimos
la suma directa como⊕

i∈A

Ri = {f ∈
∏
i∈A

Ri | |sop(f)| <∞}.

Observación 11.4. Para A finito, es decir |A| = n

∏
i∈A

Ri =
n∏
i=1

Ri.

Observación 11.5.
∏n

i=1Ri = {f : {1, ...n} →
⋃n
i=1 Ri | f(i) ∈ Ri}.

1. 1̂ ∈
∏n

i=1Ri, 1̂(i) = 1, para todo i ∈ {1, ...n}.
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2. Si f ∈
∏n

i=1Ri, f(i) ∈ Ri, para cada i ∈ A. (f(i))i∈A = f .

3. Si f(i) = xi, f = (f(i))i∈A = (xi)i∈A.

Definición 11.6. Sean I1, ..., In ideales de R, entonces R/Ij es un anillo
para j ∈ {1, ..., n} definimos

n∏
j=1

R/Ij

como el anillo producto.

Observación 11.7. Podemos definir un morfismo de anillos de R a
∏n

i=1 R/Ij
de la siguiente forma

f : R→
n∏
i=1

R/Ij

x 7→ f(x) = (x+ Ij)j∈A

con A = {1, ..., n}.
Veamos que f es un morfismo de anillos.

1. Sean x, y ∈ R

f(x+ y) = [(x+ y) + Ij]j∈A

= [(x+ Ij) + (y + Ij)]j∈A

= (x+ Ij)j∈A + (y + Ij)j∈A

= f(x) + f(y).

2. Sean x, y ∈ R

f(xy) = [(xy) + Ij]j∈A

= [(x+ Ij)(y + Ij)]j∈A

= (x+ Ij)j∈A(y + Ij)j∈A

= f(x)f(y).

3. f(1R) = (1 + Ij)jj ∈ A = 1̂∏n
i=1R/Ij

Por lo tanto f es un morfismo de anillos.
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Proposición 11.8. f es inyectivo si y sólo si
⋂n
j=1 Ij = {0}.

Demostración. Recordando la Proposición 3.17. Basta demostrar que kerf =⋂n
j=1 Ij.

1. Claramente
⋂n
j=1 Ij ⊆ kerf .

2. Sea x ∈ kerf , entones f(x) = 0̂∏n
i=1R/Ij

= (Ij)j∈A, por otro lado f(x) =
(x + Ij)j∈A. Aśı que (x + Ij)j∈A = (Ij)j∈A, es decir, x + Ij = Ij para
toda j ∈ A, entonces x ∈ Ij para toda j ∈ A, por lo tanto x ∈

⋂n
j=1 Ij

.

Proposición 11.9. f es sobreyectiva si y sólo si Il + Ik = R, con l 6= k.

Demostración. ⇒] Supongamos que f es sobreyectiva. Sean Il, Ik ≤ R con
l 6= k y l, k ∈ A. Sea δl ∈

∏n
j=1R/Ij tal que δl = (xi)i∈A donde xi = 0 + Ii

si i 6= l y xi = 1 + Ii si i = l. Como δl ∈
∏n

j=1 R/Ij y f es sobreyectiva,
entonces existe x ∈ R tal que f(x) = δl, pero f(x) = (x + Ii)i∈A = (xi)i∈A.
Entonces x+ Il = 1 + Il y x+ Ik = 0 + Ik con k 6= l. De modo que 1− x ∈ Il
y x ∈ Ik, para todo k 6= l. Aśı 1 = (1 − x) + x ∈ Il + Ik, con l 6= k. Por lo
tanto R = Ik + Il, es decir, Il, I, k son coprimos.
⇐] Supongamos que R = Ik + Il para todo k 6= l. Sea δl = (xi)i∈A donde
xi = 0 + Ii si i 6= l y xi = 1 + Ii si i = l. Veamos que existe x ∈ R tal que
f(x) = δl. Entonces uk + vk = 1, para todo k 6= l, uk ∈ Il, vk ∈ Ik, entonces∏

k 6=l

vk =
∏
k 6=l

(1− uk), (11.1)

luego 1− uk ≡ 1 mod Il entonces
∏

(1− uk) ≡ 1 mod Il. Por lo tanto∏
k 6=l

vk ≡ 1 mod Il,

luego
∏

k 6=l vk ∈ R, implica f(
∏

k 6=l vk) = (
∏

k 6=l vk + Ij)j∈A.

Si j = l,
∏

k 6=l vk + Il = 1 + Il.

Si j 6= l, vj ∈ {vk}k 6=l, con vj ∈ Ij.

Por lo tanto
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∏
k 6=l vk + Ij = Ij = 0 + Ij.

Es decir f(
∏

k 6=l vk) = δl.

Proposición 11.10. Sea R un anillo finito.

1. Si Ij y Ik, 1 ≤ j 6= k ≤ n son ideales primos relativos de R entonces:

n⋂
j=1

Ij =
n∏
j=1

Ij.

2. Si Ij y Ik son primos relativos, entonces aśı lo son Imj y Imk para todo
m ∈ N
(Notemos que, si I es un ideal de R, Im es la m-ésima potencia, es decir
el ideal generado por los elementos x1 · · ·xm donde xk ∈ I, 1 ≤ k ≤ m).

Demostración. 1. La demostración se hará por inducción sobre n.
Para n = 2. Sean I1, I2 ≤ R tales que I1 + I2 = R. Es claro que
I1I2 ⊆ I1 ∩ I2. Sea y ∈ I1 ∩ I2, como I1 + I2 = R, entonces 1 ∈ R,
entonces 1 = a1 + a2, con a1 ∈ I1 y a2 ∈ I2, multiplicando por y en
ambos lados y = a1y + a2y con aiy ∈ I1I2 para i = 1, 2. Por lo tanto
y ∈ I1I2.
Fijemos ahora a un ideal de R. Sea In ≤ R, y para todo j ∈ {1, ..., n},
Ij + In = R con j 6= n. Aśı para toda j 6= n, aj + bj = 1 con aj ∈ Ij y
bj ∈ In, por lo tanto∏

j 6=n

aj =
∏
j 6=n

(1− bj) ≡ 1 mod In

Ya que 1− bj = aj y −bj = (1− bj)− 1 ∈ In, entonces 1− bj ≡ 1 mod
In para todo j 6= n, aśı∏

j 6=n

(1− bj) ≡
∏

(1) = 1.

Sea

n∏
j=1

Ij =
n−1∏
j=1

IjIn =
n−1⋂
j=1

IjIn = KIn
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Por demostrar que K + In = R.
Para todo j 6= n,

∏
j 6=n aj ∈ Ij y

∏
j 6=n aj ∈

⋂n−1
j=1 Ij, aśı 1−

∏
j 6=n aj ∈

In, entonces 1−
∏

j 6=n aj = b, para b ∈ In, entonces 1 =
∏

j 6=n aj + b, es

decir, K + In = R. Por lo tanto KIn = K ∩ In =
⋂n−1
j=1 IjIn =

⋂n
j=1 Ij.

2. Por hipótesis, Ij y Ik son primos relativos, aśı existen xj ∈ Ij y xk ∈ Ik
tal que xj + xk = 1. Esto significa que 1 = (1)(1) = (xj + xk)(xj +
xk) = x2

j + x2
k + 2xjxk; Hay dos posibilidades: Si xjxk = 0, entonces

inmediatamente se sigue que R = I2
j + I2

k . De otra manera 2xjxk =
(2xj + 2xk)xjxk =2x2

jxk + 2xjx
2
k ∈ I2

j + I2
k . Por lo tanto, por lo anterior

1 ∈ I2
j + I2

k .

Definición 11.11. Un elemento e de un anillo R es llamado idempotente
si e2 = e. Dos elementos idempotentes de R, e y f , se dicen ortogonales si
ef = 0.

Ejemplo 11.12. Veamos Z6 = {0, 1, 2, 3, 4, 5}
Los elementos idempotentes de Z6 son 0,1,3,4, mientras que los elementos
ortogonales son 3 y 4.

Proposición 11.13. Sea R un anillo finito. Las siguientes proposiciones son
equivalentes:

1. R es isomorfo a una suma directa de subanillos Rj , 1 ≤ j ≤ n.

2. Existen elementos idempotentes ortogonales ej tales que

1 =
n∑
i=1

ej y Rj
∼= Rej

3. R es una suma directa de ideales propios Ij ∼= Rj, 1 ≤ j ≤ n

Demostración. 1.⇒]2. Por hipótesis existen ej ∈ Rj, para todo j ∈ {1, ..., n},
tal que 1 =

∑n
j=1 ej. Si consideramos ek como un elemento del anillo R, en-

tonces ek =
∑n

j=1 ekej lo cual significa ekej = δkjek, donde δkj es la delta de
Kronecher, lo que significa que las e′js donde 1 ≤ j ≤ n son elementos idem-
potentes ortogonales de R. Más aún, Rj es el ideal principal de R generado
por ej
2.⇒ 3.
Por el paso anterior, todo Rj es un ideal de R.
3.⇒ 1. Es claro.
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Proposición 11.14. Un anillo finito R puede ser expresado como una suma
directa de anillos locales.

Demostración. Sean P1, P2, ..., Pn ideales primos de R, es decir Spec(R) =
{P1, ..., Pn}. Por las Proposiciones 6.8 y 1.17, R/Pi es un campo, luego por
la Proposición 6.6 cada Pi con i = {1, ..., n} es ideal máximo de R, es decir
spec(R) = specm(R). De modo que, el radical de Jacobson coincide con el
nilradical de R. Por ser máximos los Pi

′s, 1 ≤ i ≤ n, se tiene que todo par
de ideales (Pj, Pk), 1 ≤ j 6= k ≤ n, es un par de ideales coprimos de R, aśı⋂n
j=1 Pj =

∏n
j=1 Pj. Ya que J(R) es un ideal nilpotente existe m0 ∈ N tal

que J(R)m0 = {0}. Definimos el morfismo de anillos.

φ0 : R→ R/Pm0
1 ⊕ ...⊕R/Pm0

n (11.2)

de forma natural. Lo que probamos en las Proposiciones 11.10, 11.8 y 11.9,
nos asegura que φ0 sea un isomorfimo, ya que cualquiera dos ideales Pm0

j ,
1 ≤ j ≤ n, son coprimos y ker(φ0) =

⋂n
j=1 P

m0
j =

∏n
j=1 P

m0
j = J(R)m0 =

{0}. Este isomorfimos determina una biyección entre los ideales propios del
anillo R/Pm0

j , 1 ≤ j ≤ n y los ideales propios de R. Ya que Pj es el único
ideal máximo de R tal que Pm0

j < Pj < R, entonces por el Teorema de la
correspondencia R/Pm0

j es un anillo local con ideal máximo Pj/P
m0
j . Asuma-

mos que existen dos descomposiciones distintas de R como una suma directa
de anillos locales.

R =
n⊕
j=1

Rj =
m⊕
k=1

Sk.

Entonces existen elementos idempotentes ortogonales ej ∈ Rj y fk ∈ Sk,
1 ≤ j ≤ n, 1 ≤ k ≤ m, tal que

1 =
n∑
j=1

ej =
m∑
k=1

fk.

Cada sumando propio Rj es isomorfo a un anillo local Rej, analogamente,
cada Sk es isomorfo a un anillo local Rfk. De ah́ı, ningúno de los elementos
ej y fk es una suma de dos o más elementos idempotentes propios, de hecho,
en general, un anillo local no contiene elementos idempotentes diferentes
de 0 y 1, ya que su radical de Jacobson es el ideal máximo. Por lo tanto
ej =

∑m
k=1 ejfk, aśı existe un entero kj tal que ej = ejfkj y, analogamente,

existe un entero jk tal que fk = fkejk , 1 ≤ j ≤ n, 1 ≤ k ≤ m. Esto significa
que
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ej = ejfkj = ejfkjejkj ,

aśı j = jkj como los elementos {ej}1≤j≤n son mutuamente ortogonales.

Proposición 11.15. Sea R un anillo y A = {r ∈ R : r no es unidad }
Entonces son equivalentes las siguientes condiciones.

i. Para todo r1, r2 ∈ A, r1 + r2 ∈ A.

ii. A es un ideal.

iii. A es el ideal mayor propio de R.

iv. Existe un ideal mayor propio de R.

v. Para todo r ∈ R, r es unidad o (1− r) es unidad.

Demostración. i) ⇒ ii) Basta con que veamos que, es cerrado bajo el pro-
ducto con elementos del anillo, es decir. Para todo a ∈ A y r ∈ R entonces
ra ∈ A. Supongamos ra /∈ A, eso significa que ra es unidad, entonces existe
u ∈ R tal que 1 = (ar)u = a(ru) lo que implica a es unidad, pero esto es una
contradicción. Por lo tanto ra ∈ A.
ii) ⇒ iii) Tomemos B ideal de R. Por demostrar que B ⊆ A, supongamos
que no se cumple B ⊆ A. entonces existe b ∈ B tal que b /∈ A. como b /∈ A
implica que b es unidad entonces existe u ∈ R tal que bu = 1 luego como B
es ideal y b ∈ B se sigue que 1 ∈ B.
iii)⇒ iv) Es evidente.
iv)⇒ v) Sea C el ideal mayor propio de R. Sea r ∈ R y supongamos r y 1−r
no son unidad, entonces r ∈ A y 1 − r ∈ A, luego r ∈ C y 1 − r ∈ C. Aśı
1 ∈ C, lo que es una contradicción.
v) ⇒ i) Sean r1, r2 ∈ A y supongamos r1 + r2 /∈ A, entonces existe u ∈ R tal
que (r1 + r2)u = r1u+ r2u = 1 aśı que r1u = 1− r2u, además por la prueba
de i) ⇒ ii) r1u ∈ A, entonces 1 − r2u ∈ A, pero si 1 − r2u ∈ A implica que
1 − r2u no es unidad, entonces r2u es unidad, pero r2u ∈ A es decir r2u no
es unidad. Lo que es una contradicción.

Definición 11.16. Un anillo R es llamado de Galois si es finito, local y su
ideal máximo esta dado por (p) donde p es primo.

Proposición 11.17. El anillo Zpn es un anillo de Galois.
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Demostración. Mostraremos que (p) es el único ideal máximo. Consideremos
el morfismo

φ : Zpn −→ Zp
a mod pn 7−→ a mod p

el cual se puede ver que es sobreyectiva. Observemos que ker(φ) = (p).
Usando el primer teorema para isomorfismos para anillos tenemos que

Zpn/(p) ∼= Zp.

Por la Proposición 6.6, vemos que (p) es máximo. Para mostrar la unicidad,
supongamos M fuera otro ideal máximo distinto de (p). Notemos que p /∈M .
Supongamos que p ∈ M . Entonces (p) ⊆ M con (p) 6= M significa que M
contiene propiamente a (p). Ya que (p) es máximo, esto implica M = Zpn . Un
ideal máximo es un ideal propio por definición, pero esto es una contradicción
que muestra que p /∈ M . Nuevamente por la Proposición 6.6, Zpn/M debe
ser un campo. Ya que M es un ideal propio, 1 /∈ M y entonces 1 + M 6= 0.
Ya que todos los campos tienen caracteŕıstica un primo, en este caso p, esto
implica p1 + M = M de modo que p ∈ M . Esta contradicción prueba la
unicidad de (p). Por lo que Zpn es un anillo de Galois.

11.2. Propiedades importantes de anillos de

Galois

Lema 11.18. Sea R un anillo finito, local con un único ideal máximo M . Si
I es un ideal propio de R, entonces I ⊆M .

Demostración. Supongamos que I no es un subconjunto de M . Entonces
hay algún a ∈ I tal que a /∈ M . Por lo tanto (a) 6⊆ M . Si (a) es máximo,
entonces contradice la unicidad de M . Entonces debe haber algún ideal A1,
tal que (a) ⊆ A1, si A1 es máximo, nuevamente contradice la unicidad de
M . Continuando inductivamente debe haber siempre un ideal más grande.
Pero R es finito, entonces esta cadena de ideales debe ser finita, es decir hay
algún ideal Ar final, el cual otra vez contradice la unicidad de M . Por lo
tanto I ⊆M

Proposición 11.19. Sea R un anillo de Galois cuyos divisores de cero junto
con 0 forma un ideal principal (p1) para un número primo p. Entonces (p1)
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es el único ideal máximo de R, R/(p1) es un campo de caracteŕıstica p. La
caracteŕıstica de R es una potencia de p.

Demostración. En un anillo finito todo elemento distinto de cero el cual no es
un divisor de cero es una unidad. Por lo tanto (p1) es el único ideal máximo
de R. Denotamos el morfismo sobreyectivo natural f : R → R/(p1) tal que
f(r) = r + (p1). Entonces p(1 + (p1)) = p + (p1) = 0 + (p1). De ah́ı R/(p1)
es un campo finito de caracteŕıstica p. Sea k la caracteŕıstica de R, es decir,
k1 = 0, luego

0 + (p1) = f(k1)

= k + (p1)

= (k + (p1))(1 + (p1)).

De ah́ı p | k. Asumamos que k = psl, donde s, l son enteros positivos y su
m.c.d(p, l) = 1. Si l > 1, entonces a = psl y b = l1 elementos distintos de
cero en R y ab = 0. Aśı l1 ∈ (p1) y l(1 + (p1)) = l + (p1) = 0 + (p1). Pero
R/(p1) es de caracteŕıstica p, aśı p | l, lo que es una contradicción, ya que
m.c.d(p, l) = 1. Por lo tanto l = 1 y k = ps.

Proposición 11.20. Sea R un anillo finito, local con un único ideal máximo
M . Un elemento x ∈ R es una unidad si y sólo si x /∈M .

Demostración. La demostración se hará por contrarećıproca. Supongamos
que x ∈M , deseamos mostrar que x no es unidad. Observemos que (x) ⊆M .
Por lo tanto para todo r ∈ R tenemos que rx ∈M . Ahora 1 /∈M porque de
otra forma M no seŕıa un ideal propio. De ah́ı no podemos tener un elemento
y ∈ M tal que xy = 1. Rećıprocamente, supongamos que x /∈ M . Entonces
el ideal (x) 6⊆ M . Por el Lema 11.18, sin embargo, M contiene todos los
ideales propios de R. Por lo tanto, debemos tener (x) = R, lo que implica
que 1 ∈ (x), aśı hay un y ∈ R tal que xy = 1.

La proposición 11.20 nos dice como deben ser las unidades de un anillo
de Galois.

Lema 11.21. El conjunto de los elementos nilpotentes forman un ideal.
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Demostración. Notemos que N es distinto del vaćıo ya que 0 ∈ N . Sea
N = {a ∈ R | ak = 0, para algún k ∈ N}. Entonces si r ∈ R y a ∈ N ,
tenemos (ra)k = rkak = rk0 = 0. Ahora supongamos que a, b ∈ N , entonces
existen enteros n y m tal que an = bm = 0. Consideremos ajbn+m−j, si j ≥ n
entonces aj = 0 aśı ajbn+m−j = 0, mientras si 0 ≤ j < n entonces bn+m−j = 0
aśı ajbn+m−j = 0. Por lo tanto por el Teorema del Binomio se tiene que
(a+ b)n+m = 0, aśı a+ b ∈ N .

Como se vio en el Lema 11.18, N ⊆M . Veamos que M ⊆ N , mostrando
que N = M .

Proposición 11.22. El conjunto de elementos nilpotentes en R es exacta-
mente el ideal maximal M .

Demostración. Sea N es el ideal de elementos nilpotentes. Ya sabemos que
N ⊆ M . Por demostrar que M ⊆ N . Ya que M = (p), esto es equivalente a
mostrar que si un elemento de R es divisible por p , entonces este también
es nilpotente. Recordemos que la caracteŕıstica de R es pk para algún k ∈ N,
aśı pk = 0, mostrando que p es nilpotente. Entonces si a es divisible por p,
tenemos a = bp. Esto implica que a es nilpotente, ya que

ak = (bp)k = bkpk = bk0 = 0

Otro hecho útil es

Proposición 11.23. Para todo anillo R, si u es una unidad y a es nilpotente,
entonces u+ a es una unidad.

Demostración. El inverso de u + a esta dado por (uk−1 − uk−2a + ... +
(−1)k−1ak−1)(u−1)k donde k es tal que ak = 0.

(u+ a)(uk−1 − uk−2a+ ...+ (−1)k−1ak−1)(u−1)k

= (uk+uk−1a−uk−1a+...+(−1)k−2uak−1 +(−1)k−1uak−1 +(−1)k−1ak)(u−1)k

= (uk + (−1)k−1ak)(u−1)k

= (uk)(u−1)k = 1
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Con frecuenćıa consideraremos anillos de polinomios sobre anillos de Ga-
lois, por lo que debemos estudiar algunas propiedades.
Con la Proposición 11.23 se puede demostrar lo siguiente :

Proposición 11.24. Sea f(x) = a+a1x + ... + akx
k un polinomio en R[x].

Entonces f(x) es una unidad en R[x] si y sólo si a0 /∈M y a1, ..., ak ∈M .

Demostración. Supongamos que f(x) es unidad. Y sea ψ : R[x] → R[x]/M
un morfismo que toma los coeficientes de polinomios a sus correspondientes
clases en R/M . Ya que R/M es un campo, las unidades de R[x]/M son los
polinomios constantes a+M . Ahora si f(x) es una unidad en R[x], entonces
ψ(f(x)) es también una unidad. Esto es porque si f(x)g(x) = 1, entonces
1 +M = ψ(1) = ψ(f(x)g(x)) = ψ(f(x))ψ(g(x)). Usando este hecho ψ(f(x))
sigue siendo una unidad en R[x], significa ψ(f(x)) = ψ(a0) + ψ(a1)x + ... +
ψ(ak)x

k = a0 + ...+ akx
k +M , es constante y distinto de cero. Por lo tanto,

a0 /∈M y el resto de los coeficientes están en M .
Ya que a0 /∈ M esto significa que a0 es unidad en R , aśı como en R[x].
El elemento a1x + ... + akx

k es nilpotente en R[x]. Ya que R[x] es un anillo
unitario, la Proposición 11.23 implica que f(x) = a0 +a1x+ ...+akx

k es una
unidad también.

Proposición 11.25. f(x) ∈ R[x] es un elemento nilpotente en R[x] si y sólo
si a0, ..., an son nilpotentes.

Demostración. ⇒] Como f(x) es nilpotente, 1 +f(x) es una unidad en R[x].
Por la Proposición 11.24, a1, ..., an son nilpotentes en R mientras 1 + a0 ∈
U(R). Por lo tanto para n lo suficientemente grande, fn = 0, implica que
an0 = 0, aśı a0 es nilpotente también.
⇐] Si nj ∈ N es tal que a

nj

j = 0, 0 ≤ j ≤ n y nj ≥ 2, definiendo

n̄ := (
∑n

j=0 nj)− n

tenemos f(x)n̄ = 0. De hecho, f(x)n̄ es una combinación lineal, con coefi-
cientes enteros, de productos de la forma

ar00 a
r1
1 ...a

rt
t ...a

rn
n x

kt

tal que
∑n

j=0 rj = n̄, para cada 0 ≤ kt < nn̄.
Ya que no podemos simultaneamente tener rj < nj, para cada j, cada uno
de estos productos es cero.
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Proposición 11.26. Sea R un anillo. f(x) ∈ R[x] es un divisor de cero si
y sólo si existe un elemento 0 6= a ∈ R tal que af(x) = 0.

Demostración. ⇒] Escojamos un polinomio particular g ∈ {h ∈ R[x] | h 6=
0, hf = 0} 6= ∅ con grado mı́nimo. Digamos g(x) = b0 + b1x + ... + bmx

m

con bm 6= 0. Afirmamos que bmf = 0. De lo contrario existe un entero r ∈
{0, 1, ..., n} tal que bmar 6= 0 aśı que bmai = 0, para todo i ∈ {r + 1, ..., n}.
Entonces,para todo i ∈ {r + 1, ..., n}, tenemos aigf = 0 y el grado de

aig = ai(b0 + b1x+ ...+ bmx
m)

= aib0 + aib1x+ ...+ aibm−1x
m−1

es menor que el grado de g. Por nuestra elección de g, sabemos que aig = 0
para todo i ∈ {r + 1, ..., n}. Pero entonces tenemos

0 = fg = (a0 + ...+ arx
r + ar+1x

r+1 + ...+ anx
n)g

= (a0 + ...+ arx
r)g

= (a0 + ...+ arx
r)(b0 + ...+ bmx

m),

lo cual fuerza arbm = 0, lo cual es una contradicción.
⇐] Se cumple por definición.
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Caṕıtulo 12

Polinomios regulares en el
anillo R[x]

En esta sección seguiremos con nuestro estudio del anillo de polinomios
pero esta vez vamos a considerar a R como un anillo finito, local y conmu-
tativo con ideal máximo M único y campo residual K = R/M .
El π : R → K morfismo sobreyectivo natural se extiende a un morfismo de
anillos de polinomios.

µ : R[x]→ K[x]

Definición 12.1. Sea A un anillo conmutativo, un ideal I de A es llamado
primario si I 6= A además cuando xy ∈ I y x /∈ I entonces yn ∈ I, para
algún n ∈ N.

Definición 12.2. Sea f y g elementos de R[x]

1. f es regular si no es un divisor de cero.

2. f es primario si (f) es un ideal primario.

3. f y g son primos relativos si R[x] = (f) + (g).

Proposición 12.3. Sea f(x) = a0 + a1x + ... + anx
n un elemento de R[x],

las siguientes condiciones son equivalentes:

1. f es una unidad.

2. µ(f) es una unidad en K[x].
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3. a0 es una unidad en R y a1, ..., an son nilpotentes.

Demostración. 1. ⇒ 2. Si f es una unidad, entonces existe un polinomio g
tal que fg = 1. Consecuentemente, 1 = µ(1) = µ(fg) = µ(f)µ(g), aśı µ(f)
es una unidad.
2.⇒ 3. Las únicas unidades en K[x] son los polinomios constantes µ(f) = c,
aśı por definición de µ, los coeficientes a1, 1 ≤ i ≤ n, deben pertenecer a M ,
es decir son nilpotentes, a0 es de la forma a0 = c+h, donde h es un elemento
nilpotente y c es una unidad; por lo tanto a0 es invertible.
3.⇒ 1. Es una consecuencia de la Proposición 11.24.

Proposición 12.4. Sea f(x) = a0 + a1x + ... + anx
n un polinomio en R[x]

lo siguiente es equivalente:

1. f es nilpotente.

2. µ(f) = 0.

3. a0, ..., an son nilpotentes en R.

4. f es un divisor de cero.

5. Exite un elemento a ∈ R \ {0} tal que af(x) = 0.

Demostración. Las implicaciones 2. ⇔ 3. y 3. ⇔ 4. se siguen del hecho que
R es local y finito, aśı es suficiente mostrar que 3. es equivalente a 1. y 5.
Por la Proposición 11.25, f(x) es nilpotente si y sólo si sus coeficientes son
nilpotentes. La implicación 3. ⇒ 5. se sigue de la proposición 11.26 ya que,
si f(x) es nilpotente, entonces este es un divisor de cero. Veamos 5. ⇒ 3.
Supongamos que existe a ∈ R \ {0}, que por hipótesis cumple aai = 0 para
todo 0 ≤ i ≤ n, de manera que todos los ai son divisores de cero en R; Por
lo tanto por la estructura de R, ellos son nilpotentes.

Proposición 12.5. Sea f(x) =
∑n

i=0 aix
i un polinomio en R[x]. Las siguien-

tes condiciones son equivalentes:

1. f es regular.

2. El ideal generado por a0, a1, ..., an coincide con R.

3. ai es una unidad en R para algún i, 0 ≤ i ≤ n.
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4. µ(f) 6= 0.

Demostración. 1. ⇒ 2. Se sigue de 12.4 (3); de hecho, existe un sub́ındice
i ∈ {1, ..., n} tal que ai es una unidad en R.
2.⇒ 3. Obvio.
3.⇒ 4. Obvio.
4. ⇒ 5. Si µ(f) 6= 0, entonces f no es un divisor de cero en R[x] (ver 12.4
(4)).

Si A es un ideal de un anillo R, escribimos A[x] para denotar el subanillo
de R[x] definido por

A[x] := {a0 + a1x+ ...+ anx
n | n ≥ 0, ai ∈ A, 0 ≤ i ≤ n}

Proposición 12.6. Sea R finito, local y M su ideal máximo. Entonces

1. M [x] =
⋂

P∈R[x]

P , donde P es un ideal primo en R[x].

2. M [x] = {f(x) ∈ R[x] | g(x)f(x) + 1 tiene un inverso, para todo g(x) ∈
R[x]} = J(R[x]).

Demostración. 1. Por la Proposición 12.4,

M [x] = {f(x) ∈ R[x] | f(x) nilpotente} = Nil(R[x]).

2. Sea f(x) ∈M [x]; ya que M [x] es un ideal en R[x], g(x)f(x) es nilpotente,
para todo g(x) en R[x]. De ah́ı, M [x] ⊆ J(R[x]). Por otro lado, si f(x) ∈
J(R[x]), donde f(x) =

∑n
i=0 aix

i con ai ∈ R, entonces xf(x) + 1 tiene un
inverso

Proposición 12.7. Sea f un elemento de R[x], donde R es un anillo local,
finito y sea µ(f) = ḡ1...ḡn, donde ḡ1...ḡn ∈ K[x] son polinomios primos rela-
tivos disjuntos en el dominio euclidiano K[x]. Entonces existen polinomios
g1, ..., gn ∈ R[x] tal que

1. g1, ..., gn son primos relativos disjuntos en R[x].

2. µ(gi) = ḡi, 1 ≤ i ≤ n.

3. f = g1, ..., gn.

Demostración. Por inducción sobre n. Para n = 2 tenemos
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f = h1h2 + v,

donde v ∈M [x] y µ(h1) = ḡ1, µ(h2) = g2. Ya que ḡ1 y ḡ2 son primos relativos
si y sólo si h1 y h2 son primos relativos en R[x], aśı existe λ1 y λ2 en R[x],
tal que

λ1h1 + λ2h2 = 1

Poniendo

h1,1 = h1 + λ2v,
h2,1 = h2 + λ2v

da

h1,1h2,1 = f + λ1λ2v
2.

Por lo tanto f ≡ h1,1h2,1(mod v2)., con µ(hi, 1) = µ(h1), i = 1, 2 y h1,1, h2,1

primos relativos. En este punto podemos repetir el argumento aplicando esto
a h1,1 y h2,1; Por iteración, podemos encontrar 2 polinomios h1,t y h2,t en
R[x], para todo entero positivo tal que

f ≡ h1,t0h2,t0mod(v2t)

y

µ(hi, t) = µ(hi) con i = 1, 2.

Obtenemos la afirmación (para el caso n = 2) eligiendo gi = hi, t0, 1 ≤ i ≤ 2.
En general, si µ(f) = ḡ1...ḡn, es suficiente observar que ḡ1 es primo relativo
a ḡi, 2 ≤ i ≤ n, aśı {ḡ1, ..., ḡn} son primos relativos disjuntos. Poniendo
r = ḡ2...ḡn nos da µ(f) = ḡ1r el cual completa la prueba.
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